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FOURIER-JACOBI CYCLES AND ARITHMETIC RELATIVE TRACE
FORMULA (WITH AN APPENDIX BY CHAO LI AND YIHANG ZHU)

YIFENG LIU

ABSTRACT. In this article, we develop an arithmetic analogue of Fourier—Jacobi period integrals for
a pair of unitary groups of equal rank. We construct the so-called Fourier—Jacobi cycles, which are
algebraic cycles on the product of unitary Shimura varieties and abelian varieties. We propose the
arithmetic Gan—Gross—Prasad conjecture for these cycles, which is related to the central derivatives
of certain Rankin—Selberg L-functions, and develop a relative trace formula approach toward this
conjecture.
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1. INTRODUCTION

1.1. Fourier—Jacobi cycles and the arithmetic Gan—Gross—Prasad conjecture for U(n) x
U(n). We first recall the classical notion of Fourier—Jacobi periods for U(n) x U(n) and their rela-
tion with L-functions (see [GGP12a, Section 24] for more details). Let E/F be a quadratic exten-
sion of number fields with the nontrivial Galois involution ¢ and the associated quadratic character
pe/p: FP\AL — {£1}. Let V be a (non-degenerate) hermitian space over E of rank n > 1 with
respect to ¢, with the unitary group U(V). Consider two irreducible cuspidal automorphic representa-
tions m and 7y of U(V)(Af). To define the Fourier—Jacobi periods for 71 X w2, we need an auxiliary
conjugate symplectic automorphic character p of A%, that is, an automorphic character of A7, whose
restriction to A coincides with pp k- The character p (together with a nontrivial additive character
of (F+ Ar)\Ag) will give us a Weil representation of U(V)(Af), with natural automorphic realiza-
tion via theta series 9/‘3 attached to certain Schwartz functions ¢. We define the Fourier—Jacobi period
integral for f1 € w1, fo € mo, and ¢ to be

Pulfi, fai¢) = f1(9) f2(9)65(9) dg,

/U(V)(F)\U(V)(AF)

where dg is the Tamagawa measure on U(V)(A ). Readers may realize that the above formula is very
close to the Rankin—Selberg integral for GL(n) x GL(n) in which the role of the theta series is replaced
by a mirabolic Eisenstein series (see [Liul4, Section 3] for a systematic discussion). In particular, it is
not surprising that P,(f1, fo; ¢) is related to L-values. In fact, if we assume that m; and 7y are both
tempered, then as a special case of the global Gan—Gross—Prasad (GGP) conjecture, one expects an
Ichino—Ikeda type relation

(1.1) Pulf1, fa;0)° ~ L(5,m x w2 @ p) - a f1, f23 ),

where ~ means that the two sides are differed by an explicit nonzero factor which depends only on
71, T, and p; L(s,m1 X w2 @ u) denotes the complete Rankin—Selberg L-function (of symplectic type)
centered at s = %; and a(f1, fo; @) is some explicit period integral of local matrix coefficients. See
[Xuel6, Conjecture 1.1.2] for a precise conjecture. Suppose that the central e-factor €( %, T X Ty @ )
is 1. By the refined local GGP conjecture, which is known in this case by [G116], if we consider the
entire Vogan L-packet of the triple (V, 71, 72), then there is a unique member for which « is a nonzero
functional. Thus, the global GGP conjecture asserts that the global period P, vanishes on the entire
Vogan L-packet if and only if L(%, m X mo ® u) = 0. Note that the L-function depends only on the
Vogan L-packet.

Now suppose that e(%,m x mp @ ) = —1. Then the local GGP conjecture already forces P, to
be zero; and the first possible nonzero term in the Taylor expansion of L(s,m X mo ® u) at s = % is

L'( %, m X o @ u). Thus, it is curious to find a replacement of P, that encodes information about the
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first central derivative. This is the main goal of this article. In fact, the same question can be asked
for all types of periods in the global GGP conjecture, namely,

(1) O(m) x O(n) with n — m odd, which is of Bessel type,

(2) U(m) x U(n) with n —m odd, which is of Bessel type,

(3) U(m) x U(n) with n — m even, which is of Fourier-Jacobi type,
(4) Sp(2m) x Mp(2n), which is of Fourier-Jacobi type.

A replacement of the period integral (under certain assumptions on the field E//F and archimedean
components of the representations) is only known before for Case (1) with |m —n| =1 and m,n > 2,
and Case (2) with |m —n| = 1 and m,n > 1. They are both realized as height pairings of certain
diagonal cycles. See [GGP12a, Section 27] for more details. For example, the celebrated Gross—Zagier
formula [GZ86] is responsible for O(2) x O(3); see [YZZ13] for a generalization. Now we give a
formulation for Case (3) with n =m > 2.

In what follows, we will assume that E/F is a CM extension, and n > 2. We first state a result
concerning the Albanese variety of a unitary Shimura variety. Let V be a totally positive definite
incoherent hermitian space over Ag of rank n. We have the associated system of Shimura varieties
{Sh(V)k } k indexed by sufficiently small open compact subgroups K C U(V)(A$), each being smooth
of dimension n—1 over Spec E. Let X be the canonical (smooth) toroidal compactification of Sh(V) i
(which is just Sh(V)g if it is already proper). Put X = Im  Xg. Let Ag be the Albanese variety
of Xg; see Section 2. Put Ay, = m % Ag, which is an abelian group pro-scheme over E. To every
conjugate symplectic automorphic character p of A} of weight one (Definition 4.3), we associate a
number field M, C C, and an abelian variety A, over E with a CM action i,: M, — Endg(A,)q,
unique up to isogeny, in Subsection 4.1. In particular, A, has dimension [M, : Q]/2; and the set
Q(p) == Hompg (A, A,)g is naturally an M,[U(V)(A%¥)]-module depending only on .

Theorem 1.1 (Theorem 4.18, Corollary 4.20). Let the notation be as above. There is an isomorphism
Qp) @u, C = PP wlnse,x)
£ X

of C[U(V)(A®)]-modules. Here, {w(i,€,X)}ex, introduced in Definition 4.11, is a certain collection
of Weil representations of U(V)(AY) that are isomorphic to the finite part of the Weil representations
appearing in the definition of P,. We refer to Theorem 4.18 for the precise statement. Moreover, for
every sufficiently small open compact subgroup K of U(V)(AY), there is an isogeny decomposition

Ap ~ HAﬁ(“’K), resp. A??d ~ HAﬁ(“’K)
2 2

over E when n > 3 (resp. n = 2), where

e the product is taken over representatives of Gal(C/Q)-orbits of all conjugate symplectic auto-
morphic characters of A} of weight one,

e d(p,K) =3 dimc w(p, e, X)X with the same index set for €, x, and

o A% s the endoscopic part of Ax when n =2, defined in (D.3).

The above theorem suggests that if we want to replace P, by algebraic cycles, then the Albanese
variety should be involved.

Definition 1.2. We say that a complex representation I of GL, (Ag) is relevant if*

(1) II = EEfLHl)Hi is an isobaric sum of s(II) irreducible cuspidal automorphic representations
{Hy, ..., Oy}, which we call cuspidal factors of 11, satisfying II; o ¢ =~ ITY for every 1 <i <
s(Il),

1Here, the notion of relevant representation is more general than the one in [T XZZ7] as we allow II to be isobaric.
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(2) for every archimedean place v of E, I, is isomorphic to the (irreducible) principal series repre-
sentation induced by the characters (arg! =", arg®™", ... arg" 3 arg"~!), where arg: C* — C*
is the argument character defined by the formula arg(z) = z/v/2%Z.

Note that (2) implies that the cuspidal factors Iy, ..., Il gy in (1) are mutually non-isomorphic.

Now we fix our (tempered) Vogan L-packet by choosing two relevant representations II; and Il
of GL,(AE). We also fix a conjugate symplectic automorphic character p of A of weight one. Let
V be a totally positive definite incoherent hermitian space over A of rank n. Consider irreducible
admissible representations 79 and 75° of U(V)(A%¥) whose base change to GL,(A%) are IIY® and
II5°, respectively.

Take a level subgroup K C U(V)(AY). Let ax: Xxg — Ag be “the Albanese morphism” sending
the zero-dimensional cycle D?{l to zero,? where Dy is the canonical extension of the Hodge divisor.
For test functions fi, fo € €°(K\U(V)(A%)/K,C) for nf° and 75°, respectively (Definition 4.26),
and a homomorphism ¢: Ax — A, we define a Chow cycle

FI(f1, f2;0) i = |mo(Xi) )| - (TR ® TR © To™™)* (idx e xe X (0 ) n A3 X ¢

on Xg x Xg x A, where T{é denotes the normalized Hecke correspondence on X attached to f;;
T, is a specific correspondence on A, (Definition 4.9); and A3X C X ;’( is the diagonal cycle. For
1 € Z, put
CH' (Xoo X Xoo X Ap)¢ = lim CH' (Xx x Xie X A,
K

and denote by CHL(XOo X Xoo)2 the subspace of CH (Xoo X Xoo X A,)% on which M, acts via the
inclusion M,, — C, which depends only on px.

Theorem 1.3 (Subsections 4.3 and 4.4). The Chow cycle FJ(f1, fa; ¢)i is homologically trivial,
compatible under pullbacks when changing K, hence defines an element

FI(f1, f2; ¢) € CH M2 (x s X A,)2.

If we assume the conjecture on the injectivity of the £-adic Abel-Jacobi map, then the assignment
(f1, f2,®) — FI(f1, fo; @) induces a complex linear map

Fle: m1° @c m3° @c Q(u, €) = Homeyvyaz)xuv)ap) (Wix’ ®c 75°, CH M2 (X Xoo)%> :

which is invariant under the diagonal action of U(V)(AY) on the left-hand side, for every given fi-
admissible collection € (Definition 4.12). Here, Q(u, ) is the sum of the factors of Q(u) @1, C in the
decomposition in Theorem 1.1 corresponding to €, x with x arbitrary.

We propose the following unrefined version of the arithmetic Gan—Gross—Prasad conjecture for

U(n) x U(n).

Conjecture 1.4 (Conjecture 4.31). Let the notation be as above. Then for every given p-admissible
collection & (Definition 4.12), the following three statements are equivalent:

(a) We have FJ. # 0.
(b) We have FJ. # 0, and

dimc HomC[U(V)(A%o)XU(V)(A%o)] (7‘('?0 ®c T3, CHZ*IJr[Mu:Q]/Q(XOO X Xoo)(%) =1.
(¢c) We have L'(3,11; x Iy ® p) # 0, and

Homcy(vy(as) (17 ®c 73° @c Qu, €), C) # {0}

2This is not exactly what we do. Here, we state it in this ideally correct but technically wrong way only for simplicity
and for emphasizing the main idea. See Subsection 4.3 for the rigorous construction.
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In view of the local GGP conjecture, the above conjecture implies that if e(%, Il x Il @ u) = —1,
then L'(3,1I; x Il ® p) # 0 if and only if one can find a triple (V,7$°,75°) as above such that
FJ. # 0. Moreover, if this is the case, then such triple is uniquely determined for every fixed e.
See Remark 4.32 for more details. In fact, in the actual discussion in Subsection 4.4, we replace

CHZ_H[M“ Q) 2(Xoo X Xoo)2 by its quotient by the common kernel of f-adic Abel-Jacobi maps for all
£, in order to avoid p and make the discussion unconditional. Moreover, we also track the rationality
of the functional FJ. via replacing C by a certain subfield of C.

We now propose the following refined version of the arithmetic Gan—Gross—Prasad conjecture for
U(n)xU(n), which is an explicit formula relating the Beilinson-Bloch—Poincaré heights (See Subsection
3.2) of the cycles FJ(f1, f2; ¢) k with the central derivative of L(s,II; x IIo ® ).

Conjecture 1.5 (Conjecture 4.33). Let the notation be as above. For test functions f1, Y, f2, fo
for w2, (m§°)Y, w82, (w$°)Y, respectively, and ¢ € Homp(Ak, Ay, €), ¢ € Homp(Ax, Ayc, —€), the
identity

VOl(K)? - (FI(f1, fa; )i, FIFY, 155 00 k)R x e A,
I LG, MiE/F) L3, x Il ® p)

— ) ) v v
= TR L1 T As D) - (1, T, A DTy D1 f J2 01 0c)

holds. Here,
e /1€ = poc is the c-conjugation of p; and we may identify A,c with Ax (Proposition 4.6);
e Homp(Ak, Ay, e) (resp. Homp(Ak, Aue, —€)) is the intersection of Hompg(Ag, Ay,) (resp.
Hompg(Ak, Auc)) and Q(u,e) (resp. Q(uc, —¢));
e vol(K) is the normalized volume of K (Definition /.22);
o (, >)B(?(P;XK,A“ is a variant of the (conjectural) Beilinson—Bloch height pairing, which we call
the Beilinson—Bloch—Poincaré height pairing, which is a bilinear map

CH" M2 (X e x X x Ap)d x CHPHHMEQ2 (X 5 X e x AV — C;

e s(II;) has appeared in Definition 1.2;
o As® stand for the two Asai representations (see, for example, [GGP12a, Section 7]); and
e (3 is a certain normalized matriz coefficient integral defined immediately after Conjecture 4.33.

In order to transfer the height pairing in the above conjecture to some other pairing without A,,
we introduce a variant of the cycle FJ(f1, fo; #) via replacing the diagonal A3Xx by a modified
diagonal A2 X, which we denote by FJ(f1, f2; ¢)%. It is actually equal to FJ(f1, f2; ¢)k as elements
in CH”_H[MH‘Q]/Z(XK x X x A,)Q if the injectivity of the ¢-adic Abel-Jacobi map is granted. Thus,
we also formulate a variant of the above refined arithmetic Gan—Gross—Prasad conjecture as Conjecture
4.37.

Remark 1.6. We expect that the Fourier—Jacobi cycles can also be used to bound Selmer groups for
the Rankin—Selberg motive associated to II; x Il ® p, just as what we have done for O(3) x O(4)
[Liul6] and for U(n) x U(n + 1) [TXZZ] using diagonal cycles.

1.2. A relative trace formula approach. For the case of central L-values for U(n) x U(n), namely
the relation (1.1), the author developed a relative trace formula approach in [Liul4] generalizing the
Jacquet—Rallis relative trace formula, which was later carried out by Hang Xue [Xuel4, Xuel6]. Thus,
it is natural to expect a relative trace formula approach toward Conjecture 1.5 as well, similar to what
Wei Zhang did for the case U(n) x U(n+1) [Zhal2]. However, our situation is much more complicated
due to both the construction of the cycle FJ(f1, f2; ¢) and the height pairing itself. Nevertheless, we
still find such an approach after several reduction steps for the height pairing in Conjecture 1.5, or
rather its variant Conjecture 4.37. In order to avoid extra technical difficulty, in this article, we only
discuss the relative trace formula for the case where Sh(V)g is already proper, which we will now
assume.
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The first reduction step is the following theorem, which we refer as the doubling formula for CM
data.

Theorem 1.7 (Proposition 5.10, (5.8), and Proposition 5.15). Let the notation be as in Conjecture
1.5 (or rather Conjecture 4.37). For i = 1,2, let f; == ff* f be the convolution of the transpose of
fi and fY. If we write f1 =3 dsl,—1pnpc -1 as a finite sum with ds € C and g5 € U(V)(A®), then
the identity

vol(K)? - (FI(f1, fa; )i, FI(Y £33 00) i) KMo X e A, Zd - Ipk, (Lg, f 2, D)

holds, in which

K, = KﬁgSKgs_l

Ly, fo is the left translation of fo by gs,

¢, € S (V(AX))Ks is a Schwartz function determined by (6, gs¢c) via (5.4), and

we put, for general K C U(V)(AY), f € €°(K\U(V)(A¥)/K,C), and ¢ € S (V(AF))E

Tic(£.8) = (PissAIX K, (AXk X Tfe x Z7)-PhasAIX )RR,

where Z}? is a (formal sum of) divisor on Xg x X such that its restriction to the diagonal
AXg is Kudla’s generating series of special divisors associated to ¢ (Definition 5.3).
Moreover, if f® ¢ is reqularly supported at some nonarchimedean place v of F' (Definition 5.14), then
the cycles piss A3 X and (AX g ¥ T{( X Zg).p§46A3XK have empty intersection on X 9.
Thus, it suffices to study the functional Z7 (f, ¢). We now assume that f ® ¢ is regularly supported

at some nonarchimedean place v of F. Then the definition of the Beilinson—Bloch height pairing
provides us with a decomposition

Ik (f.¢) = ZIZ f.¢

into local heights over all places u of E. In what follows, we will study an approximation Zg (f, @),
of the local term Z7 (f, ¢), at certain places u by ignoring z.

To continue the discussion, we need some notation. For integers r,s > 1, denote by Mat, s the
scheme over Z of r-by-s matrices. For n > 1, we put M,, := Mat,, 1 x Mat ,; and let S,, be the Op-
subscheme of Resp,, /0, Maty, ;, consisting of matrices g satisfying g - ¢g° = I,, known as the symmetric
space. In view of the relative trace formula developed in [Liul4], we are looking for test functions
f e & (Sn(AF)) and ¢ € .7 (M,(AF)) such that Z%(f, ¢) can be compared to another functional

J( f ,gb) which encodes the right-hand side of Conjecture 1.5. In this article, we only discuss the
term Zx (f, ¢)p and local components fp, (,z’)p when p is a good inert prime of F' (Definition 5.16), also
regarded as a place of F.

Let p be a good inert prime. Then Xk has a canonical integral smooth model X over Op,; the
Hecke operator Tf extends naturally to Xk by taking Zariski closure; and we also have a natural
extension of Z;? to a (formal sum of) divisor Z}? on Xg X0, Xg. We define the local arithmetic
invariant functional at p to be

T, 8)p = 2108 (0r /o] - x (Opi ') b,

K

O((AXg x T x zg).pgmﬁxf())

as an intersection number of algebraic cycles on X'¢-, the sixfold self fiber product of X over O E,, Where
x denotes the Euler—Poincaré characteristic. The following result provides an orbital decomposition
of I (f, @)p, which is the key for the comparison of relative trace formulae.

Theorem 1.8 (Theorem 5.25). Let K, f, ¢ be as above such that f ® ¢ is reqularly supported at some
nonarchimedean place v of F'. Then for a good inert prime p, the identity

I (f. #)p = 210g|Or /p| > e 2@ 0y Orb(fF, ¢ €, 7) - x (Or, €6, Onz(r))
(ED)E[UV)(F)xV(E))rs
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holds, where
e V is a hermitian space over E satisfying V @p Ab, ~ 'V XA p A%,
e the orbital integral is defined as
o) = [ P d ) da.
UV)(AFF)
L% ((’)pg ®H@N2 OAZ(:,—J)) is a certain intersection number defined on a relative Rapoport—Zink
space.

We refer to Theorem 5.25 for the precise meaning of all the notation.

The term y (Oré ®H@N2 OAZ(E)) is the one that is related to the derivative of L-function, more

precisely, to the derivative of local orbital integrals at p in the decomposition of J (}, (2)) The precise
relation is the content of the arithmetic fundamental lemma for U(n) x U(n), which we introduce in
the next subsection.

1.3. Arithmetic fundamental lemma for U(n) x U(n). In this subsection, we introduce the arith-
metic fundamental lemma for U(n) x U(n). Since the question is purely local, we will shift our notation
slightly from the previous discussion. Moreover, we will allow n to be an arbitrary positive integer
since the discussion makes sense even for n = 1.

Let F' be a finite extension of QQ,, with residue cardinality ¢. Let E/F be an unramified quadratic
extension, and E a completed maximal unramified extension of E with k its residue field.

We recall some definitions and facts from [Liul4, Section 5.3]. We say that a pair (¢,y) € S, (F') x
M,,(F) is regular semisimple if the matrix (yQCHj_le)Zj:l is non-degenerate, where we write y =
(y1,y2) € Mat,, 1(F) x Maty ,,(F). If (¢, y) is regular semisimple, we define its transfer factor to be

w(C,y) = ppr(det(yr, Cyr, .., " ).

The group GL,, (F) acts on S,,(F)xM,,(F) by the formula (¢,v)g = (¢7*¢g, 9~ 51, y2g), which preserves
regular semisimple elements. We denote by [S,,(F') x M, (F)]:s the set of regular semisimple GL,,(F)-
orbits.

Let VI (resp. V) be a hermitian space over E of rank n whose determinant has even (resp.
odd) valuation. For § = +, we say that a pair (¢,2) € U(V2)(F) x VO(E) is regular semisimple
if {x,&x,...,&" 2} are linearly independent. The group U(V2)(F) acts on U(VS)(F) x V2 (E) by
the formula (¢,2)g = (97 '€g,¢g 'x), which preserves regular semisimple elements. We denote by
[U(V2)(F) x V2 (E)]s the set of regular semisimple U(V?)(F)-orbits. We say that (¢,y) € [S,(F) x
M, (F)]ss and (€, 2) € [U(VO)(F) x V8 (E)]ys match if ¢ and € have the same characteristic polynomial
and yoCly; = (¢'x, ) for 0 < i < n — 1. The matching relation induces a bijection

[Sn(F) x My (F)]is = [U(V)(F) x Vi (B)]is [TIU(V)(F) % Vi, (B)lrs-

Denote by [Sp(F) x My, (F)]E C [Sn(F) x M, (F)]ys the subset corresponding to orbits in [U(ViE)(F) x
VA (E)]s. Then a regular semisimple orbit (¢, y) belongs to [S,,(F) x M, (F))2, for § = + (resp. § = —)
if and only if the det((ygg‘i+j_2y1)2j:1) has even (resp. odd) valuation.

Now we introduce the relevant orbital integral. For a regular semisimple pair ((,y) € S, (F)x M, (F')
and a pair of Schwartz functions f € .7 (S, (F)), ¢ € ./ (M, (F)), we define

Orb(s; f, ¢; ¢, y) == /GL " Flg7¢a)d(g7 1, y29) 1y p(det g)| det g3 dg,

n

where dg is the Haar measure under which GL,(Op) has volume 1. It is clear that the product
w(¢,y) Orb(0; f, ¢; (,y) depends only on the GL,,(F')-orbit of ({,y). We recall the following conjecture
from [Liul4].

Conjecture 1.9 (relative fundamental lemma for U(n) x U(n)). For every regular semisimple orbit
(€,y) € [Sn(F) x Mn(F)|s, we have
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(1) if (C,y) € [Sn(F) X My, (F)],5, then
w(¢,y) Orb(0; Lg,, (04), I, (053 €5 ¥) = 0;
(2) if (¢,y) € [Su(F) x My, (F)]L, then
(1.2) w(¢,y) Orb(0; Lg,, (0p)s It (0p); 6 ) = /U

where (&,x) € [UVD)(F) x V,E(E)ws is the unique orbit that matches ((,y), Ay is a self-dual
lattice in V;\, K,, is the stabilizer of Ay, and dg is the Haar measure on U(V;') under which
K, has volume 1.

iy T (97'€9)La, (97 2) dg

n

Remark 1.10. Conjecture 1.9(1) is known by [Liul4, Proposition 5.14]. Conjecture 1.9(2) is known for
p sufficiently large by [Liul4, Theorem 5.15].

Now we describe the arithmetic fundamental lemma, where in (1.2) we replace the left-hand side by
its derivative and the right-hand side by a certain intersection number on a (relative) Rapoport—Zink
space. We start by recalling the notion of relative Rapoport—Zink spaces. For an Op-scheme S, a
unitary Op-module of signature (r,s) with integers r, s > 0 is a triple (X, 4, \), in which

e X is a strict Op-module over S of dimension r + s and Op-height 2(r + s) over S,
e i: Op — Endg(X) is an action compatible with the Op-module structure satisfying that for
every e € O the characteristic polynomial of i(e) on Lieg(X) is given by (T — a®)" (T — a)® €
OS [T] )
e \: X — XV is a principal polarization such that the associated Rosati involution induces the
conjugation on Op.
We say that (X, 7, \) is supersingular if X is a supersingular strict Op-module.

We fix a supersingular unitary Op-module (X, %9, Ag) of signature (1,0) over O, which is unique
up to isomorphism. For every integer n > 1, we also choose a supersingular unitary Op-module
(X, %n, Ap) of signature (n — 1,1) over k, which is unique up to Opg-linear isogeny preserving the
polarization up to scalars. Let N, be the relative Rapoport—Zink space parameterizing quasi-isogenies
of (Xy,%n, An) of height zero. More precisely, it is a formal scheme over O such that for every scheme
S over Op on which p is locally nilpotent, N,(S) is the set of isomorphism classes of quadruples
(X,i,\; p), where

e (X,i,)\) is a unitary Op-module over S of signature (n — 1,1),
e p: X x5S — X, Xi Sk is an Opg-linear quasi-isogeny (of height zero), such that p*A,, = A.
Here, we put Sy, := S ®o,, k.
It is known that M, is formally smooth over O of relative dimension n — 1. See [\Mih, Section 3.1]
for more details.

We recall the notion of formal special divisors from [[KR11]. Put A,, := Homg ((X ok, 20x), (X n, @n))

and V,, := (A,)g. Then V; is an E-vectors space of rank n equipped with a hermitian form

(z,y) =iy (Aakl oy’ oA, o0 x) € E.

If we denote by A} the dual lattice of A, under the above hermitian form, then we have A, C A}
and that the length of the Og-module A /A, is odd. In particular, the determinant of V, has odd
valuation, justifying its notation.

Definition 1.11. For every z € V. that is nonzero, we define Z,(z) to be the subfunctor of N,
such that for every scheme S over O on which p is locally nilpotent, Z,(x)(S) consists of (X, i, A; p)
satisfying that the composite homomorphism

-1
XOk stngn XkSkp—>X><SSk

extends to an Og-linear homomorphism X g X0, S — X over S.
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By [R796, Proposition 2.9], Z,(z) is a closed sub-formal scheme of N,,. For every g € U(V,,)(F),
let pg: X, — X, be the unique Og-linear quasi-isogeny (of height zero) such that gz = p, o = for
every = € V,,; and, by abuse of notation, let g: NV, — N, be the (auto)morphism sending (X, 1, \; p)
to (X,i,A;pg 0 p). We denote by I'y C N2 := N, X0, Ny the graph of g.

Conjecture 1.12 (arithmetic fundamental lemma for U(n) x U(n)). For every regular semisimple
orbit (¢,y) € [Sn(F) x My (F)|s, we have

s’

d
_W(C7 y) & 0 OI’b(S; ]lSn(Op)a ]an(OF); ¢ y) =2logq - x (OFE ®H(;)N2 OAZn(x)> )
where (§,x) € [UV)(F) x V,, (E))ys is the unique orbit that matches (,y), and x denotes the Euler—
Poincaré characteristic.

In Conjecture 1.12, it follows from Conjecture 1.9(1), which is known, that the left-hand side depends
only on the GL,,(F)-orbit of (¢, y).

Remark 1.13. During the referee process of this article, Wei Zhang [Zha21, Proposition 4.12 & Re-
mark 3.1] has shown that his arithmetic fundamental lemma for U(n) x U(n + 1) is equivalent to our
arithmetic fundamental lemma for U(n) x U(n) (with respect to the same field extension E/F') when
the residue cardinality of F' is greater than n. In particular, we find

(1) Conjecture 1.12 holds when n < 2 and ¢ is odd, by [Zhal2, Theorem 2.10 & Theorem 5.5].
(2) Conjecture 1.12 holds when F' = Q, with p > n, by [Zha21, Theorem 15.1].

Remark 1.14. In Section A, Chao Li and Yihang Zhu proved Conjecture 1.12 (for arbitrary E/F) in
the so-called minuscule case, similar to the case of U(n) x U(n + 1). In the case of U(n) x U(n), we
say that a regular semisimple pair ({,z) € U(V,)(F) x V,, (E) is minuscule if the Og-lattice L¢ ,
generated by {z,&x,--- ,&" 1x} satisfies wli, C Ley C L, where w is a uniformizer of I and L,
denotes the dual lattice.

1.4. Relation between U(n) x U(n) and U(n) x U(n+ 1). In this subsection, we make an informal
comparison between the two scenarios of U(n) x U(n) and U(n) x U(n + 1), for both automorphic
periods/central values and arithmetic periods/central derivatives.

The following diagram compares the automorphic periods and the relative trace formula approaches
toward the global GGP conjectures in the two scenarios.

Automorphic Fourier—Jacobi Automorphic Bessel
periods for U(n) x U(n) periods for U(n) x U(n + 1)
[Xueld, Xuel6] [Zhal4a,Zhal4b]

global theta lifting

. relative ,
[Liul4] relative trace formula L]
trace formula

relative

. 13 M 1 ”

relative cativa’en fundamental lemma
fundamental lemma [Liul4] [Yunli]
+ +

. . " relative

relative equivalent .
. smooth matching
smooth matching [Xuel4]

[Zhal4a]
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In the first line, if we assume Conjecture 1.15 below,? then the method of global theta lifting should
provide an equivalence between the two sides when all n are considered. In fact, Xue [Xuel4, Xuel6] has
essentially verified the deduction for both directions starting from two stable tempered representations
on U(n) that satisfy Conjecture 1.15.

Conjecture 1.15. Let V be a hermitian space over E of rank n > 1. Let m be a tempered cuspidal
automorphic representation of U(V)(Ar). If n is even (resp. odd), then there exists a conjugate
orthogonal (resp. conjugate symplectic) automorphic character p of Aj, such that

L(3, @ p) #0,
where 11 is the standard base change of m to GL,(AE).

The following diagram compares the arithmetic periods and the relative trace formula approaches
toward the arithmetic GGP conjectures in the two scenarios.

Arithmetic Fourier—Jacobi motivic ende(S)COpiC Arithmetic Bessel
periods for U(n) x U(n) k transfer? > periods for U(n) x U(n+ 1)
[this article] [Zhal2,RSZ20]

[this article] arithmetic arithmetic [Zhal2]
trace formula trace formula
arithmetic “equivalent” arthmetic
fundamental lemma Remark 1.13 fundamental lemma
+ +
+ " arithmetic N perhaps related? - arithmetic
k\ smooth matching_’ «smooth matching_/

~ - ~
- _ S - S

—

In the first line, the Tate conjecture over number fields predicts a motivic endoscopic lifting (or
motivic theta lifting) that transfers algebraic cycles from one side to the other. Thus, we expect that
our Fourier—Jacobi cycles should be related to the diagonal cycle considered in [Zhal2] in a certain way.
However, at this moment, the motivic endoscopic lifting seems far out of reach. For the two dashed
bubbles surrounding “arithmetic smooth matching”, we do not how to formulate a precise conjecture
in general. However, in some special cases for U(n) x U(n+ 1), there are some results [RSZ17,RSZ18].

1.5. Relation with the arithmetic triple product formula. In this subsection, we compare our
arithmetic GGP conjecture for n = 2 with the (conjectural) arithmetic triple product formula, which
can be regarded as the arithmetic GGP for O(3) x O(4) in which O(4) has trivial discriminant. Lots of
progress has been made toward the arithmetic triple product formula; see, for example, G192, G193,
YZ7Z].

We first make a quick review of the arithmetic triple product formula following the line of [Y77].
Consider three irreducible cuspidal automorphic representations o1, 09,03 of GLa(Ap) of parallel
weight 2 such that the product of their central characters is trivial and e(%, 01 X 03 X 03) = —1. Then
the local dichotomy of triple product invariant functionals provides us with a totally definite incoherent
quaternion algebra B over A, unique up to isomorphism. Let {Y;} be the system of compactified
Shimura curves over F' associated to B indexed by open compact subsets U C (B ®a, A¥)*. For

3Recently, Dihua Jiang and Lei Zhang [J720] have confirmed this conjecture when n < 4. Of course, when n < 2, it
was already known before.



FOURIER-JACOBI CYCLES AND ARITHMETIC RELATIVE TRACE FORMULA 11

i=1,2,3, let A; be the abelian variety of strict GL(2)-type over F associated to ;. For morphisms
gi: Yoy — A; for i = 1,2, 3, we have the Gross—Kudla—Schoen cycle, which is essentially

GKS(g1,92,93)v = (g1 % g2 X g3)«A’Yyy € CHy (A1 x Ay x A3)g.

