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We study bubble motion in a vertical capillary tube under an external flow. Bretherton
(1961) has shown that, without external flow, a bubble can spontaneously rise when
the Bond number (Bo ≡ ρgR2/γ) is above the critical value Bocr = 0.842, where ρ
is the liquid density, g the gravitational acceleration, R the tube radius, and γ the
surface tension. It was then shown by Magnini et al. (2019) that the presence of an
imposed liquid flow, in the same (upward) direction as buoyancy, accelerates the bubble
and thickens the liquid film around it. In this work we carry out a systematic study
of the bubble motion under a wide range of upward and downward external flows,
focusing on the inertialess regime with Bond numbers above the critical value. We
show that a rich variety of bubble dynamics occur when an external downward flow
is applied, opposing the buoyancy-driven rise of the bubble. We reveal the existence
of a critical capillary number of the external downward flow (Cal ≡ µUl/γ, where µ
is the fluid viscosity and Ul is the mean liquid speed) at which the bubble arrests and
changes its translational direction. Depending on the relative direction of gravity and the
external flow, the thickness of the film separating the bubble surface and the tube inner
wall follows two distinct solution branches. The results from theory, experiments and
numerical simulations confirm the existence of the two solution branches and reveal that
the two branches overlap over a finite range of Cal, thus suggesting non-unique, history-
dependent solutions for the steady-state film thickness under the same external flow
conditions. Furthermore, inertialess symmetry-breaking shape profiles at steady state
are found as the bubble transits near the tipping points of the solution branches, which
are shown both in experiments and three-dimensional numerical simulations.

Key words: thin films, lubrication theory, non-uniqueness, symmetry breaking

1. Introduction

The motion of an elongated bubble confined in a narrow geometry is of interest to
a wide range of science and engineering fields, and can be found in various processes
in industry, geology, and medical applications. Examples include oil production and
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recovery (e.g. Blunt 2001; Zhou & Prosperetti 2019), surface cleaning (e.g. Khodaparast
et al. 2017; Asayesh et al. 2017), coating processes (e.g. Quéré 1999; Kotula & Anna
2012; Yu et al. 2017), medical therapy (e.g. Feinstein et al. 1984; Uhlendorf & Hoffmann
1994; Hu et al. 2015), heat exchange (e.g. Ferrari et al. 2018; Magnini & Matar 2020),
etc. As a bubble translates in a liquid-filled capillary under an external flow, a thin
film of liquid, separating the bubble surface and the inner tube wall, is formed owing
to the competition of viscous and surface tension effects. It is of particular interest to
understand the thickness of this lubricating film because it is responsible for the heat and
mass transfer performance of the system. Furthermore, as in many of the applications
mentioned above, the stability of the process and its efficiency are dependent on the thin
film thickness and/or the interactions with the bubble surface. As a result, understanding
the correlation between the film thickness and an applied external flow is the key to enable
fine-tuning of the film thickness for better process control.

As first described theoretically by Bretherton (1961), for a horizontal configuration
with negligible buoyancy effects, the lubricating film is uniform near the center body of
the bubble, and the dynamics can be described by a single dimensionless number, the
capillary number of the bubble Cab ≡ µUb/γ, where Ub is the bubble velocity, µ and
γ represent the dynamic viscosity of the fluid and surface tension, respectively. In the
limit of small bubble velocity, Cab < 5× 10−3, the uniform film thickness, b, relative to

the inner radius of the cylindrical capillary, R, satisfies b/R = 0.643 (3Cab)
2/3

. In the
inertialess regime (Re � 1, where Re ≡ ρUbR/µ and ρ denotes the fluid density), this
relationship was further extended to Cab < 2 by Aussillous & Quéré (2000) as

b

R
=

1.34Ca
2/3
b

1 + 3.35Ca
2/3
b

. (1.1)

In both limits, the bubble velocity and the external flow velocity can be related by
Cal/Cab = (1 − b/R)2, where Cal ≡ µUl/γ, and Ul represents the cross-sectionally
averaged external flow velocity.

In a system where buoyancy effects are not negligible, the Bond number Bo ≡ ρgR2/γ
can be used to quantify the gravitational effects, with g denoting the acceleration of
gravity. As described in the same paper characterizing the horizontal configuration,
Bretherton (1961) predicted that the bubble will rise spontaneously in a vertically
oriented capillary through a stagnant fluid for Bo > Bocr = 0.842. While Bocr has
been confirmed by subsequent investigations (Lamstaes & Eggers 2017; Li et al. 2019;
Dhaouadi & Kolinski 2019), the experimental film thickness measured by Thulasidas
et al. (1995) shows deviation from Bretherton’s prediction for a bubble rising under a
small coflow. Thereafter, many studies in the literature have investigated the combined
effects of buoyancy and external flow on the bubble motion, but the majority of the
research has focused on the regime with Bo � 1, where buoyancy and inertial effects
dominate the dynamics (e.g. Nicklin 1962; Collins et al. 1978; Taitel et al. 1980; Polonsky
et al. 1999; Araújo et al. 2012). Under these circumstances, the bubble always rises with
a thick annular film, as well as a flattening, or even fragmented, bottom end. The steady
thin films, relied on in many of the industrial and medical processes mentioned above,
thus cannot be obtained in this inertia-dominant regime, but they can be achieved in the
buoyancy-capillary dominant regime by reducing the Bond number.

Recently, Magnini et al. (2019) revisited the bubble dynamics in a vertical capillary
under external flow for Bo . 1. The authors showed that an upward external flow
accelerates the rise of the bubble and thus thickens the film, and suggested that the
same theoretical results could be applied to the case with a downward external flow;
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Non-unique bubble dynamics in a vertical capillary under an external flow 3

