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✞ ☎

> x = 3.14

> f(x) = (

eval(:(x = 0));

x * 2)

> f(42) # 84

> x # 0
✝ ✆

Fig. 1. Scope of eval in Julia

✞ ☎

> (defn g [] 2)

> (defn f [x]

(eval `(defn g [] ~x))

(* x (g)))

> (f 42) ; 1764

> (g) ; 42

> (f 42) ; 1764
✝ ✆

Fig. 2. Eval in Clojure

✞ ☎

> g() = 2

> f(x) = (

eval(:(g()=$x));

x * g())

> f(42) # 84

> g() # 42

> f(42) # 1764
✝ ✆

Fig. 3. Eval in Julia

it in some environment. In JavaScript and R, eval may execute in the current lexical environment;
in Lisp and Clojure, it is limited to the łtop levelž. On this spectrum, Julia takes the latter approach,
which enables compiler optimizations that would otherwise be unsound. For example, in a program
in Fig. 1, multiplication x*2 in the body of function f can be safely optimized to an efficient integer
multiplication for the call f(42). This is because eval only accesses the top-level environment and
thus cannot change the value of a local parameter x, which is known to be the integer 42. For a
global x, such an optimization would be unsound.
What is unique about the design of eval in Julia is the treatment of function definitions. Many

compilers rely on the information about functions for optimizations, but those optimizations can
be jeopardized by the presence of eval. To explain how Julia handles the interaction of eval and
functions, we contrast it with the Clojure language. Fig. 2 shows a Clojure program with a call
to a function f which, within its body, updates function g by invoking eval. Then, the call to f

returns 1764 because the new definition of g is used. Fig. 3 shows a Julia equivalent of the same
program. Here, the second call to f returns 1764 just like in Clojure, but the first call returns 84.
This is because, while the first invocation of f is running, it does not see the redefinition of g made
by eval: the redefinition becomes visible only after the first call (to f(42)) returns to the top level.
From the compiler’s point of view, this means that calling eval does not force recompilation of any
methods that are łin-flight.ž Thus, it is safe to devirtualize, specialize, and inline functions in the
presence of eval without the need for deoptimization. For example, x*g() can be safely replaced
with x*2 in f for the first call f(42).

✞ ☎

*(x::Int, y::Int) = mul_int(x, y)

*(x::Float64, y::Float64) = mul_float(x,y)

*(a::Number, b::AbstractVector) = ...

*(x::Bool, y::Bool) = x & y
✝ ✆

Fig. 4. Multiple definitions of *

Julia made the choice to restrict access to newly
defined methods due to pressing performance
concerns. Julia heavily relies on symmetric multi-
ple dispatch [Bobrow et al. 1986], which allows a
function to havemultiple implementations, called
methods, distinguished by their parameter type
annotations. At run time, a call is dispatched to
the most specific method applicable to the types
of its arguments. While some functions might have only one method, plenty have dozens or even
hundreds of them. For example, the multiplication function alone has 357 standard methods (see
an excerpt in Fig. 4). If Julia were to always use generic method invocation to dispatch *, programs
would become unbearably slow. By constraining eval, the compiler can avoid generic invocations.
In Fig. 1, the compiler can pick and inline the right definition of * when compiling f(42). It should
be noted that this optimization-friendly eval semantics does not apply to data. Function definitions
are treated differently from variables, and changes to global variables (such as in Fig. 1) can be
observed immediately.
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Arguably, despite being unusual, Julia’s semantics is easy to understand for programmers. There
is always a clear point where new definitions become visibleÐat the top levelÐand thus, users
can avoid surprises and dependence on the exact position of eval in the code. However, in case
the default semantics is not desirable, Julia also provides an escape hatch: the built-in function
invokelatest(f), which forces the implementation to invoke the most recent definition of f. A
slower alternative to invokelatest is to call f within eval, which always executes in the top level.
This language mechanism that delays the effect of eval on function definitions is called world

age. In the Julia documentation, world age is described operationally [Bezanson et al. 2018]: every
method defined in a program is associated with an age, and for each function call, Julia ensures
that the current age is larger than the age of the method about to be invoked. One can think of
the world age as a counter that allows the implementation to ignore all methods that were born
after the last top-level call started. Much of its specification is tied to implementation details and
efficiency considerations. Our contributions are as follows:

• A core calculus for world age: We introduce Juliette, a calculus that models the notion of
world age abstractly. In the calculus, the implementation-oriented world-age counters are
replaced with method tables that are explicitly copied at the top level, and eval is simplified
down to an operation that evaluates its argument in a specific method table.

• Formalization of optimizations: We formalize and prove correct three compiler optimizations,
namely inlining, devirtualization, and specialization.

• Corpus analysis: We analyze Julia packages to understand how eval is used, and estimate the
potential impact of world age on library code. We also identify a number of programming
patterns by manual inspection of selected packages.

• Testing the semantics: We develop a Redex model of our calculus and optimizations to allow
rapid experimentation and testing.

The corpus analysis and the Redex model are publicly available.1 The formalization with detailed
proofs can be found in the extended version of the paper [Belyakova et al. 2020].

2 BACKGROUND

We start with an overview of the features of Julia relevant to our work, and review related work.

2.1 Julia Overview

Despite the extensive use of types and type annotations for dispatch and compiler optimizations,
Julia is not statically typed. A formalization of types and subtyping is provided by Zappa Nardelli
et al. [2018], and a general introduction to the language is given by Bezanson et al. [2017].

Values. Values are either instances of primitive typesÐsequences of bitsÐor composite typesÐ
collection of fields holding values. Every value has a concrete type (or tag). This tag is either inferred
statically or stored in the boxed value. Tags are used to resolve multiple dispatch semantically and
can be queried with typeof .

Types. Programmers can declare three kinds of user-defined types: abstract types, primitive types,
and composite types. Abstract types cannot be instantiated, while concrete types can. For example,
Float64 is concrete, and is a subtype of abstract type Number. Concrete types have no subtypes.
Additionally, user-defined type constructors can have bounded type parameters and can declare up
to a single supertype.

1https://github.com/julbinb/juliette-wa
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Annotations. Type annotations include a number of built-in type constructors, such as union and
tuple types. Tuple types, written Tuple{A,...}, describe immutable values that have a special role
in the language: every method takes a single tuple argument. The :: operator ascribes a type to a
definition. We will use 𝜏 to denote annotations.

Subtyping. The subtyping relation, <:, is used in run-time casts and multiple dispatch. Julia
combines nominal subtyping, union types, iterated union types, covariant and invariant con-
structors, and singleton types. Tuple types are covariant in their parameters, so, for instance,
Tuple{Float64,Float64} is a subtype of Tuple{Number,Number}.

Multiple dispatch. A function can have multiple methods where each method declares what
argument types it can handle; an unspecified type defaults to Any. At run time, dispatching a call
f(v) amounts to picking the best applicable method from all the methods of function f. For this,
the dispatch mechanism first filters out methods whose type annotations 𝜏 are not a supertype
of the type tag of v. Then it takes the method whose type annotation 𝜏𝑖 is the most specific of
the remaining ones. If the set of applicable methods is empty, or there is no single best method, a
run-time error is raised.

Reflection. Julia provides a number of built-in functions for run-time introspection and meta-
programming. For instance, the methods of any function f may be listed using methods(f). All
the methods are stored in a special data structure, called the method table. It is possible to search
the method table for methods accepting a given type: for instance, methods(*,(Int,Float64)) will
show methods of * that accept an integer-float pair. The eval function takes an expression object
and evaluates it in the global environment of a specified module. For example, eval(:(1+2)) will
take the expression :(1+2) and return 3.

✞ ☎

for op in (:+, :*, :&, :|)

eval(:($op(a,b,c) = $op($op(a,b),c)))

end
✝ ✆

Fig. 5. Code generation

Eval is frequently used for meta-programming as
part of code generation. For example, Fig. 5 gen-
eralizes some of the basic binary operators to
three arguments, generating four new methods. In-
stead of building expressions explicitly, one can
also invoke the parser on a string. For instance,
eval(Meta.parse("id(x) = x")) creates an identity
method.