The arithmetic triple product formula predicts a relation between the Beilinson—Bloch height of
GKS(g1, g2, g3)u and the central derivative L'(3,01 x 09 x 03).
Now we discuss its connection with our case. Suppose that

. . —1/2 . x N
(1) o3 is the theta lifting of 28 :== p-| |5/~ for an automorphic character u of A%p which is
necessarily conjugate symplectic of weight one;
(2) for i = 1,2, the base change of 0; to GL2(AE), denoted by II;, has trivial central character.

Then II; and Il are both relevant; and we may take A, to be A3 ®r E. Let V be the unique up
to isomorphism totally positive definite (incoherent) hermitian space over Ag of rank 2 such that for
every nonarchimedean place v of F', V ®a, F), is isotropic if and only if B ®4 ,, F}, is split. We recall
our compactified unitary Shimura curve { X } i associated to V. For morphisms f;: Xg — A; @p FE
fori=1,2 and ¢: X —+ A, = A3 @ I, we have the Fourier-Jacobi cycle, which is essentially

FI(f1, f2;0) ik = (f1 X fa x ¢).A3X ¢ € CHy((A1 x Az x A3) @F E)g.

Conjecture 1.5 predicts a relation between the Beilinson-Bloch height of FJ(f1, fo; ¢) k and the central
derivative L’(%, IT; x ITo ® p). It is possible to show a priori that the height of GKS(g1, g2, g3)u for
some choice of U, g1, g2, g3 is related to the height of FJ(f1, f2; ¢)x for some choice of K, fi, fa, ¢. This
is not surprising as in this case we have the equality

L(S,Ul X 09 X 0'3) = L(S,Hl x Il ®M)

between L-functions. In other words, our work in the special case where n = 2 provides a relative
trace formula approach toward the arithmetic triple product formula in the situation where (1) and
(2) are satisfied. However, we point out that not all cases for U(2) x U(2) arise from the arithmetic
triple product formula in this way since II; and IIy are not necessarily base change from GL2(AF).

1.6. Structure of the article. The main part of the article contains five sections.

In Section 2, we study the Albanese varieties. In Subsection 2.1, we introduce the Albanese varieties
of proper smooth varieties over a general base field, and study their polarizations. In Subsection 2.2, we
generalize the construction of Picard motives using not necessarily ample divisors as cutting divisors,
which will be used in Subsection 3.3.

In Section 3, we make some preparation for algebraic cycles and height pairings for general varieties.
In Subsection 3.1, we review the notion of algebraic cycles and correspondences. In Subsection 3.2,
we review the construction of the Beilinson—Bloch height pairing and introduce our variant — the
Beilinson—Bloch—Poincaré height pairing. In Subsection 3.3, we discuss the construction of some
Kiinneth-Chow projectors for curves and surfaces, which will be used in the modified diagonal A% X
later.

In Section 4, we construct Fourier—Jacobi cycles and state our main conjectures. In Subsection 4.1,
we construct the category of CM data for a conjugate symplectic automorphic character u of weight
one. In Subsection 4.2, we introduce our Shimura varieties and study their Albanese varieties; in
particular, we prove Theorem 1.1. In Subsection 4.3, we construct Fourier—Jacobi cycles and show
that they are homologically trivial. In Subsection 4.4, we prove the remaining part of Theorem 1.3,
and propose various versions of the arithmetic Gan—Gross—Prasad conjecture for U(n) x U(n).

In Section 5, we discuss a relative trace formula approach toward the arithmetic GGP conjecture
for U(n) x U(n). In Subsection 5.1, we prove the doubling formula for CM data in Theorem 1.7.
In Subsection 5.2, we introduce the global arithmetic invariant functional and its local version at
good inert primes for which we perform some preliminary computation. In Subsection 5.3, we prove
Theorem 1.8.

The article also contains four appendices.
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In Section A, provided by Chao Li and Yihang Zhu, we confirm the arithmetic fundamental lemma
in the minuscule case.

In Section B, we prove some results about global theta lifting for unitary groups, namely, Theorem
B.4 and its two corollaries. Those results are only used in the proof of Proposition 4.13. Thus, if the
readers are willing to admit these results from the theory of automorphic forms, they are welcome to
skip the entire section except the very short Subsection B.1 where we introduce some notation for the
discrete automorphic spectrum.

In Section C, we summarize different versions of unitary Shimura varieties. In Subsection C.1,
we recall Shimura varieties associated to isometry groups of hermitian spaces, which are of abelian
type; we also introduce the Shimura varieties associated to incoherent hermitian spaces — they are
the main geometric objects studied in this article. In Subsection C.2, we recall the well-known PEL
type Shimura varieties associated to groups of rational similitude of skew-hermitian spaces, and their
integral models at good primes, after Kottwitz. These Shimura varieties are only for the preparation of
the next subsection, which are not logically needed in the main part of the article. In Subsection C.3,
we summarize the connection of these two kinds of unitary Shimura varieties via the third one which
possesses a moduli interpretation but is not of PEL type in the sense of Kottwitz, after [BHI ™20,
RSZ20]. In Subsection C.4, we discuss integral models of the third unitary Shimura varieties at good
inert primes and their uniformization along the basic locus. The last two subsections are crucial to
the discussion in Subsections 5.2 and 5.3.

In Section D, we compute the cohomology of Shimura curves associated to isometry groups of
hermitian spaces of rank 2, as Galois—Hecke modules. In Subsection D.1, we collect some results
about local oscillator representations of unitary groups of general rank. In Subsection D.2; we recall
some facts and introduce some notation about cohomology of Shimura varieties in general. These two
subsections will be used both in Section D and in the main part of the article. The last two subsections
concern the cohomology of unitary Shimura curves, for the statements and for the proof, respectively.
These statements are only used in the proof of Theorem 4.15 and Theorem 4.18 in the main part of
the article, and are probably known to experts. However, we can not find any reference for the proofs
or even for the statements themselves.

For readers’ convenience, we summarize the logical dependence of the article in the following dia-
gram.

1.7. Notation and conventions.

General notation.

e For a set S, we denote by 1g the characteristic function of S.
e Suppose that we work in a category with finite products. Then
— for a finite collection {X1,..., X, } of objects, the notation

Pabe-: X1 X -+ X Xy = Xg X Xp x X X ---
will, by default, stand for the projection to the factors labeled by the subset {a, b, c,...} C

{1,...,n};
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— for an abject X and an integer r > 0, we denote A": X — X" the diagonal morphism,
and simply write A for AZ.
All rings are commutative and unital; and ring homomorphisms preserve unity.
For an abelian group A and a ring R, we put Agr = A ®z R as an R-module.
For a field k, we denote by k¢ an abstract algebraic closure of k.
The bar ~ only denotes the complex conjugation in C. For example, for an element x € C®q E,
T is obtained by only applying conjugation to the first factor.
e We denote by C! the subgroup of C* consisting of z satisfying 2z = 1.

Notation in number theory.

o A reflex field is always a subfield of C.
Denote by A = Z@ the ring of finite adéles of Q, and put A =R x A,
For a number field k, we put A := A ®g k and A7® = A® ®q k.
— Denote by | |g: Q“\A* — RZ, the character, uniquely determined by the properties
that |z|g = |z| for z € R* and that | |g is trivial on Z*. For every s € C, Put | |3 =
| |(‘EP e} Nk/Q: kX\A;; — R;O
— Denote by 9g: Q\A — C* the character, uniquely determined by the properties that
Yo(x) = exp(2miz) for € R and that g is trivial on Z. Put iy, = Yo Tryq: k\Ay —
C*, which we call the standard additive character for k.
In local or global class field theory, the Artin reciprocity map always sends a uniformizer at a
nonarchimedean place v to a geometric Frobenius element at v.

Notation in algebraic geometry.

e For a scheme S and a rational prime p, we denote by Sch,g the category of schemes over S
and by pSch'/ g the subcategory of those that are locally Noetherian. If S = Spec R is affine,
then we simply replace S by R in the above notations.

e We denote by Gy, = SpecZ[T,T~!] the multiplicative group scheme over Z. For integers
r,s > 1, denote by Mat,. s the scheme over Z of r-by-s matrices. For an integer n > 1, we put
Mn = Matml X Math.

e For a ring R, a scheme X in Sch/p, and a ring R’ over R, we usually write Xp € Sch/p
instead of X Xgpec R SpecS.

e For a ring R, a scheme X € Sch/p that is locally of finite type, a homomorphism 7: R — C,
and an abelian group A, we denote by HiB,T(X ,\) the degree i singular cohomology of the
underlying topological space of X ®g ; C with coefficients in A. When R is a subring of C and
7 is the inclusion, we suppress 7 in the subscript.

e For a ring R, we denote by DE(R) the bounded derived category of R-modules whose coho-
mology consists of R-modules of finite length. For F € DE(R), we have the Euler—Poincaré
characteristic x(F) = >_,(—1)"lengthp H'F. In general, for a (formal) scheme X over R and
an element F in the derived category of Ox-modules, we define its Euler—Poincaré character-
istic x(F) to be x(Rs«F) (resp. o0) if Rs.F belongs to DE(R) (resp. otherwise), where s is
the structure morphism.

Acknowledgements. The author would like to thank Sungyoon Cho, Benedict Gross, Kai-Wen Lan,
Chao Li, Xinyi Yuan, Shouwu Zhang, and Wei Zhang for helpful comments and discussion, and thank
Chao Li and Yihang Zhu for providing Section A for the proof of the arithmetic fundamental lemma
in the minuscule case. He thanks the anonymous referee for careful reading and valuable comments.
The research of the author is partially supported by NSF grant DMS-1702019 and a Sloan Research
Fellowship.
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2. ALBANESE VARIETY

In this section, we study the Albanese varieties. In Subsection 2.1, we introduce the Albanese vari-
eties of proper smooth varieties over a general base field, and study their polarizations. In Subsection
2.2, we generalize the construction of Picard motives using not necessarily ample divisors as cutting
divisors.

Let k be a field. We work in the category Sch .

2.1. Albanese variety and its polarization.

Definition 2.1. Consider schemes X,Y € Sch,, of finite type.

(1) We denote by VX the smallest open and closed subscheme of X x X containing the diagonal
AX. For every morphism u: Y — X, u X u restricts to a morphism Vu: VY — VX.

(2) We say that a field k&’ over k splits X if every connected component of Xy is geometrically
connected. For such k', we regard mo(Xy) as a scheme in Sch 4/, which induces a factorization of
morphisms Xz — mo(X) — Speck’ in Sch /. In particular, giving an element in X (mo(Xz/))
is equivalent to giving an element in X;(k’) for every connected component X; of X .

(3) Let f: VX — Y be a morphism. For every field ¥’ over k that splits X and every element
x € X(mo(Xy)), we denote by

fxi Xk/ — Yk/
the morphism such that its restriction to a connected component X is the restriction of fi to
Xi X/ (33 N Xz) ~ Xz"

The following proposition on the Albanese variety without rational base point is probably well-
known. Since we can not find a precise reference for it, we include a proof.

Proposition 2.2. Let X be a proper smooth scheme in Sch,. Consider the functor Albx on the
category of abelian varieties A over k such that Albx (A) is the set of morphisms f: VX — A over k
such that AX is contained in f~'04. Then Alby is corepresentable.

Proof. Let k' be a separable closure of k. Then £’ splits X (Definition 2.1). Put X' := Xp. We first
consider the problem for X’. Pick an element x € X (mp(X")), which is possible as X’ is smooth over
k'. By Serre’s construction [Ser59] of the Albanese variety (see [Wit08, Appendix A] for a version
over separably closed field), we have a morphism g,: X’ — Albx/, universal among all morphisms
g: X' = A to an abelian variety A over k' such that g(z) = 04. Now it is easy to see that the
composite morphism

Vk/X’ M Ale/ X! Ale/ — Ale/
does not depend on the choice of x, and corepresents the functor Alby,. Here, Vi X' is defined

similarly as in Definition 2.1, but with the base field k. As (VX)p ~ Vi X', the statement for X
then follows by Galois descent. O

Definition 2.3. Let X be a proper smooth scheme in Sch ;. The abelian variety that corepresents
the functor Alby is called the Albanese variety of X, denoted by Albx. The canonical morphism,
denoted by

ax: VX — Alb X,

is called the Albanese morphism. For a morphism u: Y — X of proper smooth schemes over k, we
have the induced morphism Alb, : Alby — Albx by the universal property, which satisfies Alb, cax =
ay o Vu.

Lemma 2.4. Suppose that k has characteristic zero. Then
(1) for every homomorphism 7: k — C, we have a canonical isomorphism H]1_>)7T(Ale,Q) ~
Hll_%,r(Xﬂ Q)’

(2) for every prime £, we have a canonical isomorphism H} ((Albx)gac, Qp) =~ H} (Xpac, Qp) of
Gal(k?*¢/k)-modules.
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Proof. For (1), we pick an element x € X (my(X ®j, - C)), which induces a morphism
(aX)x: X Rk.,r C — Albyx ®k77(C

from Definition 2.3 and Definition 2.1. By the property of complex Albanese varieties, the induced
map

(Ckx); : H%B,‘r (A1b7 Q) - H%B,‘r (X, Q)
is an isomorphism; it is independent of the choice of x since translation acts trivially on H]%’T(Alb, Q).
For (2), we extend the morphism ax to o'y : X x X — Albx by letting X x X \ VX map to Oamp, -
By the Kiinneth formula, we have the map
(o)™ Heg((Albx )pac, Q) = Heg(Xpae, Qr) @, Hey(Xpac, Qo)
of Gal(k®¢/k)-modules. Taking cup product, we obtain a map
o/ HE ((Albx )pac, Q) — HE (Xpac, Qp)

of Gal(k*/k)-modules. It suffices to show that this is an isomorphism. Since k has characteristic 0,
by the Lefschetz principle and the comparison theorem for singular and étale cohomology, o/ ®q, C
via any embedding Q; < C is isomorphic to the canonical map in (1). Thus, (2) follows. O

Now we study polarizations of Alby. Let k be an arbitrary field.

Proposition 2.5. Let X be a proper smooth scheme and A an abelian variety, both over k. For every
f € Albx(A) and every divisor D on X, there is a unique homomorphism

Hf,D: AV — A

(over k) satisfying the following property: for every field k' over k, every geometric point a of AV (k')
corresponding to a line bundle L, on A’ := Ay, and every element x € X (mo(Xy/)), we have

0.0(a) = Sa (e1(La)-far (DI X)),

where ¥ 4: CHo(A") — A(K') is the (classical) Albanese map for A'. Moreover, 05 p is symmetric,
depends only on the rational equivalence class of D, and satisfies 0 ,p = [pdimX—1] o 0¢p forn € Z.

This is previously known when D is a hyperplane section. See, for example, [Mur90, Section 2].

Proof. The uniqueness is clear. Now we show the existence. We may assume that k is separably closed.
In fact, for every element x € X (m(X)), we are going to define a homomorphism 6y p , satisfying the
requirement in the proposition. Then we will show that 0 p , does not depend on the choice of z.
Therefore, by Galois descent, we conclude for the general field k.

We start from the construction of 67 p . Let P be the Poincaré line bundle on AY x A. Consider
the following diagram of projection homomorphisms

(2.1) AV x AV x A

P12 Plslle

AV x AV AV x A A.
For every z € CH;(A), put
D = p12«(p13¢1(P)-pazc1(P) -p32),
which belongs to CH'(AY x AY). Then we put £, = O vy av(D,). We show

(1) L, is symmetric, that is, £, is invariant under the obvious involution of AY x AY;

(2) the restrictions of £, to 04v x AY and AY x 04v are both trivial;

(3) for every point a € AV (k), the restriction of £, to ax AV corresponds to the point X 4(c1(Lg).2)
under the canonical isomorphism AYY ~ A.
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Part (1) is straightforward from the definition. For (2), it suffices to show that the restricted line
bundle £, | 04v x AV is trivial by (1). However, this is a special case of (3).
Now we show (3). We expand the previous commutative diagram (2.1) to the following one

AVx Amvax AV x A— = AV x AV x A

AV ~ax AY . AV x AY AV x A A

in which the parallelogram is Cartesian. By [Ful98, Proposition 1.7], we have
(2.2) L,lax A ~i*L, ~ Opv (q1.5*(Pi3c1(P).pasc1(P).psz)) .

We put g2 :=p3oj: AY x A — A which is simply the projection to the second factor. Since j*pisP is
isomorphic to ¢5L,, we have

(2.2) = Oav (qi(g2¢1(La)-c1(P)-q32)) = Oav (q1+(c1(P)-q2(c1(La)-2))) -
It remains to show that the line bundle £’ on AV corresponding to the point X (c1(Lg).2) is
Oav (q1+(c1(P).¢5(c1(Lg).2))). Choose a representative Y, m;a; of the O-cycle c¢1(L,).z; it has de-
gree zero since L, is algebraically equivalent to zero. Then we have

C=@cm
i
where L,, is the line bundle on A" corresponding to a; which, by the property of the Poincaré bundle,
is isomorphic to O4v(qi«(c1(P).g5a;)). Thus, we have

L'~ ®OAV(C]1*(01(73)-Q>2K%))®W ~ Oav (q1+(c1(P).q3(c1(La).2))) ;

and (3) is proved.

By (1) and (2), the line bundle £, induces a symmetric homomorphism 6,: AY — A. Now taking
2 = fre DM X1 e obtain a symmetric homomorphism O ps: AY — A satisfying the requirement
in the proposition. To construct 8 p, it suffices to show that 6y p , = 0 p ,, for any other choice of y.
This amounts to showing that

(2:3) 2A (Cl(La).fx*(DdimX_l)) =34 (cl(La).fy*(DdimX—l)) _

Put b = f,(y) € A(k). Then we have f, = t, o f;, where ¢, is the translation morphism on A by b.
Since L, is algebraically equivalent to zero, ¢1(Lg). fy«(DYI™X 1) is a degree zero divisor. Thus, we
have

Xa (Cl(La)'fy*(DdimX_1)> =4 (t—b*Cl(La).fm*(DdimX_l)) .

Again, since L, is algebraically equivalent to zero, we have t_p.ci(Ly) = ¢1(Ls) € CHY(A). Thus,
(2.3) follows.
The last assertion of the proposition is already clear. O

In the case where (A, f) = (Albx, ax), we will simply write
QX,D = eaX,D: Alb}/( — Ale .

Remark 2.6. If dimX = 1, then 6x p is the canonical polarization of Albx (which is simply the
Jacobian of X), hence is an isomorphism and is independent of D.

We have the following result on the functoriality of 0x p.

Proposition 2.7. Letu: Y — X be a generically finite dominant morphism of proper smooth schemes
over k. Let D be a divisor on X. Then we have

[deg u]Ale o ‘9X,D = Albu OeY,u*D ] A]bq\j .
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Here, degu is regarded as a function on mo(X) whose value on a connected component of X is
the total degree of u over it; and if we write X = [[X;, then [degu]amy is the endomorphism

[1;[(degu)(X;)]amy, on Albx ~TJ; Alby,.

Proof. We may assume that k is algebraically closed and that both X and Y are connected. Put
d == dimX = dimY. Take points a € Albk%(k) and y € Y (k). Put b := Alb)(a) € Alby (k)
and = = u(y) € X(k). Put f = ax,: X — Alby and g = ay,: Y — Alby for short. By the
functoriality of Albanese morphisms, the following diagram

Y —2> Alby
ui iAlbu
f

X ——= Albx
commutes. To prove the proposition, it suffices to show that
(2.4) [deg u]Ale (GX’D(CL)) = A]bu(ey,u*p(b)).
By Proposition 2.5 and the projection formula [Ful98, Example 8.1.7], the left-hand side of (2.4) equals
(2.5) [degulamy (Samy (c1(La)-£(D4))) = Sany (degu- £ (fer(La)-DT)) .

Again by the projection formula, we have
degu - f*c1(Lq).DY Y = f*ei(Lo)uy(u* D7),
Repeatedly applying the projection formula, we have
(2.5) = Samy (£ ( f*cl(La).u*(u*Dd’l)D

= YAlby (f* (u* (U frel(L D)%~ 1)))

= Sany (Albu. . (9" Al e1(Lq).(w D) 1))

= Alb, (Emby ( (g c1(Ly).(u*D)*" 1)))

= Alb, (ZAlby (01 Ly).g«(u D)d 1))

= Alby (0y,u-n()).
The proposition follows. U

Definition 2.8. We say that a divisor D on a proper smooth scheme X over k is almost ample if there
exists m € Zxq such that |[mD| is base point free and that the induced morphism ¢,,p: X — P(|mD)|)
is a generically finite morphism onto its image.

Proposition 2.9. Suppose that k has characteristic zero. Let X be a proper smooth scheme in
Schyy and D a divisor on X such that D is almost ample. Then the symmetric homomorphism

Ox,p: AlbY — Alby is a polarization.

Proof. Since k has characteristic zero, by the Lefschetz principle, we may assume that k is embeddable
into C. To check whether 0x p is a polarization, we may assume £ = C and that X is connected.
Since D is almost ample, by replacing D by mD for some m € Z~(, we may assume that |D| is base
point free and that the induced morphism ¢p: X — P(|D|) is a generically finite morphism onto its
image.

Put A = Alby, d := dim X, and h := dim A for short. We choose a point x € X(C), and put
f=axz: X — A. We have canonical isomorphisms

AY(C) ~HY(A,04)/HY (A, Z), A(C) ~ HM(A, Q"1 /H? (A, 72)
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of complex manifolds. From the construction, the following diagram

Afrer (D)4

H'(A,04) HM (A, Q7

| |

H'(A,04)/HY(A,Z) HHh(A,QZ_l)/HQh—l(A,Z)

commutes, where the vertical arrows are quotient maps. Here, ¢1(D) is regarded as the Chern class in
HY(X,Qx). Then the symmetric homomorphism x p is a polarization if and only if for every nonzero
0-closed smooth (0, 1)-form w on A, we have

/ WwA@A frer (D) > 0.
A(C)

By the property that D satisfies, we may find a smooth hermitian metric || ||p on Ox (D) such that
its Chern (1, 1)-form ¢ (]| ||p) is semi-positive on X (C) and strictly positive on a Zariski dense open
subset. Therefore,

/ WATA feer (D)1 = / ffw A Ffo Aey (D)1
A(©) X(C)

= frwnProne(|p)dt>o.
X(C)

The proposition follows. O
Remark 2.10. There is a byproduct in proof of Proposition 2.9: For an almost ample divisor D on

a proper smooth scheme X over a field k of characteristic zero, the degree of the top intersection
deg D™ X is strictly positive on every irreducible component of X.

Remark 2.11. We are curious whether one can find an algebraic proof of Proposition 2.9, and whether
the proposition holds for an arbitrary field k or a weaker condition on D. Note that if D is a hyperplane,
then it is previously known that 0x p is an isogeny for an arbitrary field k.

2.2. Picard motives via almost ample divisors. Let k be a field of characteristic zero. Let X be
a proper smooth scheme in Sch ;, of pure dimension d > 1. For every almost ample divisor D on X,
we now define a correspondence ex p € CHd(X x X)g such that the induced endomorphism

CldR CXD @HdR X/k H@H X/k

on the de Rham cohomology of X is the projection onto HdR(X /k). In particular, when X is projective,
(X,ex,p) is a Grothendieck motive, which is a Picard motive for X. The construction generalizes the
one in [Mur90, Section 3]. We use such construction only in Subsection 3.3 when the Shimura variety
is a non-proper surface; so the readers may choose to skip this subsection for now.

Let 0 :== 0x p: AlbY — Albx be the polarization obtained from Proposition 2.9. Let 9: Alby —
AlbY be an isogeny such that 6 o ) = [n]a, for some integer n > 1. We obtain a morphism

Bi=(Woax)xayxy: VX x VX — Alby x Alby .
Let P be the Poincaré line bundle on the target. We put
Ex.p = pase (871 (P).(D? x X x D? x D*™1)) € CHY(X x X)q,

where the intersection is taken in X x X x X x X, and

1
n(deg D%)2
where deg DY is understood as a function on my(X). We leave the readers an easy exercise to show
that ex p does not depend on the choice of 9.

ex,p ‘= EX,D € CHd(X X X)Q,
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Proposition 2.12. Let X be a proper smooth scheme in Sch, of pure dimension d > 1, and D an
almost ample divisor on X.

(1) The map clig(ex.p) coincides with the projection to Hip (X/k).
(2) Let u: Y — X be a generically finite dominant morphism of proper smooth schemes over k.
Then u*D is an almost ample divisor on Y, and we have

(idy X u)*eKU*D = (u X idX)*eX,D
in CHY(Y x X)g.
Proof. For both assertions, we may assume that k is algebraically closed and X is connected.

For (1), recall that for every z € X(k), we have the induced morphism (ax);: X — Albx by
restriction. Now take two arbitrary points x, 2" € X (k). We have the induced morphism

(Vo (ax)ev) X (ax)z: X x X — Alb¥ x Alby .

Put F = (0 (ax)sv) % (ax)z)*ci(P).(X x D) € CHYX x X)g. It suffices to show that the
induced map cljz (E) on the de Rham cohomology of X is the projection onto Hig (X/k) multiplied
by n.

As clar(e1(P)) € Hig(AlbY /k) @) Hig (Albx /k), we have clyr(F) € Hig (X/k) @5 HAL 1 (X/k),
which implies that cljg(E) | Hig(X/k) = 0 unless i = 1. It remains to show that cljg(E) acts on
HéR(X /k) via the multiplication by n. By Lemma 2.4 and the comparison theorem, it suffices to show
that the correspondence

(9 x idatny ) *e1(P).(Albx X (ax)zD? 1) € CH'(Albx x Albx)g

induces the multiplication by n on Hiy (Albx /k), where h is the dimension of Albx. This in turn is
equivalent to that the correspondence

(0 X idam )" (0 X idammy ) c1(P).(Alb¥ x(ax)zD% 1) € CH"(AlbY x Albx)g

induces the map n - 6*: Hig (Albx /k) — HLg (Alb /k). However, we have 6 o ¥ = [n]am,, which
implies ¥ 0 § = [n] 5,y , hence

(0 x idamwy )" (¥ x ida )" c1(P) = ([n]awy, * damy) cr(P) =n-ci(P).
On the other hand, the construction of 6 in Proposition 2.5 implies that the correspondence
c1(P).(Alb% x (ax)z«D?71) exactly induces the restriction 6*: Hig (Albx /k) — Hlg (Alb¥ /k). Thus,
(1) is proved.

For (2), the assertion that u*D is almost ample follows directly from Definition 2.8. For the rest,
we may assume that k(YY) /k(X) is Galois. In fact, by the resolution of singularity, we can always find
another generically finite dominant morphism of connected proper smooth schemes v: Z — Y such
that k(Z)/k(X) is Galois. Now if (2) holds for v and u o v, then it holds for u. Thus, we may assume
that k£(Y")/k(X) is Galois with the Galois group T.

Choose two arbitrary points y,y" € Y (k), and put z := u(y) and =¥ := u(y"). Put

/BX = (O[X)I\/ X (Oéx)a;i X xX— Ale X Albx,

and similarly for By. We choose a homomorphism ¥ x: Alby — Alb¥ (resp. ¥y : Alby — Alby.) such
that HX,D oy = [nx]Ale (resp. HY,u*D oy = [ny]Alby). Put

Ex = B}k((idAle X ﬁx)*cl(Px).(X X Dd_l),
Ey = B4 (idamby X 9y)*c1(Py).(Y x u* DY),

where Px (resp. Py) is the Poincaré line bundle on Alby x AlbY (resp. Alby x Alby.). Then the
formula in (2) follows from the symmetry of Poincaré bundles, and the identity

(idy X u)*Ey = % . (u X idx)*EX
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in CHY(Y x X)qg. By the projection formula, this in turn follows from

(2.6) (idy X U)*ﬁ;(idAlby X ﬁy)*cl(’Py) = % . (u X idX)*B}(ﬁX X idAle)*Cl(Px).

Consider the following diagram

idAlbY X 19y

Y x Y 2 Alby x Alby — — 222 ~ Alby x AlbY.
idy Xui lidAlbY x Alby, TidAlbY x AlbY
My XX Alby x AlbY
uxidx J{ J{Albu xidalb y J{Albu xid gy
Bx

Alby x Alb%

Y x X —2+ Alby x Alby

idAle ><19X

X x XH-AH)X XAle

where = (ay)y, X (ax)zv. Note that squares involving the dash arrow do not necessarily commute.
By the isomorphism (Alby Xidpy )*Px = (idamb, X Alb))*Py, (2.6) is equivalent to

(2.7) (ldy X U)*ﬁy(ldAlby X 19y) Cl('Py) = i - B (1dA1by X 19)() (1dAlby X Albq\;) 01(77}/).

By the projection formula, (2.7) is equivalent to that
degu ‘nx - (idAlby X ﬁy)*cl (Py) — Ny (idAlby X (A]bx 019X o Albu))*cl (PY)

is contained in the kernel of (idy x u), o 5. Now the Galois group I' acts on Alby via the ho-
momorphisms : Alby — Alby for v € I'. We have a similar action on Alby- by duality, and the
homomorphism 9y is I'-equivariant since the divisor u*D is I'-invariant. For a line bundle £ on
Alby x Alby, we have the trace line bundle

[:F = ®(idAlby X ’y)*ﬁ
yel’

Moreover, if Lr is torsion, then ¢;(£) is in the kernel of (idy X u), o f5-. We define similarly Lr for
line bundles £ on Alby x Alby..
In all, (2.7) will follow from the following claim: For P := Py on Alby x Alby, the line bundle

(idatby X Py) " PE™ @ (idamby X (AlbY 0l x o Alb,))* PO~

is torsion. An easy diagram chasing implies that the claim will follow if we can show that the two
homomorphisms

(2.8) Alby oUx o Alby ofnylamy, Y7 0¥y o[nx]amy
vel

from Alby to Alby coincide. However, this can be checked on the level of k-points as the base field is
algebraically closed of characteristic zero. Then we have a homomorphism wu,: Alby (k) — AlbY (k)
induced by pushforward of divisors along u: Y — X as we have AlbY% ~ Pic% and Alby. ~ Pic).. By
the definition of pushforward, the diagram

Alb¥ (k)
EIUR
’ Zwer 7Y

AIbY, (k)
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commutes; and by the projection formula, the diagram

Oy
AlbY. (k) —2+ Alby (k)
0
AbY (k) ——=— Albx (k)

commutes as well. The two diagrams imply the coincidence of the two homomorphisms in (2.8). Thus,
the claim hence (2) follow. O

3. ALGEBRAIC CYCLES AND HEIGHT PAIRINGS

In this section, we make some preparation for algebraic cycles and height pairings for general vari-
eties. In Subsection 3.1, we review the notion of algebraic cycles and correspondences. In Subsection
3.2, we review the construction of the Beilinson-Bloch height pairing and introduce our variant —
the Beilinson—Bloch—Poincaré height pairing. In Subsection 3.3, we discuss the construction of some
Kiinneth-Chow projectors for curves and surfaces, which will be used in the modified diagonal A% X
later.

Let k be a field of characteristic zero. We work in the category Sch .

3.1. Cycles and correspondences. Consider a proper smooth scheme X € Sch ;, of pure dimension
d. Let Z'(X) (resp. CH'(X)) be the abelian group of algebraic cycles (resp. Chow cycles) on X of
codimension 4, with a natural surjective map Z*(X) — CH'(X). For example, we have the diagonal
cycle

ATX € Z(r—l)d(Xr)

for r > 1 as the image of the diagonal morphism A”: X — X". We write AX for A?2X for simplicity.
We have the de Rham cycle class map

clar: CH'(X)q — HiR(X/k),

whose kernel we denote by CH!(X )8@ By various comparison theorems, CH*(X )9@ coincides with the
kernel of the Betti cycle class map

g+ CHI(X)g — HE (X, Q)
for every embedding 7: k — C, and the ¢-adic cycle class map
cle: CH'(X)g — HZ(Xpae, Qu(4))

for every rational prime ¢. Moreover, by the Hochschild—Serre spectral sequence, we obtain the ¢-adic
Abel-Jacobi map

AJg: CHYX)Q — H' (k, HZ ™ (Xpae, Qu(3))).