Figure 1. Schematics of bubble profiles. Bubbles are confined in a vertically oriented cylindrical
capillary under an external flow, which is characterized by the cross-sectional averaged fluid
velocity Ul, whose magnitude is shaded in dark gray. (a) Different regions in an axisymmetric
bubble profile. The axisymmetric bubble profile is characterized by three distinct regions – I
(shaded red): the bubble “nose”, II: uniform film region, and III (shaded blue): the bubble
“tail”. As the arrows shown in the insets, when moving away from the uniform film region II,
the film thickness connecting to the nose varies monotonically, while the film connecting to
the bubble tail exhibits undulations. (b) Axisymmetric bubble profile with the nose pointing
upward and the uniform film thickness h(x) = b in region II. The inset shows a parabolic
velocity profile u(y) in region II in the lab frame. (c) Axisymmetric bubble profile with the nose
pointing downward. Note that panels (b,c) are illustrated at the same magnitude of downward
flow speed Ul, suggesting the non-unique film profiles under the same flow conditions. (d) The
symmetry-breaking bubble profile, which shows the cross-section with the maximum (left) and
minimum (right) film thicknesses. While the thick film adopts a profile with the nose (red)
pointing upward and the tail (blue) pointing downward, the thin film profile has the opposite
arrangement. The bubble centerline offsets from the tube centerline towards the thin film. The
symmetry breaking will be discussed in §4.2.

the latter suggestion, however, lacked experimental confirmation. As we shall see in the
current work, the external downward flow regime, in fact, contains richer dynamics than
expected. Not only does the film profile admit different solution branches, but we find
that multiple solutions are possible in some range of external downward flow, i.e. there
is non-uniqueness. Thus, it is important to investigate the full picture of the correlation
between the bubble profiles, buoyancy effects, and external flow, which shall provide
further insights for enhancing the controllability of technologies involving thin films.

In this paper, we investigate the dynamics of a bubble in the inertialess regime at
Bo & Bocr, where the bubble is confined in a vertically oriented channel and translates
at a steady state under a general external flow. By identifying the distinct bubble
morphologies under different alignments between gravity and the external flow, we solve
for the bubble profile combining efforts in theory, experiments and direct numerical
simulations. Theoretical derivations are provided in §2, which provides the governing
equations for determining the different solution branches of the film profile. Experiments
and direct numerical simulations are both adopted for consolidating the theoretical
predictions, with the methods described in §3. Results from theory, experiments and
simulations are compared in §4. A phase diagram is then generated, providing a full
picture of the axisymmetric bubble profiles and their uniform film thicknesses based on
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the combinations of Bo and Cal, including the direction of the external flow relative to
gravity. Furthermore, inertialess symmetry-breaking bubble profiles are found in both
experiments and simulations, with the characteristic features described in §4.2.

2. Theoretical derivation

The theoretical derivation in this section assumes azimuthal symmetry in the bubble
profile (figure 1a-c). An axisymmetric bubble, for example in figure 1a, can be divided
into three regions: a leading spherical cap (region I, also known as the “nose”), which
smoothly connects to a uniform film region with thickness b (region II), and a trailing
spherical cap (region III, also known as the “tail”), which connects to region II with
undulations. For a bubble in a vertically oriented capillary under an external flow, two
possible axisymmetric bubble profiles can be obtained, including the “nose-up” (figure
1b) and the “nose-down” (figure 1c) configurations. In this section, theoretical derivations
will be provided to solve for the uniform film thickness in these two cases.

As mentioned previously, the classic Bretherton problem in a horizontal capillary can
be considered as the special case with Bo = 0. In the absence of buoyancy effects, the
tube orientation does not alter the dynamics, and the uniform film thickness is solely
determined by the magnitude of the external flow. The film thickness vanishes as Cal → 0,
with the direction of the bubble motion and the bubble nose pointing in the same direction
as the external flow.

In the case where Bo is not negligible, the dynamics of the bubble are governed by
the combination of viscous and capillary effects, buoyancy, and the external flow. Since a
bubble can spontaneously rise through a stagnant fluid in a vertically oriented capillary
when Bo > Bocr, it is intuitive that this bubble might sustain a small magnitude of the
downward flow and continue to rise. As will be shown later in this section, the directional
alignment between the two driving forces will significantly affect the axisymmetric bubble
profile, which can be categorized naturally in one of two cases: a bubble with the “nose”
pointing upward or downward. In this problem, the Bond number Bo = ρgR2/γ and the
capillary number of the external flow Cal = µUl/γ are both given. Based on the input,
we seek to uncover the dynamics of the bubble at steady state, especially the uniform
film thickness b/R as well as the nondimensional speed, or the capillary number of the
bubble, Cab = µUb/γ. Hereafter, negative values of the liquid or bubble capillary number
are associated with downward liquid or bubble flow.

2.1. “Nose-up” branch: bubble profile with nose pointing upward

We begin by summarizing the results from Magnini et al. (2019), who investigated
the dynamics of a confined bubble translating at steady state under an external upward
flow. In fact, with a small variation, as we will describe in the following context, it can
be extended to describe a more general case: the dynamics of a bubble with its “nose”
pointing upward (figure 1b).

As indicated in figure 1b, the coordinates are represented by (x, y), with x pointing
vertically upward, and y = R−r pointing radially inward from the tube inner wall. With
the assumption that the film thickness is much smaller than the tube radius, b/R � 1,
(x, y) can effectively be treated as the local Cartesian coordinates, and the lubrication
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approximation can be applied to simplify the Navier-Stokes equations as

continuity: ux + vy = 0, (2.1a)

x direction: uyy =
1

µ
(px + ρg) , (2.1b)

y direction: py = 0, (2.1c)

where subscripts denote derivatives, the velocities in (x, y) are represented by (u, v), and
p denotes the fluid pressure.

In a reference frame moving with the bubble at the steady-state speed Ub, the velocity
profile within the thin film can be obtained by integrating equation (2.1b) with the
boundary conditions

u
∣∣
y=0

= −Ub and uy
∣∣
y=h(x)

= 0, (2.2)

which results in

u(y) =
1

2µ
(px + ρg)

(
y2 − 2hy

)
− Ub. (2.3)

Note that due to the gravitational effects, fluid in the thin film is always draining
vertically downward with a parabolic profile. Specifically, the velocity profile within the
uniform film region ub(y) = ρg(y2 − 2by)/(2µ)−Ub can then be obtained by demanding
h(x) = b and px = 0 from equation (2.3). An expression for κx, the gradient of curvature
along the x−direction, can thus be obtained by matching the fluxes from integrating
the two velocity profiles, and, consistent with the relative magnitude of terms in the
lubrication approximation, expressing the gradient of capillary pressure as px = −γκx:

κx =
3µUb

γ

(h− b)
h3

+
ρg

γ

(
h3 − b3

)
h3

. (2.4)

The two terms in (2.4) indicate the contributions from the capillary and buoyancy effects,
respectively. This expression for κx, obtained from the lubrication equations, can be
equated to its geometrical counterpart, κx = (∇ · n)x, where n denotes the normal vector
of the bubble surface pointing inward to the gas phase (figure 1b), leading to