2.2 Related Work

This paper is concerned with controlling the visibility of function definitions. Most programming
languages control where definitions are visible, as part of their scoping mechanisms. Controlling
when function definitions become visible is less common.
Languages with an interactive development environment had to deal with the addition of

new definitions for functions from the start [McCarthy 1978]. Originally, these languages were
interpreted. In that setting, allowing new functions to become visible immediately was both easy
to implement and did not incur any performance overhead.
Just-in-time compilation changed the performance landscape, allowing dynamic languages to

have competitive performance. However, this meant that to generate efficient code, compilers had
to commit to particular versions of functions. If any function is redefined, all code that depends
on that function must be recompiled; furthermore, any function currently executing has to be
deoptimized using mechanisms such as on-stack-replacement [Hölzle et al. 1992]. The drawback of
deoptimization is that it makes the compiler more complex and hinders some optimizations. For
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example, a special assume instruction is introduced as a barrier to optimizations by Flückiger et al.
[2018], who formalized the speculation and deoptimization happening in a model compiler.
Java allows for dynamic loading of new classes and provides sophisticated controls for where

those classes are visible. This is done by the class-loading framework that is part of the virtual
machine [Liang and Bracha 1998]. Much research happened in that context to allow the Java
compiler to optimize code in the presence of dynamic loading. Detlefs and Agesen [1999] describe a
technique, which they call preexistence, that can devirtualize a method call when the receiver object
predates the introduction of a new class. Further research looked at performing dependency analysis
to identify which methods are affected by the newly added definitions, to be then recompiled
on demand [Nguyen and Xue 2005]. Glew [2005] describes a type-safe means of inlining and
devirtualization: when newly loaded code is reachable from previously optimized code, these
optimizations must be rechecked.
Controlling when definitions take effect is important in dynamic software updating, where

running systems are updated with new code [Cook and Lee 1983]. Stoyle et al. [2007] introduce
a calculus for reasoning about representation-consistent dynamic software updating in C-like
languages. One of the key elements for their result is the presence of an update instruction that
specifies when an update is allowed to happen. This has similarities to the world-age mechanism
described here.
Substantial amounts of effort have been put into building calculi that support eval and similar

constructs. For example, Politz et al. [2012] described the ECMAScript 5.1 semantics for eval,
among other features. Glew [2005] formalized dynamic class loading in the framework of Feath-
erweight Java, and Matthews and Findler [2008] developed a calculus for eval in Scheme. These
works formalize the semantics of dynamically modifiable code in their respective languages, but,
unlike Julia, the languages formalized do not have features explicitly designed to support efficient
implementation.

3 WORLD AGE IN JULIA

The world-age mechanism in Julia limits the set of methods that can be invoked from a given call
site. World age fixes the set of method definitions reachable from the currently executing method,
isolating it from dynamically generated ones. In turn, this allows the compiler to optimize code
without need for deoptimization, and limits the number of required synchronization points in
a multi-threaded program. If full access to methods is required, however, Julia provides escape
hatches to bypass world age by sacrificing performance.

3.1 Defining World Age

The primary goal of the world-age mechanism is to align the language’s semantics with the
assumptions made by the Julia just-in-time compiler’s optimizations. Semantically, newly added
methods (i.e. ones defined using eval) only become visible when execution returns to the top level,
and the set of callable methods for an execution is fixed when it leaves the top level. Compilation of
methods is triggeredÐonly at the top levelÐwhen one of the following holds: (1) a function is called
with previously unobserved types of arguments, or (2) a previously compiled function needs to be
recompiled due to a change in its own definition or one of its dependencies. Since the set of visible
methods gets fixed at a top-level call, and compilation only occurs from the top level, the compiler
may assume that the currently known set of methods is complete and can optimize accordingly.
For performance reasons, the world-age mechanism is implemented by a simple monotonic

counter. The counter is incremented every time a method is defined, and its value becomes the
method’s łbirth agež. Every method also can a store a łdeath agež (that is initially infinity), which
is set when it is replaced or deleted. Methods with their ages are stored in a global data structure

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 207. Publication date: November 2020.









World Age in Julia: Optimizing Method Dispatch in the Presence of Eval 207:9

Every hook in preexecute_hooks is protected against world-age errors (at the cost of slower function
calls). To avoid this slowdown, the second common pattern catches world-age exceptions and falls
back to invokelatest such as in from the Genie.jl web server:

✞ ☎

fr::String = try

f()::String

catch

Base.invokelatest(f)::String

end
✝ ✆

This may cause surprises, however. If a sufficiently old method exists, the call may succeed but
invoke the wrong method.2 This pattern may also catch unwanted exceptions and execute f twice,
including its side-effects.

Domain-specific generation. As a language targeting scientific computing, Julia has a large number
of packages that do various symbolic domain reasoning. Examples include symbolic math libraries,
such as Symata and GAP, which have the functionality to generate executable code for symbolic
expressions. Symata provides the following method to convert an internal expression (a Mxpr) into a
callable function. Here, Symata uses a translation function mxpr_to_expr to convert the Symata mxpr

into a Julia Expr, then wraps it in a function definition (written using explicit AST forms), before
passing it to eval.

✞ ☎

function Compile(a::Mxpr{:List}, body)

aux = MtoECompile()

jexpr = Expr(:function,

Expr(:tuple, [mxpr_to_expr(x, aux) for x in margs(a)]...),

mxpr_to_expr(body, aux))

Core.eval(Main, jexpr)

end
✝ ✆

Bottleneck. Generated code is commonly used in Julia as a way to mediate between a high-level
DSL and a numerical library. Compilation from the DSL to executable code can dramatically improve
efficiency while still retaining a high-level representation. However, functions generated thusly
cannot be called from the code that generated them, since they are too new. Furthermore, this code
is expected to be high-performance, so using invokelatest for every call is not acceptable. The
bottleneck pattern overcomes these issues. The idea is to split the program into two parts: one that
generates code, and another that runs it. The two parts are bridged with a single invokelatest call
(the łbottleneckž), allowing the second part to call the generated code efficiently. The pattern is
used in the DiffEqBase library, part of the DifferentialEquations family of libraries that provides
numerical differential equation solvers.

✞ ☎

if hasfield(typeof(_prob),:f) && hasfield(typeof(_prob.f),:f) &&

typeof(_prob.f.f) <: EvalFunc

Base.invokelatest(__solve,_prob,args...; kwargs...)

else

__solve(_prob,args...;kwargs...)

end
✝ ✆

2In Julia, higher-order functions are passed by name as generic functions, so a callback will be subject to multiple dispatch.
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Here, if _prob has a field f, which has another field f, and the type of said inner-inner f is an
EvalFunc (an internally-defined wrapper around any function that was generated with eval), then
it will invoke the __solve function using invokelatest, thus allowing __solve to call said method.
Otherwise, it will do the invocation normally.

Superfluous eval. This is a rare anti-pattern, probably indicating a misunderstanding of world
age by some Julia programmers. For example, Alpine.jl package has the following call to eval:

✞ ☎

if isa(m.disc_var_pick, Function)

eval(m.disc_var_pick)(m)
✝ ✆

Here, eval(m.disc_var_pick) does nothing useful but imposes a performance overhead. Because
m.disc_var_pick is already a function value, calling eval on it is similar to using eval(42) instead
of 42 directly; this neither bypasses the world age nor even interprets an AST.

Name-based dispatch. Another anti-pattern uses eval to convert function names to functions.
For example, ClassImbalance.jl package chooses a function to call, using its uninterpreted name:

✞ ☎

func = (labeltype == :majority) ? :argmax : :argmin

indx = eval(func)(counts)
✝ ✆

It would be more efficient to operate with function values directly, i.e. func =... : argmin and then
call it with func(counts). Similarly, when a symbol being looked up is generated dynamically, as it
is in the following example from TextAnalysis.jl, the use of eval could be avoided.

✞ ☎

newscheme = uppercase(newscheme)

if !in(newscheme, available_schemes) ...

newscheme = eval(Symbol(newscheme))()
✝ ✆

This pattern could be replaced with a call getfield(TextAnalysis,Symbol(newscheme)), where
getfield is a special built-in function that finds a value in the environment by its name. Using
getfield would be more efficient than eval.

4 JULIETTE, A WORLD AGE CALCULUS

To formally study world age, we propose a core calculus, named Juliette, that captures the essence
of Julia’s semantics and permits us to reason about the correctness of some of the optimizations
performed by the compiler.
Designing such a calculus is always an exercise in parsimony, balancing the need to highlight

principles while avoiding entanglements with particular implementation choices. The first decision
to grapple with is how to represent world age. While efficient, counters are also pervasive and cause
confusion.3 Furthermore, they obscure reasoning about program-state equivalence; two programs
with different initial counter values could, if care is not taken, appear different. Dispensing with
the counters used by Julia’s compiler is appealing.