Definition 3.1. We put CHi(X)(b =, ker AJ, as a subspace of CHi(X)E)Q, where the intersection is
taken over all rational primes £p, and

CH!(X)% = CH/(X)y ®g R,  CH{(X)%} = (CH/(X)}/ CH!(X)}) ®g R
for every ring R containing Q. We call elements in CH*(X )3% natural cycles (of codimension 7).

Remark 3.2. In [Bei®7], Beilinson conjectures that ker AJ, = {0} for every rational prime /¢ if k is a
number field and X is projective, which implies CH'(X)% = CH*(X )I}%

We introduce the following definition, which will be used in Section 5.
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Definition 3.3. We say that a formal series }; ¢;Z; with ¢; € C and Z; € Z'(X) is Chow convergent
if the image of {Z;}; in CH'(X)c generates a finite dimensional subspace, and the induced formal
series in this finite dimensional space is absolutely convergent. We denote by CZ'(X) the set of Chow

convergent formal series in Z'(X), which is a complex vector space and admits a natural complex
linear map CZ'(X) — CH'(X)c.

Now we recall the notation of correspondences. A (Chow self-)correspondence of X is an element
z € CHY(X x X). It induces a graded map

d d
21 @ CH(X) - P CHI(X
1=0 =0

sending « to pi.«(z.p5ar), where p;: X x X — X is the projection to the i-th factor, a convention
recalled from Subsection 1.7. On the level of various cohomology, it induces graded maps

clir(z EBH (X/k) —>@H (X/k),

clfy (2 @H (X,Q) —>EBH X,Q),
and .

cly(z @H (Xpac, Qe(g)) — @H (Xkac, Qe(4))
1=0 =0
for every prime rational ¢ and j € Z. They are compatible with each other under various comparison
theorems and cycle class maps. When we regard the diagonal AX C X x X as a correspondence, we
usually write it as idx.

3.2. Beilinson—Bloch—Poincaré height pairing. We review the theory of height pairing between
cycles of Beilinson and Bloch. Now suppose that k is a number field. Consider a projective smooth
scheme X € Sch/;, of pure dimension d. Beilinson [Bei87] and Bloch [Blo84] have defined, via two
approaches, a bilinear pairing

(, )5 CH/(X)§ x CH!/(X)g — C.
However, both approaches relies on some hypotheses that are still unknown even today.

We review briefly Beilinson’s construction: For z; € CHZ’(X)?Q and 29 € CHdJrl*i(X)?Q, we choose
their representatives Z; € Z(X)g and Z2 € Z¥17(X)q that have disjoint support. For every place
v of k, there is a local index (71, Z2)x, on X, := Xj,. For v archimedean, this is defined in [Bei87,
Section 3] via the potential theory on Kéhler manifolds; it is unconditional. For v nonarchimedean
such that X, has good reduction, this is defined via intersection theory on an arbitrary smooth model
of X, over Oy,. For v nonarchimedean in general, the definition of (Z;, Zs)x, is conditional: Choose
a rational prime ¢ not underlying v and an isomorphism ¢,: C = Q3° such that Hgé (Xpac, Qp) satisfies
the weight-monodromy conjecture, which implies that the cycle class of Z; in the absolute étale
cohomology HZ (X, Q(i)) vanishes (same for Z). Then one can define (71, Zs) x, as a “link pairing”
valued in Q@ followed by the map LZl. See [Bei87, Section 2.1] for more details. We then define

(3.1) (21, Zo)RP = " r(v) - (Z1, Za)x,,

where the sum is taken over all places v of k, and r(v) equals 1, 2, and log g, when v is real, complex,
and nonarchimedean (with g, the residue cardinality of k,), respectively.
For every intermediate ring Q C R C C, we obtain a pairing

(, )} CHY(X)} x CHF'/(X)} — C
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via R-bilinear extension. Beilinson conjectures that the pairing ( , >)B(B is independent of £ and the

isomorphism ¢.

Remark 3.4. As we have mentioned, if X, satisfies the weight-monodromy conjecture for every nonar-
chimedean place v of k (for example, when X is a product of curves, surfaces, or abelian varieties),
then the Beilinson-Bloch height pairing ( , )5 is unconditionally defined (but may a priori depend
on the choices of £ and ¢y). When X is a curve, the Beilinson—Bloch height pairing coincides with the
Néron—Tate height pairing up to —1. When X is an abelian variety, the Beilinson—Bloch height pairing
coincides with the pairing defined in [[Kiin01]. In particular, in these two cases, the independence of ¢

and ¢y is known.

Lemma 3.5. Suppose that the Beilinson—Bloch height pairing is defined for X. Take Z € CHI(X)%
for some intermediate ring Q@ C R C C. Then we have

(Z1,2.2:)RP =
for every Z; € CHY(X)Y, and Zy € CH(X)%,.

Proof. We fix an embedding k — C. Since Z is homologically trivial, it is algebraically equivalent
to zero; so is Z.Zy. By [Bei87, Lemma 4.0.7], it suffices to show that the image of Z.Z5 under the
complex Abel-Jacobi map CHY ™ (X)% — J4=+1(X()p is zero, where J4~"+1(X¢) is the (d—i+1)-th
intermediate Jacobian of X¢ (as an abelian group). We replace Z and Z3 by their representatives in
Z'(X)p and Z97*(X)p with proper intersection. Since Z, is homologically trivial, we may choose a
(singular) chain Cz, of (real) dimension 2i + 1 with boundary Zs. Then Z.Cy, is a chain of dimension
2i — 1 with boundary Z.Z,. It suffices to show that

/ w=20
Z.Cz,

for every closed differential form w whose class belongs to the Hodge filtration Fil’ Hy '(X, C). Since
(the underlying cycle of) Z is homologous to zero, we can take a (1,0)-form 7 such that dn is the class
represented by Z by the 00-lemma from Hodge theory. Thus,

/ w= dn/\w:/ d(n/\w):/ nAw=0,
Z.CZ2 CZ2 022 Z2

in which the last equality follows as we may take a representative of w as a sum of (p, 2i — 1 — p)-forms
with p > 7. The lemma follows. O

Recall that if A is an abelian variety over k of dimension h > 1, and Q € R C C is an immediate
ring, then we also have the Néron—Tate (bilinear) height pairing

(A" Atk)r x AY (k)R — C.
Composing with the Albanese maps CH"(A)% — A(k)g and CH"(AY)% — AY(k)g, we may regard
the above pairing as a map
(3.2) (,ONT: cHM(A)% x cHM(AY)S, — C.
Remark 3.6. The Néron—Tate height pairing (3.2) is related to the Beilinson—Bloch height pairing via
the following commutative diagram:

<’>BB

CH"(4)% x CH'(A)% L_-C

l’ 7<7>NT

CH'(A)% x CHMAY)Y

in which CH'(A)% — CH"(AY)Y is the tautological map.
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Now we will combine the Beilinson—Bloch height pairing on X and the Néron—Tate height pairing
on A to give a height pairing

()R CHMY(X x A)f x CHM (X x AV)% = C

using the Poincaré bundle, for every intermediate ring Q C R C C. The process is easy: Let P be the
Poincaré line bundle on A x AY. We have projection morphisms

pr2: X x AxAY 5 X xA, pi3: X xAxA - X xAY,
and recall the Fourier—-Mukai transform
p: CHMH(X x AY) — CHH (X x A)gy
sending z to p12+((X X ¢1(P)).pi32). We then define
(21, 22)X04 = (21, 9(22)) X% a-
Definition 3.7. We call (, >BBP the Beilinson—Bloch—Poincaré height pairing for (X, A).
Remark 3.8. The Beilinson—Bloch—Poincaré height pairing is unconditionally defined if X, satisfies
the weight-monodromy conjecture for every nonarchimedean place v of k£ (but may a priori depend
on the choices of ¢ and ¢y). When X = Speck (resp. h = 1, that is, A is an elliptic curve, hence is

canonically isomorphic to AY), the Beilinson-Bloch-Poincaré height pairing for (X, A) reduces to the
Néron—Tate height pairing (3.2) for A up to —1 (resp. the Beilinson—Bloch height pairing for X x A).

Remark 3.9. The Beilinson—Bloch—Poincaré height pairing can be defined more generally for an abelian
scheme A of relative dimension h > 1 over X as a pairing

(,)A"": CH'™(A)f x CHMI7(AV) —» C
such that (z1, 22>EBP = (21, pl*(cl(E).p§z2)>2B, where p1: Axy AY — Aand pa: Axx AV — AY are
projection morphisms, and P is the relative Poincaré bundle on A x x AV.

3.3. Kiinneth—Chow projectors. In this subsection, we will construct some Kiinneth—Chow pro-
jectors, which will be used in Subsection 4.4. The readers may skip it at this moment.
Consider a proper smooth scheme X € Sch/;, of pure dimension d. Put

W(X/k) = P Hig(X/k), HE(X/k) = P Hig(X/k).
i even i odd

Definition 3.10. We say that a correspondence z € CHd(X x X)q is an even (resp. odd) projector if
the map cljg(2) is the projection map to Ht" (X /k) (resp. HOdd(X/k)).

We introduce the following convention: for a zero cycle D on X, we regard its degree deg D as a
function on 7y (X).

Lemma 3.11. We have

(1) Suppose thatd = 1. Let D € CH! (X)q be a cycle such that deg D is nonzero on every connected
component of X. Then

1
zx.p =AX — D(XXD+D><X)

deg
is an odd projector for X.

(2) Suppose that d = 2. Let D € CH'(X)q be a cycle that is an almost ample divisor (Definition
2.8). Then

. t
zZxX,p ‘= €ex,p + ex,D

is an odd projector for X, where ex p is the correspondence in Proposition 2.12 and etX7D 18

its transpose.

Proof. Part (1) is obvious. Part (2) follows from Proposition 2.12(1). O
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Lemma 3.12. Let z be an odd projector for X. Then
. . % i i : . . i(x\0 .
gﬁ EZZ zcr;ézlie of the induced map z*: CH'(X)q — CH'(X)q is contained in CH'(X)g;
zxzXz4+2zX (AX —2) x (AX —2)+ (AX —2) x 2 x (AX —2)+ (AX —2) X (AX —2) x 2
s an odd projector for X x X x X.

Proof. For (1), since clgg (Im 2*) C Im(cliz(2)) = H3(X/k), we know that the image of 2* is con-
tained in CHi(X)%.

For (2), note that if z is an odd projector, then AX — z is an even projector. Thus, (2) follows from
the Kiinneth decomposition for the algebraic de Rham cohomology. g

Definition 3.13. Let z be an odd projector for X. We define
pri¥l: CH(X x X x X)g — CH'(X x X x X))
to be the map induced by the odd projector for X x X x X as in Lemma 3.12(2).

4. FOURIER—JACOBI CYCLES AND DERIVATIVE OF L-FUNCTIONS

In this section, we construct Fourier—Jacobi cycles and state our main conjectures. In Subsection
4.1, we construct the category of CM data for a conjugate symplectic automorphic character p of
weight one. In Subsection 4.2, we introduce our Shimura varieties and study their Albanese varieties.
In Subsection 4.3, we construct Fourier-Jacobi cycles and show that they are homologically trivial.
In Subsection 4.4, we propose various versions of the arithmetic Gan—Gross—Prasad conjecture for
U(n) x U(n).

Let F be a totally real number field of degree d > 1, and E/F a totally imaginary quadratic
extension. We denote by

e c the nontrivial Galois involution of E over F,

e I~ the subgroup of E consisting of e satisfying e + e¢ = 0, and E' the subgroup of E*
consisting of e satisfying ee® = 1,

o by pp/p: F “\AJ — C* the quadratic character associated to E/F via the global class field
theory,

e F, the base change F ®p F, for every place v of F',

o O the set of real embeddings of F', & the set of complex embeddings of F/, and 7: &5 — ®p
the projection map given by restriction.

Recall that a CM type (of F) is a subset ® of &g such that 7 induces a bijection from ® to ®p.
In this section, we work in the category Sch .

4.1. Motives for CM characters. In this subsection, we generalize some constructions in [Den89,
Section 2].

Definition 4.1. We say that an automorphic character p: E*\ A} — C* is conjugate self-dual if p is
trivial on Na /A, A7 We say that p is conjugate orthogonal (resp. conjugate symplectic) if p| Ay =1
(vesp. p| Af = ppg/p).

Remark 4.2. A conjugate self-dual automorphic character is necessarily strictly unitary (Definition
B.2). It is either conjugate orthogonal or conjugate symplectic, but not both.

For a conjugate symplectic (resp. conjugate orthogonal) automorphic character yu, there exist a CM
type ®, and a unique tuple w, = (W;)rea, of odd (resp. even) nonnegative integers such that for every
7 € ®&p, the component p: (E ®p, R)* — C* is the character

z > arg(z) ",

where we have identified (F ®r,; R)* with C* via the unique element 7’ € ®, above 7. If w,, does not
contain 0, then ®, is also unique. In what follows, we put u° = poc.
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Definition 4.3. Let u be a conjugate self-dual automorphic character.

(1) We call w,, the weight of ju. If w,, is a constant m, then we say that y is of weight m.
(2) If w, does not contain zero, then we call ®, the CM type of y. Furthermore, we denote by
ML C C the reflex field of (E, ®,), with the induced CM type ¥,,.

Now let o be a conjugate symplectic automorphic character, which is not algebraic. We put

—1/2
= | [

which is then algebraic. Denote by M,, C C the subfield generated by values p28(z) for z € (AX)*,
which is a number field containing M //L

Remark 4.4. Tt is clear that u€ is conjugate symplectic of the same weight as p. Moreover, we have
Mye = M, M, = Mj,, and that ¥, is the opposite CM type of W¥,.

Definition 4.5. Let u be a conjugate symplectic automorphic character of weight one.

(1) We denote by 77/;: Res M,/Q Gm — Resg/g Gm the reciprocity map, and put
Ny = 77;,1 °© Nag,/ar,+ Respy, g Gm — Resp/g Gm.

(2) We define a CM data for p to be a quadruple D,, = (A, 44, Ay, 7u), in which
e A, is an abelian variety over E,
e i,: M, — Endg(A,)q is a CM structure such that
— for every x € My, the determinant of the action of i,(x) on the E-vector space
Lieg(A,) equals n,(z),
— the associated CM character of A, with respect to the inclusion M, — C coincides
with p218,

e Ayt Ay — Ay is a polarization satisfying A o i, (x) = i,(T)" o A for every x € M,,,

e 7,0 M, ®gE — H{®(A,/E) is an isomorphism of M,, ®g E-modules satisfying that there
exist an element 3 € M, and an isomorphism c: HJ%, A, (Au/E) — E of E-modules,
such that for every z,y € M, ®q E, we have c((r,(x),7.(y))x) = Try, 005/5(26Y), where
(,)x: HI®(A,/E) x H{® (A, /E) — Hgl(}imAu (A,/E) denotes the pairing induced by A.

(3) We denote by A(p) the category of CM data for p, whose objects are CM data D,, and
morphisms from Dy, = (A, iu, Ay, ) to Dy, = (A}, 4, \,,r),) are isogenies p: A, — A},
satisfying o o i, (z) = i), () o ¢ for every x € My, p" o X, 0 p = c), for some element ¢ € Q*,
and 7}, = Q. 07y

(4) From a CM data D,, = (A, iy, Ay, ) for p, we deﬁne another quadruple D) = (AV i ATy
in which (A, \) is simply the dual of (A,,\,), i), is defined by the formula i ( ) = iu(z )V
for x € My, and )] == (Au)« 0 7.

Proposition 4.6. Let p be as in Definition 4.5.

(1) The category A(p) is a nonempty and connected partially ordered set.
(2) The assignment sending D, to D), induces an equivalence A(pu)? = A(u°) of categories.

Proof. For (1), we first show that A(u) is nonempty. Take a finite abelian extension E’/E such that
the character p'®’ = u™8 o Np//p satisfies [Shi7l, (1.12) & (1.13)] for (K',®') = (E,®,), k = F/,
(K,®) = (M, V,) with 1 the archimedean place of Mj, induced by the inclusion M, — C, and
a=0 My, For example, we may take an open compact subgroup U of A% on which p (hence p8) is
trivial and take E’ to be the abelian extension corresponding to U via the global class field theory. By

Casselman’s theorem [Shi71, Theorem 6], we have a pair (A’,i") where A’ is an abelian variety over
E'and i': M), — Endg(A')g is a CM structure such that

e the determinant of the action of #'(2') on the E’-vector space Liep/(A’) is n,(2') for every
e M,
/_[,7
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e the associated CM character of A’ with respect to the inclusion M l’i — C coincides with p21#’.

By [Shi7l, Lemma 1 & Lemma 2|, A’ is simple, hence ¢ is an isomorphism. The same argument
in [Dens9, (2.1)] implies that there is an isogeny factor A, of the abelian variety Resg:/ p A" over E
together with a CM structure i,: M,, — Endg(A,)q satisfying the conditions in the proposition. In
other words, we have obtained the part (A,,1,) for a CM data for . By [Shi71, Theorem 5], we know
the existence of \,. The existence of r, is obvious. Thus, we obtain an object D, = (A, iy, A, r,,) of
A(p)

The connectedness of A(u) also follows from [Shi71, Theorem 5]. Finally, the compatibility condition
1 = s« o1y, ensures that A(u) is a partially ordered set.

Part (2) is clear from the definition. O

r

Remark 4.7. Let p be as in Definition 4.5. Although we will not use in the main body of the article,
we propose the definition of the motive for u, denoted by L,, as a Grothendieck motive. For a CM
data Dy, = (Auyip, Ay ) € A(p), let h1(A,, M) be the Picard motive of A, with coefficients in M,,,
and h'(D,) the direct summand of h'(A,, M,) on which the induced action of M, via i, coincides
with the underlying linear action of M,. The assignment D,, — h'(D,) is a functor from A(u) to
the category of Grothendieck motives over E. We put L, = hﬂD#eA(u) hl(DM), which is of rank 1

with coefficients in M,,. It follows from Proposition 4.6(1) that the canonical map L, — h1(D,) is an
isomorphism for every D,, € A(u).

To end this subsection, we construct a certain canonical projector on A,, which will be used in
Subsection 4.3. Let p be as in Definition 4.5. Denote by I, the set of all complex embeddings of
M,,. We take a CM data D, = (A, iu, Ay, ) € A(p) for p. For every element € M, such that
iu(x) € Endg(A,), we denote by (x) the correspondence

A, g, 1y,
of A,. In particular, (z)* = i,(x).. For every 7': E — C and every integer 0 < i < [M,, : Q], we have
a canonical decomposition
M,,:Q]—i M,,:Q]—i
Hp Y7400 = @ Hy ¥ 7(4,0)r,
Ig[;ulﬂzi

where H][é\/[T“,:Q]_i(Au, C)r denotes the subspace on which cly . ({z)) acts by [[,c t(z) for every z € M,
satisfying i, (z) € Endg(A,). Let TE’T/ be the endomorphism of €p; HiB,T’(A,U’ C) such that

e the restriction TE’T/ | HiB,T,(AM, C) is zero if ¢ # [M, : Q] — 1,

o the restriction TB’T/ | H][é\/[ﬁ:@]_l(AH,C) is the canonical projection to the direct summand

H%:Q}_I(AM, C)r,, where Iy C I, is the subset consisting only of the inclusion M, — C.

Definition 4.8. Let I C I, be a subset.
(1) We say that x € M), is an I-generator if x generates the field M, with i,(z) € Endg(A4,) such

that
[T # IT o)
el LeJ
for every J C I, other than I.
(2) For an I-generator z, we put

() = IliesL(=) [M,:Q]/2
% : e CHMQ/2( 4, % A,
= W @) - ey @) (A Ap)

We now choose an Ij-generator x. It is easy to see that Tj; lies in CH[MHZQ]/Q(AM x Au)m,, and
moreover clp ., (Tj;) = TE’T/. In particular, the numerical equivalence class of T} is independent of the



28 YIFENG LIU

choice of x, which we denote by T;"™. Applying the main theorem of [0'S11]% to A, x Ay, we know
that T;"™ has a canonical lift in CHIMx:Ql/2 (Ay X Ap)m,, which we denote by Tj*".

Definition 4.9. We call T" € CH[M“:@VQ(AM x Au)m, the canonical projector of A,.
Lemma 4.10. For every 7': E — C, we have clj ., (T{") = TE’T/.

Proof. By part (iii) of the main theorem of [O'511], we know that T;?" hence T;*" — T}, commute with
(y) for all y € M), such that i,(y) € Endg(A,). Now we show that Tj?" — T}, is homologically trivial.
If not, then there exist some 0 < i < [M,, : Q] and a set I C I, with |I| = [M, : Q] — i such that the
restriction clg ./ (T — Tj) | HiB’T, (A,C) is the canonical embedding.

Now we take an I°-generator y € My, where I° := I, \ I. Then the cycle T}, (Definition 4.8) has
nonzero intersection number with T;*" —Tj;. This contradicts with the fact that T)" —T}; is numerically
trivial. Thus, the lemma follows. ]

4.2. Albanese of unitary Shimura varieties. Let n > 2 be an integer. Let V be a totally definite

incoherent hermitian space over Ag of rank n (Definition C.3). We distinguish between two cases:

Noncompact Case: d = 1, and either n > 3 or n = 2 and the hermitian space V ®a Q, is isotropic
for every rational prime p.

Compact Case: if it is not in the Noncompact Case.

Let G := U(V) be the unitary group of V, which is a reductive group over Ap. Let {Sh(V)x}x be
the projective system of Shimura varieties for V indexed by sufficiently small open compact subgroups
K of G(AY) (Definition C.6). Every scheme Sh(V)g is smooth, quasi-projective, and of dimension
n — 1 over E; it is projective if and only if we are in the Compact Case. In all cases, we have the
compactified Shimura variety Sh(V)g (Definition C.8). Put

Xg =Sh(V)g
for short. Then {Xg}k is a projective system of smooth projective schemes in Sch,p of dimension

n—1. For K’ C K, we denote the transition morphism by u?: X — Xk, which is a generically
finite dominant morphism. Put X = lim X Xr.
We denote by Ax the Albanese variety Albx, of Xk (Definition 2.3) for short, and by

(4.1) ag = oax,: VXg = Ak
the Albanese morphism (see Definition 2.1 for the meaning of V). By functoriality, we obtain a
projective system {Ag}x. Put
Ay = lim Ag,
3

which is an abelian group pro-object in Sch,p. Then the Hecke correspondences provide a homomor-
phism G(A¥) — Autp(Ax).

To study isogeny factors of A, it suffices to study the L-function of H}, ((Af) gac, Q°) by Faltings’
isogeny theorem. We start from describing its Betti cohomology H]137T, (Ag,C). For every embedding
7' E — C, put

H]13,T’(A007 (C) = hgl H]13,T’ (AK’ (C)’
K

which is an admissible representation of G(A%). To study this representation, we need to recall the
oscillator representations of unitary groups.

Definition 4.11. An adélic oscillator triple is a triple (u,¢€, x) consisting of

e a conjugate symplectic automorphic character (Definition 4.1) u = @, : EX\ A} — C* (whose
value is necessarily in C!),

4The author states the theorem with coefficients in Q. However, by [0’S11, Corollary 6.2.6], one may replace Q by
any field of characteristic zero, for example, M,,.
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e a collection € = (¢, € E;*/Ng, /5, E)), for every nonarchimedean place v of I such that
g, € Of £, Ng,/F, £ for all but finitely many v, and
e an automorphic character y = ®x,: E*\(A¥)! — C* (whose value is necessarily in C1).
For an adelic oscillator triple (u, ¢, x), the local oscillator representation w(fiy, €4, Xv) of G(F}) intro-

duced in Subsection D.1 is unramified for all but finitely many v. Thus, it makes sense to define the
adélic oscillator representation attached to (u, ¢, x)

w(p,e,x) = Q)w(tiv; v, Xv),
v
which is an irreducible admissible representation of G(A%¥).
Definition 4.12. In an adelic oscillator triple (u, ¢, x), we say that € is p-admissible if there exists
some e € E*~ such that
e ¢, =eNg /g, E for every nonarchimedean place v of F’, and
e 7/(e) has negative imaginary part for every 7’ € @,,.
It is clear by Remark 4.4 that ¢ is py-admissible if and only if —¢ is u®-admissible.
Proposition 4.13. Suppose that n > 3. Then for every embedding 7': E — C, there is an isomor-
phism
H]1377-/<Aooa (C) = @ w(lh &, X)

(1se:X)
of C|G(A®)]-modules, where the direct sum is taken over all adélic oscillator triples in which p is of
weight one and € is p-admissible.

Proof. By Lemma 2.4, we have a canonical isomorphism

HE -/ (Aco, C) = Hp 1 (Xoo, €) = lim Hp -/ (Xk, C)
K

of C[G(A®)]-modules. We regard E as a subfield of C via a fixed embedding 7 € ®g and put
7 :=7"| F. We choose a CM type ® that contains 7/. Take a hermitian space V that is T-nearby to
V (Definition C.4). Put G = Resp/g U(V) and h := hb@ for short. Then by Propositions C.5 and
(C.2), we have an isomorphism

H}, /(Xoo, C) = lim Hy (Sh(G, h) ., C)
K

of C|G(A%)]-modules. By [MR92, Lemma 1], for every K, there is a canonical isomorphism
H]13(§}/1(G7 h)K7 (C) = IHl(ﬁ(G7 h)K7 C)?

where the right-hand side is the complex analytic intersection cohomology of the Baily-Borel com-
pactification Sh(G,h)g of Sh(G,h)x. Combining (D.2) and (D.1), we have an isomorphism

HB,,_ Aooa(c @mdlsc gaKGﬂ’/TOO) ® m°

of C[G(A%)]-modules. We say that an irreducible admissible representation 7 of G(A) contributes
to the Albanese if mgisc(m) > 0 and H'(g, Kg; moo) # {0}. We determine all such 7 together with the
value mgise(m). By the proof of [BNVNM16, Proposition 13.4] (with m =n,p=n—1,g=1,a+b=1),
we know that there exists a strictly unitary automorphic character (Definition B.2) u: EX\AJ — C*
such that the partial L-function L° (s, x ) has a simple pole at so with so > § where S is a finite set
of places of F' containing all archimedean ones and such that for v ¢ S, both 7, and , are unramified.”
We separate the discussion into two cases.

®Note that 7 is assumed to be cuspidal in the statement of [BMNM16, Proposition 13.4]. However, this step works for
7 discrete.
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Case 1. Suppose that m contributes to the Albanese and meysp(m) > 0. Let Vi be a cuspidal

realization of 7 (Definition B.1). By Corollary B.5, s is either ";1 or 5, not both. If s9 = "T'H, then

Theorem B.4 implies that @E}Z v(Vr) # {0}, where W is the zero skew-hermitian space. By Corollary

B.6(1), Vi is a character, hence H!(g, Kg; moo) = {0}, which is a contradiction. Thus, we must have
sp = 5. By Theorem B.4, we have a one-dimensional skew-hermitian space W such that @E’Z ») v(Vx)
-w

(p=tp—t
of m satisfies xoo = 1. In other words, there is a unique element e € E~*/ Np/p E* determined by W

and is cuspidal. By Corollary B.6(1), we have V; = © )(Ww). Note that the central character x

such that 7°° ~ w(u, e, x), where ¢, is the collection given by e.® To determine 7., we suppose that
bp={n=7m,...,7gand ® = {r],... ,Tj} with 7(7;7) = 7;. Using ®, we obtain an isomorphism
Gr ~ Un—1,1)gr x Un,0)g x --- x U(n,0)g, and accordingly a decomposition 7o, = ®§l:17rooi.

. . +.1 i, E,1 .
Under the notation from Subsection D.1, we have 71 ~ w;n_l’l 7 and e wzl o~ for ¢ > 2, where

(mi,...,mg) is the weight of u and the sign in the parameter is the sign of i =17, (¢). By Lemma D.2,
we know that p is of weight one and ¢, is p-admissible. Moreover, H!(g, Kg; 7o) is of dimension 1.
By Corollary B.6(3), we have meusp () = 1.

Case 2. Suppose that 7 contributes to the Albanese and mgjsc(m) — Meusp(m) > 0. This might
happen only when F' = Q. In this case, V has Witt index 1. Write V = Vy & D where Vj is
anisotropic and D is a hyperbolic hermitian plane. Let V; be a discrete realization (Definition B.1)

of 7 that is perpendicular to L2,,(G). By Langlands theory of Eisenstein series [MW95], there
exist a strictly unitary automorphic character p: E*\Aj — C*, an irreducible subrepresentation
Vg € L2,p(U(V0)) of U(Vg)(Ap) with the underlying representation 7o, and a real number s; > 0,
such that V; is contained in Zs, (V,Xp'): the space generated by residues of {&q(g; fs)|f € I(Vy,Kp')}
at s = s1. Here, we adopt the notation in Subsection B.2.” Since L(s,7) = L%(s — s1, 1) - L%(s, ),
and L(s,my x p) can not have poles at sq > 5 by Corollary B.5, we must have s; = sp — 1 and
' = p~t. Again by Corollary B.5, i/ is conjugate self-dual, so is u, and g/ = puS. The appearance
of the residue implies that {&q(g; fs) | f € I(Va, X p€)} has a pole at so — 1. If sg = ZEL then by
the similar argument in Case 1, we conclude that mg is a character, so is m;. This contradicts with
H'(g,Kg;Too) # {0}. Thus, so = % and s = ”7_2 By Corollary B.6(2) and the similar argument in
Case 1, we conclude that V,; = @@Wl,y,l)(ﬂ'w) for a unique one-dimensional skew-hermitian space W
and a unique character my; and 7°° ~ w(u, €¢, x) in which p is of weight one and ¢, is p-admissible.
Moreover, we have meysp(7) = 1 and mqise(m) = 1 by Corollary B.6(3).

To summarize, we have shown that if an irreducible admissible representation 7 of G(A) contributes
to the Albanese, then 7°° ~ w(u, €, x) for a unique adelic oscillator triple in which p is of weight one and
¢ is p-admissible, and mgisc(m) = 1. Conversely, for every such adelic oscillator triple (u,e,x), there
exists a pair (W, mw), unique up to isomorphism, such that if we denote by 7 an irreducible subrep-
resentation of @XW)’W(WW), then w(u, e, x) is isomorphic to 7*° and H' (g, Kg; mso) # {0}. Moreover,

2
disc

by the Rallis inner product formula,® @Xl ») w(mw) is contained in L, (G). Thus, we may apply the

above discussions to the representation 7 to conclude that the dimension of Hy (Ao, C)w (i€, X)]
is 1. The proposition follows. 0

Remark 4.14. When n = 3, Proposition 4.13 can be deduced from [GRI1, Rog92].

Now we study the f-adic cohomology of A,,. Take an embedding 7': E — C, a rational prime /,
and an isomorphism ¢,: C = Q7°. We have a canonical isomorphism

H}et(AK ®E77'/ (C7 Q2C) = H]%,T/(AK7 (C) ®C,Le Q?C

6Here, we have replaced p by its inverse to match notation in the statement of the proposition.
"The pair (V, Vo) correspond to the pair (V1,V) in Subsection B.2.
8Note that the global theta lifting @E/H’V)’W(Trw) is always in Weil’s convergent range.
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by the comparison theorem. Put
Hi (A ®p,~ C, Q) = lim H (Ax ®p, C,QF),
K
which is a Q}°[Gal(C/7'(E)) x G(AF)]-module.
Suppose that n > 3 and consider an adelic oscillator triple (u, e, x) in which p is of weight one and
€ is p~admissible. Then

HomQ?C[G(A%O)] (Lg ow(,u,s X) H (Aoo ®E T/ C Q ))

is a representation of Gal(C/7'(E)) over Q3. By Proposition 4.13, such representation is an f-adic
character, denoted by
priae (18 x): Gal(C/7'(E)) — (QF)™.

It induces, via the isomorphism ¢y, an automorphic character
e e, x): T(E) ALy — C*

It is easy to see that the character p,/ ¢(p,€,x) does not depend on the isomorphism of ¢y, which
justifies its notation.

Theorem 4.15. Suppose that n > 3 and let (u,e,x) be an adélic oscillator triple in which u is of
weight one and € is p-admissible. Then we have

pre(pi €, x) o7 =

for every 7' € ®, and every rational prime £.