3µUb

γ

(h− b)
h3

+
ρg

γ

(
h3 − b3

)
h3

=

[
1

(h2x + 1)
1/2

1

R− h
+

hxx

(h2x + 1)
3/2

]
x

. (2.5)

As noticed previously (Magnini et al. 2019), the full expression for the curvature
of the film profile is necessary in order for equation (2.4) to describe the liquid flow
both in the thin film and the bubble caps regions. One can further proceed with
nondimensionalization by defining X = x/`, H = h/b, and K = κ`2/b, with ` denoting
the characteristic length scale in the x−direction, which will be determined below.
Different from Magnini et al. (2019), nondimensionalizing equation (2.5) shows that there
are two choices for the characteristic scale `, which lead to two different expressions for
ε ≡ b/`:

ε1 = Ca
1/3
b or ε2 =

(
α2Bo

)1/3
, (2.6)

where α = b/R. Note that ε1 and ε2 are consistent with the characteristic scales for the
classic Bretherton problems in horizontal (Bo = 0) and vertical orientations (Cal = 0),
respectively. Furthermore, the ratio between these two choices, λ ≡ (ε2/ε1)3 = α2Bo/Cab,
quantifies the relative significance of the buoyancy and capillary effects within the thin
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Figure 2. Critical condition for a bubble being stabilized in the lab frame (Cab = 0) under an
external downward flow. (a) The critical strength of the external flow Cal,cr as a function of
Bo. Consistent with results in the literature, external downward flow is needed for keeping the
bubble stationary in the lab only for Bo > Bocr, and as Bo increases, a stronger downward flow
is required. (b) The uniform film thickness b/R when the critical external flow condition Cal,cr

is applied, where α = b/R monotonically increases with Cal,cr. In the limit of α→ 0, expanding

equation (2.9) shows that α ∼ (−Cal,cr/Bo)1/3, and the asymptotic scaling is shown as the red
dashed curves.

film region. While the right-hand side (RHS) of the rescaled (2.5) shows

RHS =
HXXX

f3
− 3ε2HXH

2
XX

f5
− α

1− αH
HXHXX

f3
+

(
α

1− αH

)2
HX

ε2f
, (2.7)

with f =
(
ε2H2

X + 1
)1/2

, different choices of ε result in a slightly different left-hand side
(LHS) of the rescaled (2.5):

ε = ε1 : LHS = 3
(H − 1)

H3
+ λ

(
H3 − 1

)
H3

(2.8a)

or ε = ε2 : LHS =
3

λ

(H − 1)

H3
+

(
H3 − 1

)
H3

. (2.8b)

When the system is provided with an upward external flow, as in Magnini et al. (2019),
both length scale choices are well defined and thus perform equivalently. When solving
for the film profile with a downward flow, however, choosing ε1 becomes problematic as
Cab → 0, which leads to an artificial singularity in the term associated with λ in (2.8a).

As a result, in order to extend the film profile solution with an upward nose towards the
downward flow regime, while avoiding the artificial singularity, the characteristic length
scale is chosen interactively during the numerical shooting process (see §2.3 for more
detail): ε = ε1 is chosen when λ < 1, where capillary effects outweigh buoyancy in the
thin film and equations (2.7, 2.8a) are solved; otherwise, when λ > 1, ε = ε2 is chosen
and equations (2.7, 2.8b) are solved.

Note that in the simulations and physical experiments, the strength of the external flow,
Cal, is directly controlled rather than the bubble speed, Cab, which enters λ = α2Bo/Cab.
Therefore, an additional relationship is needed to link the two capillary numbers, which
can be obtained by balancing the flux from the external Poiseuille flow in the far field
and the cross-sectional flux in the uniform film region. Integrating the velocity profiles
in cylindrical coordinates, we have

Cab =
Cal

(1− α)
2 + Bo

[
−1

2
+

3 (1− α)
2

8
+

1

8 (1− α)
2 −

1

2
(1− α)

2
log(1− α)

]
. (2.9)
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Non-unique bubble dynamics in a vertical capillary under an external flow 7

With any two of Bo, Cal, Cab, and α = b/R given, one can solve equations (2.7, 2.8,
2.9) for the other quantities with numerical shooting (see §2.3). One of the questions of
interest is the critical strength of the external downward flow needed, Cal,cr, in order
to stabilize the bubble, i.e., Cab = 0. In this scenario, the critical magnitude of external
flow Cal,cr and the corresponding film thickness α = b/R can be solved based on the two
inputs – the Bond number Bo and Cab = 0.

Typical results from a numerical solution are shown in figure 2, where the critical
downward flow Cal,cr as a function of Bo is shown as the black solid curve in panel (a).
For a fixed Bo, the bubble rises if the provided external flow is above the curve with
Cal > Cal,cr, and vice versa. This solution is consistent with the results for a vertically
oriented capillary in Bretherton (1961), as Cal,cr = 0 remains true for all Bo < Bocr,
and nonzero downward flow is needed to maintain the bubble stationary in the lab frame
otherwise. The magnitude of Cal,cr remains small for Bo ≈ 1, and rapidly increases as
gravitational effects become more dominant.

The corresponding critical film thickness is shown in figure 2b, where the inset is plotted
in log-log scales. Note that in the limit of α→ 0, equation (2.9) can be expanded. Since
both the external flow and buoyancy are significant, taking the leading order of each
term and demanding Cab = 0 (a stationary bubble) leads to

α =

(
−3

2

Cal,cr
Bo

)1/3

. (2.10)

This asymptotic approximation is shown in figure 2b as the red dashed curve, which
is in excellent agreement with the numerical shooting solutions for α = b/R < 0.1.
Furthermore, the rapid increase of Cal,cr with Bo can thus be qualitatively explained,
since the critical film thickness increases with Bo, and the scaling shows |Cal,cr| ∼ α3Bo.

2.2. “Nose-down” branch: bubble with nose pointing downward

Equations (2.7, 2.8, 2.9) fully describe the dynamics of the bubble under an upward
external flow (Cal > 0). For Bo > Bocr, the solution can be further extended towards the
downward flow regime (Cal < 0), with the bubble nose pointing upward and Cab → Ca+l .
However, this solution is only valid for a limited range of Cal < 0, beyond which solutions
of equations (2.7, 2.8, 2.9) fails to converge within the set tolerance, and thus the branch
terminates. In a physical system, the bubble responds to the stronger downward flow by
changing its morphology, so that the “nose” points downward as indicated in figure 1c,
following the flow direction. Both experiments and simulations introduced in the next
sections will confirm this response.