An alternative that we chose is a more abstract representation of world age, one that captures its
intent: control over method visibility. Juliette uses method tables to represent sets of methods
available for dispatch. The global table is the method table that records all definitions and always
reflects the łtrue agež of the world; the global table is part of Juliette program state. Local tables

3Although Julia’s documentation attempts to explain world age [v1 2020], questions such as this one pop up periodically.
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are method tables used to resolve method dispatch during execution and may lag behind the global
table when new functions are introduced. Local tables are then baked into program syntax to make
them explicit during execution. As in Julia, Juliette separates method tables (which represent
code) from data: as mentioned in Sec. 1, the world-age semantics only applies to code. As global
variables interact with eval in the standard way, we omit them from the calculus.

The treatment of methods is similar in both Juliette and Julia up to (lexically) local method
definitions. In both systems, a generic function is defined by the set of methods with the same name.
In Julia, local methods are syntactic sugar for global methods with fresh names. For simplicity, we
do not model this aspect of Julia: Juliette methods are always added to the global method table.
All function calls are resolved using the set of methods found in the current local table. A function
value m denotes the name of a function and is not itself a method definition. Then, since Juliette
omits global variables, its global environment is entirely captured by the global method table.
Although in Julia eval incorporates two featuresÐtop-level evaluation and quotation4Ðonly

top-level evaluation is relevant to world age, and this is what we model in Juliette. Instead of an
eval construct, the calculus has operations for evaluating expressions in different method-table
contexts. In particular, Juliette offers a global evaluation construct L e M (pronounced łbanana
bracketsž) that accesses the most recent set of methods. This is equivalent to eval’s behavior, which
evaluates in the latest world age. Since Juliette does not have global variables, L e M reads from the
local environment directly instead of using quotation.
Every function call m(v) in Juliette gets resolved in the closest enclosing local method table

M by using an evaluation-in-a-table construct L m(v) MM. Any top-level function call first takes a
snippet of the current global table and then evaluates the call in that frozen snippet. That is, L m(v) M
steps to L m(v) MM where M is the current global table. Thus, once a snippet of the global table
becomes local table, all inner function calls of m(v) will be resolved using this table, reflecting the
fact that a currently executing top-level function call does not see updates to the global table.
To focus on world age, Juliette omits irrelevant features such as loops or mutable variables.

Furthermore, the calculus is parameterized over values, types, type annotations, a subtyping relation,
and primitive operations. For the purposes of this paper, only minimal assumptions are needed
about those.

4.1 Syntax

The surface syntax of Juliette is given in Fig. 12. It includes method definitions md, function
calls e(e), sequencing e1 ; e2, global evaluation L e M, evaluation in a table L e MM, variables 𝑥 ,
values v, primitive calls 𝛿𝑙 (e), type tags 𝜎 , and type annotations 𝜏 . Values v include unit (unit value,
called nothing in Julia) and m (generic function value). Primitive operators 𝛿𝑙 represent built-in
functions such as Base.mul_int. Type tags 𝜎 include 1 (unit type, called Nothing in Julia) and fm

(tag of function value m). Type annotations 𝜏 include ⊤ ∈ 𝜏 (⊤ is the top type, called Any in Julia)
and 𝜎 ⊆ 𝜏 (all type tags serve as valid type annotations).

4.2 Semantics

The internal syntax of Juliette is given in the top of Fig. 13. It includes evaluation result r (either
value or error), method table M, and two evaluation contexts, X and C, which are used to define
small-step operational semantics of Juliette. Evaluation contexts X are responsible for simple
sequencing, such as the order of argument evaluation; these contexts never contain global/table
evaluation expressions L · M and L · MM. World evaluation contexts C, on the other hand, capture the
full grammar of expressions.

4Represented with the $ operator in Julia, as in eval(:(g() = $x)) in Fig. 3.
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e ::= Expression

| v value

| 𝑥 variable

| e1 ; e2 sequencing

| 𝛿𝑙 (e) primop call

| e(e) function call

| md method definition

| L e M global evaluation

| L e MM evaluation in a table

p ::= L e M Program

md ::= ⊳ m(𝑥 :: 𝜏)= e ⊲ Method definition

v := . . . Value

| unit unit value

| m generic function

𝜎 := . . . Type tag

| 1 unit type

| fm type tag of function m

𝜏 := . . . Type annotation

| ⊤ top type

Fig. 12. Surface syntax

Program state is a pair ⟨M, C [e]⟩ of a global method table M and an expression C [e]. We define
the semantics of the calculus using two judgments: a normal small-step evaluation denoted by
⟨M, C [e]⟩ → ⟨M′, C [e′]⟩, and a step to an error M ⊢ C [e] → error. The typeof (v) ∈ 𝜎

operator returns the tag of a value. We require that typeof (unit) = 1 and typeof (m) = fm. We

write typeof (v) as a shorthand for typeof (v). Function Δ(𝑙, v) ∈ r computes primop calls, and
function Ψ(𝑙, 𝜎) ∈ 𝜎 indicates the tag of 𝑙 ’s return value when called with arguments of types 𝜎 .
These functions have to agree, i.e. ∀v, 𝜎 .(typeof (v) = 𝜎 ∧ Δ(𝑙, v) = v′ =⇒ typeof (v′) = Ψ(𝑙, 𝜎)).
The subtyping relation 𝜏1 <: 𝜏2 is used for multiple dispatch. We require that 𝜏 <: ⊤ (⊤ is indeed
the top type) and 𝜎1 <: 𝜎2 ⇔ 𝜎1 ≡ 𝜎2 (tags are final, i.e. do not have subtypes).

Normal Evaluation. These rules capture successful program executions. Rule E-Seq is completely
standard: it throws away the evaluated part of a sequencing expression. Rules E-ValGlobal and
E-ValLocal pass value v to the outer context. This is similar to Julia where eval returns the result
of evaluating the argument to its caller. Rule E-MD is responsible for updating the global table: a
method definition md will extend the current global table M into M • md, and itself evaluate to
m, which is a function value. Note that E-MD only extends the method table and leaves existing
definitions in place. If the table contains multiple definitions of a method with the same signature,
it is then the dispatcher’s responsibility to select the right method; this mechanism is described
below in more detail.

The two call forms E-CallGlobal and E-CallLocal form the core of the calculus. The rule E-CallGlobal
describes the case where a method is called directly from a global evaluation expression. In Julia, this
means either a top-level call, an invokelatest call, or a call within eval such as eval(:(g(...))).
The łdirectž part is encoded with the use of a simple evaluation context X. In this global-call case,
we need to save the current method table into the evaluation context for a subsequent use by
E-CallLocal. To do this, we annotate the call m(v) with a copy of the current global method tableM,
producing L m(v) MM.
To perform a local callÐor, equivalently, a call after the invocation has been wrapped in an

annotation specifying the current global tableÐE-CallLocal is used. This rule resolves the call
according to the tag-based multiple-dispatch semantics in the łdeepestž method table M′ (the use
of X makes sure there are no method tables between M′ and the call). Once an appropriate method
has been found, it proceeds as a normal invocation rule would, replacing the method invocation
with the substituted-for-arguments method body. Note that the body of the method is still wrapped
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r ::= Result

| v value

| error error

M ::= Method table

| ∅ empty table

| M • md table extension

X ::= Simple evaluation context

| □ hole

| X ; e sequence

| 𝛿𝑙 (v X e) primop call (argument)

| X(e) function call (callee)

| v(v X e) function call (argument)

C ::= World evaluation context

| X simple context

| X
[

L C M
]

global evaluation

| X
[

L C MM
]

evaluation in a tableM

E-Seq

⟨M, C [v ; e] ⟩ → ⟨M, C [e] ⟩

E-Primop
Δ(𝑙, v) = v′

⟨M, C [𝛿𝑙 (v) ] ⟩ → ⟨M, C
[

v′
]

⟩

E-MD
md ≡ ⊳ m(𝑥 :: 𝜏)= e ⊲

⟨M, C [md] ⟩ → ⟨M • md, C [m] ⟩

E-CallGlobal

⟨M, C
[

L X [m(v) ] M
]