Proof. We fix a rational prime ¢ and an isomorphism ¢,: C = Q3°. We also fix an element 7/ € ®,,,
and identify E as a subfield of C via 7/. Let V be the hermitian space that is 7-nearby to V as in the
proof of Proposition 4.13, and Sh(G,h) the corresponding Shimura variety from Subsection C.1 with
G = Resp/p U(V) and h := hk,@. Then in view of the discussion in Subsection D.2, we have canonical
isomorphisms

Hi (A @p, C, Q) @ e -1 C = Hiy) (Sh(G, ), C) ~ (P H' (g, K L (G(Q)\G(A), x))-
X
For every orthogonal decomposition V = V,@V;- of hermitian spaces such that Vi is totally positive
definite, we have similarly the Shimura variety Sh(Gy,hy) together with the morphism Sh(Gy, h,) —
Sh(G,h) over E. For an element e € E*~, we choose a maximal isotropic F-subspace V¢ of the
symplectic space (Resg/rV,Trg/pe( , )v). Then V§ := V¢ N Resg,p V, is a maximal isotropic F-
subspace of (Resg/p Vi, Trg/pe(, )v,). Denote by V(u,e) € €°°(G(Q)\G(A),C) the subspace of

theta functions
05(9) = > (wue(9))(v)
veEVe

on G(A), where ¢ is in the Schwartz space . (V¢(Ar)) in which we use the Fock model at archimedean
places. Similarly, we define the subspace Vi(p,e) C €°°(G«(Q)\G«(A)).

We claim that the map €°(G(Q)\G(A),C) — €*°(G.(Q)\G.(A),C) induced by the inclusion
Gy — G sends V(u,e) to Vi(u,e). In fact, we can find finitely many pairs (d&,i@ii) with ¢, ; €
S (VS(Ap)) and qb*l’i € .7(VL¢(Ar)), where Vi€ :=Ven Resp/p Vi, such that

¢(’U*a Z¢*Z U* d)* z( )

for every v, € V}¢(Ar) and vy € VL¢(AF). Then for g, € Gy ( , we have

92)(9*):2<Z (Wm (9*)‘15*1 U*)( Z ¢*z ): ( Z ¢H )9%1( )

7 V,EVE GVJ-E EVJ‘E
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Thus, the claim follows.

To prove the theorem, note that for every class ¢ € H%Q)(Sh(G,h),(C), using the same proof of
[MR92, Proposition 6], one can find a decomposition V.= V, & Vi as above with dim V, = 2 such
that the image of ¢ under the restriction map H%Q)(Sh(G, h),C) in H5(Sh(Gy, hy), C) is nonzero.” We
denote such image of ¢, and note that ¢, actually belongs to (the image of) H (Sh(Gy, hy), C). Then
the theorem follows from the above claim, Remark D.5, and Theorem D.6(1). O

Definition 4.16. Let p: EX\Aj; — C* be a conjugate symplectic character of weight one. For
every object Dy, = (A, i, Ay 7u) € A(p) (Definition 4.5), the Q-vector space Hompg(Ax, Ay)g is an
M, |G(A®)]-module, where M, acts via i, and G(AP) acts M,-linearly via its action on A.,. Put

)= iy Homp(As, Au)g
DueA(p)

in the category of M,[G(A%)]-modules.

Remark 4.17. It follows from Proposition 4.6(1) that for every object D, = (A, iu, Ay, ) € Ap),
the canonical map Hompg (Ao, Ay)g — (1) is an isomorphism.

Theorem 4.18. There is an isomorphism

Q(n) @M, Cx~ @ @W(%&X)
e X

of C[G(AR)]-modules, where the direct sum is taken over all e, x such that € is p-admissible. Moreover,
(1) For every object D, = (Auyip, Ay, 7u) € A(u), we have a canonical isomorphism Q(u)% ~
Hompg(Ak, Ay)q for every sufficiently small open compact subgroup K C G(A%).
(2) The C[G(A$)]-modules in the direct sum in Theorem 4.18 are mutually non-isomorphic.

(8) For every given ¢ that is p-admissible, the subspace @D, w(p, e, x) is stable under the action of
Gal(C/M,,).

Proof. Take an arbitrary object D, = (A, iy, Ay, mu) € A(p) and identify Q(p) with Hompg (A, Au)o
by Remark 4.17.

Take an embedding 7': E — C in ®,. It is clear that the maximal subspace of the complex vector
space Hll_gw, (A, C) over which M, acts via the inclusion M,, — C has dimension 1. We choose a
basis « of this subspace. Then we obtain a map Q(u) — H]1377, (Ao, C) by pulling back «, which is
C|G(A®)]-linear. It canonically extends to a map

(4.2) Q) ®n, C — Hp (Ao, C).

To compute this map, we choose a rational prime ¢ and an isomorphism ¢: C = Q9°. By the
comparison theorem, (4.2) induces the following map

) @, Q° = Hyp (Ao @5, C, QFF)

by pulling back a, as a class in H}, (4, @ C,Q%°). By Faltings’ isogeny theorem [I'al33], we have a
canonical isomorphism

Q(p) @m0, Q7° ~ HomaggaeGal(c/r ()] (Q?C -, Hy (A, ©p, C, @?C)> :

However, by Definition 4.5(2), the action of Gal(C/7'(E)) on the line Q}° - o spanned by « is given
by the automorphic character 1, o p& o (7/)71: T,(E)X\A;_(,(E) — (Q%°)*. When n > 3 (resp. n = 2),

9Although [MR92, Proposition 6] only implies the existence of such V, with dim V, = 3, its proof actually shows the
existence of such V, with dim V, = 2 by only changing the term n — 2 to n — 1 in the proof of Lemma B. The authors of
[MR92] presented their argument for dim V, = 3 simply because the property they aimed to reduce does not hold when
dim V, = 2.
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by Proposition 4.13 (resp. Proposition D.4(1) with Remark D.5) and Theorem 4.15 (resp. Theorem
D.6(1)), we have an isomorphism

Homgse(al(c/r (1)) (Q?C -, Hyy (A, ©p C, Q?C)) ~ PP wlp e x) @c,, QF
e X

of Q3°[G(A%)]-modules induced by pulling back «, where the direct sum is taken over all €, x such
that € is p-admissible. Thus, we obtain an isomorphism as in the theorem, which depends only on «,
not on £, 1y, and 7’.

The additional statement (1) follows from the above discussion as well. Statement (2) follows from
Lemma D.1.

Now we consider statement (3). Since Gal(C/M,) stabilizes p and by (2), it suffices to show
that for every rational prime p, the image of Gal(C/M,) under the p-adic cyclotomic character
Xp: Gal(C/Q) — Z) is contained in Z; N Ng /g B for every prime p of F' above p. This only
becomes a problem if p is ramified in E. To ease notation, we suppress the subscript p. So we have
a ramified quadratic extension E/F, where F/Q, is a finite extension. Put Ug,p == Z; N Ng,p E*,
which we may assume a subgroup of Z;; of index 2. Denote by Mg, C C the subfield corresponding

to the kernel of the composite homomorphism Gal(C/Q) SN Zy — Z, |Ug/p, which is a quadratic
field. Thus, our goal is to show that Mg, r is contained in M,,.

We first assume p odd. Then the residue extension degree f of F//Q, must be odd. Write E = F(y/u)
for a uniformizer u of F. Then p(vu)? = u(v/u’) = pu(— Ng/pu) = p(-1).

o If u(—1) = 1, then —1 is a quadratic residue modulo p, hence Mg, = Q(,/p). On the other
hand, since p(y/u) = £1, we have 8 (\/u) = £p//2. Thus, M,, contains \/p as f is odd.

o If u(—1) = —1, then —1 is not a quadratic residue modulo p, hence Mg, = Q(\/—p). On the
other hand, since p(/u) = £v/—1, we have p*8(,/u) = +y/—1pf/2. Thus, M, contains /—p
as f is odd.

We now assume p = 2. Write vp: F — Z U {oo} for the valuation function on F. We choose an
Eisenstein polynomial X2 + aX + b for E/F with vp(a) > 1 and vp(b) = 1. Put d := min{2vr(a) —
1,vr(4)}, which is an invariant of E/F. There are three cases.

e Suppose that Mp/p = Q(+v/—=1). Then Ug/p = 1+ 4Zy. 1If d = vp(4), then by [BHOG,
Proposition 41.2(2)], 3 is contained in Ng/p £, which is a contradiction. Thus, we have d <
vp(4). Then we can find u € OF such that E = F(y/u). It follows that u(y/u)? = p(—1) = -1
since —1 ¢ Ug/p. Thus, pl8(\/u) = £4/=1 is contained in M,.

e Suppose that Mg/ p = Q(v2). Then Ug/r = %1 + 8Zy. In particular, Ug,p does not contain
5, hence the residue extension degree f of F//Qy must be odd. Moreover, by [BH06, Proposi-
tion 41.2(2)] again, we must have d = vp(4), hence vp(a) > vp(2)+ 1. Then we can find a uni-
formizer u of F' such that E = F(y/u). We have u(y/u)? = u(—1) = 1, and p*8(/u) = +2//2.
In particular, /2 is contained in M, -

e Suppose that Mg/p = Q(v/—2). Then Ug/rp = £1 + 2 + 8Zy. In particular, Ug,/r does not
contain 5 or —1. The remaining discussion is same as the above case, which we omit.

Statement (3) is proved. O

Theorem 4.18(2,3) allows us to make the following definition.

Definition 4.19. For every collection ¢ that is p-admissible, we denote by Q(u,e) the unique
M, [G(AF)]-submodule of (), such that Q(u,e) ®u, C is isomorphic to @, w(u,&,x) as a
C[|G(A%)]-module.

Corollary 4.20. Take an arbitrary object D, = (Au,iu, Ay, ) € A(p). For every sufficiently small
open compact subgroup K of G(AF), there is an isogeny decomposition

Ag ~ HAz(“’K), resp. A??d ~ HAi(“’K)
2 8
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of abelian varieties over E when n > 3 (resp. n = 2), where the product is taken over representatives
of Gal(C/Q)-orbits of all conjugate symplectic automorphic characters of A}, of weight one. Here,
A‘}?d is the endoscopic part of Ax when n =2, defined in (D.3), and

d(p, K) =YY dimew(p,&,x)¥,
e X

where the sum is taken over all €,x such that € is p-admissible.
It is clear that the integer d(u, K') depends only on the Gal(C/Q)-orbit of u.
Proof. This is a direct consequence of Theorem 4.18. ([l

Remark 4.21. Corollary 4.20 has a very interesting implication. Namely, if n > 3 and Xx has exotic
smooth reduction, that is, Xx has proper smooth reduction at some nonarchimedean place of E that
is ramified over F, then Hl (X /E) = {0} since A, cannot have good reduction at such a place.

At the end of this subsection, we will construct a canonical pairing
(4.3) (2 s Q) x Q) — M,
that is M,,-bilinear, non-degenerate, and G (A% )-invariant.

Definition 4.22. We define

(1) the Hodge divisor D on X, as an element in CH!(Xf)q, to be
o the usual Hodge divisor on the Shimura variety Sh(V)g if Sh(V)g is proper (Compact
Case),
o the canonical extension of the usual Hodge divisor on Sh(V)g to Xg if Sh(V)g is not
proper (Noncompact Case).
(2) the canonical volume of K to be

1
~ deg DL o (X k) ae)|

in which deg D! is regarded as a constant positive integer by Lemma 4.23(4) below.

vol(K) :

Lemma 4.23. We have
(1) The Hodge divisor D is almost ample (Definition 2.8).
2) For every transition morphism u X — Xk, WY Dy is rationally equivalent to Dg.
K K
(8) For every g € G(AF), T, Dk is rationally equivalent to Dypg—1, where Ty: Xggg-1 — Xp¢ is
the Hecke translation.
(4) The degree function deg D?{l is a constant positive integer on mo(Xg).

Proof. Consider (1) first. If n = 2, then (for sufficiently small K) X has genus at least 2. Since Dg
has positive degree on every connected component, it is ample, hence almost ample. Now suppose that
n > 3. If we are in the Compact Case, then the usual Hodge divisor is already ample. If we are in the
Noncompact Case, then Dy is the pullback of the Hodge divisor on the Baily—Borel compactification
of Sh(V)g. Since the latter is ample, D is almost ample (and in fact, not ample).

For (2,3), since D is the (canonical extension of the) usual Hodge divisor of Sh(V)g, it is functorial
under pullbacks and Hecke translations. For (4), the positivity follows from (1) and Remark 2.10; the
constancy is a consequence of (2,3). O

Thus, by Proposition 2.9, we obtain a polarization
O = 9XK7DK: A% — Ag.
Now we define the pairing (4.3). We choose an object D,, = (A, iu, Ay, 7u) € A(p), which induces

the object Dy = (A}, iy, A\, 7y) € A(u®). Then we have Q(u) = Hompg(Ax, Ay)g and Q(uc) =

HomE(AOO,AX)Q. It suffices to consider elements ¢ € Homp(Ax, A,) and ¢ € HomE(Aoo,AX).
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Since both A, and A,c are of finite type, we may choose some K such that both ¢ and ¢. factor
through Ag. The composite map

Ay A = (Ae)Y 25 AY, 25 A D 4,
belongs to Endg(A,)q = i,(M,). Now we define
(6, 6e)ys = vol(K) i, (¢ 0 Oxc 0 6F) € M.
Kl

For sufficiently small K and K’ C K, the degree of the transition morphism uj equals vol(K) -
vol(K")~! by Lemma 4.23(2). Thus, by Lemma 4.23(2) and Proposition 2.7, we know that (&, qﬁc)ff
does not depend on the choice of K, which we define as (¢, ¢c),. It is clear from the construction that
(4.3) is bilinear, independent of the choice of D,,, non-degenerate since 0 is a polarization for every
K, and G(AY)-invariant since { Dk} is functorial under Hecke translations.

4.3. Construction of Fourier—Jacobi cycles. Let V be a totally definite incoherent hermitian
space over Ap of rank n > 2, with G := U(V). From now on to the end of Section 5, we

e fix a conjugate symplectic automorphic character p: E*\AJ} — C* of weight one, and

o will only consider sufficiently small open compact subgroups K C G(AY) that are decompos-
able, that is, K can be written as [], K, when v runs over all nonarchimedean places of F'; we
call such K a level subgroup.

Let R be a ring containing Q. Let
Hr =67 (G(AF), R)

be the full Hecke algebra with coefficients in R, whose multiplication is given by the convolution with

respect to the canonical volume (Definition 4.22(3)). It is known that #% is an R[G(A®) x G(AY)]-
module via left and right translations. For g € G(A%), we denote by L, and R, the left and right
translations on ##%, respectively.

For a level subgroup K C G(A%), we have the Hecke (sub)algebra sk r = €°(K\G(AY)/K, R),
which admits an R-linear map

Ty: Hcr — 2" Y Xk x XK)R

sending f to the Hecke correspondence T/ , normalized by vol(K). For example, if f = 1g, then
Tf( =vol(K) - AXg € Z" 1 (X x Xk)r. The induced map (with the same notation)

Tk <ﬁfK’R — CHn_l(XK X XK)R
is a homomorphism of R-algebras. It is clear that ¢ = hﬂ x HEK R

Definition 4.24. Let II be a relevant representation of GL,(Ag) (Definition 1.2). We define @11 to
be the set of isomorphism classes of pairs (V,7°), where

e V is a totally positive definition incoherent hermitian space over A g of rank n,
e 1 is an irreducible admissible representation of G(A%) such that
— for a nonarchimedean place v of F' either split in £ or at which 75° is unramified, we have
BC(ng°) ~ I1,,
— m>° appears in HiB,T,(éTl(V), C) as a subquotient representation of G(A%) for some i € Z
and some place 7': E — C.

Proposition 4.25. Let II be a relevant representation of GL,(Ag). For (V,n™) € ®1, we have for
every 7' E — C that

(1) ™ appears in HiBJ,(éB(V),(C) semisimply for every i,

(2) 7 does not appear in HiBJ/(éTI(V), C)ifi#En—1,

(3) H ,(Sh(V),C)[x>] = IH}, ,(Sh(V),C)[x*] for every i.
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Proof. Put 7 := 7' | F, and fix a hermitian space V that is 7-nearby to V (Definition C.4). Put
G = Resp/g U(V), and identify Sh(V)® g~ T (E) with the (compactified) Shimura variety Sh(G, hy )
under the notation in Subsection C.1. .

We first note that 7 is not a constituent of the quotient representation pH%(Sh(G,hy ,/),C)/
IHiB(gl?l(G,hv,T/),(C), since otherwise IT will have two isomorphic cuspidal factors under Definition
1.2(1), which can not happen by Definition 1.2(2). Then (1) and (3) follow by the discussion in
Subsection D.2. .

If 7°° appears in IHiB(Sh(G,hvyT/),(C), then there is an automorphic representation 7o, ® 7> of
G(A) with mgise(Too ® ©°) > 1 such that H' (g, Kg; 7o) # {0}. By [Carl2, Theorem 1.2], we know
that IT is everywhere tempered. By Arthur’s endoscopic classification [Art13], which has been worked
out in [Mok15] and [KMSW] for tempered representations for unitary groups, we know that the local
base change of m,, must be I, which implies that 7, is a discrete series representation. In particular,
i has to be the middle degree n — 1. Thus, (2) follows.

O

Definition 4.26. Let IT and (V,7*) be as in Proposition 4.25. Let K C G(A%) be a level subgroup.
We say that a function f € J#k 1, where LL is some subfield of C, is a test function for >, if the
element

el (Th) € HE'Z2(Sh(V)k x Sh(V)k,C)
belongs to the subspace Hg;}(ﬁ(V)K, O)[(m>*) K] &¢ H%_T%(gl?l(V)K, C)[((m°*)V)] under the Kiinneth
decomposition for every 7': E — C.

Now we start to construct the Fourier—Jacobi cycles. We fix two relevant representations II; and Il
of GL,,(AE), and consider pairs (V,7°) € @y, for i = 1,2 with the same V. Let L. C C be a subfield
containing M, over which II?® and II5° (hence 7¢° and 75°) are both defined. In what follows, we will
regard 77° and 75° as irreducible L[G(A%)]-modules. Take a CM data D,, = (Ay, iy, Ay, mu) € Ap).

Let K C G(AY) be a level subgroup; and we now write X for Sh(V)g as in Subsection 4.2.
Step 1: We start from the cycle

APXpe x Dt e CH3 D (X e x X x Xk x Xg)g,
where we recall that D is the Hodge divisor on X (Definition 4.22(1)). Put
(A’Xx x DEYY = APX e x DN Xe x Xie x VX
as an element in CH*™ Y (X x Xy x VXg)g (see Definition 2.1 for the meaning of V).
Step 2: Choose an element ¢ € Hompg(Ag, A,). We push the above cycle along the morphism
idx,exxy X (poak): Xg x Xg x VX = X x Xg x A,
to obtain a cycle
(idxpxxp X (60 ag))(A3Xx x DY e CHHIMeQ/2 (X X x Ao,

where we recall that aj is the Albanese morphism (4.1).

Step 3: To proceed, we need to homologically trivialize the cycle in Step 2. Moreover, heuristically,
the Chow group CH"™ 1 HMwQ/2( X 1 5 X e x Au)& should be encoded in the cohomology /motive
HQ(”*l)HMH:Q]*l(XK x X x A,). The motive we study comes from the product II; x ITy ® p,
which appears in the cohomology H" ! (X ) @H" (X ) @ HMwQ=1(A ) as a direct summand
of the previous cohomology by a suitable Kiinneth decomposition. To make sense of it, we need
to introduce certain correspondences serving as projectors to the correct piece of cohomology.
For the factor A, we use the canonical projector T;?" in Definition 4.9. For Shimura varieties,
we choose test functions fi and fo in J#% 1, for 7{° and 75° (Definition 4.26), respectively. Put

FI(f1, f;0) i = |m0((Xi)pac)| - (Th @ TR © T (id e xxe X (60 ) (A X x D)V
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as an element in CH”fH[M“’Q]/Q(XK X Xg x Ay)L.

For i € Z, we denote by CH' (X x X x Au)i[iu] the subspace of CH'(Xx x Xf x Au)]hL on which
iu(M,) acts via the inclusion M, — L.
Proposition 4.27. Let the notation be as above.
(1) The cycle FI(f1, f2; )i belongs to CHM 1 FIMuQ/2( X 5 Xy x AL
(2) The image of FI(f1, f2; d)r in CHPIHIMuQ/2(Xp 5 Xpe x AH)E belongs to the subspace
CH”_H[M“:Q]/Q(XK x X X Au)i[iu] and depends only on the homological equivalence class of
Tfl ® Tf2
K9iK-
Proof. Take an embedding 7': E — C.

For (1), we realize that the image of CIEJ,(Tﬁ) fori=1,21is contained in ng (XK, C), while, by
Lemma 4.10, the image of cly ./ (T;*") is contained in Di<n,:q—1 H (Au, C). Thus, FI(f1, fo;0) Kk
is homologically trivial.

For (2), by construction, it is clear that the image of FJ(f1, f2; ¢)x belongs to CH" 1H+Mw:Q)/2 (Xg x

Xk X Au)i[iu]. For the other part, we pick another pair of test functions (f{, f) such that T{({ ® Tfé
is homologically equivalent to TQ ® T}%. By (1), it suffices to show that for every lrational prime £ and
every isomorphism ¢;: C = Q¥°, the pullbacks (T};1 ® T{? ® T;")* and (Tf} ® T;? ® Ti")* induce the
same map from CH”fH[M‘“Q]/Q(XK x Xg x Ay)L to

(44)  EEHET I (X X x Ay ) e, Q3 (n = 1+ [M, : Q)/2)) @y, C.

We denote the difference by (y. Again, since T{é ® T{? ® T/ and Tﬁ ® Tf{é @ T;" are homologically
equivalent, the kernel of ¢; contains CH"~1+[Mw:Ql/ 2(Xg x X x A,)?. Thus, ¢ induces a complex
linear map from

(4.5) CHHIMuQ2 (X 5 Xpe x A)e/ CHM M2 (X0 5 X A)L

o (4.4). We now explain that such map must be zero.
In fact, let ¥ be a finite set of places of F' such that for v ¢ ¥, K, is hyperspecial maximal. Let
%”KE’C be the partial Hecke algebra away from ¥. Then %I?,C ®c %”[?’(C acts on both (4.4) and (4.5)

via the factor X x Xk, under which (; is equivariant. In other words, (; is a map of %I?,C ®c %I?,(C'
modules. Since f; and fy are test functions for 7{° and 75°, respectively, the image of (; is isomorphic
to a finite copy of (WTO’E)KZ Q¢ (WSO’E)KE as an %ﬂ]gc ®c e%ﬂ[?’(c—module. Therefore, by Proposition
4.25(2), ¢; must factor through the image of the cycle class map from (4.5) to

2(n—1 M:Q
(Héén )((XK X XK)EaC,Q?C(TL - ].)) & Hét # ]((A/J,)E'aca Q?C([M/L : @}/2))> ®Q2‘C,Lzl C.
However, ¢y also commutes with the action of M, through the factor A, by the functoriality of T};;*.

As the actions of Q3°[M,] on H‘[é]t\/[“:(@} ((Ay)pac, Q3°) and Hgt\/[’“(@]_l ((AL) gac, Q9°) have disjoint support,
we conclude that ¢, must be zero. O

Definition 4.28 (Fourier—Jacobi cycles). We call FJ(f1, f2; ¢) k a Fourier—Jacobi cycle for I} x IIa @ p.
We call the image of FJ(f1, f2; &) in CH" "+ IMeQ/2( X0 Xpe x A,) [i)], denoted by FI(f1, fa; )5,
a natural Fourier—Jacobi cycle for 11y x Ils ® .

The following lemma states that Fourier—Jacobi cycles are compatible with changing level subgroups.

Lemma 4.29. We have
(1) Let K' C K be a smaller level subgroup. Then we have

(uf < uf xida,)* FI(f1, fo; )i = FI(f1, fo; ) cr-
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(2) For g € G(AY), we have
(Tg x Tg x ida, )  FI(f1, fo; 8)x = FI(RyLy f1, RgLg f2; 90)grg-1,
where Ty: Xy g1 — X is the Hecke translation.

Proof. For (1), put u = u?: Xy — Xk for short. Note that by definition, we have

vol(K) _y,
-TL,
vol(K")

wepfi
(u X u)" T =

for i = 1,2. Thus, for every a € CH”*H[M“:QVQ(XK/ x Xgr x A,)g, we have

vol(K")
vol(K)

2
(TR ® T2 © TS a = ( > (X uxida, ) (TR @ TR @ T (u x u x ida, )

by a standard computation of correspondences. Therefore, it suffices to show that

(u X u X idAu)*<idXK’XXK’ X (¢O QK/))*(ASXK/ X D?(Tl)v
_ Vvol(K) deg Dt
o VO](K/) deg D;L(_l

(i xy X (60 ag))s(A3 Xy x DYV

This is an easy consequence of the equality ax o Vu = agr. Thus, (1) follows.
Part (2) follows from the same argument for (1), together with the relations Tjf; = RyL,f; for

i=1,2, ¢o Albr, = g6, and [mo((Xk)mac)| = |mo((Xgrg-1)pac)|- O

For 7 € Z, put
CH'(Xoo X Xoo X A)f = lim CH'(Xg x Xge x Ay){
K

for 7 =0,§. The above lemma implies that we have well-defined elements
FI(f1, f2; 6) € CH I IMeQ2(x e X0 % A,)0,
FI(f1, fo; ¢)F € CHP HIMaQ2(X s X% AL)2 i)
Lemma 4.30. For every elements g, g1, 92 € G(AY), we have

FJ(RglflaRngQ;gb) = (Tgl X ng X idAu)* FJ(flaf27¢)a
FJ(Lg f1,Lgf2; 90) = FI(f1, f2: ¢),

where Tg: Xoo — Xoo denotes the Hecke translation by g.
Proof. The first equality is obvious. For the second one, we have
FJ(Rngfla Rngf2§ g¢) = (Tg X Tg X idA#)* FJ(Lgfl’ Lgf2; g¢)

from the first one. Thus,

FJ(LgflaLgf%gd)) -1 X Tgfl X idAH)* FJ(Rngfla RngfZSQ(Z))
-1 X Tgfl X idAu)*(Tg X Ty X idAH)*FJ(fl,fz; ¢)

J(f17f2;¢)7

in which the second equality is due to Lemma 4.29(2). O

= (Tg
= (Tg
=F
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4.4. Arithmetic Gan—Gross—Prasad conjecture. We first summarize the construction of the nat-
ural Fourier—Jacobi cycles in a more functorial way. Let IIj, IIy, (V,75°), (V,73°), and L be as in the
previous subsection.

Similar to Definition 4.16, for i € Z, we put
(4.6) CH! (Xoo X Xoo)l = li CHY(Xoo X Xoo X A) i)

Dp=(Ap i, ) EA(R)

in the category of L[G(A%) x G(A%)]-modules. It follows from Proposition 4.6(1) that the canonical
map CH' (X X Xoo X Au)]hL[iu] — CHZ(XC>O X XOO)E from (4.6) is an isomorphism for every object
D, € A(u), similar to Remark 4.17.

Then it is clear that the assignment (fi, f2,¢) — FJ(f1, f2,¢)? defines an L-linear map

FI: A @n A6, @, Qp) — CHEFMeQ2(x e x )

which is independent of the choice of D,, € A(u).
The Hecke actions induce canonical surjective maps

(4.7) A, — 72 @, (17°)"

of L[G(A%) x G(A%)]-modules for i = 1,2. Proposition 4.27(2) implies that FJ* factors through the
quotient

(757 @ (71%)") L (757 L (75°)") @, Qp)-

Together with Lemma 4.30, we conclude that FJ? is actually an L-linear map
FJ%: 77 @ 75° @, Q) — Homyg(az)«c(ax) ((ﬁ’o)v ®p (n5°)Y, CHR MU/ (X Xoo)i) ,

which is invariant under the diagonal action of G(A%) on the left-hand side. For every p-admissible
collection e (Definition 4.12), we denote by

FJL: 70 @ 75° @, Qu, €) — Homy g (az)xc(az)] ((WTO)V @1 (75°)", CHy HMRQI2 (X Xoo)1hL>
the restriction of FJ% to n$° @, m5° ®n, Q(p,€) (Definition 4.19).

Conjecture 4.31 (Unrefined arithmetic Gan-Gross—Prasad conjecture for U(n) x U(n)). Let II;
and Iy be two relevant representations of GLn(Ag) (Definition 1.2). Let p: EX\Aj — C* be a
conjugate symplectic automorphic character of weight one, and € a p-admissible collection. Let L. C C
be a subfield containing M,, over which both II3° and IIS° are defined. For pairs (V,n{°) € @11, and
(V,715°) € ®r,, the following three statements are equivalent:

(a) We have FJE # 0.

(b) We have FJZ # 0, and

dimg, HOIHL[G(A%")XG(A%O)] ((W?O)V &L (WSO)V, CHZ_1+[M“:Q]/2(XOO X Xoo)i) =1.
(¢c) We have L'(3,11; x Il @ p) # 0, and
Homy (g (ase) (77" @1 75° @, Q(p,€), L) # {0}

Remark 4.32. We have the following remarks concerning Conjecture 4.31.

(1) The equivalence between (a) and (b) can be regarded as a generalization of Kolyvagin’s theorem
for Heegner points.

(2) The assertion FJ? # 0 immediately implies Homy (g (az)) (7% @1 75° @, Qp, €),1L) # {0}

(3) By the multiplicity one part of the local Gan—Gross—Prasad conjecture, which is proved in
[Sun12] for our particular Fourier-Jacobi model, we know that

dimg, Homyg(az)) (77° ®@L m5° @, Qp,e), L) < 1.
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(4) By the (refined) local Gan—-Gross—Prasad conjecture, which is proved in [G116] for our partic-
ular Fourier—Jacobi model, we know that if

(4.8) dimy, Homy (g (ase) (77° @1 75° @, Qp,€),L) =1

from some p-admissible collection €, then the global root number of 1I; x Ilo ® p is —1, that
is, L(s,II; x I3 ® u) has odd vanishing order at the center s = % Moreover, we have
e If nis even, then the triple (V, 7$°, 73°) is uniquely determined; but € could be an arbitrary
p-admissible collection.
e If n is odd, then V could be arbitrary; but once V is chosen, 7{°, 75°, and € are uniquely
determined.
In other words, in both cases, once ¢ is given, the triple (V, 7%, 73°) is uniquely determined.

Now we state a refined version of the arithmetic Gan—-Gross—Prasad conjecture for U(n) x U(n).
We assume that all height pairings are defined. Take a level subgroup K C G(A$). For every object
D, = (Au, iy, Ay ) € A(p) and every p-admissible collection e, put

Homp(Ak, Ay, €) = Homp(Ak, A,) NQw, €);
Homp (A, A}, —¢) = Homp(Ag, A)) NQ(u°, —¢).
Conjecture 4.33 (Refined arithmetic Gan—Gross—Prasad conjecture for U(n)xU(n)). Let the setup be
as in Conjecture 4.31. Moreover, let K C G(AY) be a level subgroup, and D,, = (A, iy, Ay, mu) € A1)
a CM data for p (Definition 4.5). For every test functions fi, f, f2, fs € Hx L for n5°, (w°)Y, 75°,
(m5°)V, respectively, and every elements ¢ € Homp(Ak, A, ) and ¢c € HomE(AK,Al\j,—a), the
equality

(4.9) vol(K)? - (FI(f1, fa: )i, FI(FY L £33 6) k) e,
[y L(i, MiE/F) L,(%, I x Iy ® p) Vi v
— 2, AsCDT) L(1, Ty, AsSCUY) BT f J2 5 65 6c)

holds. Here, s(I1;) has appeared in Definition 1.2; AsT stand for the two Asai representations (see,
for example, [GGP12a, Section 7]); and B is a certain normalized matriz coefficient integral defined
immediately below.