The bubble profile in a downward-nose system is similar to the upward-nose case,
and therefore when it comes to solving for the film profile, the new film equations
can be obtained by modifying equations (2.7, 2.8, 2.9) simply by redefining the vertical
coordinate as x̃ = −x (figure 1c). With this convention, the positive directions of Cal

and Cab within the model are redefined, while the scalar variables (e.g. α and H) remain
unchanged. Furthermore, since the gravitational direction remains vertically downward
regardless of coordinates, in the new coordinate system, the terms associated with Bo
must change sign as well. As a result, the film equations become
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3
(H − 1)

H3
− λ

(
H3 − 1

)
H3

=
HXXX

f3
− 3ε2HXH

2
XX

f5
− α

1− αH
HXHXX

f3
+

(
α

1− αH

)2
HX

ε2f
,

(2.11a)

Cab =
Cal

(1− α)
2 − Bo

[
−1

2
+

3 (1− α)
2

8
+

1

8 (1− α)
2 −

1

2
(1− α)

2
log(1− α)

]
, (2.11b)

where, compared to equations (2.7, 2.8, 2.9), the net effects are sign changes in the terms
related to gravity only. In other words, by changing the nose direction from upward to
downward, the bubble only senses a sign change in the buoyancy force: instead of assisting
the bubble to rise, buoyancy effects are now acting as resistance to the bubble motion,
which is now mainly driven by the downward external flow.

When the bubble dynamics falls on this solution branch, the bubble always sinks and
the film thickness α converges to the origin as Cal → 0− (as we will confirm in §4). Thus,
ε = ε1 is chosen when nondimensionalizing the equations, resulting in the form of (2.11a)
similar to (2.8a).

2.3. Numerical integration

With Cal and Bo given, equations (2.7, 2.8, 2.9) or (2.11) can be solved for Cab, the
uniform film thickness α and the film profile H(X), with the boundary conditions

H(0) = 1, HX(0) = 0, and HXX(0) = 0, (2.12)

and H(Xnose) = 1/α is demanded as the additional constraint, with X = 0 indicating
the uniform film region and Xnose the location of the bubble nose, which is yet to be
determined by the numerical integration scheme. Although the full curvature of the film
is used in equations (2.7, 2.8, 2.9) or (2.11), the underlying solution method is effectively
the same as the asymptotic expansion as seen in Bretherton (1961), which includes the
process of solving the film equation for the bubble “nose” and matching to the static
spherical cap. The coupled equations are solved by first imposing an initial guess on
α. With Cal and Bo given, equation (2.9) or (2.11b) outputs the capillary number of
the bubble Cab, which serves as an input for equation (2.7, 2.8) or (2.11a). The ODE
for H(X) is solved by numerical integration with Matlab ode45 from the uniform film
region towards the front spherical cap in the positive X-direction. Numerical integration
ceases when HX → ∞, where the termination location denotes Xnose and the value
H(Xnose) is compared with the constraint H(Xnose) = 1/α. The initial guess of α is
then iteratively updated until this additional constraint is met, meaning that the bubble
nose is symmetric about the tube centerline.

3. Experimental and numerical simulation methods

3.1. Experimental setup

Experiments are performed in a refractive index matching setup similar to those
described in Yu et al. (2018) and Magnini et al. (2019), with pure glycerol filling the
capillary tube as the continuous phase. Density, viscosity and surface tension of the pure
glycerol are measured as ρ = (1.29± 0.001)× 103 kg m−3, µ = 1.00± 0.04 Pa s (Anton
Parr, Physica MCG 301), and γ = 65.4 ± 1.0 mN m−1 (pendant drop), respectively.
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Non-unique bubble dynamics in a vertical capillary under an external flow 9

Glass capillaries with three different inner diameters (ID = 4.45, 4.85, 5.65 ± 0.05 mm)
are used, yielding the Bond numbers of Bo = 0.97, 1.16, 1.56, respectively. Each glass
capillary is placed within in a cuboid glassed box, which is also filled with pure glycerol
in order to avoid imaging distortions. The top end of the glass capillary is connected to
a liquid reservoir by a Teflon hose, and the bottom end is submerged in a bath of pure
glycerol. The experimental flow rate is adjusted by controlling the reservoir pressure using
the Elveflow® OB1 MK3 pressure and vacuum controller, and calibration between the
flow rate and controller pressure is performed for all capillary tubes used. The imaging
apparatus is composed of a Nikon D5100 DSLR camera and a Mitutoyo infinity corrected
objective, mounted on a house-made tube microscope. The imaging apparatus is aligned
horizontally with a collimated LED light source, which is located half way between the
two ends of the capillary tube.

In each set of experiments with the same Bo, the capillary tube is partially filled with
pure glycerol, leaving a section of an air column in the bottom end of the capillary. The
setup is then carefully calibrated to be vertical. A single bubble is formed by applying
vacuum to the system, providing an upward flow and assisting the formation of the
thin liquid film. For experiments corresponding to Cab > 0, experiments start by directly
setting the pressure/vacuum to a target value; for experiments with Cab < 0, on the other
hand, the target pressure value is set after the bubble rises to the top end of the capillary.
As the bubble reaches the region of interest of the imaging apparatus, the dynamics of the
bubble are recorded in the bright-field mode at 30 fps. After each experiment, the bubble
velocity and the film profile are analyzed from the image sequence, and the capillary
number of the external flow Cal is calculated based on the calibration between flow rate
and pressure control.