⟩ → ⟨M, C
[

L X
[

L m(v) MM
]

M
]

⟩

E-CallLocal
typeof (v) = 𝜎 getmd(M′, m, 𝜎) = ⊳ m(𝑥 :: 𝜏)= e ⊲

⟨M, C
[

L X [m(v) ] MM′
]

⟩ → ⟨M, C
[

L X [e[𝑥 ↦→v] ] MM′
]

⟩

E-ValGlobal

⟨M, C
[

L v M
]

⟩ → ⟨M, C [v] ⟩

E-ValLocal

⟨M, C
[

L v MM′
]

⟩ → ⟨M, C [v] ⟩

E-VarErr

M ⊢ C [𝑥 ] → error

E-PrimopErr
Δ(𝑙, v) = error

M ⊢ C [𝛿𝑙 (v) ] → error

E-CalleeErr
v𝑐 ≠ m

M ⊢ C [v𝑐 (v) ] → error

E-CallErr
typeof (v) = 𝜎 getmd(M′, m, 𝜎) = error

M ⊢ C
[

L X [m(v) ] MM′
]

→ error

getmd(M, m, 𝜎) = min(applicable(latest(M), m, 𝜎))

latest(M) = latest( ∅,M)

latest(𝑚𝑑𝑠,∅) = 𝑚𝑑𝑠

latest(𝑚𝑑𝑠,M • md) = latest(𝑚𝑑𝑠 ∪ md,M) if ¬ contains(𝑚𝑑𝑠, md)

latest(𝑚𝑑𝑠,M • md) = latest(𝑚𝑑𝑠,M) if contains(𝑚𝑑𝑠, md)

applicable(𝑚𝑑𝑠, m, 𝜎) = {⊳ m(𝑥 :: 𝜏)= e ⊲ ∈𝑚𝑑𝑠 | 𝜎 <: 𝜏 }

min(𝑚𝑑𝑠) = ⊳ m(𝑥 :: 𝜏)= e ⊲ ∈𝑚𝑑𝑠 such that ∀ ⊳ m(_ :: 𝜏′)= _ ⊲ ∈𝑚𝑑𝑠 . 𝜏 <: 𝜏′

min(𝑚𝑑𝑠) = error otherwise

contains(𝑚𝑑𝑠, md) = ∃ md′ ∈𝑚𝑑𝑠 such that

(md ≡ ⊳ m(_ :: 𝜏)= _ ⊲) ∧ (md′ ≡ ⊳ m(_ :: 𝜏′)= _ ⊲) ∧ 𝜏 <: 𝜏′ ∧ 𝜏′ <: 𝜏

Fig. 13. Internal Syntax and Semantics
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in the L MM′ context. This ensures that nested calls will be resolved in the same table (unless they
are more deeply wrapped in a global evaluation L M).

An auxiliary meta-function getmd(M, m, 𝜎), which is used to resolve multiple dispatch, is defined
in the bottom of Fig. 13. This function returns the most specific method applicable to arguments
with type tags 𝜎 , or errs if such a method does not exist. If the method table contains multiple
equivalent methods, older ones are ignored. For example, for the program

L ⊳ g()= 2 ⊲ ; ⊳ g()= 42 ⊲ ; g() M,

function call g() is going to be resolved in the table (∅•⊳ g()= 2 ⊲) •⊳ g()= 42 ⊲, which contains two
equivalent methods (we call methods equivalent if they have the same name and their argument
type annotations are equivalent with respect to subtyping). In this case, the function getmd will
return method ⊳ g()= 42 ⊲ because it is the newest method out of the two.
Note that functions can be mutually recursive because of the dynamic nature of function call

resolution.

Error Evaluation. These rules capture all possible error states of Juliette. Rule E-VarErr covers
the case of a free variable, an UndefVarError in Julia. E-PrimopErr accounts for errors in primitive
operations such as DivideError. E-CalleeErr fires when a non-function value is called. Finally, E-
CallErr accounts for multiple-dispatch resolution errors, e.g. when the set of applicable methods is
empty (no method found), and when there is no best method (ambiguous method).

4.3 Example

Fig. 14 shows a translation of the program from Fig. 3 to Juliette. First note that, as part of the
translation, we wrap the entire program in L M, indicating that the outermost scope is the top level.
Translation of method calls and definitions then proceeds, using ⊳ m(𝑥)= e ⊲ as a shorthand for
⊳ m(𝑥 :: ⊤)= e ⊲where⊤ is the top type. Method bodies are converted by replacing eval invocations
with their expressions wrapped in L M. The L M context of e in Juliette effectively acts the same way
that eval of e does in Julia, but evaluates variables in e using local, rather than global, scope.

✞ ☎

g() = 2

f(x) = (eval(:(g() = $x)); x * g())

f(42)
✝ ✆

L ⊳ g()= 2 ⊲ ;

⊳ f(𝑥)= (L ⊳ g()=𝑥 ⊲ M ; 𝑥 ∗ g()) ⊲ ;

f(42) M

Fig. 14. From Julia (left) to Juliette (right)

Nowwe will show the execution of this translated program according to our small-step semantics.
The initial state is ⟨∅, p⟩ where p is the program on the right of Fig. 14 (and the * operator is a
primop). The first several steps of evaluation use rules E-MD and E-Seq to add the definitions of g
and f to the global table. This produces the state

⟨M0, L f(42) M⟩,

where
M0 = (∅ • ⊳ g()= 2 ⊲)

• ⊳ f(𝑥)= (L ⊳ g()=𝑥 ⊲ M ; 𝑥 ∗ g()) ⊲

Next, using the E-CallGlobal rule, the top-level call f(42) steps to L f(42) MM0
. This then produces

the state
⟨M0, L L f(42) MM0

M⟩,
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copying the global table into the context L · MM0
. Now, rule E-CallLocal can be used to resolve the

call f(42) in the table M0. Method ⊳ f(𝑥)= . . . ⊲ is the only method of f and it is applicable to the
integer argument (typeof (42) = Int <: ⊤), so the program steps to:

⟨M0, L L L ⊳ g()= 42 ⊲ M ; 42 ∗ g() MM0
M⟩.

The next expression to evaluate is the new g definition, ⊳ g()= 42 ⊲. Rule E-MD fires and the program
steps to

⟨M1, L L L g M ; 42 ∗ g() MM0
M⟩,

where

M1 = M0 = ((∅ • ⊳ g()= 2 ⊲)

• ⊳ g()= 42 ⊲ • ⊳ f(𝑥)= (L ⊳ g()=𝑥 ⊲ M ; 𝑥 ∗ g()) ⊲)

• ⊳ g()= 42 ⊲ .

The next two steps are:

⟨M1, L L L g M ; 42 ∗ g() MM0
M⟩

E-ValGlobal
−−−−−−−−−−→ ⟨M1, L L g ; 42 ∗ g() MM0

M⟩ (1)

E-Seq
−−−−→ ⟨M1, L L 42 ∗ g() MM0

M⟩. (2)

Note that the last program state is represented by ⟨M1, C
[

L X [g()] MM0

]

⟩, where C = L□ M and
X = 42 ∗□. So we have to use E-CallLocal again to resolve g() in theM0 that is fixed in the context.
Table M0 has only one definition of g, the one that returns 2, so the program steps to:

⟨M1, L L 42 ∗ 2 MM0
M⟩.

Finally, the application of E-Primop, E-ValLocal, and E-ValGlobal leads to the final state:

⟨M1, 84⟩. (3)

Now, consider a modification of the original program where in the definition of f, the call g() is
wrapped into a global evaluation L g() M:

✞ ☎

g() = 2

f(x) = (eval(:(g() = $x)); x * eval(:(g())))

f(42)
✝ ✆

L ⊳ g()= 2 ⊲ ;

⊳ f(𝑥)= (L ⊳ g()=𝑥 ⊲ M ; 𝑥 ∗ L g() M) ⊲ ;
f(42) M

At the beginning, the modified program will run similarly to the original one, and with step (2), it
will reach the state:

⟨M1, L L 42 ∗ L g() M MM0
M⟩.

Here, L L 42 ∗ L g() M MM0
M is represented by C

[

L X [g()] M
]

, where C = L L 42 ∗□ MM0
M and X = □.