For i = 1,2, we have LL-linear maps
A, — 1° @ (7°)Y — L(C C),
in which the first is (4.7) and the second is the evaluation map. For every f € 4, and g € G(AY),
we denote by ev(m{°(g), f) the image of L,f under the above composite map. In particular, the
assignment g — ev(m$°(g), f) is a matrix coefficient of 7°.
Consider a finite set ¥ of nonarchimedean places of F' such that K, is hyperspecial maximal for

v ¢ 3. Let dy be the unique Haar measure on G(Fy) under which the volume of Ky, equals 2 vol(K).
For fi. fY, fo. 3 € ., & € Qpu,e) and ¢ € Q(uc, —¢), we define

. -1
H?:l L(i, ’LLZE/F,’U) : L(%vﬂl,v x Il ® Nv))

BE(flaflvaf%fQ\/a¢a (bc) = ( H L(l,HLU,AS(il)n) 'L(l,HgyU,AS(il)n)

veXUP R
L evni(o), Sl 1) ex(ni o), 5 13- (96, 6c)u - dsg,
G(Fx)

in which

e f!is the transpose of f;, that is, fi(g) = fi(g7 ).

e fix fY denotes the convolution product in #%p,

® (, )y is the pairing (4.3).
By [Xuel6, Proposition 1.1.1(1,3)], the value of Bx:(f1, f)', f2, fo , &, dc) is finite and stabilizes when 2
is large enough; and we denote the stable value by B(f1, fy, f2, 5, &, ¢c).
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Remark 4.34. We have the following remarks concerning Conjecture 4.31.

(1) The left-hand side of (4.9) is independent of K. More precisely, if we take a smaller level
subgroup K’ contained in K, then the left-hand side of (4.9) is equal to

vOl(K")? - (FI(fu, f2; )i, FIAY 15500 k) R s x o0 A,

by the projection formula.

(2) The refined Gan—Gross—Prasad conjecture for the central value formula in this case is formu-
lated by Hang Xue [Xuel6, Conjecture 1.1.2].

(3) It is known by [Xucl6, Proposition 1.1.1(2)] that (4.8) holds if and only if 8 is nonvanishing
as a functional.

At the end of this subsection, we state a variant of Conjecture 4.33. The following definition (with
slightly different terminology) is taken from [RSZ20].

Definition 4.35. We say that a collection of correspondences z = (zx € CH" 1 (X x Xi)g)x is a
Hecke system of projectors if
(1) zx is an odd projector (Definition 3.10) for every K,
(2) we have (idx,, x ul)ezie = (Ul x idx, )*2x € CH" Y X x Xp)g for every transition
morphism ullg: X — Xk,
(3) for every g € G(AP), we have Tyzx = 2
tion.

gk g-1 where Tg: X g o1 — X is the Hecke transla-

Remark 4.36. We have the following remarks concerning the existence of Hecke system of projectors.

(1) If n = 2, then 2z = (2x,,py )k constructed in Lemma 3.11(1) is a Hecke system of projectors
by Lemma 4.23.

(2) If n = 3, then z = (2x, p, )k constructed in Lemma 3.11(2) is a Hecke system of projectors
by Lemma 4.23 and Proposition 2.12(2).

(3) If n > 4 and F # Q, then odd projectors exist by [MS19, Theorem 1.3]. Note that since we
consider trivial coefficients, there is no need to require the Shimura data to be of PEL type in
that theorem; see [MS19, Remark 2.7].

(4) If n > 4 and F = Q, then one probably needs to use projectors for intersection cohomology;
see [MS19, Theorem 1.4].

Now take a Hecke system of projectors z = (zx ). We will use z to modify Step 1 in the construction
of FJ(f1, f2; ¢) k. Namely, we consider

ASX e = prlfl AP Xy € CHX D (X x X x Xi)J,

2K

where pr[zﬂ is defined in Definition 3.13. Then we replace A3Xy by A3Xy in every later step, and

denote the final outcome by
FI(f1, fo; )% € CHP I IMQ2 (x5 X 5 A,)0.

Conjecture 4.37 (Refined arithmetic Gan—Gross—Prasad conjecture for U(n) x U(n), variant). Let
the setup be as in Conjecture 4.33. Take a Hecke system of projectors z = (zx )i . Then the equality

(4.10) VOl(K)? - (FI(f1, fa; )i, FI(AY 153 0 i) Ko x e A,
H?zl L(i, luiE/F) L,(%) I x I ® p) Vi v
= TR LT, A DY) - (1, T, A DTy D1 f J 01 0c)

holds.

Remark 4.38. We have the following remarks concerning Conjecture 4.37.

(1) We have a similar statement for FJ(f1, f2; ¢)% as in Lemma 4.29. In particular, the left-hand
side of (4.10) is independent of K.
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(2) By a similar argument for Proposition 4.27(2), one can show that the image of FJ(f1, f2; )%

in CH? 1+ IMuQ/2( X 5 Xpe AM)E equals FJ(f1, fo; gb)hK This is why we expect the variant
conjecture to hold as well, in view of Remark 3.2.

(3) One of the advantages of introducing the auxiliary projector z is that one can show that the
left-hand side of (4.10), regarded as a functional in (¢, ¢ ), factors through the map

Homp(Ak, Ay, €) X HomE(AK,Al\j, —e) = Qu, e) @, QUps, —¢)

and becomes M ,-linear. See Remark 5.11.

5. ARITHMETIC RELATIVE TRACE FORMULA

In this section, we discuss a relative trace formula approach toward the arithmetic GGP conjecture
for U(n) x U(n). In Subsection 5.1, we prove the doubling formula for CM data. In Subsection 5.2,
we introduce the global arithmetic invariant functional and its local version at good inert primes for
which we perform some preliminary computation. In Subsection 5.3, we prove the formula for the
orbital decomposition of the local arithmetic invariant functional.

We keep the notation from Section 4. We fix a conjugate symplectic automorphic character
p: EX\AJ — C* of weight one, and a p-admissible collection e (Definition 4.12).

From now on, we will restrict ourselves to the Compact Case. We will identify E as a subfield of C
via a fixed complex embedding 7’ € ®,,. Put 7 :=7"| F, and fix a hermitian space V that is 7-nearby
to V (Definition C.4). In particular, V is anisotropic. Put G := Resg/g U(V), and identify Xy with
the (proper) Shimura variety Sh(G, hy /) under the notation in Remark C.2.

5.1. A doubling formula for CM data. We start by performing some preliminary computation of
the Beilinson—Bloch—Poincaré height pairing

(5.1) vol(K)? - (FI(f1, f2: )i, FI(FY L 151 60) i) B e,

for a level subgroup K C G(A*°) and a CM data D,, = (A, i, Ay, 7u) € A(p), as in Conjecture 4.37.

Consider an intermediate number field E C E' C C such that E’ splits X (Definition 2.1). Put
X = (Xi)w, Ay = (A)m, A = (A)p, ¢ == 6w, and ¢, = (6)m. We will suppress
E’ in the fiber product X x g Y of schemes if X and Y are obviously over E’. For every element
P € Xg(mo(X))), we have the induced morphism

ap = (ag)p: X — Al
from Definition 2.3 and Definition 2.1. We put
APP X = (idxy xp % (¢ 0 ap))u Al Xk € CHM QIR (X0 5 X x A7),

AP X = (idyy wxr, X (¢ 0 ap)).AZX g € CH' M2 (X X 5 AlY)R,.
Lemma 5.1. Suppose that E' is sufficiently large such that D?(_l can be represented by a finite sum
> ciP with ¢; € Q and P; € Xk (mo(XY)). Then we have

1
[E' : E](deg D)2

: N Y ch'
> cicy (TR @ TR @ TE) AP X, (T) @ T @ T AL X R0F 1
/[:7j

(5.1) =

Proof. This follows immediately from the definition of FJ(fY, f5'; ¢c)% and Definition 4.22(2). O
Let P, € CH'(A, x AY) be the Poincaré class on A, x A). Put
Qu = (TP @ TA")*P, € CHY (A, x A))w,
and for P,Q € Xk (mo(X%)), put
Qﬁ:}%’P’Q = (¢ oap x ¢.o ag) Q€ CHl(X}( X X}{)MM.
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Lemma 5.2. For P,Q € Xg(m(X))), we have
(Th @ TR @ T2 ASP X, (T] @ TR @ T AZQX R |,
= (pias A XK, (X x X % Qﬁ:%’RQ)'p>{24A§,ff*flv,f§*f2VXK>§(]iXX}(XX}(XX}{
where Aifl,szK = (T{(l ® Tf(? ® idXK)*AiXK € CH2(”_1)(XK x Xy % XK)]% for f1,fo € Hx L.
Proof. Consider the following commutative diagram of in the category Sch g

Xie X X x Xpe x X

Xie X Xpe x Xpe x A XKXXKXA’XXK
Xpe x Xje x Xie Xie X X x A, x AY X x X x X
\ / X} /
X x Xje x A}, X x Xje x A/

in which all diamonds are Cartesian, and oy = idy; xx; X (¢ oap), ag = idxr wxr X (¢ 0 ag),

g1 = P123, 42 = P124.
Put P, = (Xj x Xj) x Py and Q, == (Xj x Xj) x Q). By the definition of the Beilinson-Bloch-
Poincaré height pairing, we have

(Th © T @ T AP X, (T4 ' T ®© T AL O X k)R vy
= (T} @ TR @ T ALY X, 1 (Ploas (T @ TR @ TS AZQX )R8 0
(5.2) = (g} (TR @ TR @ TV AL X i, P.g3 (T eTE © T;%n)*Ag’chXK)?}f’(Xx;(XAMLV
where we have used [Bei87, 4.0.3] for the last equality. Note that we have
G(T @ TR @ T APFP X e = (T @ TR @ T @ iday ) ] AP X
= (T ® TR @ Te™ @iday ) gion, AS Xk
= (T @ T @ T @ iday ) Brari A2 X g,
and similarly
BT @ T @ T ALCX, = (T © T ®idy, © T four3 A¥X k.
Then it follows that
(5.3) (5.2) = ((T;/"™)" Brary g,fl,szKa77;-(TZ%H)*52*T§A§,f1V,f;XK>)B(2xX}<xA;LxA;v

where we have suppressed the expression id, in the notation of correspondences as it is clear which
factor the correspondence acts on. Using [Bei87, 4.0.3] again, we further have

(5.3) = (BrriAl 4 1 XK, Q) -BZ*TSAE,fIV,f;XKbB(?(xxg(xA;xA;y
= (%A zf1 szKa(S Ql ’YTTSAE S vaK>)B(]'3 X X1 x X5 x X
<7§T1A XK,CS*Q/ ATEA zfl*fl Sixfy VXK>X}’3 XX x X4 x X}
= (p 23A Xk, 0" Q P124AZ SE LY 5y VXK>X’ XX X X4 x X4
The lemma follows by noting that § = Sz 091 = 1092 =idx; «x; X (¢ cap) x (¢, 0 ag). O
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Lemma 5.2 suggests us to compute the class Qﬁ’?{“’P’Q € CHI(X}( X X}()MH, or rather its homological
equivalence class by Lemma 3.5. To do this, we first review some doubling construction and Kudla’s
generating series of special divisors which was introduced by Kudla [[<ud97] in the context of orthogonal
Shimura varieties.

Definition 5.3. Let V(E)™ C V(FE) be the subset consisting of x such that (z,z)y is totally positive.
Take z € V(E)T, and denote its orthogonal complement in V by V*. For g € G(A*), we have the
composite morphism

509t Sh(G by )

where G* = Resp/q U(V?), and the first arrow is induced by the inclusion V¥ C V of hermitian
subspaces. The morphism s, 4 is finite and unramified. We define

T
1=X Kg—1 —g>XK,

“1NGz(A>) 7 Sh(Gthﬂ'/)gKg g

gKg

Z(x,9) K = (Sx,9)« Sh(vahVIJ’)gKg‘lﬁGx(A‘X’)

as an element in Z'(Xg).

We denote by .7 (V(A%)) the space of complex valued Schwartz functions on V(A%), which admits
an action by G(A®°) via the variable. For every ¢ € .7(V(A¥)), we define the generating series of
special divisors attached to ¢ (of level K) to be

Z(¢)k = —¢(0)Dk + > e~ 2 Trr/Q(mo)v > IR VACRT
z€U(V)(F)\V(E)* 9eGT(A>)\G(A>)/K
as a formal series in Z'(Xf)c, where Dy is (some representative of) the Hodge divisor (Definition
4.22).

Lemma 5.4. The generating series of special divisors Z(¢)k is Chow convergent, that is, an element
in CZ (Xr) (Definition 3.3).

Proof. This is [Liulla, Theorem 3.5(2)] (with g = 1), together with the fact that CH'(Xf)c is of
finite dimension. u

We study the relation between generating series of special divisors and the spaces Q(u,e) and
Q(u¢, —¢). Choose a nonzero element o (resp. ) in HY(A,(C), ') (resp. HY(A)/(C), Q")) on which
M, acts via the inclusion M), < C, such that under the canonical pairing H;(A,, C) x H} (A),C) = C,
a and @ pair to one. It is clear that for ¢ € Q(u,e) and ¢ € Q(u¢, —¢), the (1,1)-form

ORFOTES ¢*a A <Z5§07c
on Xk (C) does not depend on the choice of the pair (a, ac), which is moreover in HZ (X g, M, (1)).

By [BMM16, Proposition 5.19] and [Liul4, Lemma 5.3], ¢ ¢ ¢ is a Kudla-Milson form which, in the
notation of [BMMIG, (8.8)], equals 6, 5(—,1), where

<?5=s01,1®( X soo) ® ¢

Pp\{7}
for a unique ¢ € L (V(A®)) as in [BMMI16, (8.9)]. The assignment (¢, ¢c) — ¢ gives rise to a map
(5.4) 0: Qp,e) @n, Qps, —e) @, C— S (V(AF)).

Lemma 5.5. The map 0 (5.4) is an isomorphism of C[G(A>)]-modules.
Proof. For g € G(A*), we have g¢ ¢ gp. = T; (¢ © ¢c) = TZGWM@(—, 1) = 0¢F7“7T2§&(—, 1). On the

other hand, we have T;(}b =011 ® <®¢F\{T} gpo) ® (g.¢). Thus, 0 is G(A>)-equivariant. The map 0
is apparently injective, so is surjective by [Liul4, Lemma 5.3]. The lemma follows. ([l

Lemma 5.6. We have
(1) The cohomology class clB(Qﬁ:(fg’P’Q) € H4(Xk x Xk, C) depends only on 9(¢ @ ¢.).
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(2) There is a unique C-linear map
cQui: S (VIAF)K — HE (XK x Xk, C)
¢ QP

such that

(a) CQD ($2¢c) _ CIB(QZ):?{C’P’Q) for every pair (¢, ¢c) € Homp(Ax, Ay, e) xHomp (A, A), —¢)
and every P,Q € Xk (mo(Xk));

(b) A*cQP o = clp(Z(¢)x) € HE (X, C) for every ¢ € S (V(AF))X.

Proof. The class CIB(Qﬁ’%’P’Q) € H3(Xk x Xk, C) is given by the (1,1)-form pj¢*a A pipias on
Xk (C) x Xg(C). Part (1) follows immediately.

For (2), by (1) and Lemma 5.5, there is a unique C-linear map c¢Q,, i satisfying (a). However, it
also satisfies (b) due to [BMNM 16, Proposition 8.3]. O

Remark 5.7. The maps {cQ,, k }k in Lemma 5.6 are clearly compatible under pullbacks, hence induce
a C-linear map c¢Q,: /' (V(AF)) = HE (X X Xoo,C) == ling HZ(Xg x Xk, C).

Definition 5.8. We say that an element Zx € Z'(Xg x Xg)c is a doubling divisor (of level K ) for
an element ¢ € .7 (V(A))K if clg(Zk) = CQ:fK, and Zk has proper intersection with AXx.

Lemma 5.9. For every element ¢ € y(V(AOEO))K, there exists a doubling divisor of level K.

Proof. By linearity, it suffices to consider the case ¢ = (¢ ® ¢c) for (¢, ¢c) € Homp(Ax, Ay, €) X

Homp(Ak, Au? —¢). Take an intermediate number field £ C E’ C C such that E’ is Galois over F,
splits X, and satisfies X (mo(X})) # 0. We choose an element P € X (mo(X%)). Then
1
_ ¢s¢pec,0P,oP
2K = g > Ak

c€Gal(E'/E)

is an element in Z'(Xx x X ), such that clg(Zk) = CQZ’K by Lemma 5.6(2). By Chow’s moving
lemma, we may replace Zx by another rationally equivalent cycle that has proper intersection with
AXp. The lemma follows. g

Now we can state and prove our doubling formula for CM data.

Proposition 5.10. Put f; = fi* f fori=1,2. If we write f; =3, ds]lg:1Kng:1 as a finite sum
with ds € L and gs € U(V)(A¥),'0 then

* Lgs *
= st : <P135A2XK3> (AXKk, x Ty T2 Z%s)-PmﬁAzXKJ)B(?(
s S

holds, where Ky = K N g;Kg;', and Zy, € ZMX x Xg)c is an arbitrary doubling divisor for
(¢ ® gsde) (which exists by Lemma 5.9).

Proof. To shorten notation, we put dx = (deg D’}{l)_l.

By Lemma 5.1, Lemma 5.2, we have

52

(5.5) (5.1) = [Ei-

¢>¢c7P Py«
chc] (Pias A2 X s, (X x X X Q. K )p124A2,f1,f2XK>](3)]?}<)4'

1074 i elementary to see that every element in .%% 1. can be written in this way.
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By Remark 4.38(1), we may replace K by K’ :=,(g5 ' Kgs N K,) and possibly enlarge E’ to obtain

62, . b,0c,Pi,Pi\ _x BB
(5.5) = ﬁ ZCiCJ<P123A§XK’v (Xgr X Xpor X QLK ])-P124A§,f1,f2XK’>(X;(,)4
i,J
d?« 9.06.PuPiy A3 BB
(56) ;SCZC] p123A XK/ (XK/ X XK/ X QN K’ J).p124AZ’]]'gS_1Kngs_1’f2XK,>(X}(/)4.
Since ng]lg 1Kng*1 = ]legSKg;1 = 1k, by Lemma 4.30, we have
¢7gS¢CaP{§7P§ * BB
(5.6) ZClCJ (PTas A2 Xk, (X X Xjor X Qe ! )-P124A§,11K5,LgszXK/>(X;(,)4
7] S
d 5 ’ ¢795¢67P1‘87P5 BB
(5.7 = Z (B E - Zczc] P123A Xk, (XK' X XK/ QM,K/ )P124Az ]le,LgSfQXK’>(X’ )4
S

For each individual s, we may descend the corresponding term down to X }(s again by Remark 4.38(1).
Choose a representative >, c¢; P of D”_1 with ¢} € Q and P} € Xk, (m0(X,)). Moreover, by Lemma

S C7P 7PS
3.5 and Lemma 5.6, we may replace Q¢g fe P by Z% K, ®F E'. Then we have

Zd 5K ZC (Plas A2 Xk, (XK, X XK, X Zk,)- SEIVAN: 1Ks,Lgsf2XKs>?)1?Ks)4

* BB
= st P123AZXK37 (X, x Xk, ¥ Z}Z).plmAile ,LgSfQXKs>(XKS)4’
S

where in the second equality, we use the fact that >, c] = deg D%:l = (5;(::. The proposition then

follows by [Bei&7, 4.0.3]. O
Remark 5.11. Proposition 5.10 implies that, for given data f1, fo, f, 9, 2, the assignment
Hompg(Agk, Ay, €) X HomE(AK,AX, —) = C
(&, be) = vol(K)? - (FI(f1, fo; )i, FIY s 125 0e) i) X X A,
factors through Q(u,e) ®ar, Q(u, —€) and extends uniquely to an M,-linear map
Qu,e) @nm, Qpc,—e) = C
by considering all level subgroups K.

5.2. Arithmetic invariant functionals. In view of Proposition 5.10, we need to study global arith-
metic invariant functionals defined as follows.

Definition 5.12 (Global arithmetic invariant functional). Let K C G(A*) be a level subgroup. For
test functions f € # c and ¢ € S (V(AR))E, we define the global arithmetic invariant functional
to be

T5(f, @) = (Pi3s AL Xk, (AXk ¥ Tf{ X ZK)~P§46A2XK>)B(]§’<7

where Zy € Z'(Xx x Xg)c is an arbitrary doubling divisor for ¢ (Definition 5.8, linearly extended
to coefficients in C).

We introduce two important conventions, which will be adopted from now on.

(1) We will regard T{( as an algebraic cycle, rather than a Chow cycle, on Xg x Xk

(2) Whenever we have two cycles A and B in a regular scheme X that have proper intersection, A.B
will be regarded as the cycle >~ mc(A, B) - C (rather than the associated Chow cycle), where
the sum is taken over all irreducible components C' in A N B with m¢ (A, B) the intersection
multiplicity.
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Definition 5.13. Let K C G(A™) be a level subgroup. For a doubling divisor Zx € Z'( Xk x Xg)c
for ¢ € S (V(AR))K, we put

ZI?' = ZK —p;(AXK.ZK - Z(d))K)v

where we regard AXg.Zx as in Zl(XK)@ and recall that pe: Xg X X — Xk is the projection to
the second factor.

It is clear that Zy, € CZ'(Xx x Xg) (Definition 3.3), AXk.Zy, = Z(¢)k, clg(Zy) = clg(Zx) by
Lemma 5.6(2), and

(5.8) I (f, @) = (Plss AS Xk, (AXk x T{( X ZIQ?)‘P§46A§XK>)B(?(

by Lemma 3.5.
To proceed, we introduce the notation of (relative) regular semisimple elements.

Definition 5.14. Consider a field extension F'/F and put E' .= E @p F’.

(1) We say that a pair of elements (£, x) € U(V)(F') x V(E') is reqular semisimple if the vectors
{€x]i=0,...,n— 1} span the E’-module V(E').

(2) The group U(V)(EF") acts on U(V)(F') x V(E') via the formula (¢, z)g = (g7 '¢g, g~ x), which
preserves regular semisimple pairs. Denote by [U(V)(F")x V(E")] the orbits of U(V)(F')xV(E’)
under the above action, and by [U(V)(F”’) x V(E’)],s the subset of regular semisimple orbits.

(3) We say that a function on U(V)(F’') x V(E') is regularly supported if its support consists of
only regular semisimple pairs.

(4) We say that a function F' on U(V)(A¥) x V(A®) is reqularly supported at some nonar-
chimedean place v of F' if we can write FF = F' ® F, in which F,, as a function on
U(V)(Fy) x V(Ey), is regularly supported in the sense of (3).

Proposition 5.15. Let K, f, ¢, Zx be as in Definition 5.12.
(1) The cycles AXg x T{( X Z[Q? and pie A3 X intersect properly in X?(.
(2) If f ® ¢ is regularly supported at some nonarchimedean place v of F, then pissA3Xg and
(AX g x T{( X Zg).p§46A3XK have empty intersection on X%.

Proof. For (1), we have to show that every irreducible component C' of the intersection of AXg x
T{{ X ZIQ? and p3,6A% X has dimension 2n — 3. However, it is easy to see that C is a closed subscheme
of the fiber product

A3 Xk X (xpexxpexxr) (X XY x Z) =Y xx, Z,

where Y (resp. Z) is an irreducible component in the support of T{< (resp. Z;?). But then the
morphism Y — Xk is finite étale, and Z has dimension 2n — 3. Thus, C' has dimension at most 2n — 3.
On the other hand, since p3;s A3 X is a regular subscheme, the dimension of C' is at least 2n — 3.

For (2), it is clear that the statement is equivalent to that AX g ﬁT{( N ZIQ? is empty in Xx x Xg. As
AXgNZy, = Z($)x, we have to show that T{(ﬂZ(qﬁ)K = (), which can be checked on X (C) x X (C).
By complex uniformization, we have

Xr(C) = UV)(F\ (D x U(V)(AF)/K),

where D is the corresponding hermitian domain of dimension n — 1.

If f =0, then there is nothing to prove. Otherwise, we have ¢(0) = 0. Thus, we need to show
that for every z € V(E)™ and g,h € U(V)(A), if f(R)¢(g 'z) # 0, then Trpx N Z(z,9) = 0 in
Xk (C) x Xg(C). We prove by contradiction. Let D* C D be the subdomain that is perpendicular
to z. If Tkpx N Z(x,9) # 0, then we may find 21 € D, g1 € UV)(AY), h € KhK, z, € D",
gz € U(V")(AF), and & € U(V)(F), such that (zz,9,9) = (21,91) and (zz, 929) = &(21,91h). These
relations imply that z, = £z, and g,g = £g.gh. The second equality implies that hig~lz = g~ g ¢ x
for i > 0. Now since z, = £z, the vectors {z, & 'z,...,6 (" Dz} C V(E) are linearly dependent. In
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particular, the pair (h,, g, 'z) € U(V)(F,) x V(E,) is not regular semisimple, which is a contradiction.
Thus, (2) follows. O

We would also like to know whether one can choose a cycle representative of zx such that pp}ss A2 X g
and (AXg x T{( X Zg).p§46A§X K have empty intersection as well. At this moment, we do not find a
uniform answer to this question. On the other hand, the contribution of the difference A3 Xy — A3 X
in the height pairing should be negligible in the comparison of relative trace formulae. In what follows,
we will only consider A3Xy in the decomposition into local heights, suggested by Proposition 5.15.
Moreover, in this article, we only consider the local heights at good inert primes, which we now explain.

Definition 5.16. We say that a prime p of F'is a good inert prime (with respect to K, f, ¢) if

e p is inert in E,

e the underlying rational prime p is odd and unramified in F,

e if we denote by p the set of all primes of F' above p that are inert in £, then there exists a

self-dual lattice Aq C V(F}) for every q € p such that

— K = K x [] e, Kq in which Kj is the stabilizer of Aq for every q € p,
— f = F2® ®qep £ in which f = 1g,,
— ¢ =L ® Qyep P in which ¢ =14,

We fix a good inert prime p. From now on, we work in the category Sch /O, "

Let X be the canonical integral model of Xx over O, (Definition C.21), which is a proper smooth
scheme in Sch /OB, of relative dimension n — 1. Then the Zariski closure of T{( in X x Xk is an étale
correspondence, which will be denoted by the same notation. Let Zg (resp. Z(¢)x) be the Zariski
closure of Zk (resp. Z(¢)k) in X x Xk (resp. Xk ). Similar to Z;?, we put

(5.9) 27 = 2Zi — p3(AXk.2x — Z(P)K),

which is a formal series of divisors on Xk, whose generic fiber is Z;?.
From now on, we work in the category Sch /O,

Definition 5.17 (Local arithmetic invariant functional). Let K, f, ¢, Zx be as in Definition 5.12 such
that f® ¢ is regularly supported at some nonarchimedean place v of F,'! we define the local arithmetic
invariant functional at (a good inert prime) p to be

Zu(£,8)p = 2108 0r /b| - x (Opiss %) b, OBk x T x 20)p31sd’ %) ).
K

where x denotes the Euler-Poincaré characteristic (see Remark 5.18 below), and for a formal series
>_j¢jZj of cycles on X%, we put (’)(Zj cjZj) = 32;¢jOz; as a formal series of Oxg—modules.12

Remark 5.18. For a Noetherian scheme X, we denote by DP | (X) the bounded derived category of

coh

Ox-modules with coherent cohomology. By Proposition 5.15(2),
O(pizsA%Xi) @6, O((AXi X T x 2).p5isA° Xic)
K
is a formal series in DY, (X% ®z F,), which implies that its Euler—Poincaré characteristic is a formal
series in C.

Proposition 5.19. In the situation of Definition 5.17, we have
Zi(£.9), = 21og|0p/pl - x (O(th) b, O(AZ(@))).
K

U1t is clear that v can not be in p-

12The reason we add the factor 2 in front of log |Or/p| is the following: Zx (f, @), is supposed to “approximate” the
local term of Z5% (f, ¢) at the unique place u of E above p, hence the factor c¢(u) in (3.1) is log |Og /pOr| = 21log |Or /p|.
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Proof. First, by the same argument for Proposition 5.15(1), we know that AXx x Tf( X Z;? and

p316A3 XK have proper intersection on X¢. Since AXf, every component of T{(, and Z[Q? are all
Cohen—Macaulay schemes, we have

O((AXk x T x Z7).PhisA* i) = O(AXk x T x 27) @0, O(phssA° i)
K

= O(AX x Th x 27) 85, O(P316A*Xk).
K

Thus, we have

O(ptssA’Xi) @6, O((AXi X Th x Z7) PhioA’Xic)
K
* V] *
= O(pi35A° Xk ) ®H(5X?{ O(AXk X Tf{ X Zp) ®](L9X?( O(p3ssA° X

— (OissA%) 95, OF3sA X)) @b, O x T, x 25)

= O(A3(Xk x Xi)) @%(XK O(AXg x I x 27).

xXg)3

Restricting to X'Z, we have

Zic(£.9) = 210g[Ox /o] - x (O(adi) 5, O(th) 5, O(2D)).
By (5.9), AXk and Z}? have proper intersection. Since both have Cohen—Macaulay components, we
have
O(AXK) ®6 , O(Z;) =~ O(AXK) @o,, O(Zg) = O(AXK N Z;) = O(AZ($)K).
K

K

The proposition then follows. 0

5.3. Orbital decomposition of local arithmetic invariant functionals. To further study the
intersection number in Proposition 5.19, we need a certain moduli interpretation of the integral model
Xk and Z(¢)x. We will follow the discussion and notation in Subsection C.4. In particular, we denote
by Spl, the set of primes of F' above p that are split in F.

Definition 5.20. A frame for the (good inert) prime p (with the underlying rational prime p) contains
the following
e an isomorphism between the two E-extensions C and E°,
e a CM type ® of E containing the fixed embedding 7/, such that elements in ® inducing the
same prime in Spl, induce the same prime of F,
e a rational skew-hermitian space W§° over A¥ of rank 1 such that W(W§°, ®€) is nonempty
and that W§° @ Q, admits a self-dual lattice,
e a sufficiently small open compact subgroup Lo = Lf x (L), of H?(A) in which (L), is the
stabilizer of a self-dual lattice in W§°® ®a~ Q,, where HE® is the group of similitude of W,
e a point P: Spec Ogpr — M(V, W§°, (I))?(I:p,LO as in (C.8), whose reduction is in the supersin-

gular locus, where Ey" is the maximal unramified extension of E, contained in EJ°.

Now we take a frame. Put k := OEgr ®z Fp and X = Xk ®0Ep OEpnr- By Remark C.22, the point
P provides us with a Cartesian diagram

(5.10) X}g Spec OEgr

| Jawer

r qO (o]
MV, Wg°, )111{7[,0 — M(W§g°, @°), ®OE(1>,(;7) OE{:“
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of schemes over O B In particular, for every locally Noetherian scheme S over OEgr, the set AR (S)
consists of equivalence classes of nonuples (Ao, 0, Ao, 7h; A, 3, A\, 1P, n;pl) in which (Ao, 0, Ao, 75) is the
base change of (Ao, %0, Ao, ) to S.

We introduce the moduli interpretation of integral special divisors.

Definition 5.21. For z € V(E)" and ¢* = (47,94 | q € Spl,)) € U(V)(AFE), we define a relative
functor
S, Z(3, 0K — XK

in the way that the fiber over a point (Ao, o, Ao, 7h; A, 3, A, P, nzpl) € XZ°(S) consists of
p € Homg((Ao,%0), (A,i4)) ®0p OF,p)

such that for every geometric point s of S,

e the element p. € Hompgga.r (HS* (Ags, A%P), H{* (As, AP)) belongs to nP((g?) '),

e the element p, € HqGSplp Homo, (Aos[(a7)>], As[(a7)®]) ®0, E, belongs to

q q
1P ((9q ') qespL, )-

Proposition 5.22. For z € V(E)" and g% € U(V)(A%®), we have

(1) The relative morphism Sy.g0 1S representable, finite, and unramified.
(2) There is an isomorphism

nr . nr
Sz,g2 (X)OE;;*r By~ H Sz,(¢2.9qlacp) ®E L
(gq|q€E)»9qGU(VZ)(FQ)\U(V)(Fq)/Kq79q_1$€Aq
of relative functors over X @p E;*, where s, (g% galacp) is defined in Definition 5.35.

(3) For every point z € Z(x, g)% (k), the induced ring homomorphism R, — R, is surjective whose
kernel is a principal ideal that is not contained in pR,. Here R, (resp. Ry) denotes completed
local ring of Xi& (resp. Z(x,9)§) at z (resp. y :=s, »(z)).