3.2. Numerical simulation setup

Direct numerical simulations of the flow of elongated bubbles in vertical capillar-
ies are performed utilising the Volume-of-Fluid (VOF) method (Hirt & Nichols 1981)
implemented in OpenFOAM. The unsteady mass and momentum equations for an
incompressible flow and Newtonian fluid are solved, together with a transport equation
for a passive scalar that identifies the gas and liquid phases across the domain. In
this formulation, the surface tension force is implemented as a body force according
to the Continuum Surface Force method (Brackbill et al. 1992). Both two-dimensional
axisymmetric and full three-dimensional simulations are conducted, with the latter
enabling us to investigate conditions that may lead to symmetry breaking. The simulation
setup is similar to that adopted in previous works (Magnini et al. 2019, 2017). An
elongated bubble, with the shape of a cylinder with spherical ends, is initialized at one
end of the flow domain. Bubble lengths of about 6D are sufficient to achieve a uniform
film region between front and rear menisci, under the conditions of interest. At the inlet
boundary, a fully developed laminar profile is set for the incoming liquid, while no-slip
is set at the pipe wall. At the channel outlet, pressure is given a constant value, together
with a zero gradient condition for the velocity. The liquid to gas density and viscosity
ratios are set to 1000 and 100, respectively. Each simulation is run forward in time until
the bubble translates with a constant speed.

Numerical simulations are performed for the three values of the Bond number tested
experimentally and a wide range of Cal, for both upward and downward liquid flow.
For each value of Bo and each flow direction, a first simulation is run with the largest
|Cal| desired, until steady state. From this steady solution, |Cal| is reduced and a new
simulation is run until a new steady bubble profile and speed are achieved. The procedure
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Figure 3. Comparison between lubrication theory, experiments, and simulations at Bo = 0.97.
(a) b/R versus Cal. Solid curves represent the theoretical results from numerical shooting, with
the “nose-down” branch obtained from solving (2.11), and the “nose-up” branch from solving
(2.7, 2.8, 2.9). Results from experiments (circles) and direct numerical simulations (squares)
both agree with the theoretical prediction and verify the existence of two distinct branches.
Specifically, the red and blue markers represent the cases shown in (b,c) and (d,e), respectively.
(b,c) Bubble with nose pointing downward, where undulations appear on the top end of the
bubble. Bubble profiles are compared in (c), where the theoretical profile (red dash-dotted
curve) is plotted on the left, and the profile from numerical simulation (green dashed curve) is
plotted on the right. (d,e) Bubble with nose pointing upward with undulations appearing on the
bottom end. Results are compared in (e) with the theoretical profile (red dash-dotted curve) on
the left, and the simulation profile (green dashed curve) on the right.

continues by stepping towards smaller values of |Cal| to span the entire range of conditions
of interest, each time until steady state.

4. Results and discussion

The comparison between theory, experiments and numerical simulations is shown in
figure 3 for Bo = 0.97. The film thickness b/R as a function of Cal is plotted in figure 3a,
where results from theory (solid curves), experiments (circles), and numerical simulations
(squares) show good agreement. The theoretical results from numerical shooting predict
two distinct solution branches of the film thickness – the “nose-down” branch is obtained
by solving (2.11), where the bubble nose is pointing downward; the “nose-up” branch is
obtained from solving (2.7, 2.8, 2.9), with the bubble nose pointing upward. Note that
since the Bond number Bo = 0.97 > Bocr, the “nose-up” branch intersects with the y-
axis (stagnant fluid) at a non-zero value of the film thickness. As Cal decreases towards
the downward flow regime, the “nose-up” branch extends towards b/R → 0, but only
exists in a very narrow range of downward flow before it terminates; this aspect will be
more apparent at the larger Bond numbers presented in the next section.

As displayed in figure 3, under the same magnitude of the external flow, the film
thickness on the “nose-up” branch is consistently larger than that on the “nose-down”
branch. As an example, typical experimental images are shown for a sinking bubble
(figure 3b,c, corresponding to the red markers in figure 3a), and a rising bubble (figure
3d,e, corresponding to the blue markers in figure 3a). While the sinking bubble shown in
the figure has its nose pointing downward and undulations appear near the top end, the
rising bubble has its nose pointing upward and undulations appear near the bottom end.
For the two cases undergoing an external flow of similar magnitude, the sinking bubble
(figure 3c) shows a film thickness of b/R = 7.6× 10−3, which is much smaller than that
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Non-unique bubble dynamics in a vertical capillary under an external flow 11

of a rising bubble (figure 3e), whose film thickness is b/R = 5.0 × 10−2. Furthermore,
the film profiles near the bubble nose are also compared. As shown in figure 3c,e, the
theoretical film profiles are plotted as red dash-dotted curves, overlaying on the left half of
the experimental images, and the profiles from simulations are plotted as green dashed
lines on the right. In both cases, good agreement is obtained among the theoretical,
experimental, and numerical results.

4.1. Effects of Bo and the non-unique, history-dependent film profiles

Results for different Bond numbers Bo = {0.97, 1.16, 1.56} are displayed in figure 4.
Note that only the results of experiments and simulations terminating with an axisym-
metric bubble profile are included in the figure, whereas symmetry-breaking configura-
tions will be discussed in §4.2. As the Bond number increases in figure 4a,c,e, the film
thickness on the two branches deviate more from the classic theory (equation (1.1), shown
as gray dashed curves), and the difference between the two branches also increases. As the
film thickness on the “nose-up” branch increases along with Bo, the branch intersects
with the y-axis at a larger value of b/R. The “nose-down” branch, however, has the
film thinning as Bo increases, which is consistent with the physical intuition. When the
bubble translates with an upward nose, buoyancy serves as the main driving force of
the motion, and the external flow acts as a side factor, assisting or hindering the bubble
motion depending on the sign of Cal. As a result, the bubble has an increased tendency
to rise as Bo increases, and thus forms a thicker film. On the other hand, the external
flow serves as the main driving force when the bubble sinks with a downward nose, while
gravity remains a resistance to the bubble motion, thus resulting in the thinning of the
film thickness at higher Bo. Meanwhile, comparing Cab and Cal at various Bo (figure
4b,d,f) shows that the bubbles with downward noses always sink with Cab < Cal. On
the other hand, the bubbles on the “nose-up” branch follow Cab > Cal over a wide range
of Cal, except for a very narrow region near the branch termination (see insets of figure
4b,d,f).

Furthermore, we observe from both the film thickness and bubble capillary number
plots that the “nose-up” branch extends towards the downward flow regime, with the
extended domain enlarging for increasing values of the Bond number, whereas the “nose-
down” branch always converges to the origin as Cal → 0−. These results suggest that
there is a range of downward flows where the two branches overlap for the same Bo
and Cal, and hence the bubble film profile undergoes “hysteresis”-like history-dependent
dynamics in the overlapping domain of the two branches.