Therefore, the call g() is back at the top level. With E-CallGlobal rule, the call steps to L g() MM1

becauseM1 is the current global table, thus producing the state:

⟨M1, L L 42 ∗ L L g() MM1
M MM0

M⟩.

Resolved in M1, call g() returns 42, and thus the whole program ends in the final state:

⟨M1, 1764⟩.

Note that the resulting global table is the same as in (3), but the return value is different.
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rdx ::=

| 𝑥

| v ; e
| 𝛿𝑙 (v)

| v≠m (v)

| md | L v M
| L v MM

| L X [m(v) ] M
| L X [m(v) ] MM

Fig. 15. Redex bases

4.4 Properties

Juliette operational semantics is deterministic, and all failure states are captured by error evalua-
tion (meaning that a Juliette program never gets stuck).

Lemma 4.1 (Uniqe Form of Expression). Any expression e can be uniquely represented in one of

the following ways:

(a) e = v; or

(b) e = X [m(v)]; or

(c) e = C [rdx],

where rdx (shown in Fig. 15) is a subset of expressions driving the reduction.

Proof. By induction on e. □

Theorem 4.2 (Progress). For any program p and method table M𝑔 , the program either reduces to

a value, or it makes a step to another program, or it errs. That is, one of the following holds:

(a) ⟨M𝑔, p⟩ → ⟨M′
𝑔, v⟩; or

(b) ⟨M𝑔, p⟩ → ⟨M′
𝑔, p

′⟩; or

(c) M𝑔 ⊢ p → error.

Proof. By case analysis on p = L e M, using Lemma 4.1. □

Theorem 4.3 (Determinism). Juliette semantics is deterministic.

Proof. The proof relies on the fact that (1) any expression that steps can be represented as
C [rdx], and (2) such a representation is unique by Lemma 4.1. By case analysis on rdx, we can
see that for all redex bases except 𝛿𝑙 (v) and L X [m(v)] MM, there is exactly one (normal- or error-
evaluation) rule applicable. For 𝛿𝑙 (v) and L X [m(v)] MM, there are two rules for each, but their
premises are incompatible. Thus, for any expression C [rdx], exactly one rule is applicable. □

4.5 Optimizations

The world-age semantics allows function-call optimization even in the presence of eval. Recall
how an evaled or top-level function call L m(v) M steps. First, rule E-CallGlobal is applied: it fixes the
current state of the global tableM in the call’s context, stepping the call to L m(v) MM. Then, the call
m(v) itself, and all of its nested calls (unless they are additionally wrapped into L M), are resolved
using the now-local table M. Therefore, M provides all necessary information for the resolution of
such calls, and they can be optimized based on the method table M.

Next, we will focus on three generic-call optimizations: inlining, specialization, and transforming
generic calls into direct calls (devirtualization). Namely, we provide formal definitions of these
optimizations and show them correct.
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✞ ☎

g(x::Any) = x + x # g1

g(x::Bool) = x # g2

f(x::Int) = x * g(x)

f(5)
✝ ✆

✞ ☎

g(x::Any) = x + x # g1

g(x::Bool) = x # g2

f(x::Int) = x * g((println(x);x))

f(5)
✝ ✆

Fig. 16. Candidate programs for inlining (on the left) and direct call optimization (on the right)

Inlining. If a function call is known to dispatch to a certain method using a fixed method table,
it might be possible to inline the body of the method in place of the call. For example, consider a
program on the left of Fig. 16. The call f(5) has no choice but to dispatch to the only definition
of f. Because the call g(x) in f(5) is not wrapped in an eval, it is known that the call to g is going
to be dispatched in the context with exactly two methods of g: g1 and g2. Furthermore, since x is
known to be of type (tag) Int inside f, we know that g(x) has to dispatch to the method g1 (because
Int <:Any but Int </:Bool). Thus, it is possible to optimize method f for the call f(5) by inlining
g(x), which yields the following optimized definition of f:

✞ ☎

f(x::Int) = x * (x + x)
✝ ✆

Direct-call optimization. When inlining is not possible or desirable, but it is clear which method is
going to be invoked, a function call can be replaced by a direct invocation. Consider the example on
the right of Fig. 16. The only difference from the previous example is that the argument of g inside f
is not a variable but an expression (println(x);x). This expression always returns an integer, so
we know that at run time, that g will be dispatch to method g1. However, unlike previously, the
call to g cannot be inlined using direct syntactic substitution. In that case, the value of x would
be printed twice instead of just once, because inlining would transform g((println(x);x)) into
(println(x);x)+(println(x);x) and thus change the observable behavior of the program. It is still
possible to optimize f, by replacing the generic call to g with a direct call to the method g1. In
pseudo-code, this can be written as:

✞ ☎

f(x::Int) = x * g@g1((println(x); x))
✝ ✆

In the calculus, we model a direct call as a call to a new function with a single method such that the
name of the function is not used anywhere in the original method table or expression. For example,
for the program above, we can add function h with only one method h(x::Int)=x+x, allowing f to
be optimized to:

✞ ☎

f(x::Int) = x * h(println(x); x)
✝ ✆

Specialization. The final optimization we consider is specialization of methods for argument
types. In Fig. 16, method g1 is defined for x of type Any, meaning that the call x+x can be dispatched
to any of at least 166 standard methods. But because, within f, g is known to be called with an
argument of type Int (due to x in f having that type), it is possible to generate a new implementation
of g specialized for this argument type. The advantage is that the specialized implementation can
directly use efficient integer addition. Thus, combined with the direct call, we have:
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✞ ☎

g(x::Int) = Base.add_int(x, x) # g3

f(x::Int) = x * g@g3((println(x); x))
✝ ✆

In the calculus, specialization is modeled similarly to direct calls: as a function with a fresh name.

Γ ::= Typing environment

| ∅

| Γ, 𝑥 : 𝜏

T-Var
Γ (𝑥) = 𝜎

Γ ⊢ 𝑥 : 𝜎

T-Val
typeof (v) = 𝜎

Γ ⊢ v : 𝜎

T-MD

Γ ⊢ ⊳ m(𝑥 :: 𝜏)= e ⊲ : fm

T-Seq

Γ ⊢ e2 : 𝜎

Γ ⊢ (e1 ; e2) : 𝜎

T-Primop
Ψ(𝑙, 𝜎) = 𝜎′

Γ ⊢ e𝑖 : 𝜎𝑖

Γ ⊢ 𝛿𝑙 (e) : 𝜎′

T-EvalGlobal
Γ ⊢ e : 𝜎

Γ ⊢ L e M : 𝜎

T-EvalLocal
Γ ⊢ e : 𝜎

Γ ⊢ L e MM : 𝜎

Fig. 17. Concrete-typing judgment

4.6 Optimization Correctness

In this section, we present a formal definition of optimizations and state the main theorem about
their correctness. The general idea of optimizations is as follows: if an expression e is going to
be executed in a fixed method table M, it is safe to instead execute e in a table M′ obtained by
optimizing method definitions of M (like we did with the definition of f in the examples above).

As demonstrated by the examples, the first ingredient of optimizations is type information, which
is necessary to łstaticallyž resolve function calls; for this, we use a simple concrete-typing relation
defined in Fig. 17. The relation Γ ⊢ e : 𝜎 propagates information about variables and type tags of
values, and succeeds only if the expression would always reduce to a value of concrete type 𝜎 if it
reduces to any value. This is because to resolve a function call, we need to know the type tags of
its arguments. A typing relation can be more complex to enable further optimization opportunities
(and it is much more complex in Julia), but typing of Julia is a separate topic that is out of scope of
this paper: here, we focus on compiler optimization and use concrete typing only as a tool.

Fig. 18 shows the judgments related to method-table optimization. The rule OT-MethodTable says
that an optimized versionM′ of tableM (1) has to have all the methods ofM, although they can be
optimized, and (2) can have more methods given that their names do not appear in the original
tableM. The latter enables adding new methods that model direct calls and specializations, and the
former allows for optimization of existing methods. According to the rule OD-MD, a method inM′

optimizes a method in M if it has the same signature (i.e. name and argument types), and its body
is an optimization of the original body of the method being optimized.

The method-optimization environment Φ tracks direct calls and specializations: m(𝜎) { m′ tells
that when arguments of m have type tags 𝜎 , a call to m inM can be replaced by a call to m′ inM′.
Note that all entries of Φ need to be valid according toMethodOpt-Valid: assuming that the methods
are in the optimization relation, their bodies indeed have to be in that relation (the assumption is
needed to handle recursion). Both OD-MD and MethodOpt-Valid rely on expression optimization to
relate method bodies.