Proof. Part (1) follows from the same argument in the proof of [[XR14, Proposition 2.9].
For (2), put X = Xk ®p, E;". For every point P = (Ao, i0, Mo, b A, iy A, np,n;pl) € X¥(S), we
will construct a functorial bijection S;;E P= L, s;;P between the fibers.

For the forward direction, take an element p as in Definition 5.21. Let (A, ,) be the quotient abelian
scheme (A/p(Ao),7), which is naturally an (E, sigy ¢ — ®¢)-abelian scheme (Definition C.10). Denote

by o: A — A, the quotient homomorphism, and define a homomorphism pg = cAy LopYod: A — A
for some ¢ € Z(Xp). Then we obtain a prime-to-p isogeny (0,p0): A — A, x Ag. Let A, be the induced

p-principal polarization of (4,,,). Choose a representative 7 in its K?-class such that g,on?((g?) 'z)
is the zero map. We define 1) to be the composition

Va:(A%O,P) — V(A%o’p) ﬁ HOHIE@QA"O'p (H?t(AO& Aoo,p)7 H?t(Asa Aoo,p))
2% Hompggacer (HS' (Ags, A%P), H' (A, AP)).

Let n2: AR Pz — Hompggas»(H{*(Ags, A>P), H{" (Ags, A°P)) be the homomorphism sending z to

¢ (z,z)v. Then we have (n) @ 1) o (g")™' = (0,p0)« ©n”. We have a similar construction for
1715,%1, whose details we omit. Finally, we obtain (Ao, io, Ao, 7h; Ap, ips Ap, 5, nls};l) together with the Og-

linear prime-to-p isogeny (o, p0): A — A, x Ag, which provides an element in the fiber s, ;P where
g = (%94 ]9 € p) is (a representative in) the unique double coset in the disjoint union satisfying
9q lg = p, under any isomorphism Ay~ HomoEq (TqAos, TqAs) of hermitian lattices over Op,, where
T denotes the g-adic Tate module.
For the backward direction, take an element in the fiber s;éP for ¢ in the disjoint union, given by
data
(Ao, io, Ao,y A", i X P P € Sh(G”, by o) gicg-1nGe(as) (S)
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together with an Op-linear prime-to-p isogeny p’': A — A’ x Ay satisfying relevant properties. We just
take p as the composite homomorphism

A "V IAY A1
Ay =% A % AY 2= A

for some ¢ € O; () It is straightforward to check that the above constructions are inverse to each

other, hence (2) is proved.

For (3), let I be the kernel of R, — R.. To show that I is principal, we follow the strategy in the
proof of [Howl5, Proposition 3.2. 3] for the case F' = Q.'% Let (Ao, io, Ao, nh; A, i, A\, 1P, nSpl) be the
universal object over R,, which is equipped with the universal Og-linear homomorphism p: (Ag)r, —
Ap_ . It suffices to study the obstruction to lifting p to a homomorphism Agg — Ag where S := R, /mI
with m the maximal ideal of R,. Note that the Hodge exact sequence

0 — FilH{®(Ap) — H{E(Ap) — Lie(4g) — 0
splits into a direct sum of
0 — FilH{®(Ag)y — H{®(Ag)q — Lie(Ag)q — 0

indexed by primes q of I above p, in which H{®(A4y), is the direct summand of H{®(Ap) on which
Op,(p) acts via the prime q. We have a similar splitting for A. Moreover H{R(Ag)q (resp. H{R(A),) is
a free O, ®z, Ry-module of rank 1 (resp. n). By the signature condition, the obstruction to lifting p
coincides with the obstruction for the canonical lifting g, : H{® (Ags), — H{R(Ag), to respect Hodge
filtration. The remaining argument is then same as [How 15, p.668] by taking j:=7® 1lg — 1 ® mg for
some 7 € Oép N E, . Note that, j. Lie(Ay) is always nonzero in our case.

Finally, we show that I is not contained in pR,,. If it is, then by (1) the image of s b contains the

entire connected component of (X3); at y. Thus, for every k point (Ao,zo,)\o,no,A,z,)\ nP, Spl) in
this connected component, there exists a nonzero homomorphism from (Ag, ig) to (A,). In particular,
(A, 1) is not p-ordinary, which contradicts to the main theorem of [Wed99] saying that p-ordinary locus
is dense. Here, we apply [Wed99] to the PEL type moduli scheme in Remark C.13 parameterizing
(A, i, A\, 7P) where 7} is an away-from-p level structure induced from A} and n?. Thus, (3) is proved. O

By the above proposition, (s, »)«Z(z,g2)¥ is a relative divisor on X}¥. In what follows, by abuse

L] 9=

x?g

of notation, we denote the cycle (s, »).2(z,g" P)W again by Z(z,gP)¥
immediate.

2. The following corollary is

Corollary 5.23. Let p be a good inert prime. If ¢(0) = 0, then we have
Z()k®0y, Oppr = > e 2 Trrg(@e)y > H((g2) ) Z (2, g

z€U(V)(F)\V(E)T gEEU(V) (A E)\U(V) (A5 E) /K2
as a formal series in Z'(X¥)c.

Proof. By Proposition 5.22, the relative divisor Z(z, g®)¥ is the Zariski closure of

> [T 24, (95 %) - Z(z, (g% 941 a0 € p))

(941a€p),94 €UV (Fg)\U(V)(Fy)/Kq 9€R
in X¥. The corollary follows since ¢ = ¢* ® ®q€E @, in which ¢ = 1,,. ([l

Lemma 5.24. Let K, f, ¢ be as in Definition 5.12 such that f ® ¢ is reqularly supported at some

nonarchimedean place v of F. For a point y € X3F(k), if (y,y) belongs to both Tff and the support of
AZ(P)K, then y is supersingular (Definition C.24).

INote that [[How15] considers all residue characteristics; while we only consider p that is unramified in E.
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Proof. By Corollary 5.23, it suffices to consider Txpx N Z(z,g)¥ for some g,h € U(V)(A¥E) and
x € V(E)* such that (hy, g, 'z) is regular semisimple for some nonarchimedean place v € p. We only
consider the case where v is not above p, and leave the similar case where v € Spl, to the reader.
Let (y,y) be a k-point in Trpx N Z(x,g)}, with y as in the lemma represented by the object
(Ao, o, Moy mb; A, i, AP, nf,pl) € XiF(k). By the moduli interpretation, there is a coprime-to-p isogeny
§: A — A such that {mP = 7P o hP, and an element p € Homyg((Ao,i0), (A,1)) ®op OF,p) such that
p« € Hompggaer (HS (Ao, AP) H{*(A, A>)) belongs to n((g*)'z). Consider the situation at v.
We may choose a representation s, in the K,-class of n2 such that p., = nF(g, '2). Possibly replacing
h, by some element in K,h,K,, we have (¢! o p)., = nE(hig, tx) for every integer i > 0. Since
(hv, g, ') is regular semisimple, {(£" 0 p)4y,i = 0} generates Homo,, (TyAo, TyA)g as an E,-module
where T, denotes the v-adic Tate module. In particular, Homy((Ao, i), (4,7))g has dimension n over
E. Thus, A[p®™] is isogenous to Ag[p>°]®", hence is supersingular. O

In Subsection C.4, we define the supersingular locus M(V, W§°, )}?p 1o~ For K as above, we
define M(V, W§°, @)% | to be the image of M(V, Wg°, @)i@p’ 1, under the natural quotient morphism
MV, W, @)k, 1, = M(V, W, @) 1,. Define X3 to be the preimage of M(V, W§°, )% ; under
the left vertical morphism in the diagram (5.10), which is a Zariski closed subset of X} ®0Egr k.

Finally, let X IS(S’/\ be the completion of XF" along X7. Proposition C.26 provides us with the following
uniformization isomorphism

(5.11) AN = UV)(F)\ (N x U(V)(AFP)/K?)

depending on the frame we chose,'* in particular, the point P. Here, K? = K?® x qup\{p} I_(q,

where K* = K® under the isomorphism ¢pp and I_(q is the stabilizer of Aq in Lemma C.25(6). The
uniformization isomorphism is functorial in K® and under Hecke translations. We recall the new
hermitian space

V := Homy ((Aok. tok), (Ak, ix))Q
equipped with the hermitian form (C.11), satisfying Lemma C.25, which is “p-nearby to V”. In
particular, we have an isomorphism
V @p Fy ~ Homy,((X ok, ok ), (X &, i) -

Applying the constructions from Subsection 1.3,'° we have for every nonzero z € \_/'(Ep), a sub-

formal scheme Z(z) of N; and for every g € U(V)(F}), an isomorphism g: N — N with its graph
I C N2 =N XOA e N. Now we arrive at the theorem on the orbital decomposition.
P

Theorem 5.25. Let K, f, ¢ be as in Definition 5.12 such that f ® ¢ is regqularly supported at some
nonarchimedean place v of F'. For a good inert prime p, we have

Iic (£, ¢)p = 210g |OF /p| - > o2 I8y Orb(fF, 671 €, 7) - x (Or, €6, Onz())
(ED)E[UV)(F)xV(E))lxs

after choosing a frame (Definition 5.20). Here, we define the orbital integral as
Ob(f’ @' Ea) = [ 5 D) dg.
UV)(AFF)

where
. fp = }{@ ®qeg\{p} fq in which fE = f2 under the isomorphism 1p (C.13), and }’q =1g,,

14HOW€V€I‘, one can show that the supersingular locus X3 itself is intrinsic, which does not depend on the choice of
the frame.

15Comparing the notations with those in Subsection 1.3, we have (X, 45, Ak) = (Xn,tn, An), N = N,,and VQp F, =
V..
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. IEJP = 553 ® ®qep\{p} (}Sq in which éE = @2 under the isomorphism vp, and (Z)q = ]1;\51,
e dg is the Haar measure on U(V)(A*®) such that K* has volume vol(K).

In particular, the Euler—Poincaré characteristic appearing in the formula is finite for every reqular
semisimple pair (€, ).

Proof. We choose a representative x € V(E)™ in the coset U(V)(F)\V(E)". We first compute
(5.12) 3 PE((g%) ) Z(x, )"

95=(gP,9q10€Sp1,)EU(V)(AF E\U(V)(AF2)/KE

where Z(z,¢%)%" is the formal completion of Z(z,¢2)¥ along the supersingular locus. Let

S be a connected scheme in Sch'/orﬁJr on which p is locally nilpotent, and take a point
P

(Ao,io,)\O,ng;A,i,)\,np,nzpl) € Z(z,g")%"(S). Then we can choose an element # € V and an
E-linear quasi-isogeny p: A — Ay X S over S such that
e the image of p;! o Z, in HomE®QAoo,p(H‘it(A03, A>P) H{(As, A%P)) belongs to nP((gP) "'z,
o the image of ! o 7. in [lyesy, Homo,  (Aos((a")™], Aul(a)=]) B0, Ey belongs to

P (95 2)qespl, ),
. p_1 o z lifts to an Op-linear homomorphism Ag[q>°] — A[q>°] for every q € p.
Here, we note that (Ao, ig, Ao, 75 is identified with the base change of (Ao, 20, Ao, 1h) to S. By Propo-
sition C.26, p is given by an element gP € U(V)(A%") on S. In particular, we have (Z, %)y = (z,2)v.
Choose a representative z in the coset U(V)(F)\V(E) of this norm. Then under the isomorphism
(5.11), we have

(5.12) = > o ((3))'2) - [2(2), %),
greEU(VE)(AFPI\U(V)(AFP)/KP
where [Z(Z), g*] denotes the corresponding double coset in the right-hand side of (5.11).

By linearity, we may assume f = lgjpx for some h € U(V)(A¥) with h, = 1. In particular,
T{( = vol(K)Tgnri. By Proposition C.26, the formal completion of Txpx in (XIS(S’/\)2 is simply the set-
theoretical Hecke correspondence T gpjpzp under the isomorphism (5.11) by Proposition C.26, where
hy =1 for q € p\ {p}. We first analyze the intersection Tgyz, g0 N A[Z(Z),g°]. If the intersection
is nonempty, then [Z(Z), gPh*] and [Z(Z), §°] are in the same connected component. By (5.11), there
exists £ € U(V)(F) such that (gPKP = gPhPKP, that is, Lrnr((g°)'€g") = 1. Moreover, if we
fix a set of representatives of the orbits of U(V)(F) under conjugation, then one can always choose
€ to be one of the representatives. Now we think conversely, for any such representative ¢, the
cosets gPKP satisfying £gPKP = gPRPKP are those satisfying 1gnx((g°) '€g*) = 1. In this case,
the intersection T gy ge N A[Z(Z), gP] is isomorphic to the image of I's N AZ(Z) under the quotient
morphism N? — (C\N)? for some subgroup C C U(V)(F,) acting on A discretely.

Now we claim that I'sNAZ(Z) is a proper scheme in Sch ;. By definition, we have EZ2(7) = Z(€x). Tt
follows that 'z AZ(z) is isomorphic to a closed sub-formal scheme of ﬂ?z_ol Z(&z), whose underlying
reduced scheme is a proper scheme in Sch/, by [[KR11, Theorem 4.12] for F, = Q, and [Cho] in
general. Thus, the underlying reduced scheme of Izn AZ(z) is of finite type over k. By the previous
discussion, it suffices to show that Tz, 50 N A[Z(Z), gP] is a scheme of finite type over k. However,

this follows from Lemma 5.24. As a consequence, Y (Opé ®H@N2 On g(a—;)) is finite. Moreover, it is equal

to x (OTI'(PBPI'(P ®E@N2 OA[Z(E)@’])- Therefore, the theorem follows from (5.12) and Lemma 5.24. O

Remark 5.26. We believe that a more general notion of good inert prime, for which a result similar to
Theorem 5.25 holds, should just be a prime p of F' that is inert in E, and such that there is a self-dual
lattice A, C V(F,) satisfying

e K = K? x K, in which K} is the stabilizer of Ay,



54 YIFENG LIU

e f=f"® f, in which f, = 1g,,
* ¢ = ¢" ® ¢, in which ¢, = 1,,.

In the formula for Zx (f, ¢), in Theorem 5.25, the orbital integral has the decomposition
Orb(f*,¢";¢,%) = Orb(f5, 6% &,2) - [ Orb(1g,,15,:¢.2),

gep\{r}

in which we decompose the Haar measure on U(V)(A%*) such that K, has volume 1 for every

aep\{p}

We now compare the term

210g |O/p| - ] Orb(1g,,15,;€2) X (Or, @6, Onz))
aep\{p}
with the orbital integrals on the general linear side. Recall the notations Mat, ; and M,, from Subsec-
tion 1.7, and denote by S, the Op-subscheme of Resp, /0, Maty, , consisting of matrices g satisfying
g-9°=1In.
Definition 5.27 ([Liul4, Section 5.3]'%). Consider a field extension F’/F and put E' := E @p F'.

(1) We say that a pair of elements ((,y) € S, (F’) x M, (F") is reqular semisimple if the matrix
(y2(i+j*2y1)2j:1 is invertible in E’, where we write y = (y1,y2) for y1 € Mat, 1(F’) and
Y € Matl,n(F’).

(2) The group GL, (F") acts on S, (F") x M,,(F") via the formula ({,y1,%2).9 = (97 'Cg, 9 y1, y29),
which preserves regular semisimple pairs. Denote by [S,,(F’) x M,,(F")] the orbits of S,,(F") x
M,,(F") under the above action, and by [S,,(F’) x M, (F")];s the subset of regular semisimple
orbits.

(3) Suppose that F’ = F, for some place v of F. For a regular semisimple pair ((,y) € S,(F") x
M, (F"), we define its local transfer factor to be wy(¢,y) = pug/p(det(y1,Cyi,. .. ().
We denote by [S,(F’) x M, (F')]E the subset of [S,,(F') x M, (F")],s of orbits (¢,%) such that
ppyp(det(y20" ™ 72y1)P o) = £1.

(4) We say that two regular semisimple orbits (¢, y) € [Sp(F') x M, (F")]ss and (€, ) € [U(V)(F') x
V(E")];s (Definition 5.14) match if

e ( and £ have the same Characteristic polynomial as elements in Mat,, ,,(E’),
o Yoy = (£2,2)y for 0 <i <n— 1.

Corollary 5.28. In the situation of Theorem 5.25, suppose that for every orbit (€,z) € [UV)(F) x
V(E))ls, Conjecture 1.9(2) for Eq/Fy for every q € p\ {p} and Conjecture 1.12 for E,/F, hold. Then
we have

Ik (f, @)p = — Z e~ 2 Trp/q(Z,2)y

(£2)E[UV)(F)xV(E))ls

L (H wq(C, ) Orb(s; Is,, (0, ) 1M, (05,)3 y))

qep

Orb(f",¢"; ¢, 2)

ds

where (C,y) € [Sp(F) x My (F))ys is the unique orbit that matches (€, ).

Proof. It suffices to note that Orb(0; ]]'Sn(OFp)7 ]an(OFp); ¢,y) = 0, which is Conjecture 1.9(1) and is
known (see Remark 1.10). O

Remark 5.29. To obtain a global result, we would like to find test functions }E, &E on the general
linear side, in order to obtain some matching relation with the local intersection number Zy (f, @), at

16Note that we have changed the roles of rows and columns from [LLiu14], in order to match the convention of generating
series.
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every place v qf F. If v is split in F, then it is expected that Zx (f, @), vanishes, and the matching
test functions f,, ¢, are obtained from f,, ¢, by an elementary way as in [L.iul4, Proposition 5.11].
If v is neither split nor a good inert prime, then we do not know what to do at this moment.

APPENDIX A. PROOF OF THE ARITHMETIC FUNDAMENTAL LEMMA IN THE MINUSCULE CASE (BY
CHAO L1 AND YIHANG ZHU)

The purpose of this appendix is to prove the arithmetic fundamental lemma for U(n) x U(n), namely,
Conjecture 1.12; in the minuscule case. We follow the setup and notation in Subsection 1.3.

A.1. Derivatives of orbital integrals via lattice counting. We take a regular semisimple orbit
(¢, y) € [Sn(F) x My (F)], where y = (y1,y2) € Maty, 1(F) x Maty ,(F). Let (§,z) € [UV,))(F) x
V., (E)].s be the unique orbit that matches (¢,y). By definition, ¢ and £ have the same characteristic
polynomial; and we have
(A1) yallyy = (Ez,x), i=0,...,n—1.
Recall that we denote v(¢,y) = val(det(y1,Cy1,...,(" '41)), and define the transfer factor to be
w(Cy) = (=1)"CY). We also put A((,y) = det(ygci+j_2y1)zj:1 and 0(C,y) = val(A(C,y)). As
(¢,y) € [Sn(F) x M, (F)], we know that §(¢,y) is odd.
Define two Og-lattices
Li=L¢y, = Opy1 ® OpCy1 @ - ® OpC™ 'y1 C Mat,, 1 (E),
Ly = L¢y, = Opys ® Opyal & - - & Opya(™ ™' € Maty ,(E).
For every integer ¢ > 0, we define the set
M;(¢,y) = {Op-lattice A C Maty, 1 (E) | L1 €A, Ly CAY, A=A, (A = A, lengthy (A/Ly) =i},

where V denotes dual lattice under the standard sesquilinear form

(A.2) Mat, 1(E) x Maty ,(E) = E, (z1,22) — 25 - 1.
Lemma A.1. We have
d ; ‘
e Orb(s; 1g, (0p): I, (0p): G %) = —2logq - w(C,y) > (—=1)'(v(¢,y) — i) - #M;(C, ).

Proof. By definition, we have
Orb(s; 1s, (0,), I, (OF); C,y) = /GL . 1s,00)(97 " ¢9) I, 0p) (9 Y1, y29) i (det g)| det g|Edg.

Notice that (g7 1y, y2g) belongs to M,,(Op) if and only if y; € g Mat,, 1(Or) and y2 € Maty ,(Op)g™"

hold. We also notice that g='(g belongs to S,,(OF) if and only if (g Mat, 1(Og) = g Mat, 1(Og) and

Matl,n(OE)g_lg‘ = 1\/Ia‘51,n(OE)g_1 hold. Moreover, the Og-lattice g Mat,, 1(Og) is invariant under

the involution c, and is dual to Maty ,(Og)g~! under the pairing (A.1). It follows that the assignment
g A= A(g) = gMaty1(Op)

induces a bijection between the set

{9 € GLn(F)/ GLn(OF) | (971917929) € Mn(OF%ging € Sn(0Or)},

and the set
{Og-lattice A C Mat, 1(E) |y1 € A,ya € AV, A° = A, (A = A},

in which the latter is equal to
{OE—lattice AC Matn,l(E) | L1 CA Ly C AV, A=A, (A = A}

Clearly it further induces a bijection between such elements g with val(det g) = ¢ and such Og-lattices
A with length, (A/L1) = 4, namely, the set M;(¢,y). Now notice that we have

val(det g) = lengthy, . (Mat,, 1(Og)/L1) — lengthy, (A/L1)
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and

lengtho, (Maty,1(Op)/L1) = val(det(y1, Cy1, - .., ¢"'y1)) = v(¢, ).
It follows that if length, (A/L1) = i, then we have

pgp(det g) = (1)~ = (=1)" - w((, y)

and

| 1aetto) = 21084 ¢, -

The lemma is proved. O

Define two isomorphisms of F-vector spaces
¢1: Mat,1(E) =V, (E), 'y &2 i=0,...,n—1,
and
¢2: Matyn(E) =V, (E), yl'+> &2, i=0,....,n—1.

By (A.1), the standard sesquilinear form (A.2) transfers to the hermitian form on V;, (F) under ¢ X ¢s.
It is clear that under ¢1, the unique F-linear involution Mat, 1(E) — Mat, 1(E) sending a - ('y; to
a®-(¢Hy; = a®-(ly; for every a € Eand i = 0,...,n— 1 transfers to the unique F-linear involution
7: V. (E) =V, (E) satisfying 7(a - £&'x) = a® - ¢~z for every a € E and i = 0,...,n — 1.

Define the Og-lattice

L=L¢y =Opr®Oplx®--- @ Opt" 'z CV, (E).
Then we have ¢;(L({,y;)) = L for i = 1,2. For every integer i > 0, we define the set
N;i(C,y) = {Og-lattice A CV, (E) | L C A C L*,6A = A, A" = A,length, (A/L) =i},
where * denotes dual lattice under the hermitian form on V; (E).

Proposition A.2. We have

5(¢y)

d o
= OOrb(S; LS, 0r)> I, (0r)i G ¥) = —2logq - w(C,y) D> (=1)'(=i) - #Ni(C, y).
S=! Z:O

Proof. Notice that the isomorphisms ¢; and ¢9 induce a bijection between the sets M;((,y) and
Ni(¢,y) for every i. As lengthy, (L*/L) = 6(¢,y), we know that N; is empty unless 0 < i < 6((,y).

Moreover, the assignment A — A* induces an isomorphism between N;(¢,y) and Ns(¢y)—i (€ y). Since
d(¢,y) is odd, we have

5(¢w)
(—=1)"(¢y)
i=0
Thus, we have
5(C,y 5(¢w)
v(Cy) =) #Mi(Cy) = D (F1)'(=0) - #NilCy).
z:O i=0
The proposition then follows from Lemma A.1. O]

Remark A.3. There seems to be a sign error in [RT7Z13, Corollary 7.3(2)], which is corrected in the
more general Proposition A.2.



FOURIER-JACOBI CYCLES AND ARITHMETIC RELATIVE TRACE FORMULA 57

A.2. The minuscule case. Choose a uniformizer w of F. From now on we assume that (£, x) is
minuscule, namely, we assume
wl* CLCL",

where L = L¢ , as we recall. In this case, L*/L is a vector space over the residue field kg = F 2 of
E, which is equipped with an hermitian form induced from V. . Since £ € U(V,,)(F') stabilizes L and
L*, we know that ¢ induces an action £ on L*/L, which is an element in U(L*/L). We denote by
P(T) the characteristic polynomial of £ on L*/L. Since £ belongs to U(L*/L), we know that P(T) is
self-reciprocal. Here we recall that for a polynomial

R(T) = aka +---4+a1T +ag € EE[T]
with agay # 0, we define its reciprocal polynomial as
RY(T) = (a§)~! - T"- R(1/T)*;

and we say that R(T) is self-reciprocal if R(T) = R*(T).

Now for any irreducible factor R(T") of P(T), for P(T) defined above, we denote the multiplicity
of R(T) in P(T) by m(R(T)). Since P(T) is self-reciprocal, if R(T') is an irreducible factor of P(T),
then R*(T') is also an irreducible factor of P(T"). Thus, taking reciprocal R(T) — R*(T") induces
an involution on the set of irreducible factors of P(T"). We denote by NSR the set of all orbits of
non-self-reciprocal monic irreducible factors of P(T") under this involution.

Lemma A.4. If P(T) has a unique self-reciprocal monic irreducible factor Q(T) such that m(Q(T))
is odd, then

6(Cy) m
S (1) i) #N(Gy) = deg(ry - ML T ray))
i=0 {R(T),R*(T)}eNSR

Otherwise, we have

5(¢y) '
(=1)"(=4) - #Ni(¢,y) = 0.
i=0
Proof. This follows from the same proof as [RT713, Proposition 8.2]. O
Put A := L*. Since (§,x) is minuscule, we know that A is a vertex lattice, namely, it satisfies

wA C A* C A. Let V(A) be the Deligne-Lusztig variety associated to the vertex lattice A as in
[L7Z17, Section 2.5] and [RT713, Section 3|, which is a smooth projective variety over k, where k is the
residue field of F as in Subsection 1.3.

Lemma A.5. We have a canonical isomorphism

TeNAZ,(z) 2 V(A)*
of k-schemes.

Proof. Notice that we have a canonical isomorphism I'e N AZ,(z) & Z,(z) NN§. Let Ny C N, be
the closed Bruhat-Tits stratum associated to the vertex lattice A as in [LZ17, Section 2.6]. Then by
definition, we have

Zu(z) NNE = NS
By [LLZ17, Corollary 3.2.3 & Section 2.6], we have Ny = V(A). The lemma then follows. O

Lemma A.6. We have that V(A)é is empty unless P(T) has a unique self-reciprocal monic irreducible

factor Q(T) such that m(Q(T)) is odd. Assume that V(A)¢ is non-empty. Then V(M) is an Artinian
k-scheme, and

X(Ore ©6,, Onz, () = lengthy V(A = deg (T - TRI) 1 1l

5 (1+m(R(T))).

{(R(T),R*(T)}NSR



58 YIFENG LIU

Proof. The result follows directly from Lemma A.5, [.Z17, Corollary 3.2.3], [RT713, Proposition 8.1],
and [HLZ19, Lemma 5.1.1 & Theorem 4.6.3]. Strictly speaking, these references assume F = Q,,
but the same proof works for general F' as long as one replaces results related to the Bruhat—Tits
stratification and special cycles by more general ones in [Cho]. O

Theorem A.7. Conjecture 1.12 holds when (&, ) is minuscule.
Proof. This follows immediately from Proposition A.2, Lemma A.4, and Lemma A.6. (|

APPENDIX B. POLES OF EISENSTEIN SERIES AND THETA LIFTING FOR UNITARY GROUPS

In this appendix, we prove some results about global theta lifting for unitary groups, namely,
Theorem B.4 and its two corollaries. These results are only used in the proof of Proposition 4.13.
Thus, if the readers are willing to admit these results from the theory of automorphic forms, they
are welcome to skip the entire section except the very short Subsection B.1 where we introduce some
notation for the discrete automorphic spectrum.

B.1. Discrete automorphic spectrum. We recall some setup about the discrete automorphic
spectrum. Let G be a reductive group over a number field F. Let Zg be the center of G.
For an automorphic character x: Zg(F)\Zg(Apr) — C*, we denote by L2(G(F)\G(AFr),x) the
space of measurable complex valued functions f on G(F)\G(Ap) satisfying f(gz) = x(2)f(g) for
2z € Zg(AFr) such that |f(g)x'(g)|? is integrable on G(F)\G(Ar)/Zg(AF) for some (hence every)
character x': G(F)\G(Ar) — C* such that x - (X' | Zg(AF)) is unitary. The group G(Ar) acts on
L2(G(F)\G(AF), x) by the right translation. Denote by L3, (G(F)\G(AF),x) the maximal closed
subspace of L2(G(F)\G(AF),x) that is a direct sum of irreducible (closed) subrepresentations of
G(AFr). We put

dle @ Ldlbc \G(AF) )
where x runs through all automorphic characters of Za(Ar). Finally, denote by L2, (G) the subspace
of L3 (G) consisting of cuspidal functions. Both L;.(G) and L2 (G) are representations of G(Ar)
via the right translation.

Definition B.1. Let 7 be an irreducible admissible representation of G(Ap).

(1) We define the discrete (resp. cuspidal) multiplicity mqise(m) (resp. meusp(m)) of 7 to be the
dimension of Homga ,.)(m, L35 (G)) (resp. Homga ) (m, L2,4,(G))).
(2) We define a discrete (resp. cuspidal) realization of  to be an irreducible subrepresentation V;

contained in L. (G) (resp. L2, (G)) that is isomorphic to 7.

It is known that 0 < Mmeusp () < Maise () < 00.

B.2. Main theorem and consequences. Now we let F' be a totally real number field, and E/F a
totally imaginary quadratic extension. Denote by c the nontrivial involution of E over F.

Definition B.2. We say that an automorphic character p: EX\Aj — C* is strictly unitary if jio
takes value 1 on the diagonal AFURY ) C (RX,)FU as a subgroup of EX C AS.

Remark B.3. It is clear that a strictly unitary automorphic character is unitary. For every automorphic
character p of AJ, there exists a unique complex number s such that y| |5 is strictly unitary.

Let V,(, )v be a (non-degenerate) hermitian space over E (with respect to c) of rank n and let
W, (, )w be a (non-degenerate) skew-hermitian space over E (with respect to c) of rank m. Let G :=
U(V) and H := U(W) be the unitary groups of V and W, respectively. We form the symplectic space
Resg/p V ®@r W, and let Mp(Resg,/r V ®@r W) be the metaplectic cover of Sp(Resg/r V®@r W)(AF)
with center C!. Then we have the oscillator representation w of Mp(Resg PV ®F W) with respect
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to the standard additive character ¥p.'” Let = (pv,pw) be a pair of splitting characters for
(V,W), that is, (uy, pw) is a pair of automorphic characters of A}, satisfying py | Aj = ,u’g/ 7 and
pw | Ap = f p- Then it induces an embedding ¢,: G(Ar) x H(Ap) < Mp(Resg/p V@ W). By
restriction, we obtain the Weil representation

(B.1) wZ’W =wouy

of G(Ar) x H(A ). It induces the global theta lifting map @XYV: For an irreducible smooth subrepre-
sentation V C L2, (G) of G(AF), we obtain a subrepresentation @ZYV(V) CE>*H(F)\H(AF),C) of

cusp

H(AF). More precisely, there is a space of theta functions 6,(g, h) on G(F)\G(Ar) x H(F)\H(AF),
which is an automorphic realization of wX’W. Then QE,]V(V) is spanned by functions

h— 0.(9,n)f(g9)dg
G(F\G(AF)

on H(F)\H(AF) for f € V. Similarly, we have the reverse global theta lifting map @Z,W‘

We consider an automorphic representation m of G(A ) and a strictly unitary automorphic character
p: EX\AJ — C*. We study three objects associated to 7 and p as follows.

e Let S be a finite set of places of F' containing all archimedean ones and such that for v € S,
both 7, and j, are unramified. We then have the partial standard L-function L°(s, 7 x p).

e Let Gi be the unitary group of the hermitian space Vi := V @ D, where D is the hyperbolic
hermitian plane, let Q be a parabolic subgroup of G; stabilizing an isotropic line in D, and let
K C G;(AF) be a maximal compact subgroup such that the Cartan decomposition G1(Afp) =
Q(Ar)K holds. Let V; be a cuspidal realization of m (Definition B.1). Let I(V; X u¢) be the
space of functions f on Gi(Ap) such that for every k € K the function p — f(pk) is a KN

Q(A p)-finite vector in VBI(pu°-| |(]§LH)/2).18 For every f € I(V;®u®), we can form an Eisenstein
series 6q(g; fs) normalized such that Re(s) = 0 is the unitary line (see [Sha88, Section 2] for
details). By Langlands theory of Eisenstein series [Lan71, MW95], &q(g; fs) is absolutely
convergent for Re(s) > ”TH and has a meromorphic continuation to the entire complex plane.
e Let V; be a cuspidal realization of 7 (Definition B.1). Then we have the global theta lifting

@(Wu v (Vr). We will adopt the convention that if 4 | AL # pg,p with m == dimg W, then

W —
O v (V) = 0.
We have the following theorem, which is the unitary version of a weaker form of [G.JS09, Theo-
rem 1.1].