As an example, the inset of figure 4f shows the simulation results of two different film
profiles obtained under the same conditions of Bo = 1.56 and Cal = −2 × 10−3. When
the bubble profile is obtained starting from a steady-state configuration at Cal = 0, the
solution stays on the “nose-up” branch (blue squares), which corresponds to a bubble
sinking at Cab = −7.5×10−4 (Cab > Cal) with a thick film of thickness b/R = 1.2×10−1

and its nose pointing upward. However, a distinct solution is obtained when reaching
Cal = −2 × 10−3 from a steady-state profile at a smaller (more negative) Cal, which
belongs to the “nose-down” branch. The solution stays on the “nose-down” branch (red
squares), and the bubble sinks at Cab = −2.1 × 10−3 (Cab < Cal) with a much thinner
film of thickness b/R = 1.5× 10−2 and its nose pointing downward.

To summarize the evolution of the two branches at different Bo, a phase diagram for
the axisymmetric bubble profile is generated from the theoretical results and shown in
figure 5. The classic theoretical results with Bo = 0 are plotted as the black solid curves,
which are symmetric about the y-axis. When an external upward flow is applied, the
bubble profile is uniquely determined by the combination of Bo and Cal > 0, and for
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Figure 4. Overlapping solution branches and the non-unique film profiles for Bo > Bocr. Results
at Bo = {0.97, 1.16, 1.56} are shown comparing theory (solid curves), experiments (circles)
and numerical simulations (squares), where results corresponding to the “nose-down” branch
(thin film) and “nose-up” branch (thick film) are colored in red and blue, respectively. The
relationships between the film thickness b/R and external flow Cal are shown in panels (a),
(c), (e). As Bo increases, the two solution branches deviate more from the classic Bo = 0
theory (gray dashed curves) and overlap over a larger region of downward flow. The comparisons
between Cab and Cal are shown in panels (b), (d), (f), with the black dashed line indicating the
reference Cab = Cal. While Cab < Cal is observed on the “nose-down” branch, the “nose-up”
branch mainly follows Cab > Cal, except at a very narrow region close to where the branch
terminates. The insets show a close-up view of the overlapping regions of the branches, where
the history-dependent bubble dynamics are observed both theoretically and numerically.

the same Cal, the film thickness increases with Bo. Note that for Bo < Bocr, the film
thickness converges to the origin as Cal → 0+, which is consistent with the original work
of Bretherton (1961). For Bo > Bocr, on the other hand, the “nose-up” branch extends
into a limited range of downward flow speeds. The bubble continues to rise until the
“nose-up” branch intersects with the black dash-dotted curve denoting Cab = 0, and this
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Non-unique bubble dynamics in a vertical capillary under an external flow 13

Figure 5. Phase diagram obtained from numerically integrating equations (2.7, 2.8, 2.9) and
equation (2.11), showing the film thickness b/R versus Cal and the evolution of the branches
with varying Bo. The two branches corresponding to the same Bo are labeled with the same color
code. Also shown in each regime are schematics of the typical bubble profile. While the “nose-up”
branches with Bo < Bocr converge to the origin, the “nose-up” branches with Bo > Bocr extend
in the downward flow regime. The black dotted curve “ ” and black dashed curve “

” represent the critical conditions where Cab = 0 and Cab = Cal, respectively. The black
dash-dotted curve “ ” shows the conditions where the “nose-up” branches terminate in
the numerical shooting schemes. Note that the “nose-up” branches are shown as dashed between
Cab = Cal and the branch termination conditions, since no axisymmetric bubble profiles are
observed in experiments or 3D numerical simulations within this range, as will be explained in
§4.2.

axisymmetric solution branch eventually terminates at the black dashed curve, beyond
which the numerical shooting method fails to converge within the set tolerance when
equations (2.7, 2.8, 2.9) are solved.

If Cal is further decreased beyond the region where the “nose-up” branch terminates,
axisymmetric solutions can only be found on the “nose-down” branch with the bubble
nose pointing downward, as shown in figure 5 with the color code being the same as
the corresponding “nose-up” branch. With the external flow serving as the main driving
force, for the same value of Cal, the bubble film thickness on the “nose-down” branch
decreases with the increasing resistance from Bo. Since all solutions on the “nose-down”
branches converge to the origin as Cal → 0−, the solution branches overlap in the region
where the “nose-up” branch extends in the downward flow regime, and the overlap
region enlarges with increasing Bo, indicating the non-unique and history-dependent
film thickness solutions.

4.2. Symmetry breaking

Numerical shooting results indicate that axisymmetric bubble profiles are not available
in the downward flow region between the black solid curve (the “nose-down” branch with
Bo = 0) and the black dash-dotted curve (where the “nose-up” branches terminate),
where both experiments and three-dimensional simulations exhibit symmetry-breaking
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Figure 6. Symmetry-breaking bubble profiles in experiments and simulations. (a)
Symmetry-breaking profiles obtained from experiments, with Bo = 0.97, and Cal = −1.7×10−3.
Note that the “nose” (shaded red) and “tail” (shaded blue) of the bubble are the sections
connecting to the uniform film region without and with undulations, respectively. A thick film
is shown on the left-hand side with the bubble nose pointing upward, and a thin film is shown
on the right-hand side with the bubble nose pointing downward. From the tube centerline
(black dash-dotted line), the bubble centerline (red dashed line) is shifted towards the side
of the thin film. (b-d) Symmetry-breaking profiles obtained from a 3D numerical simulation at
Bo = 1.56 and Cal = −4.0×10−3, started from a steady-state configuration (Cal = −3.0×10−3)
belonging to the “nose-up” branch. (b) The symmetry-breaking profiles are consistent with the
image obtained from experiments, with the color code representing the downward fluid velocity
normalized by Ul. (c) The circumferential bubble profile about half way between the bubble
top and bottom (as indicated by the dashed line in panel (b)), where the cross section of the
bubble is no longer circular. (d) The bubble profile in the y′ − z′ plane. The black solid circle
represents the tube inner wall, and the black dashed circle and the red curve represent the initial
axisymmetric bubble profile and the asymmetric bubble surface, respectively.

profiles, as it will be shown below; see sketch in 1d. Note that axisymmetry-breaking
bubble profiles are known in the literature for pipe flows with Bo > O(10), where the
bubble breaks symmetry in external flows with large inertial effects (Re & O(100)),
often with fragmented bottoms (see e.g. Griffith & Wallis 1961; Martin 1976; Lu &
Prosperetti 2006; Fabre & Figueroa-Espinoza 2014; Fershtman et al. 2017). In contrast,
the symmetry-breaking profiles obtained in the current work, as shown in figure 6a,b, exist
in an inertialess regime with Bo 6 O(1) and |Cal| 6 O(10−2). The bubble profile thus
preserves some features associated with the classic lubricating film in an axisymmetric
bubble.