Finally, the expression-optimization relation is shown in Fig. 19. Note that the rules do not allow
for function-call optimizations inside the global-evaluation construct L M: the only applicable rule
in that case is OE-Global. Function calls can only be optimized if they are fixed-table calls. Rules
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Φ ::= Method-optimization environment

| ∅

| Φ, m(𝜎) { m′

MethodOpt-Valid
getmd(M, m, 𝜎) = ⊳ m(𝑥 :: 𝜏)= e𝑏 ⊲

getmd(M′, m′, 𝜎) = ⊳ m′ (𝑥′ :: 𝜏′)= e′𝑏 ⊲

𝑥 : 𝜎 ⊢Φ
M{M′ e𝑏 { e′𝑏 [𝑥

′ ↦→𝑥 ]

⊢Φ
M{M′ m(𝜎) { m′

OD-MD
𝑥 : 𝜏 ⊢Φ

M{M′ e { e′ [𝑥′ ↦→𝑥 ]

⊢Φ
M{M′ ⊳ m(𝑥 :: 𝜏)= e ⊲ { ⊳ m(𝑥′ :: 𝜏)= e′ ⊲

OT-MethodTable
M = md1 • . . . • md𝑛 M′

= md′
1
• . . . • md′𝑛 • md′𝑛+1 • . . . • md′𝑘 ∀1 ≤ 𝑖 ≤ 𝑛. ⊢Φ

M{M′ md𝑖 { md′𝑖
∀(m(𝜎) { m′) ∈ Φ. ⊢Φ

M{M′ m(𝜎) { m′ ∀𝑛 + 1 ≤ 𝑗 ≤ 𝑘. 𝑛𝑎𝑚𝑒 (md′𝑗 ) does not occur in M

⊢Φ M { M′

MNamesCompat
∀m referenced by e. m ∈ 𝑑𝑜𝑚 (M) ⇐⇒ m ∈ 𝑑𝑜𝑚 (M′)

⊢M{M′ e

OT-MethodTable-Expr
⊢Φ M { M′ ⊢M{M′ e

⊢Φe M { M′

Fig. 18. Method table & definition optimization

𝜈 ::= v | 𝑥 Near-value

OE-Val
v ≠ m

Γ ⊢Φ
M{M′ v { v

OE-ValFun
⊢M{M′ m

Γ ⊢Φ
M{M′ m { m

OE-Var

Γ ⊢Φ
M{M′ 𝑥 { 𝑥

OE-Global
⊢M{M′ e

Γ ⊢Φ
M{M′ L e M { L e M

OE-Local
⊢M{M′ e

Γ ⊢Φ
M{M′ L e MM𝑙

{ L e MM𝑙

OE-MD
⊢M{M′ 𝑛𝑎𝑚𝑒 (md)

Γ ⊢Φ
M{M′ md { md

OE-Seq

Γ ⊢Φ
M{M′ e1 { e′

1
Γ ⊢Φ

M{M′ e2 { e′
2

Γ ⊢Φ
M{M′ e1 ; e2 { e′

1
; e′

2

OE-Primop
∀𝑖 . Γ ⊢Φ

M{M′ e𝑖 { e′𝑖

Γ ⊢Φ
M{M′ 𝛿𝑙 (e) { 𝛿𝑙 (e

′)

OE-Call
Γ ⊢Φ

M{M′ e𝑐 { e′𝑐 ∀𝑖 . Γ ⊢Φ
M{M′ e𝑖 { e′𝑖

Γ ⊢Φ
M{M′ e𝑐 (e) { e′𝑐 (e

′)

OE-Inline
∀𝑖 . Γ ⊢ 𝜈𝑖 : 𝜎𝑖 getmd(M, m, 𝜎) = ⊳ m(𝑥 :: 𝜏)= e𝑏 ⊲ Γ ⊢Φ

M{M′ e𝑏 [𝑥 ↦→𝜈 ] { e′

Γ ⊢Φ
M{M′ m(𝜈) { unit ; e′

OE-Direct
∀𝑖 . Γ ⊢Φ

M{M′ e𝑖 { e′𝑖 Γ ⊢ e′𝑖 : 𝜎𝑖 (m(𝜎) { m′) ∈ Φ

Γ ⊢Φ
M{M′ m(e) { m′ (e′)

Fig. 19. Expression optimization

OE-Inline and OE-Direct correspond to the inlining and the direct-call/specialization optimizations,
respectively. As discussed earlier, inlining cannot be done if a function is called with expression
arguments. Therefore, in OE-Inline we use an auxiliary definition 𝜈 , łnear-valuež, which is either a
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𝛾 ::= 𝑥 ↦→ v where ∀𝑖, 𝑗 .𝑥𝑖 ≠ 𝑥 𝑗 Value substitution

𝑑𝑜𝑚 (Γ) = 𝑑𝑜𝑚 (𝛾 ) ∀𝑥 ∈ 𝑑𝑜𝑚 (𝛾 ) . (Γ (𝑥) = 𝜎 ⇐⇒ typeof (𝛾 (𝑥)) = 𝜎)

Γ ⊢ 𝛾
𝛾-Ok

Fig. 20. Value substitution

value or a variable. Because we model direct-call and specialization optimizations as calls to freshly-
named methods, the main job is done in the table-optimization rule OT-MethodTable; rule OE-Direct

only records the fact of invoking a specific method. If the method definition of m′ from m(𝜎) { m′

has the same parameter-type annotations as m, it represents a direct call to an original method
of m; otherwise, it represents a specialized method. Note that for all optimizations, function-call
arguments have to be concretely typed. Otherwise, we do not know definitively how a function
call is going to be dispatched at run time.
The optimizations defined in Fig. 18ś19 are sound. That is, the evaluation of the original and

optimized programs yield the same result. To show this, we establish a bisimulation relation between
original and optimized expressions (after the following auxiliary lemmas):

Lemma 4.4 (Context Irrelevance). For all C, C′, rdx, e′,M𝑔,M
′
𝑔, the following holds:

⟨M𝑔, C [rdx]⟩ → ⟨M′
𝑔, C [e

′]⟩ ⇐⇒ ⟨M𝑔, C
′ [rdx]⟩ → ⟨M′

𝑔, C
′ [e′]⟩.

Proof. By analyzing normal-evaluation steps, we can see that only rdxmatters for the reduction.
Formally, the proof goes by inspecting a reduction step for C [rdx] (C′ [rdx]) and building a
corresponding step for C′ [rdx] (C [rdx]). □

Lemma 4.5 (Simple-Context Irrelevance). For all M, C, e,M𝑔, e
′, M′

𝑔, X, the following holds:

⟨M𝑔, C
[

L e MM
]

⟩ → ⟨M′
𝑔, C

[

L e′ MM
]

⟩ =⇒ ⟨M𝑔, C
[

L X [e] MM
]

⟩ → ⟨M′
𝑔, C

[

L X [e′] MM
]

⟩.

Proof. By Lemma 4.1, e is either v or X𝑒 [m(v)] or C𝑒 [rdx]. If e is v, the assumption of the lemma
does not hold (C

[

L v MM
]

would step to C [v]), so only X𝑒 [m(v)] and C𝑒 [rdx] cases are possible.

• When e is X𝑒 [m(v)], L e MM = L X𝑒 [m(v)] MM is a redex, and C
[

L e MM
]

steps by rule E-CallLocal.

But L X [e] MM = L X [X𝑒 [m(v)]] MM is also a redex, and C
[

L X [e] MM
]

steps by rule E-CallLocal

similarly to C
[

L e MM
]

.

• When e is C𝑒 [rdx], L e MM = L C𝑒 [rdx] MM and C
[

L e MM
]

= C′ [rdx] where C′ = C
[

L C𝑒 MM
]

.

Since C
[

L X [e] MM
]

= C′′ [rdx] for C′′ = C
[

L X [C𝑒 ] MM
]

, C
[

L e MM
]

and C
[

L X [e] MM
]

step
similarly by Lemma 4.4.

□

Lemma 4.6 (Optimization Preserves Values). For all Φ,M,M′, Γ, e, v, the following hold:

Γ ⊢Φ
M{M′ v { e =⇒ e = v and Γ ⊢Φ

M{M′ e { v =⇒ e = v.