Theorem B.4. Let m be an irreducible admissible representation of G(Af), let Vi be a cuspidal
realization of w (Definition B.1), and let u: E*\A}, — C* be a strictly unitary automorphic character.
We have

(1) For so € C with Re(sg) > 0, consider the following statements:
(a) L5 (s,m x ) - L5(2s, 1, AsCY"™) has a pole at so, where As™ stand for the two Asai rep-
resentations (see, for example, [GGP12a, Section 7).
(b) {&q(g; fs) | f € I(Va B u®)} has a pole at so + j for some integer j > 0.
(c) @(Wu’y)’v(vﬂ) # 0 for some skew-hermitian space W of dimension n+ 1 — 2sy and some v
with v | Ay = u%/F.lg
Then (a) = (b) = (c).
(2) The skew-hermitian space W in (1c) is unique up to isomorphism.

171y this article, we will always use ¥r to form oscillator representations. Thus, in the sequel, we will no longer
mention the dependence of ¥ r when discussing oscillator representations.

c +1)/2
pe - D)

18He]re7 we regard vectors in V; X ( as functions on Q(A ) via the Levi quotient map.

197hig property is independent of the choice of such v since changing v results in a twist of @myy)’v (Vz) by a character.
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We will prove the theorem in Subsection B.3.

Corollary B.5. Denote the set of poles of L® (s, 7 x p) - L°(2s, As(_l)") in the region Re(s) > 0 by
Pol;?yu. Then

(1) If u is not conjugate self-dual, then Polﬁ,u is empty.

(2) If wu is conjugate orthogonal (Definition 4.1), then Pol;?u is contained in the set
{L‘H n—1 ntl _ E 7
2 02 1 2 217
(8) If u is conjugate symplectic (Definition 4.1), then Polfw is contained in the set {3, ”T_Q, el

%51}

Proof. This is a direct consequence of Theorem B.4. ([l

|3

Let Vi be a cuspidal realization of 7, and suppose that {&q(g; fs) | f € I(Vz B p¢)} has the largest
pole at smax. By Theorem B.4, there is a skew-hermitian space W of dimension n + 1 — 2825, Uunique

up to isomorphism, such that ny,u),\/(vﬂ is nonzero.

Corollary B.6. Let the notation be as above. Suppose that @YV )V(Vﬂ) is cuspidal. Then

mv),
(1) The space @E’X’V)’V(Vﬂ) is an irreducible representation of UW)(AF); and
(B.2) Vi =00,-1,-1y _w(O ) v(Va)),

where —W, (, )_w denotes the skew-hermitian space W, —( , )w, and we naturally identify
U(W) with U(=W).

(2) The space Xs,,,.(Vx B u¢) generated by residues of {&q(g; fs) | f € W Vz W u®)} at s = smax is
an irreducible representation of G1(Ar); and

(B3> ‘@smax(vﬂ' IE /’Lc) = (_)E/ul—l7y—1)77W<®E}X,V),V(V7r))'

(3) In the situation of (1) (resp. (2)), let mw (resp. 1) be the underlying (irreducible) represen-
tation of @?Z ») v(Vr) (resp. R Ve R ). If mw has a unique realization as a subquotient

in the space of automorphic forms on U(W), then meusp(m) =1 (resp. meusp(m1) = 0).

max (

Proof. Put m :=n 4+ 1 — 2sya for simplicity.

For (1), the irreducibility follows from [Wul3, Theorem 5.3], and (B.2) follows from [Wul3, Theo-
rem 5.1].

For (2), since the space generated by the constant terms of forms in %, (VxR p°) is an irreducible
representation of Mqg(Afp), where Mq is the Levi quotient of Q, the space %, (Vx X u¢) is an
irreducible representation of Gq(A). Then (B.3) follows from [\Wul3, Proposition 5.9].

For (3), we first study meysp(m). Let V. be an arbitrary cuspidal realization of 7. By Theorem
B.4, there exists a skew-hermitian space W’ of the same dimension m such that GXX:VLV(V?;) # 0.

As m < n, by the local theta dichotomy [S715, Theorem 1.10],2° we have W' ~ W. By the Howe

7) must be isomorphic to a

duality [GT16, Theorem 1.2], the underlying representation of QXX:V)N(V/

finite sum of myw. Then the assumption of my implies @EZ,V),V(V”) = GYZ:V),V(VQ‘ Thus, V; =V, by

[Wul3, Theorem 5.1]. In particular, meusp(m) = 1.

Then we study meusp(m1). Let Vi, be a cuspidal realization of 7. By the identity L3(s,m) =
L3(s,m) - L (5 — Smax, 11°), we know that L°(s, 71 x u) has a pole at syax + 1. By Theorem B.4, there
exists a skew-hermitian space Wy of dimension (n+2)+41—2(spmax+1) = m such that 6?);]711/)7\/1 (Vi) #
0. Again by the local theta dichotomy and the Howe correspondence, we have W; ~ W and that

the underlying representation of 6&711/) v(Vr;) must be isomorphic to a finite sum of 7w. Then the

assumption of mw implies @XZ v, (Vi) = @¥Z7y)7V(VW). Thus, V;, = @2;1,17V,1)’_W(G)E’Z7V)7V(Vﬂ)) by

1
vV

20At a nonarchimedean place, the local theta dichotomy is also proved in [GG11].
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[Wul3, Theorem 5.1], which is simply Zs,.. (Vz X u) by (B.3). This is a contradiction. Therefore,
mcusp(m) = 0. O

Remark B.7. In fact, in Corollary B.6, the space @XZ ») v (V) is always cuspidal, which follows from

an analogous statement of [G.JS09, Theorem 5.1, whose proof can be adopted to the unitary case as
well. Since we do not need this fact, we will leave the details to interested readers as an exercise.

B.3. Proof of Theorem B.4. We follow the strategy in [GJS09]. We first prove the following
proposition, which is a part of Theorem B.4.

Proposition B.8. Suppose that u¢ = ="

I(Va® u®)}. Then

(1) There is some skew-hermitian space W of dimension n + 1 — 2sy such that @gyy)yv(Vﬂ) # 0.

(2) All other positive real poles of &q(g; fs) have the form si — j for some integer j > 0.

. Let s1 be the maximal positive real pole of {&q(g; fs) | f €

Part (1) of this proposition is the unitary version of [(GJS09, Theorem 3.1]. The proof is very similar
to the argument in [Moeg97, Section 2.1] and [GJS09, Section 3], which are for orthogonal groups. We
will only sketch the proof with necessary modification for the unitary case.

We first introduce some notation. Fix a polarization D = 6T @ 6~ of the hyperbolic hermitian
plane D. For an integer a > 0, put §F = (6%)% and V, == V@ (6 © 5, ). Put G, := U(V,) and
let Q, C G, be the parabolic subgroup stabilizing the subspace ;. In particular, we may identify
Q1 with Q. Note that the Levi quotient of Qg is isomorphic to G x Resg/r GL,4. In particular, we

have the space of functions V; X (uc - | |Sg+a)/2) o dety, on Qq(AF), where det,: GL, — Gy, is the
determinant map. Similar to I(V; & u¢), we have the space Io(V; X 1) of functions on G, (Ar); and
for f, € 1o(Vx X 1), one can form the Eisenstein series &q,( ; fa,s) on G4(AF), which is absolutely
convergent for Re(s) > $2. In particular, Iy (Vy ¥ 1¢) = I(V; K 1) Let Poly(Vx B u€) be the set of
positive real poles of &, ( ; fa,s). Then s; is the largest number in Pol; (V; X 1€) by our assumption.

Lemma B.9. Let sg be an element in Poly (Vz X u®) such that so+ j & Poly (VxR u®) for every integer
j>0. Then sg+ “Tfl lies in Pol, (V; X ue).

Proof. This is the unitary analogue of [Mocg97, Remarque 1.1] and [GJS09, Proposition 1.1]. The
argument for [Meg97, Remarque 1.1] works in the unitary case as well. However, we would like
to remark that in [Moeg97, Remarque 1.1], the author assumes that sg is the maximal element of
Pol; (V; X u€). This is unnecessary since the argument only uses the fact that sg + j & Poly (Vz K p€)
for every integer j > 0. O

Now we recall the generalized doubling method for unitary groups. Again let —V be the hermitian
space with the negative hermitian form on V. Let V® be the doubling space V@ (—V). For an integer
a > 0, put

Ve=V°a (6] ®d,) =V, (-V).
Via this decomposition, we have a canonical embedding
t: Gy x G = U(VY),

where we have identified G with U(=V). Put V* = {(v,£v) € V° |v € V} and VI = V* @ 5+,
Let P, be the parabolic subgroup of U(V?) stabilizing the maximal totally isotropic subspace VI of
Vi. Then the Levi quotient of P, is isomorphic to Resg/p GLy;14. We have the space of degenerate

a

series Jq (s, 1) as the normalized induced representation Indg(z‘z);?F )(uC [ [°) odetptq- Let fg g bea
standard section in J,(s, u°). Then we can form the Siegel-hermitian Eisenstein series &p,( ; f5 ) on

U(VS)(Ap), which is absolutely convergent for Re(s) > %3¢, See [Tan99, Section 1] for more details.
Now for a standard section f7 ; € Ju(s, 1) and a cusp form ¢ € Vi, we have the function

(B.4) @)= [ TR )0l
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on G4(Arp). The following lemma is analogous to [G.JS09, Proposition 3.2].

Lemma B.10. Suppose that p| Ay = ,uj'E/F fori e {0,1}. We have

(1) The poles of the Siegel-hermitian Eisenstein series 5’pa( ; fas) in the region Re(s) > 0 are
all simple, and are contained in the set {“Fg=* "+3=t —1 .. }.
. . +
(2) The integral (B.4) is absolutely convergent for Re(s) > "3.
(3) The function fgf has a meromorphic continuation to the entire complex plane, whose possible
poles in the region Re(s) > 0 are contained in the set {"5*, %>t —1,...}.
(4) If s is not a pole of fg;f, then f;f is a section in the normalized induced representation

Ga(A c s
InanEAI;; Vr (M : ‘ |E) o detg.

Proof. Part (1) follows from Main Theorem of [Tan99]. The proof of (2-4) is same as in [Mog9d7,

Section 2.1]. In particular, the poles of fcff are contained in the set of poles of the Eisenstein series

ép,(9; fs | G(AR)). Thus, (3) follows from Main Theorem of [Tan99]. O

The following lemma is analogous to [Moeg97, Proposition 2.1] and [GJS09, Proposition 3.3].

Lemma B.11. For a standard section fg ; € Ja(s, 1¢) and a cusp form ¢ € Vi, we have the identity

/ &p, ((d', 9); f ) b(9)u(det g)dg = Eq, (g5 39
G(F)\G(Ar)

for g € Gu(AFr), as meromorphic functions in s away from the poles of fgf

Proof. The proof is almost same to the argument on [Mag97, p.214-215]. We will sketch the process.
To ease notation, we identify G, x G as a subgroup of U(VY) via «. We consider the double coset

(B.5) Pa(FNU(VE)(F)/Ga(F) x G(F).

We identify P,(F)\U(VS)(F') with the set of maximal isotropic subspaces of V. Let L be such a
subspace. Put dy, := dimg(LN(=V)). Then L and L’ are in the same double coset of (B.5) if and only
if dr, = dy/. In other words, we have a canonical bijection between (B.5) and {0,1,...,r} where r is
the Witt index of V. Moreover, the identity double coset corresponds to 0. For every d = 0,1,...,r,
we fix a representative 74 of the corresponding double coset (we take vy to be the identity matrix).
Then for ¢’ € G4(AF), we have

/ b, (1l',9): £2.)0(9)n(det g)dg
G(FN\G(AF)

= dz_% /G(F)\G( Ar) > fos(va(Y'g',79))d(g)p(det g)dg

(V' M€y Pa(F)1an(Gax C)(F)\(CaxC)(F)

- >

v €v7 'Pa(F)vaG(F)NGa(F)\Ga(F)

Lo 12 (a9, 9))#lg)u(det g)dg.
G(F)Ny, Pa(F)va\G(AF)
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It is easy to see that, since ¢ is cuspidal, the integration vanishes unless d = 0. Thus, we have

/ o, (1(g+ 9); 12.)6(g)n(det g)dg
G(F)\G(AF)

~'E€PG(F )G(F )NGal(

oo
= / AF) “1v¢',1))¢(9)dg

+/EP(F )G(F )NGa(
- 2 / 1220
V/EPu(F)G(F)NGa (F)\Ga(F) * G(AT)
= &q.(95 125).
Here, the last equality is due to the fact that P, (F)G(F) N Go(F) = Qq(F'). The lemma follows. O

fos(va('d', 9))d(g)p(det g)dg

The following lemma suggests that sections of the form f;f detect poles of &g, when a is sufficiently
large.

Lemma B.12. There exists an integer ag depending only on Vi and p such that for every integer
a > ag, if s is not a pole of {f2'¢}, then the functions {f3¢} for all standard sections fS, € Jo(s, )

and ¢ € V; span the whole space Indgzgig Ve & (u€ - | %) o detq.

Proof. This follows from the same discussion after [GJS09, Proposition 3.3]. O

Proof of Proposition B.8. Let s be an element in Pol; (V; X 1) such that 30 + 7 & Poly (Vx X u°) for
every integer j > 0. Put s, := 59 + “5=. Let a be an integer such that s, > 5 and a > ag, where qy is
as in Lemma B.12. By Lemma B.10, ff{ % is holomorphic at s = s,. By Lemma B.9 and Lemma B.12,
we may find some standard section fg, € Jo(s, %) and ¢ € Vi such that &q,( ; f&'?) has a pole at
s = 84. By Lemma B.11, we know that &p,( ;fs ) has a pole at s = s, for such fg ;. Therefore, sg
has to be the maximal element in Pol; (V; X u¢), that is, s = s1. In particular, (2) follows.

We continue for (1). By Lemma B.10(1), the pole must be simple, that is, Ress=s,&p,( ; fqs) # 0.
Put m :=n+1-2s; and m, = 2(n+a)—m. Let W? be a skew-hermitian space over E of rank m,. We
have a Weil representation of U(VS)(Ar) x U(W?)(Ar) on the Schwartz space .7 ((VF @ W) (AR)),
and a U(V?)(AF)-equivariant map

7O AV @ W(AF) = Indp {RG (| ) o dety

sending ® to fg (sa) , which is known as taking Siegel-Weil sections. For more details, see, for example,

[lch04]. Since my, 2 n + a, by [[K597, Theorem 1.2 & Theorem 1.3] and [l.ec94, Theorem 6.10], the
map
£ @A ((VE 0 W) (AF)) — Indp D5 (4 | ) o ety
Wa

by considering all possible skew-hermitian spaces W of rank m, up to isomorphism, is surjective.
Thus, there exist some W in the above direct sum and an element ® € . ((V} @ W*)(AF)) such
that fg“) = fos> hence Ress—s,&p,( ; 8“)) # 0. In particular, the Witt index of W* is at least
mg — (n + a). Now by the main theorem on [[ch04, p.243], we have the identity

Resses, &b, (5 [5)) =

)—c-/ Oy ( h)dh
UW)(PNUW)(AF)

as functions on U(VY)(AFr). Here, ¢ is a nonzero constant; W is a certain skew-hermitian space of rank
2(n+a)—mg = m determined by W?; and 6, 1) is a certain theta series on U(Vy)(Ar) x U(W)(AF)
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with respect to the pair of splitting characters (©°, 1) in which 1 denotes the trivial character. By
Lemma B.11 and our choices of fg  and ¢, the integral

(B.6) Oue,1)(t(g', 9), h)d(g)u(det g)dhdg

/G(F)\G(AF) /U(W)(F)\U(W)(AF)
is nonzero for some ¢’ € G,(Ar). Now we need to separate the variables ¢’ and ¢ in the above theta
series. Choose an arbitrary automorphic character v of Ay such that v | Aj = u} nE We have two
embeddings
/=1 xidywy: Go X G x U(W) <= U(Vy) x UW),
"1 Gy x G x UW) = (G, x UW)) x (G x UW)),

in which the second one is induced by the diagonal embedding of U(W). It follows from [HI{596,
Lemma 1.1] that

VoW 1 Va, \AY "

Wiy © ¢ = (W By o

for the restriction of Weil representations (B.1). Therefore, without lost of generality, we may assume
that there exist finitely many pairs (9((2° veys GKL V)) in which GEM) ) (resp. GEC V)) is a theta series on

Go(Ar) x UW)(AF) (resp. G(Ar) x UW)(AFr)) with respect to (u¢,v¢) (resp. (1¢,v)) such that
Oue.1)(1(g',9). ) = 2083 vy (g WO ) (9,1,

and that (B.6) is nonzero for some ¢’ € G,(Ap). Then we have

wo=[ | 0, (0(g'. 9), W) (g)n(det g)dhdg
GENG(AF) JUW)(ENU(W)(AF)

- / / Z% (g5 h) E,l (9, h)d(g)p(det g)dhdg
G(FN\G(AF) JUW)(F)\U(W)(AF) 5

-/ ety 019, (9, W) (g)u(det g)dg | dh
i JUW)(ENU(W)(AR) G(F)\G(AF)

->/ o) (95 ( / O )<g,h>¢<g>dg) dh.
i JUW)ENU(W)(AF) GP\G(AR) Y

In particular, there exists some i such that

/ 011, (9:1)é(g)dg # 0.
GNG(

Ar) (v
In other words, @?’va)vv(Vw) # 0, and (1) follows. O

Proof of Theorem B.J. By the Langlands-Shahidi theory, the poles of the Eisenstein series &q( ; fs)
are controlled by its constant term, which in term are control by the intertwining operator attached to
the longest Weyl element in Q\G1/Q. By the Gindikin—Karpelevich formula, we know that the poles
of the L-function

LS(s,m x p) - L%(2s, p, AsC=D")
LS(s41,m x p) - LS(25 4+ 1, u, AsC=1")
in the region Re(s) > 0 are contained in the set Pol; (VX pu¢). See the proof of [:.JS09, Proposition 2.2]
for a similar discussion in the orthogonal case.
We first consider the case where u¢ # p~!. Then LS(S,u,AS(il)n) has no pole for Re(s) > 0. On
the other hand, by [[Kim99, Corollary 2.2], the set Poly (V; K u¢) is empty. Thus, it follows easily that

L3(s,m X ) has no pole for Re( ) > 0 as well. Theorem B.4 is proved in this case.
Now we assume that p¢ = p~'. In other words, u| Ax = ME/F for a unique i € {0,1}. Part (2) is

(B.7)

a consequence of the local theta dichotomy [S715, Theorem 1.10]. It remains to consider (1). Let sq
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be a pole of L5(s,m x p) - L%(2s, 1, AsCD") as in (a). Let j > 0 be the largest nonnegative integer
such that so + j is a pole of L5 (s, 7 x u) - L%(2s, i, AsC™D"). Then the L-function (B.7) has a pole at
s0 + j. Thus, we have so + j € Pol; (V; X €), and (b) holds. For the implication (b) = (c), by Rallis’
tower property for the global theta lifting, we may assume that j = 0 in (b) and so+j & Poly (Vz X )
for every integer 5 > 0. Then by Proposition B.8(2), sy = s;. Then (c) follows from Proposition
B.8(1). 0

APPENDIX C. SHIMURA VARIETIES FOR HERMITIAN SPACES

In this appendix, we summarize different versions of unitary Shimura varieties. In Subsection C.1,
we recall Shimura varieties associated to isometry groups of hermitian spaces, which are of abelian
type; we also introduce the Shimura varieties associated to incoherent hermitian spaces. In Subsection
C.2, we recall the well-known PEL type Shimura varieties associated to groups of rational similitude
of skew-hermitian spaces, and their integral models at good primes, after Kottwitz. These Shimura
varieties are only for the preparation of the next subsection, which are not logically needed in the
main part of the article. In Subsection C.3, we summarize the connection of these two kinds of unitary
Shimura varieties via the third one which possesses a moduli interpretation but is not of PEL type in
the sense of Kottwitz, after [BHICT 20, R5Z20]. In Subsection C.4, we discuss integral models of the
third unitary Shimura varieties at good inert primes and their uniformization along the basic locus.

Let F be a totally real number field of degree d > 1, and E/F a totally imaginary quadratic
extension. Denote by c the nontrivial involution of E over F'. Denote by ®f the set of real embeddings
of F' and by ®g the set of complex embeddings of E. Let N[®g] be the commutative monoid freely
generated by ®r. The Galois group Gal(C/Q) acts on ® g, hence on N[®g|. We have the projection
map 7: ®p — Pp given by restriction. Recall that a CM type (of E) is a subset ® of ®p such that 7
induces a bijection from ® to ®p. For a CM type ®, put ¢ := &g \ @, which is again a CM type.

C.1. Case of isometry. Let V be a (non-degenerate) hermitian space over E (with respect to c) of
rank n > 1, with the hermitian form (, )yv: V x V — E that is E-linear in the first variable. For
every 7 € ®p, let (pr,q,) be the signature of V®p, R. We take a CM type ® C ®g. Then we have
two elements

(C.1) sigy ¢ = Z prr T+ Z q-7, sigi,’(b = Z Q-7

TED R TEDR TEDR
in N[®g]. Here, 7~ (resp. 7) is the unique element in ® (resp. ®°) whose image under 7 is 7.

Definition C.1. We define the reflex field (resp. reduced reflex field) of the pair (V, ®) to be the fixed
field of the stabilizer in Gal(C/Q) of the element sigy ¢ (resp. sig?/@), denoted by Ev ¢ (resp. Ek{/’q,).

Let U(V) be the unitary group (of isometry) of V, that is, the reductive group over F' such that for
every F-algebra R, we have

U(V)(R) ={g € GLr(V ®r R) | (92, 9y)v = (z,y)v for all z,y € V®@p R}.
For every 7 € ®p, we may identify V ®p - C with C®", hence U(V) ®p, R is identified with the
subgroup of Resc g GL;, of elements preserving the hermitian form given by the matrix (I”T 1, )
Put G := Resp/g U(V). We define the Hodge map
hg/,qﬁ Res@/R Gm — Gp
to be the one sending z € C* = (Resc/r Gm)(R) to

Ip, Lp-,
<< <z/z>1qﬁ)’“"< <z/z>1qfd>>€GR(R)’

where we identify Gg(R) as a subgroup of GL,(C)? via {r;,...,7;}. Then we obtain a Shimura
data (G, h?,@). It is of abelian type but not Hodge type; and its reflex field coincides with E\bf@. The
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theory of Shimura varieties provides us with a projective system of schemes {Sh(G, h{,@) K } K, quasi-

projective and smooth over E?,ﬁb of dimension }_ .4, Pr¢r, indexed by neat open compact subgroups
K of G(A>®) = U(V)(A®).

Remark C.2. Suppose that there is an element 7 € & such that V has signature (n — 1,1) at 7 and
(n,0) at other places. Then the Hodge map h{,Q hence the Shimura variety Sh(G,h?,’q)) Kk depend
only on ® N7~ 17, that is, the unique element contained in ® above 7. Thus, for an element 7/ € &g
above 7, we may write hy »» and Sh(G,hy )k for those ® containing 7. In particular, the reflex
field of hy ,+ is 7/(F). The Galois group Gal(C/7'(E)) acts on the set of connected components of
Sh(G, hy )k ®,(g) C via the composite homomorphism

=1 erre/e
Gal(C/7'(E)) ~5 7/(E)*\(A%(5)* T EX\(AF)* 75 B\(AF)",
where rec is the global reciprocity map for the number field 7/(E).

Now we would like to attach Shimura varieties to an incoherent hermitian space, a concept originated
from [[K{R94] in the orthogonal case and explored in [Zhal9]. This observation generalizes the case of
Shimura curves in [YZ713], and has already appeared in some old work [Liulla, LLiullb], with more
details explained by Gross [Gro21] recently.

Definition C.3. An incoherent hermitian space over Ag is a free Ag-module V of some rank n > 1,
equipped with a non-degenerate hermitian form (, )v: V x V — Ap with respect to the (induced)
involution ¢ on Ap such that its determinant belongs to A% \ F* Nag/Ar A%. We say that V is
totally positive definite if for every 7 € ®p, V ®a, » R is positive definite.

Let 'V be a totally positive definite incoherent hermitian space over Ag of rank n > 1, and let
G := U(V) be its group of isometry, which is a reductive group over Ap.

Definition C.4. For 7 € ®r, we say that a hermitian space V over E is 7-nearby to V if V®pr AT ~
V ®a, AL, and V ®p; R has signature (n —1,1).

It is clear that for every 7 € ®p, there exists a hermitian space that is 7-nearby to V, unique up
to isomorphism. We fix such a space V(7). Put G(7) = Resg/g U(V(7)). We fix an isomorphism
V®a, AF ~ V(1) @ AP, hence an isomorphism G(A%) ~ G(7)(A>).

Proposition C.5. There is a projective system of schemes {Sh(V )k }k over E indezed by sufficiently
small open compact subgroups K of G(AY), such that for every 7 € ®p and every 7" € &g above it,
we have an isomorphism

{Sh(V)k ®@p 7'(E)}x = {Sh(G(7), hy(r) ) K } K&

of projective systems of schemes over 7'(E). Here, we use the fized isomorphism G(A¥) ~ G(1)(A>)
to regard K as a subgroup of G(7)(A>°).

Proof. See [Gro21, Section 10]. O

Definition C.6. We call the projective system of schemes {Sh(V)g }x over E in Proposition C.5 the
Shimura varieties associated to V.

Remark C.7. One can also interpret Proposition C.5 in the following way: The scheme

H H Sh(G(T)7 hV(T),T’)K

TEQPR T'en 1T

H H Spec ' (E) = H SpecT'(E)

TEDR T'en—1r T'EDR

over

descends to a scheme Sh(V)g over Spec E, where the above fiber products are taken over Spec Q.
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The scheme Sh(V)g (for K sufficiently small) is quasi-projective and smooth over E of dimension
n — 1. It is projective if d > 1 or n = 1. In all cases, we denote by Sh(V)x the Baily—Borel
compactification of Sh(V)g over E. Then Sh(V)g \ Sh(V)g is either empty or consists of isolated
singular points. Let Sh(V)g be the blow-up of Sh(V)x along Sh(V)x \ Sh(V)k. If Sh(V)x is proper,
then Sh(V)g = Sh(V)g. Otherwise, we must have d = 1, that is, F = Q. In this case, there is only
one choice for 7 € @, for which we will suppress from various notation like V(7), G(7), etc. However,
there are still two choices of ®, say, {7*} and {7~ }. We have isomorphisms

(C.2) Sh(V) i ®p .+ 75(E) =~ Sh(G, hy 1+)k

extending those in Proposition C.5. Here, SE(G, hy ;+)k is the unique toroidal compactification of
Sh(G, hy ;=) over E [AMRT10,Pin90].

Definition C.8. We call the projective system of schemes {ST](V) K}k over E the compactified
Shimura varieties associated to V (even when Sh(V) is already proper).

Remark C.9. The boundary Sh(V)g \ Sh(V)x is a smooth divisor.

C.2. Case of similitude. In this subsection, we recall the notion of Shimura varieties attached to
the group of similitude of a hermitian space, which are of PEL type. They will not be used in the
main part of the article, but it is instructional to introduce them for the later discussion.

Let
v = Z pTT++ Z qQr7T

’T'Gq)F ’T'Eq)p

be an element of N[®g] such that p, + ¢, = n for every 7 € ®p. Let Ey be the fixed field of the
stabilizer of ¥ in Gal(C/Q).

Definition C.10. Let S be an Ey-scheme.

(1) An (E,V)-abelian scheme over S is a pair (A,7), where A is an abelian scheme over S, and
i: E — Endg(A)q is a homomorphism of Q-algebras such that for every e € E, the character-
istic polynomial of i(e) on the locally free sheaf Lieg(A) on S is equal to

[T (T =% ()P (T =77 (e)* € Os[T].

TG‘I)F

(2) A polarization of an (E,¥)-abelian scheme (A,7) is a polarization A\: A — AV satisfying
Aoi(e) =i(e®)Y o\ for every e € E.

Definition C.11. For a ring R containing Q, a rational skew-hermitian space over ' ®qg R of rank
n is a free K ®g R-module W of rank n together with a R-bilinear skew-symmetric non-degenerate
pairing

< s >W: WxW-—>R

satisfying (ex,y)w = (x, ey)w for every e € F and z,y € W. We say that two rational skew-hermitian
spaces W and W’ over E®q R is similar if there exists an isomorphism f: W — W’ of E®g R-modules
such that there exists some v(f) € R* satisfying (f(x), f(v))w = v(f){z,y)w for every z,y € W.

We take a rational skew-hermitian space W over A% = F ®g A of rank n. Let H* be the
group of similitude of W which is a reductive group over A*°. We denote by W(W ¥) the set of
similarity classes of rational skew-hermitian spaces W over F of rank n such that

e W®p A% is similar to W as a rational skew-hermitian space over A% = E ®g A (and we
fix a similarity isomorphism),
e the signature of the hermitian form (- )w on the C-vector space W ®p - C is (pr, ¢r).
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It is a finite set; and its cardinality is at most one if n is even.
For every W € W(W® U), let H be its group of similitude, that is, the reductive group over Q
such that for every ring R containing Q, we have

H(R) = {h € GLrgyr(W ®q R) | (hz, hy)w = v(h)(z,y)w for some v(h) € R™}.
We define the Hodge map
hw,\y: Res(c/R Gm — H]R
to be the one sending z € C* = (Resc/r Gm)(R) to

Z:[p‘r zIpT o~y
(( 1 A, ) e < d ZIqu ) ,zz) € Hr(R),

where we identify Hg(R) as a subgroup of GL,,(C)? x C* via {r;,...,7; }. Then we have a Shimura
data (H,hw v) with the reflex field Ey. We obtain a projective system of schemes {Sh(H,hw v)r}1,
quasi-projective and smooth over Ey of dimension } c4, prqr-, indexed by neat open compact sub-
groups L of H®(A>) ~ H(A>).

The Shimura data (H, hw v) is of PEL type. In particular, it has a moduli interpretation which we
roughly recall in the following definition.

Definition C.12 ([[Kot92]). For an open compact subgroup L C H*(A>), we define a presheaf
M(W ) on Sch’/E\p as follows: For every object S € Sch’/E\D, we let M(W° W) (S) be the set of
equivalence classes of quadruples (A, i, \,n), where

o (A,i) is an (F, ¥)-abelian scheme over S (Definition C.10),

e )\ is a polarization of (4,4) (Definition C.10),

e 7 is an L-level structure (see [Kot92, Section 5] for more details).
Two quadruples (A,i,A,n) and (A’,7, N ,n')) are equivalent if there is an isogeny ¢: A — A’ taking
i, \,n to,c\N,n for some c € Q.

From [Kot92], it is known that M(W® W)} is a scheme if L is sufficiently small, and we have a
canonical isomorphism

M(W> ¥),~  J[  Sh(H bhwuw)r
WeW(W> 1)

functorial in L.

Remark C.13. Let p be a rational prime unramified in & such that we may write L = L? x L,, in which
L, is the stabilizer of a self-dual lattice in W @~ Q,. Then the presheaf M(W*, ¥);, admits an
extension M(W® ), to a presheaf on Sch’/oE\p o 3 follows: For every object S € Sch'/ e
let M(W® W) (S) be the set of equivalence classes of quadruples (A, i, A\, nP), where

e (A,i) is an (E,¥)-abelian scheme over S in the sense similar to Definition C.10 but with

i: Op,p) — Endgs(A4) ®z Z(,) being a homomorphism of Z,-algebras,
e )\ is a p-principal polarization of (A, 1),
e 1P is an LP-level structure.