Both experiments and 3D simulations yield symmetry-breaking profiles when the
bubble attempts to transit between steady states near the ends of the two branches,
while the bubble is sinking and adapting to a new steady-state profile by thinning
the film. While the symmetry breaking profiles are supported by both experiments
and 3D simulations, we noticed that symmetry breaking occurs before the theoretically
predicted branch termination conditions are met, and no “nose-up” axisymmetric profiles
are observed when Cab < Cal. Though the detailed mechanism accounting for the
symmetry breaking process is out of the scope of the current work, the discrepancies in
the critical conditions might be explained in several different ways. First, the symmetry-
breaking process is triggered near the upper spherical caps (the bubble “nose” if at a
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Non-unique bubble dynamics in a vertical capillary under an external flow 15

“nose-up” profile, or the “tail” if “nose-down”). However, the theoretical predictions
are based on an axisymmetric profile assumption, with the derivation mainly focusing
on the uniform film thickness region. Furthermore, we observed that the bubble profile
becomes more sensitive to system perturbations when the conditions are closer to the
branch termination. Therefore, while the theoretical predictions might provide an “ideal
boundary”, the system perturbations in experiments or finite resolutions in simulations
can account for the early trigger to the symmetry-breaking process.

Here, we report the evidence of such profiles and provide qualitative descriptions of
the symmetry-breaking process.

4.2.1. Asymmetric bubble profiles

Two symmetry-breaking bubble profiles are shown in figure 6a,b, with figure 6a
obtained from an experiment, and figure 6b from a three-dimensional direct numerical
simulation (see §3 for the experimental and numerical simulation set-ups). While the
experimental figure is captured in the vertical plane, near where the maximum and
minimum film thicknesses exist, the simulation figure is plotted at the vertical plane
where y′ = 0, with x′, y′, z′ denoting the coordinates in the 3D numerical simulation.
Unlike the asymmetric profiles reported in the literature (e.g. Fabre & Figueroa-Espinoza
2014; Fershtman et al. 2017), both the top and bottom caps of the bubble surface are
present, and because of this, distinct features are observed about the film profile. Note
that the bubble “nose” and “tail” are the sections connected to the uniform film region
without and with undulations, respectively. As indicated in figure 6a,b, on the portion of
the bubble surface associated with a thick film, the bubble has its nose pointing upward
and undulations appears at the bottom. On the portion with a thin film, on the other
hand, the bubble has its nose pointing downward and the undulation appearing on the
top. Connecting the top and bottom of the bubble forms the bubble centerline, which
lies almost vertically and is offset from the tube centerline, towards the direction where
the minimum film thickness exists (figure 6a). Based on the numerical solution in figure
6b, the cross-sectional profile of the bubble is shown in figure 6c,d, with the color code in
panels (b) and (c) representing the magnitude of the downward fluid velocity normalized
by the average fluid velocity Ul. While the simulation begins with an axisymmetric film
thickness profile (figure 6d, black dashed circle), once symmetry-breaking occurs, the
cross-section of the bubble is no longer circular (red solid curve). For each θ, an axially-
uniform film region still exists. The fluid reaches a larger velocity on the bubble surface
where the uniform film is thicker, as it encounters less viscous resistance.

4.2.2. Time-dependent bubble dynamics during symmetry-breaking

Below, we investigate the transition of the bubble profile from a steady-state axisym-
metric shape to an asymmetric shape, resulting from a sudden change in the downward
liquid flow rate Cal, which forces the bubble to transits from one solution branch to
another.

1) Symmetry-breaking from the “nose-up” branch: from Cal = −3.0×10−3 to −4.0×10−3

We consider the flow configuration with Bo = 1.56. According to the results in figure
5, when moving along the “nose-up” branch towards the left, the theoretical model
suggests that the branch terminates before Cal = −5.0 × 10−3 is achieved. On this
branch, numerical simulations are run starting from an axisymmetric steady-state profile
at Cal = 0.01, then gradually decreasing Cal (each time until steady state) to move
along the branch towards the left. When running three-dimensional simulations, the

Page 16 of 20

Cambridge University Press

Journal of Fluid Mechanics



16 Y. E. Yu, M. Magnini, L. Zhu, S. Shim and H. A. Stone

(a) symmetry breaking transition: from Cal = -0.003 to Cal = -0.004 
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Figure 7. Time-dependent evolution from an axisymmetric to a symmetry-breaking bubble
profile starting from the “nose-up” branch at Bo = 1.56, triggered by a change in Cal from
Cal = −3.0 × 10−3 to −4.0 × 10−3. (a) Bubble profile at different time stamps in the y′ = 0
plane. Insets are zoomed-in views of the profiles on the right hand side. The simulation starts
at t/τ = 0, with the steady-state profile at Cal = −3.0 × 10−3 as the initial condition. Three
transitional stages are observed: 1) axisymmetric adjustment (blue box), 2) fast transition to
asymmetry (green box), and 3) convergence to a steady-state asymmetric profile (red box). (b)
Circumferential film profile measured half way between the bubble top and bottom tips, with the
circumferential angle θ measured from z′ = 0. (c) Circumferential film thickness measurements
obtained from panel (b) as a function of θ. (d) The positions of the bubble top and bottom as a
function of t/τ , where the bubble speed is significantly decreased after the symmetry-breaking
transition.

smallest Cal that yields steady-state axisymmetric dynamics is Cal = −3.0 × 10−3. A
further decrease of the liquid flow rate to Cal = −4.0 × 10−3 yields a transition to an
asymmetric bubble.

For Cal = −3.0 × 10−3, the three-dimensional simulation yields an axisymmetric
solution that stays on the “nose-up” branch. At steady state, the bubble sinks with
its nose pointing upward, with Cab = −2.2 × 10−3 and b/R = 0.111. This data point
is in the vicinity of the tipping point of the “nose-up” branch (see figure 4e), and the
related bubble profile is shown in figure 7a at t/τ = 0, with τ ≡ R/Ul. Using this profile
as an initial condition, the background flow rate is decreased to Cal = −4.0 × 10−3,
which triggers the transition to a symmetry-breaking profile. The bubble transits through
three different unsteady regimes as time elapses: (1) axisymmetric adjustment, (2) rapid
transition to asymmetry, and (3) convergence to a steady-state asymmetric profile, as
shown in figure 7a.