Proof. By case analysis on the optimization relation. □

Lemma 4.7 (Value Substitution Preserves Optimization). For all Φ, Γ, e,M, e′,M′, 𝛾 , such

that ∀v ∈ 𝛾 . ⊢M{M′ v, the following holds:
(

Γ ⊢Φ
M{M′ e { e′ ∧ Γ ⊢ 𝛾

)

=⇒ ⊢Φ
M{M′ 𝛾 (e) { 𝛾 (e′).

Proof. By induction on the derivation of Γ ⊢Φ
M{M′ e { e′. □
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Lemma 4.8 (Bisimulation). For all method tablesM,M′, method-optimization environment Φ,

and expressions e1, e1
′, such that

⊢Φ M { M′ and ⊢Φ
M{M′ e1 { e′

1
,

for all global tables M𝑔,M𝑔
′ and world context C, the following hold:

(1) Forward direction:

∀e2 . ⟨M𝑔, C
[

L e1 MM
]

⟩ → ⟨M′
𝑔, C

[

L e2 MM
]

⟩

=⇒

∃e′
2
. ⟨M𝑔, C

[

L e′
1
MM′

]

⟩ → ⟨M′
𝑔, C

[

L e′
2
MM′

]

⟩ ∧ ⊢Φ
M{M′ e2 { e′

2
.

(2) Backward direction:

∀e′
2
. ⟨M𝑔, C

[

L e′
1
MM′

]

⟩ → ⟨M′
𝑔, C

[

L e′
2
MM′

]

⟩

=⇒

∃e2 . ⟨M𝑔, C
[

L e1 MM
]

⟩ → ⟨M′
𝑔, C

[

L e2 MM
]

⟩ ∧ ⊢Φ
M{M′ e2 { e′

2
.

Proof. The proof goes by induction on the derivation of optimization ⊢Φ
M{M′ e1 { e′

1
.

For each case, both directions are proved by analyzing possible normal-evaluation steps. More
specifically, the forward-direction proof strategy is as follows (the backward direction is similar):

(1) Observe that to make the required step, e1 should have a certain representation. Consider all
possible representations that satisfy this requirement.

(2) For each representation, analyze the suitable normal-evaluation rule (recall that the semantics
is deterministic, so there will be just one such rule).

(3) If e1 represents an immediate redex (e.g. v11 ; e12), the optimized expression will be an
immediate redex too (possibly, of a different form). Otherwise, use induction hypothesis and
auxiliary facts about contexts and evaluation to show that the optimized expression steps in
a similar fashion, in particular, facts from Lemma 4.4 and Lemma 4.5.

(4) Finally, show that the resulting expressions are in the optimization relation. This will follow
from the assumptions and induction.

As an example, consider the proof of the forward direction for the sequence case OE-Seq. By
assumption, we have e1 = e11 ; e12 and e′

1
= e′

11
; e′

12
where

⊢Φ
M{M′ e11 { e′

11
Γ ⊢Φ

M{M′ e12 { e′
12

⊢Φ
M{M′ e11 ; e12 { e′

11
; e′

12

OE-Seq
.

For C
[

L e11 ; e12 MM
]

to reduce, by case analysis, we know there are three possibilities.

(1) e11 = v11 and ⟨M𝑔, C
[

L v11 ; e12 MM
]

⟩ → ⟨M𝑔, C
[

L e12 MM
]

⟩ by rule E-Seq. Then by Lemma 4.6,
e′
11

= v11 and the optimized expression steps by the same rule:

⟨M𝑔, C
[

L v11 ; e
′
12

MM′

]

⟩ → ⟨M𝑔, C
[

L e′
12

MM′

]

⟩.

The desired optimization relation holds by one of the assumptions: Γ ⊢Φ
M{M′ e12 { e′

12
.

(2) e11 = X1 [m(v)] and the original expression steps by E-CallLocal:

⟨M𝑔, C
[

L X1 [m(v)] ; e12 MM
]

⟩ → ⟨M𝑔, C
[

L X1 [e𝑏 [𝑥 ↦→v]] ; e12 MM
]

⟩.

Since C
[

L X1 [m(v)] MM
]

reduces similarly, by the induction hypothesis, ∃ e′
21

such that

⟨M𝑔, C
[

L e′
11

MM′

]

⟩ → ⟨M𝑔, C
[

L e′
21

MM′

]

⟩ and Γ ⊢Φ
M{M′ X1 [e𝑏 [𝑥 ↦→v]] { e′

21
.
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But then, by Lemma 4.5, the entire optimized expression C
[

L e′
11

; e′
12

MM
]

steps too, and the
desired optimization relation holds:

⊢Φ
M{M′ X1 [e𝑏 [𝑥 ↦→v]] { e′

21
⊢Φ
M{M′ e12 { e′

12

⊢Φ
M{M′ X1 [e𝑏 [𝑥 ↦→v]] ; e12 { e′

21
; e′

12

OE-Seq
.

(3) e11 = C1 [rdx] and by Lemma 4.4:

⟨M𝑔, C
[

L C1 [rdx] ; e12 MM
]

⟩ → ⟨M′
𝑔, C

[

L C1 [e
′] ; e12 MM

]

⟩

⇐⇒

⟨M𝑔, C
[

L C1 [rdx] MM
]

⟩ → ⟨M′
𝑔, C

[

L C1 [e
′] MM

]

⟩.

Since C
[

L C1 [rdx] MM
]

reduces, by the induction hypothesis, ∃ e′
21

such that

⟨M𝑔, C
[

L e′
11

MM′

]

⟩ → ⟨M𝑔, C
[

L e′
21

MM′

]

⟩ and Γ ⊢Φ
M{M′ C1 [e

′] { e′
21
.

Similarly to the previous case, the entire C
[

L e′
11

; e′
12

MM
]

steps, and the desired optimization
relation holds.

□

Lemma 4.9 (Reflexivity of Optimization). For allM,M′,Φ, Γ, e, the following holds:

⊢Φe M { M′
=⇒ Γ ⊢Φ

M{M′ e { e.

Proof. By induction on e. The only interesting cases are m, md, L e′ M, and L e′ MM𝑙
. For example,

consider the case of m (others are similar). Rule OE-ValFun requires a method named m to either
exist in both tables or do not appear in either (this rules out the case where L m() MM would err but
L m() MM′ succeed). This requirement is guaranteed by the assumption that ⊢Φe M { M′, which by
inversion, gives the necessary ⊢M{M′ e. □

The main result, Theorem 4.10, is a corollary of Lemma 4.8. It states that a fixed-table expression
can be soundly evaluated in an optimized table.

Theorem 4.10 (Correctness of Table Optimization). For allM,M′,Φ, 𝑒 satisfying ⊢Φe M { M′,

for all M𝑔,M
′
𝑔, C, v, the following holds:

⟨M𝑔, C
[

L e MM
]

⟩ →∗ ⟨M′
𝑔, v⟩ ⇐⇒ ⟨M𝑔, C

[

L e MM′

]

⟩ →∗ ⟨M′
𝑔, v⟩.

Proof. First of all, note that ⊢Φ
M{M′ e { e by Lemma 4.9, and that ⊢Φ M { M′ follows

from ⊢Φe M { M′. Then, we proceed by induction on→∗ (reflexive-transitive closure of normal
evaluation). In the interesting case of the forward direction, we have:

⟨M𝑔, C
[

L e MM
]

⟩ → ⟨M′′
𝑔 , C

[

L e′
1
MM

]

⟩ ⟨M′′
𝑔 , C

[

L e′
1
MM

]

⟩ →∗ ⟨M′
𝑔, v⟩

⟨M𝑔, C
[

L e MM
]

⟩ →∗ ⟨M′
𝑔, v⟩

.

By applying Lemma 4.8 to the first premise, we get:

⟨M𝑔, C
[

L e MM′

]

⟩ → ⟨M′′
𝑔 , C

[

L e′
2
MM′

]

⟩ and ⊢Φ
M{M′ e′

1
{ e′

2
.

By applying the induction hypothesis to the second premise, we get:

⟨M′′
𝑔 , C

[

L e′
2
MM′

]

⟩ →∗ ⟨M′
𝑔, v⟩.

By combining the results, we can get the desired derivation:

⟨M𝑔, C
[

L e MM′

]

⟩ → ⟨M′′
𝑔 , C

[

L e′
2
MM′

]

⟩ ⟨M′′
𝑔 , C

[

L e′
2
MM′

]

⟩ →∗ ⟨M′
𝑔, v⟩

⟨M𝑔, C
[

L e MM′

]

⟩ →∗ ⟨M′
𝑔, v⟩

.

The backward direction proceeds similarly. □
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Theorem 4.10, in particular, justifies Julia’s choice to execute top-level calls using optimized
methods. Once a top-level call ⟨M, L m(v) M⟩ steps to a fixed-table call ⟨M, L m(v) MM⟩, it is sound to
optimize tableM into M′ (using inlining, direct calls, and specialization), and evaluate the call in
the optimized table ⟨M, L m(v) MM′⟩.

4.7 Testing the Semantics

To check if Juliette behaves as we expect, we implemented it in Redex [Felleisen et al. 2009]
and ran it along with Julia on a small set of 9 litmus tests (provided in App. A); Julia agrees with
Juliette on all of them. The tests cover the intersection of the semantics of Juliette and Julia, and
demonstrate the interaction of eval, method definitions, and method calls. In particular, the litmus
tests ensure: that the executing semantics prohibits calls to too-new methods, that this restriction
can be skipped with eval or invokelatest, and that the semantics of eval executes successive
statements in the latest age.

✞ ☎

r2() = r1()

m() = (

eval(:(r1() = 2));

r2())

m() # error
✝ ✆

✞ ☎

r2() = r1()

m() = (

eval(:(r1() = 2));

Base.invokelatest(r2))

m() == 2 # passes
✝ ✆

Fig. 21. Litmus tests

Two of the litmus tests are shown
in Fig. 21; each test is made up of
a small program and its expected
output. The tests examine the case
where a method r2 is placed łin be-
tweenž the generated method r1 and
an older m. In the first test, m errs.
While r2 is callable from the age that
m was called in, r1 is not. In the sec-
ond test, we use invokelatest to ex-
ecute r2 in the latest world age; this
allows the invocation of the dynamically generated r1.
To use the litmus tests, we need to (1) translate them from Julia into our grammar and (2) im-

plement the semantics of Juliette into an executable form. The former is done by translating
ASTs. The latter is realized with a Redex mechanization, which is publicly available on GitHub5

along with the litmus tests. The model implements the calculus almost literally. Values, tags, and
type annotations are instantiated with several concrete examples, such as numbers and strings.
Primitive operations include arithmetic and print. The only difference between the paper and
Redex is handling of function names. Similar to Julia, in the Redex model, a definition of the method
named f introduces a global constant 𝑓 . When referenced, the constant evaluates to a function
value f. Thus, instead of a single error evaluation rule E-Var from Fig. 13, the Redex model has the
following two rules, one for normal evaluation and one for erroneous evaluation:

E-VarMethod

𝑥 ∈ 𝑑𝑜𝑚(M)

⟨M, C [𝑥]⟩ → ⟨M, C [x]⟩

E-VarErr

𝑥 ∉ 𝑑𝑜𝑚(M)

M ⊢ C [𝑥] → error.

The new rules treat the global method table as a global environment: E-VarMethod evaluates a global
variable to its underlying function value, and E-VarErr errs if a variable is not found in the global
environment; all local variables should be eliminated by substitution. All paper-style programs can
be written in the Redex model, and the extension makes it easier to compare and translate Julia
programs to corresponding Redex programs. Thus, the litmus test on the left of Fig. 21 translates to
the Redex model as follows (the grammar is written in S-expressions style):

5https://github.com/julbinb/juliette-wa
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✞ ☎

(evalg (seq (seq

(mdef "r2" () (mcall r1)) # r2() = r1()

(mdef "m" () (seq

(evalg (mdef "r1" () 2)) # eval(:(r1() = 2))

(mcall r2)))) # r2()

(mcall m))) # m()
✝ ✆

The Redex model also implements the optimization judgments presented in Sec. 4.5, as well as a
straightforward optimization algorithm that is checked against the judgments.

Discussion with Julia’s developers confirmed that our understanding of world age is correct, and
that the table-based semantics has a correspondence to the age-based implementation. Namely, it
is possible to generate Juliette method tables from the global data structure used by Julia to store
methods.

5 CONCLUSION

Julia’s approach to dynamic code loading is distinct; instead of striving to achieve performance
in spite of the language’s semantics, the designers of Julia chose to restrict expressiveness so that
they could keep their compiler simple and generate fast code. World age aligns Julia’s dynamic
semantics with its just-in-time compiler’s static approximation. As a result, statically resolved
function calls have the same behavior as dynamic invocations.
This equivalenceÐthat statically and dynamically resolved methods behave the sameÐallows

Julia to forsake some of the complexity of modern compilers. Instead of needing deoptimization to
handle newly added definitions, Julia simply does not allow running code to see those definitions.
Thus, optimizations can rely on the results of static reasoning about the method table, while
remaining sound in the presence of eval. If necessary, the programmer can explicitly ask for newly
defined methods, making the performance penalty explicit and user-controllable.
World age need not be limited to Julia. Any language that supports updating existing function

definitions may benefit from such a mechanism, namely control over when those new definitions
can be observed and when function calls can be optimized. From Java to languages like R, having a
clear semantics for updating code, especially in the presence of concurrency, can be beneficial, as it
would improve our ability to reason about programs written in those languages.

Although the world-age semantics presented in the paper follows Julia, a world-age semantics
does not have to. For instance, an alternative world-age semantics could pick another point when
the age counter is incremented. The notion of top level makes sense in the context of an interactive
development environment, but is unclear in, for example, a web server that may receive new code to
install from time to time. Such a continuously running system may need a definition of quiescence
that is different from the top-level used in Julia. One alternative is to provide an explicit freeze
construct that allows programmers to opt-in to the world-age system. This would allow existing
languages to incorporate world age without affecting existing code.
The calculus we present here is a basic foundation intended to capture the operation of world

age. Future work may build on this to formalize the semantics of Julia as a whole, but, notably, the
additional semantics will not impact the world-age mechanism itself. Of particular note is mutable
state: it is orthogonal to world age because Julia decouples code state from data state by design.
This was a pragmatic decision, as the compiler depends on knowing the contents of the method
table for its optimization. Optimizations based on global variables are much less frequent.
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✞ ☎

#fails, too new

function g()

eval(:(k() = 2))

k()

end

g() # error
✝ ✆

(a)

✞ ☎

function h()

eval(:(j() = 2))

Base.invokelatest(j)

end

h() == 2
✝ ✆

(b)

✞ ☎

function h()

eval(:(p() = 2))

eval(:(p()))

end

h() == 2
✝ ✆

(c)
✞ ☎

r2() = r1()

function i()

eval(:(r1() = 2))

r2()

end

i() # error
✝ ✆

(d)

✞ ☎

r4() = r3()

function m()

eval(:(r3() = 2))

Base.invokelatest(r4)

end

m() == 2
✝ ✆

(e)

✞ ☎

function l()

eval(quote

eval(:(f1() = 2))

f1()

end)

end

l() == 2
✝ ✆

(f)
✞ ☎

x = 1

f(x) = (

eval(:(x = 0));

x * 2)

f(42) == 84

x == 0
✝ ✆

(g)

✞ ☎

g() = 2

f(x) = (eval(:(g() = $x));

x * g())

f(42) == 84

g() == 42

f(42) == 1764
✝ ✆

(h)

✞ ☎

g() = 2

f(x) = (eval(:(g() = $x));

x * eval(:(g()))

f(42) == 1764
✝ ✆

(i)

Fig. 22. Litmus Tests
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A LITMUS TESTS

As a basic test of functionality, we provide 9 litmus tests shown in Fig. 22, written in Julia, that
exercise the basic world age semantics as well as key Julia semantics surrounding world age. The
tests suffice to identify the following semantic characteristics:

(a) too-new methods cannot be called using a normal invocation;
(b) invokelatest uses the latest world age;
(c) eval uses the latest world age;
(d) successive eval statements run in the latest world age;
(e) only age at the top-level is relevant for invocation visibility;
(f) łlatestž calls propagate the new world age;
(g) eval executes in the top-level scope;
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(h) normal invocation uses overridden methods if added method too new;
(i) eval will use latest definition of an overridden method.
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