As the simulation begins, at stage 1 (axisymmetric adjustment), a film-thinning wave
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Non-unique bubble dynamics in a vertical capillary under an external flow 17

is generated at the bottom end of the bubble. This wave travels upward and thins the film
by generating a new film region (see figure 7a, t/τ = 13.6, 19.2), in a manner similar to Yu
et al. (2018). This newly generated film smoothly connects to the bottom spherical cap
without undulation and has a uniform thickness b/R = 0.0214, whose value corresponds
to the axisymmetric film thickness on the “nose-down” branch at Cal = −4.0 × 10−3.
Thus, the bubble is attempting to transition from the “nose-up” branch to the “nose-
down” branch, and this film-thinning wave is adapting to the new background flow rate
by generating a downward-pointing nose at the bottom end of the bubble. The initial
stage lasts until about t/τ = 23.0, with the thin film surrounding the bubble remaining
axisymmetric. However, the top end of the bubble starts to shift sideways slowly from
time t/τ = 10.0 on, triggering the instability that gives way to the second stage.

At stage 2 (rapid transition to asymmetry), the asymmetry at the top end triggers a
strong film-thickening wave, which travels from the top to the bottom of the bubble in
less than one time unit (see figure 7a, t/τ = 27.2, 27.8). This thickening wave only spans
a finite range of circumferential angle θ, yet strongly alters the partial profile as it sweeps
by, leaving a thick film with a nose pointing upward and a tail pointing downward. The
other section of the bubble remains unchanged during this process (see insets of figure
7a), maintaining a thin film thickness at b/R = 0.0214, same as in stage 1. Thus, the film-
thickening wave is responsible for generating the asymmetric bubble profile, which leads
to opposite arrangements of the bubble noses and tails on the thick- and thin film sides of
the bubble (see figure 1d and 6a). During stage 1, the bubble sinks at Cab = −4.2×10−3.
From the end of stage 2 onward, the bubble sinks more slowly at Cab = −6.0 × 10−4

(figure 7d), and the circumferential film thickness profile is strongly asymmetric (figure
7b,c).

At stage 3 (convergence to a steady-state asymmetric profile), capillary effects further
adjust the film profile, rounding the film profile corners left from stage 2 (see figure 7b,c,
yellow curve) and further thinning the film due to a decrease in speed. As a result, a
third thinning wave starts from the bottom of the bubble and propagates towards the top,
which is circumferentially localized in the thin film region (figure 7a, t/τ = 29.8, 47.4).
This wave propagates at a speed much slower than the previous stages, and the numerical
simulation ends before the wave reaches the top of the bubble, since the film becomes
too thin (b/R . 0.01) for the computational mesh to capture, i.e., the film eventually
dewets. However, based on the dynamics before dewetting, the bubble continues sinking
at a constant speed, and the bubble dynamics seems to be converging to a steady-state
asymmetric profile, with a very thin film on one side that may eventually dewet.

2) Symmetry breaking from the “nose-down” branch: from Cal = −4.0 × 10−3 to
−3.0× 10−3

When moving along the “nose-down” branch towards the right in figure 5, the theoret-
ical model yields solutions all the way to Cal = 0. On this branch, numerical simulations
start from an axisymmetric steady-state profile at Cal = −0.02, then Cal is gradually
increased to move along the branch towards the right, each time until steady state.
While results from two-dimensional axisymmetric and three-dimensional simulations
show excellent agreement up to Cal = −4.0×10−3, deviations appear when Cal is further
increased to Cal = −3.0 × 10−3. The three-dimensional simulation yields a transition
to the asymmetric dynamics, whereas the results of the two-dimensional axisymmetric
simulations achieve steady-state conditions that stay on the “nose-down” branch, and
agree well with the theory. The transition from the “nose-down” branch towards an
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asymmetric profile is very similar to the previous case and can be categorized in the
same three stages; more detail can be found in the supplementary material.

5. Concluding remarks

Theoretical predictions are given for the axisymmetric film profile of an elongated
and confined bubble, translating at steady state in a vertically oriented capillary under
external flow. The theoretical results are further validated by the experiments and direct
numerical simulations. Under the effects of buoyancy and external flow, two solution
branches of the axisymmetric film thickness are found. One solution has buoyancy effects
mainly driving the bubble motion, and admits a thick film profile with the bubble nose
pointing upward; the other solution branch has the external flow effects mainly driving
the motion, and admits a thin film profile with the bubble nose pointing downward.

When an external upward flow is applied, a unique shape of a bubble with its nose
pointing upward is obtained, and the resultant film thickens with increasing Bo and/or
Cal. For Bo < Bocr = 0.842, the film thickness vanishes as Cal → 0+. For Bo > Bocr,
however, the bubble rises spontaneously in a stagnant fluid with a nonzero film thickness.
As a result, the bubble can sustain a limited amount of external downward flow and retain
the upward nose profile. The larger the Bond number, the larger the range of negative
Cal that the bubble can tolerate while maintaining this configuration.

The bubble profile with a downward-pointing nose, on the other hand, can only be
obtained by applying an external downward flow. While the film thickness increases with
the magnitude of the external flow |Cal|, it decreases with Bo, since buoyancy serves as
resistance in this case. In addition, the film thickness vanishes as Cal → 0− regardless of
Bo. Combined with the operational range of downward flow for the thick film solution
branch, the two solutions overlap for Bo > Bocr, resulting in non-uniqueness of the film
thickness.

Furthermore, both experiments and three-dimensional simulations show that as the
bubble transits between steady states near the tipping points of the two solution branches
and attempts to form a new profile with a thinner film, axisymmetry of the bubble profile
may be broken. The resultant symmetry-breaking profile is found in the inertialess regime,
which differs from the cases documented in the literature at large Bond numbers, as
it preserves smooth bubble caps with many of the features that can be described by
the classic lubrication theory. Further investigation of this profile can provide valuable
insights, enhancing the current understanding of multiphase flows in vertical pipes, and
bridging the gap in the literature regarding the dynamics and stability of a bubble in a
capillary over a wide range of Bond numbers.
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