OE\I; ,(p) » W

The equivalence relation is defined in a similar way as in Definition C.12 except that we require the
isogenies to be coprime to p and ¢ € Z(Xp ) The functor M(W®, W)} is a smooth separated scheme in
Sch Oky () if L is sufficiently small; and is functorial in L.

C.3. Their connection. In this subsection, we study the connection between Shimura varieties in
the case of isometry and those in the case of similitude. Consider

e a hermitian space V, (, )y over E of rank n,

e a rational skew-hermitian space Wg°, (, )o over A% = E ®gp A™ of rank 1 with the group of
similitude HF®,

e a CM type ® of F such that W(W{°, ®°) is nonempty.
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We now equip W := V @ Wg° with a rational skew-hermitian form over A% = E ®g A*. For
x,y € Wg°, let <x,y>$ € A% be the unique element such that Trg q(e - <x,y>g) = (ex,y)o for every
e € A%. Thus, we obtain a non-degenerate pairing ( , )8: Wi x Wi — A% that is A%-linear in the
first variable. We equip W with the pairing Trg/q(, )v ®F (, )Er), which becomes a rational skew-
hermitian space over E®gA>. By a similar construction, we obtain a map W(Wg°, ®¢) — W(W>, )
sending Wo to W, where ¥ = sigy ¢ (C.1). Take an element Wy € W(W5°, ®°) with Hy its group
of similitude. We obtain three Shimura data: (G, h?,,cb), (Ho, hw,,o¢), and (H, hyw w) with reflex fields
E\b,@, Eg, and Ey = Evy 4, respectively.

Lemma C.14. Let EE, o be the subfield of C generated by E'\’,@ and Eg. Then EE, o contains By g.

Proof. By definition, the subgroup of Gal(C/Q) fixing E{j,{) stabilizes both sig{,@ and ®. Thus, it
stabilizes sigy . The lemma follows. O

Remark C.15. In the main part of the article, the hermitian space V we encounter will have signature
(n—1,1) at one place 7 € ® and (n,0) elsewhere for some n > 2. Then for whatever ®, we have

E{/,@ = 7/(E), where 7/ € ®p is either place above 7. However, it is possible that (g Eg,’q, strictly
contains 7/(E), where ® runs over all CM types of E.

Now we consider the reductive group G! := G x Hy over Q. Put hgb = (h?,7¢,hw0,<pc). Then
we have a product Shimura data (Gﬁ,hgp), whose reflex field is E{,7¢. On the other hand, there
is a homomorphism qw: Gf = G x Hy — H induced by taking tensor product. It is clear that
qw © hgb = hw, v. To summarize, we have the following diagram of Shimura data

(C.3) (G.hY )

m

aw,
(Ho, hwg,¢)

For neat open compact subgroups K C G(A*°), Ly C Ho(A>), and L C H(A*) satisfying qw (K x
Ly) C L, we have the following diagram of Shimura varieties induced from (C.3)

(C4) Sh(G, 1Y o)k ®pp | BV,

TR

8
V,®
av
Sh(Gﬁv hg{))KXLo LA Sh(H’ hW,‘If)L ®Ev,<1> EE/,CP
%
Sh(HOa hWo,<1>°)L0 ®Es EE/ o
in view of Lemma C.14, in which (qv, qw,) induces an isomorphism
(C.5)  Sh(Gh})rxzy =~ (Sh<G,hbv,¢>K @ Eﬁ) <t (Sh(Ho, hwoae)zo @5y B g)
in Sch B functorial in K, Lo, and under Hecke translations.
V,®

The Shimura variety Sh(Gﬁ, hgb) KxLo has a moduli interpretation as well.
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Definition C.16. For open compact subgroups K C G(A*) and L C H{°(A>), we define a presheaf

M(V,W$°, @) 1, on Sch’/Eﬁ as follows: For every object S € Sch’/Eﬁ , we let M(V, W$°, @)k 1, (S)
vV, d Vv, ®
be the set of equivalence classes of octuples (Ay, g, Ao, n0; 4,1, A, 1), where

e (Ap,ig) is an (F, ®°)-abelian scheme over S,

e )\ is a polarization of (Ag, 1),

e 10 is an Lo-level structure for (Ay,ig, Ao),

e (A,i) is an (F,sigy ¢)-abelian scheme over S,

e )\ is a polarization of (A,1),

e for chosen geometric point s on every connected component of S, n is a (S, s)-invariant
K-orbit of isometries

V ®@g A® = Hompggas~ (H{"(Ags, A®), Hi' (As, A®))

of hermitian spaces over A%’ . Here, the hermitian pairing on the latter space is given by the
formula

(2,9) = ig" (M) oy” 0 Ao 2) € ! Endpegase (HE' (Ags, A®)) = AT

Two octuples (Ao, 70, Ao, N0; A4, 4, A\, 1) and (Af, i6, Ay, m; A, ', N, n') are equivalent if there are isogenies
wo: Ag — Aj and p: A — A’ such that

e there exists ¢ € Q* such that g o Ao pg = chg and p" o N o = c),
e for every e € E, we have ¢ o ig(e) = iy(e) o g and poi(e) =1i'(e) o,
e the K-orbit of maps z — . on(z) o (¢o) ! for z € V ®gp A™ coincides with 7.

Remark C.17. The Shimura variety Sh(G¥, h?I,) KxI, and its moduli interpretation were first introduced
in [BHK"20] when F' = Q, and in [RSZ20] for more general CM extension E/F.

Lemma C.18. Let the notation be as above. We have a canonical isomorphism
b
M(V, W, ®) .1, = (Sh(G, by o) Opy | E%) X, (M(wgo, D)1, Ry Eﬁvﬁp)

in Sch

B functorial in K, Lo, and under Hecke translations.
V,®

Proof. We have canonical morphisms
q: M(V, W¢, (I))K,Lo — M(W™, W), QFBv,s EE/,CD
qo: M(V, W¢e, (I))K,Lo — M(Wg", @)1, @, ng,d)

of functors obtained from the moduli interpretation. Since (q,qg) induces a closed embedding, the
functor M(V, W§°, @)k 1, is representable. Moreover, we have a canonical isomorphism

(C.6) M(V, W, ®) .1, ~ 11 Sh(G%, h%) kLo
WoeW(WS°,9°)

functorial in K, Ly, and under Hecke translations. The morphisms q and qg are compatible with qw
and qw, in (C.4), respectively. Combining with (C.5), we have

(C.6) ~ (Sh(G,th@)K O, Eﬂw) Xt ( [T Sh(Ho hwyae)r, @, Eﬁv,cp)
’ V' \Woew(wge @)

= (Sh(thg/,q))K ®E{,¢ EE/@) XEQI@ (M( 0 P) Ly ®py EE/,(D) ‘

The lemma follows. U
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C.4. Integral models and uniformization. In this subsection, we study integral models and uni-
formization of the Shimura varieties introduced previously, which are only used in Subsection 5.2 and
Subsection 5.3 for the main part of the article. We identify F as a subfield of C via an element 7/ € ®.
We fix a hermitian space V over E that has signature (n—1,1) at 7 := 7/ | F and (n,0) at other places.

We first review the integral models of M(V, W, @) 1, in Definition C.16 at good primes, where
we assume 7/ € ®. Let p be a prime of I such that

e p is inert E,

e the underlying rational prime p is odd and unramified in F,

e we may choose a self-dual lattice Ay in V ®p Fy for every q € p, where p denotes the set of all
primes of F' above p that are inert in F,

e Lo =L x (Lo), in which (L), is the stabilizer of a self-dual lattice in W ®a Qp, and L}
is sufficiently small.

Fix an isomorphism between E-extensions C and Eg°. We denote by Spl, the set of primes of F* above
p that are split in £. We also assume that elements in ® inducing the same prime in Spl, induce the
same prime of E' (under the fixed isomorphism between C and Eg°).

Denote by E{iﬂqw the completion of E{i,’(b in E3°. We now consider subgroups K of the form
K = KP x KZ% x Ky, where Ky = [, Kq in which Kg is the stabilizer of Aq, and K is sufficiently

small. For q € Spl,,, we denote by q~ the unique prime of F that is in ® and regard Kg a subgroup
of qusplp GLEq_ (V QF qu).

The following definition is a special case of the discussion in [RS5Z20, Section 4.1] (but with a slightly
finer level structure at Spl,).

Definition C.19. We define a presheaf M(V, W§° @)k 1, on Sch'/o . as follows: For every
EV,db,p
object S € Sch’/o , o we let MV, W, D)k 1,(S) be the set of equivalence classes of nonuples
EV,<I>,p

(A07 iOv )‘07 ﬁg, Aa ia )‘7 npa n;s)pl)v where

(Ao, i0) is an (E, ®°)-abelian scheme over S (in the sense of Remark C.13),
Ao is a p-principal polarization of (Ao, o),
nh is an L-level structure for (Ao, i, Ao),
(A,i) is an (F,sigy ¢)-abelian scheme over S (in the sense of Remark C.13),
A is a p-principal polarization of (A, 1),
for chosen geometric point s on every connected component of .S,

— nP is a m (S, s)-invariant KP-orbit of isometries

\V4 R0 AP HomE®QA007P (H?t(Aos, AOO,]U)’ H?t(Asa AOOJJ))

of hermitian spaces over £ ®g A°P. Here, the hermitian pairing is defined similarly as
in Definition C.16,
— Pl is a 71 (S, s)-invariant Kf;—orbit of isomorphisms

I[1 VerE, = [[ Homo, (Aosl(a7)] As[(a7)®]) @0,  Eq-
quplp qESplp q q

of [[4ep Eq--modules. Note that due to the signature condition in Definition C.12, both
Aps[(q7)°°] and As[(q7)°°] are étale Op,_-modules.

The equivalence relation is defined in a similar way as in Definition C.16 except that we require the
isogeny ¢q (resp. @) to be coprime to p (resp. p), and ¢ € Z(Xp).
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The presheaf M(V, W, ®)g 1, is a separated scheme in Sch’/o . which is proper if and only
E

V,®,p

if V is anisotropic. By Definition C.19 and Remark C.13, we have a canonical morphism
(C?) qo- M(Va Woo7 (I))K,LO - M(W807 (I)C)LO ®OE<1>7(P) OES/ »
;PP

extending the projection to the second factor in Lemma C.18.

Proposition C.20. Let V be as in the beginning of this subsection. Let p be a prime of F inert in
E such that its underlying rational prime is unramified in E. Denote by p the set of all primes of F
with the same residue characteristic of p that are inert in E. We fix a subgroup Kq C U(V)(Fy) that
is the stabilizer of a self-dual lattice in V @p Fy for every q € p, and put Ky = [lqc, Kq. Then the

Shimura variety

Sh(G, hv,T/)KE = @ Sh(G, hV,r’)KEKp
KP N

(see Remark C.2 for the notation) over E has a (smooth) integral canonical model over Og, in the
sense of [Mil92, Definition 2.9].

Proof. Let p be the underlying rational prime of p. Choose auxiliary data ®, Wg° and Lg as in the
previous discussion, such that Lo = L{ x (L), in which (Lg), is the stabilizer of a self-dual lattice in
W& @a= Qp and L is sufficiently small. Write K for K x Kj. Tt suffices to consider those K* that

are of the form K? x Kg with KP? sufficiently small.
Put M == M(W{,®), Q0. ») OEQ/@,,D as in (C.7), which is a finite étale scheme over Og,. Put
M = M ®z, Qp. Then we have canonical isomorphisms
M(V, WSO, (I))K,Lo X M M ~ M(V, W(C))O, (I))K,Lo ®OE€, . EEI,@,}J
y P, p

~ Sh(G, hy )k X5 (M( D%, ®p, E{i,@’p)

~ Sh(G, hV,T’)K Xp M
by Lemma C.18. Take a connected component M of M, which is isomorphic to Spec O for some
unramified finite extension E’/Ey, with the generic fiber M° := MO®ZP Qp. Put M(V, Wg°, CIJ)% Lo =
dy MO, Then we have a canonical isomorphism

M(V,Wgo,q))?{l/o X MO MO ~ Sh(G,hvﬂ-l)K XE MO.

. . 0 . . . 0
Thus, it suffices to show that @Kﬂ M(V, W5, D) KEKy Lo is an integral canonical model over M".

We now modify the proof of [Mil92, Theorem 2.10]. Take an integral regular scheme Y over M° such
that U := Y x y0 MY is dense in Y, with a morphism a: U — @KBM(V,WSO, (b)(l)(EKE,Lo X pp0 M.

This is equivalent to giving data (Ao, io, Ao, 76; 4,7, A, 0P, n;pl) as in Definition C.19, but with
' Veg A®P = Hom pggAs.r (H‘ft(Aon, APy H‘it(An, A°PY)
being a 1 (U, n)-invariant isometry, and

n: [IV ©s By = [[Homo,  (Aogl(@ )] Al ]) @0, Ey-

e acp q q
being a 71 (U, n)-invariant isomorphism, where 7 is a geometric generic point of Y; and with the partial
data (Ao, 79, Ao, nh) extending uniquely to Y. In particular, the action of 71 (U, 7n) on H‘ft(Aon, AcoP)
factors through 71(Y,n), and that on Hompgggac» (H*(Agy, AP), H{*(A,, A>P)) is trivial. Thus,
the action of 71 (U,n) on H$'(A,, A°P) factors through m (Y, 7). By [Mil92, Propositions 2.11, 2.13,
2.14], the triple (A,i4,604) extends uniquely to Y. Then it is clear that (n?, 77]5}’1) extends uniquely as
well.
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We then conclude that L&l P MV, Wg, )(I)<p Ko.Lo is an integral canonical model over M°. The
il LKy,

proposition follows. O

Definition C.21. We denote by S(G, hy )k, the integral canonical model of Sh(G, hy )k, over Og,

in Proposition C.20, on which the action of U(V)(A%*®) extends uniquely by the extension property.
For an open compact subgroup K C G(A™) = U(V)(A®) of the form K = K x K, we put

S(G, hV,T’)K = S(G, hV,T’)KE/KE
which we refer as the canonical integral model of Sh(G,hvy )k over Og,. It is proper/smooth if
Sh(G, hV,T/)K is.

Remark C.22. The extension property of integral canonical models together with Lemma C.18 implies
that we have a canonical isomorphism

MV, WEE, )iy = S(Gubv )i Xop, <M(W‘O’O,¢>C)LO @0z, 1 OE%,J)

under which qg (C.7) corresponds to the projection to the second factor.

Remark C.23. Proposition C.20 is slightly stronger than the main result in [Kis10], as the latter has
to assume that K, is hyperspecial maximal.

At last, we review the uniformization of M(V, W§°, ®)k 1, along the basic locus, which is only used
in Subsection 5.3. Let E;lr be the maximal unramified extension of Fj inside Egc. Let k& = OEgr ®zFp
be the residue field of EJ*. Put

M(V, VVOO7 q))nKr,LO = M(V, Wgo, (I))K’LO ®0Eﬁ OEgr

V,®,p
and
(o.0) nr w13 : o0 nr
M(V¢ WO ) (I))KB,LO T @ mM(Vv WO ) (I))KPKEK Lo
Kp o p PP
Ky
Definition C.24. For an algebraically closed field k&’ containing k, we say that a &’-point
(A()v iOa )\07 nga A7 i? >\7 ,'71)7 U;pl) € M(V’ Woo’ q>)nKrE,L0 (k/)
is supersingular if the p-divisible group A[p°] is supersingular.
Denote by M(V,W8°,§>)§§E7LO the supersingular locus of M(V,WS",@)“KYBLO ®OE{;r k, which is
a Zariski closed subset. Denote by M(V,W80,<I>)§§’EA7LO the completion of M(V, W5, @)} = along
M(V, W, )ﬁ?@ Lo Which is a formal scheme over Oggr, where Oggr is the completion of O B The

description of the uniformization of M(V, W§°, )%ALO depends on the choice of a point

(CS) P= (A()a 20, Ao, 77187 A7 T, A, Tlpv T';pl) S M(V7 Wgoa q)>r[l(rE,Lo (OE;‘Y)
such that Py is supersingular. In particular, we have the induced section
(C.9) P": Spf O — M(V,ngcb)i?ﬂfm.

We denote the base change of (Ao, 29, Ao; 4,2, A) to k by (Ao, 2ok, Aok; Ak, Tk, Ak ). Moreover, we use
Speck as the reference point in the level structures (nh; n?, nzpl). We now attach to P two objects: a

formal scheme N over Oggr, and a new hermitian space V over F.

e By a slight abuse of notation, let (X, %, A) be the supersingular unitary Op,-module induced
from (A[p],2[p>°], A[p>]) via [Mih, Theorem 3.3]. Similarly, we have (X, 29, Ag) obtained
from (Ao, 20, Ag). Let N be the relative Rapoport-Zink space parameterizing quasi-isogenies
of the supersingular unitary Op,-module (X, g, Ag) of signature (n — 1,1) as introduced in
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Subsection 1.3, which is a formal scheme over Oggr. In particular, the point P induces a
section

(C.10) P Spf Oggr — N.
e Now we define the new hermitian space. Put
V = Homy((Aok, iok ), (Ak, i) 0,
which is an E-vector space through zg;. We define a map
(,)v: VxV o E

given by the formula
(C.11) (2,9)7 = ton (Agk©y" 0 Ay 0 ) € dgy Endi((Aog, dok)) = E,

which is a hermitian form on V.

Lemma C.25. The hermitian space V, ( , )y has the following properties:

(1) \:/ is of dimension n over E.
(2) V is totally positive definite.
(8) The composite map

— , 4 -1
V @g A%P — Hom gy aver (HE(Agy, AP), HE (A, A7) T v g AP

is an isomorphism of hermitian spaces over F' ®@g AP,
(4) The composite map

V —\00 —\o0 ( sp1)71
[I VerE-— I Homo, (Aok[(a7)®), Akl(@)™) ®0p  Eq- ——— ] V& E,-
qESPL, q€SPL, ! ! 9€Spl,,

is an isomorphism of qusplp Ey—-modules.
(5) For every q € p, the canonical map

V @p Fy — Homy((Aokla™], d0x[a>]), (Akla™], ix[a%]) @0, Fy

is an isomorphism of Ey-vector spaces.

(6) For every q € p\ {p}, Aq = Homy((Aok[q°], 301[9°]), (Ar[a>°],4x[q°])) is a self-dual lattice
mn \7 XRE Fq.

(7) V @p F, does not admit a self-dual lattice.

Proof. We first show that the canonical map
(C.12) V ®q Qp — Homy ((Aok[p™], dox[p™]), (Ak[p™], 41 [p™))) ®2z, Qp

is an isomorphism. Let Op be the Op ,-algebra of endomorphisms of (Ao, %ok | OF, ), Aok), and
put D := Op ®oy,,, . Then D is a totally definite (division) quaternion algebra over F' which

contains F via igr. We write D = E @ Ej for some element j € Op \ pOp such that j~'ej = e for
every e € E. Choose an element f € O such that f € p but f & q for every other prime q of F
above p; and put j' := j + f. We define a new action 4(, of Og,(p) on By via the formula o) =
§' 7L oidgr(e) o j'. Then (Agk, () is an (E, ®)-abelian scheme over k, where ® = (®°\ {7/°}) U {7},
with a polarization Ay, == (5')*Aox. Now by [RZ96, Proposition 6.29], (Ay, %) is quasi-isogenous to
(Aok, ok)" 1 x (Agk, (). In particular, (C.12) is an isomorphism. From this, (1), (3), (4), and (5)
follow immediately. Part (2) can be proved in the same way as [KR14, Lemma 2.7]. Part (7) is a
consequence of (1-6) and the Hasse principle.

It remains to show (6). By the above discussion, (Ax[q*],ix[q°°]) is quasi-isogenous to
(Aok[a%], s0k[q>°])®™ for q € p \ {p}. Then they must be isomorphic. In particular, the induced

hermitian form on A4 is given by the identity matrix under some basis. Thus, we obtain (6). O
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Lemma C.25(3,4) gives rise to an isomorphism
(013) Lp: \7®F A%O’E—>V®F A%O’E

of hermitian spaces over A¥2. Let K, be the stabilizer of Aq in Lemma C.25(6) for every q € p \ {p},

which is a hyperspecial maximal subgroup of U(V)(Fy).
Let M(W¢°, c)ﬁo be the completion of M(Wg°, @)1, D0py () Opyr along the special fiber, which
is isomorphic to a finite disjoint union of Spf O/\gr. Then (C.7) induces a morphism

af s MV W), — MW, 99,
of formal schemes over Oggr.

Proposition C.26. The chosen point P (C.8) induces the following Cartesian diagram

UW)(EN (N x UVYAF)/ Tgep ) Ka) Spf Ofpye

up l l qfyoP”"
A

ss, 9 0 FC
M(V7W807 )KE/’\LO - M(WO ’ )/[\/0

of formal schemes over O'pu:, satisfying
P

e upo (Pp.,1)=P" (see (C.9) and (C.10)), and -
e upoT; =T,oup for every g € U(V)(APE) and g € U(V)(AFE) that correspond under vp
(C.13), where T, (resp. Tg) denotes the Hecke translation on the target (resp. source) of up.

Proof. The proof is very similar to [R7Z96, Theorem 6.30]. For readers’ convenience, we will describe
the morphism

(C.14) vp: Mp = UV)(F)\ | N x UV)AFP)/ T[] Kq|.
aep\{p}
where M p is the pullback of q) along qf) o P", for which up is the inverse. This is the hardest step;

and in particular, we will see how this morphism depends on P.
Let S be a connected scheme in Sch’/OA on which p is locally nilpotent, with a chosen geometric
Enr

point s € S(k). Take a point P = (Ao,z';,Ao,ng;A,i,)\,np,n;pl) € Mp(S), where (Ao, ig, Ao, 1h) is
the base change of (Ao, %0, Ao, 7h) to S. By [RZ96, Proposition 6.29], we can choose an Og-linear
quasi-isogeny

p: AXSSk—>Ak XkSk

such that p*Ax = A\g. Then (A[p*],i[p>], \[p>]; p[p>°]) can be regarded as an element in N (S) by
[Mih, Theorem 3.3]. The composite map

V ®g AP 25 V @y AP 2L Hom pe, aces (HS Aoy, AP), HE (A, AP))
M) HOIHE®QAoo,p (H?t(AOk, Aoo,p)’ Hit(Ak, Aoo,p)) = \7 ®Q AP

is an isometry, which gives rise to an element g% € U(V)(A%""). The same process will produce an
element g?% < [aespr, U(V)(Fy). For every q € p \ {p}, the image of the map

ps«o: Homy((Aok[q™]; 2ok[a™]), (As[a™],is[q>]))
— Homk((AOk[qoo]ﬂ zOk[qOOD7 (Ak[qoo]v 'Lk[qoo])) (X>OFq Fq = v KF Fq
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is a self-dual lattice, say Apg. Therefore, there exists a unique element gpq € U(V)(Fy)/ K'q such that
gprqApq = Ay. Together, we obtain an element

(AW, ilp™), Ap™T; [0™), 5 9355 (9P0)a) € N(S) x UV)(AFP)/ ] Ky
aep\{p}

depending on the choice of p. However, changing p will result the left multiplication by an element in
U(V)(F). Thus, the element

vp(P) = (AP, ilp™], Alp™T; p[0™), 95, 675 (97,0)a)

is a well-defined element in the right-hand side of (C.14). The construction of the inverse of vp, which
is nothing but up, is easy by Dieudonné theory. We leave the details to the readers; it is the same
argument in [R7Z96]. O

Remark C.27. In fact, the morphism up in Proposition C.26 is compatible with more Hecke operators.
Consider a prime q € p \ {p}. For every double coset K,gK; C U(V)(F;), we have the Hecke
correspondence Tg g, on the target of up which is simply the Zariski closure of the usual Hecke
correspondence on the generic fiber; it is in fact étale. Then we have wpTr gk, =T Ryakq if KggKq =
K,gK4 under the canonical isomorphism K,\U(V)(F,)/Kq ~ K,\U(V)(Fy)/K,. Here, Tk, gk, denotes
the set-theoretical Hecke correspondence on the source of up.

APPENDIX D. COHOMOLOGY OF UNITARY SHIMURA CURVES

In this appendix, we compute the cohomology of Shimura curves associated to isometry groups of
hermitian spaces of rank 2, as Galois—Hecke modules. In Subsection D.1, we collect some results about
local oscillator representations of unitary groups of general rank. In Subsection D.2, we recall some
facts and introduce some notation about cohomology of Shimura varieties in general. The last two
subsections concern the cohomology of unitary Shimura curves, for the statements and for the proof,
respectively. These statements are only used in the proof of Theorem 4.15 and Theorem 4.18 in the
main part of the article.

D.1. Oscillator representations of local unitary groups. Let I’ be a local field whose charac-
teristic is not 2. Let E be an étale F-algebra of rank 2. Denote by ¢ the unique nontrivial involution
on E that fixes F, and put E~ := {r € E|2+ 2° =0} and E!' := {x € E|22° = 1}. Let V,(, )v be
a (non-degenerate) hermitian space over E (with respect to c) of rank n > 2.

We recall the construction of oscillator representations of U(V) in three steps.

Step 1: Choose an element ¢ € E~*/Ng,p E*. Let V. be the underlying F-vector space of V
equipped with the form Trg/pe( , )v, which becomes a symplectic space.?! Let Mp(V.) be
the metaplectic group of V. with center C!. Then we have the oscillator representation w(e)
of Mp(V.) using the standard additive character ¢ .

Step 2: Choose a character p: EX — C! such that pu | F* is the unique character whose kernel is
exactly Ng/p E*. Then we have the induced homomorphism ¢;,: U(V) — Mp(V.) (see, for
example, [HI<596, Section 1]). Put w(pu,e) == w(e) o ¢,.

Step 3: Choose a character y: E' — C'. Let w(u, e, x) be the maximal quotient of the representation
w(e, u) of U(V) with central character x.

For x in Step 3, we define a character y of E* via the formula x(z) = x(z/x°).

Lemma D.1. Suppose that F is nonarchimedean. Then w(u,e,x) is irreducible and admissible.
Moreover,

(1) w(p,e,x) is zero if and only if E is a field, V is anisotropic (in particular n = 2), and X = p?.

2IMore precisely, we have to choose an element in E~* in the coset €; and it is known that the resulting oscillator
representation depends only on €.
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(2) The contragredient representation of w(u,e,x) is isomorphic to w(uc, —e,x 1), where u¢ =
o c as usual.

(3) If n > 3, then w(y',€',x') is isomorphic to w(u, e, x) if and only if (1',e',X") = (u, &, X)-

(4) If n = 2 and w(u,e,x) is nonzero, then w(y',&',x’) is isomorphic to w(u,e,x) if and only if
either (0., x") = (u,e,x), or ' = p°x, X' = x, and ' = (resp. €’ # &) when V is isotropic
(resp. anisotropic).

Proof. We consider first the case where £ = F x F. We identify U(V) with GL,(F) and E~ with
F through the first factor; and write 4 = v X v~!. Note that the first component of Y is simply .
Let Qn—1,1 be the standard parabolic subgroup of GL,, whose Levi is GL,,—1 x GL;. Then w(gu, €, x) is
isomorphic to the unitary induction from Q,—; 1(F') to GL, (F') of the (unitary) character (v o det) X
X" of GL,—1(F) x GL1(F) (hence of Q,—1.1(F)). See for example [GR90, 2.6]. The lemma follows
from such description.

Now we assume that E is a field. The fact that w(u, e, x) is irreducible is a special case of the Howe
duality; see for example [GT16, Theorem 1.1(1)].

For (1), the fact that w(p,e, x) is nonzero unless in the exceptional case in (1) follows from the
persistence property [HI{S96, Proposition 5.1(iii)], and the first occurrence speculation [HIKS96, Spec-
ulation 7.5 & Speculation 7.6] (which has been proved as [SZ15, Theorem 1.10]). Note that in the
exceptional case, the first occurrence of the theta lifting of the trivial character in the split even tower
is 0; therefore its first occurrence in the nonsplit even tower is 4. See [HIXS96, p.986] for more details.

Note that, since E! is compact, we have a canonical isomorphism of representations of U(V)

w(p,e) = Puwlp, e, x).

For (2), note that under the canonical isomorphism Mp(V.) ~ Mp(V_.), the contragredient of
w(e) is isomorphic to w(—¢). Moreover, under such isomorphism, ¢, coincides with ¢, by [HIX596,
Lemma 1.1 & (1.8)]. Therefore, w(u, €) is contragredient to w(u¢, —¢). Since E! is compact, we have
a canonical isomorphism w(y,e) >~ @, w(p, €, x). Thus, w(p, €, x) is contragredient to w(u, —e, x
as both are irreducible with inverse central character, or both are zero.

For (3), it is known when n = 3 by [GR90, Proposition 5.1.4]. In fact, the same proof also works
for n > 3.

For (4), we first have x = x’. By the description of endoscopic packets for in [GGP12h, Section 8],
we must have either p/ = p or ¢/ = u®x. There are two cases.

Suppose that gy = p. Then w(p, e, x) = {0} when V is anisotropic; and w(u, €, x) is not isomorphic
to w(p, €', x) when V is isotropic and &’ # €. Thus, (4) follows.

Suppose that py # p. Then the packet has four members, and we need to show that w(u,e, x) ~
w(px, e, x) for e’ = e (resp. ¢’ # €) when V is isotropic (resp. anisotropic). We adopt the notation in
[GGP12b, Section 8]. Let M be the two-dimensional conjugate symplectic representation associated
to the packet. Then M has two non-isomorphic one dimensional conjugate symplectic representations.
We write M = M} & M3 = My @& Ms for the two different ways of ordering of direct summands.
Thus, we obtain two ways of labelling for the four members in the packet, say {nf ", 7o =, 7, o "}
and {nJt, 75,7, 75T}, respectively. Then (4) is equivalent to the isomorphisms 7ft ~ 7f,
Ty~ ~ 7w, , mg ~ w, ", and ;" ~ wF~. However, these isomorphisms are consequences of

[GGP12b, Theorem 10.2]. O

Now we take ' = R and E = C. Let (p,q) be the signature of V. Then we may identify U(V)
with U(p, ¢)r, the subgroup of Resc g GLy of elements preserving the hermitian form given by the

matrix (I” 1, ) Denote by u, , the Lie algebra of U(p, ¢)r and fix a maximal compact subgroup K, ,
of U(p, q)r(R). In the construction of w(u, e, x), the three parameters have the following possibilities:

pm(z) = arg(z)™, m odd integer; € = i; xi(z) =2, le.
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To shorten notation, we denote by wg?éi’l the representation w(fim,, £, x;) of U(p, ¢)r. It is well-known
(see, for example, [SW 78, Section 4]) that w;,’?éi’l is irreducible.

By the computation in [BNMMI6, Section 5], up to equivalence, there are only two irreducible
unitary representations 7 of U(n — 1,1)r such that Hl(un,lyl,Kn,l,l;w) # {0}, in which case the
cohomology has dimension 1 for both representations. Let us label them by 77711’81,1 and 7r2’_1171 in the
way that Hl(un—1,1,Kn—1,1;7T,11’,0171) and Hl(un_l,l,Kn_l,l;wgle) have Hodge types (1,0) and (0,1),
respectively.

Lemma D.2. Let the notation be as above.

+.1

(1) Among the representations w,, ’+ 0

—1.— ..
,only wy g and w, Y are the trivial character.

(2) If n > 3, then in the set {w;”fi} only w, 1’11’ (resp. wrll’fl’?l) is isomorphic to WTIL’_OLl (resp.
01
Tp—1,1

(8) If n = 2, then in the set {wmil} only wy i’ and w%l (resp. w1’+0 and w; 1+0) are
isomorphic to 7r171 (resp. 7r171).

Proof. The expllclt formulae for the K ,-type of w)' il

rem 5.4] with p’ + ¢’ = 1. In particular, (1) follows dlrectly.
For (2) and (3), it is shown in [BMM16, Section 5] that both 7r7ll’ 11 and 01

n—1,

can be found in, for example, [[XI<07, Theo-

1 are isomorphic to

some w;n_’f’i. Comparing the formula for the highest weights in [BMMI16, 5.7] with p = n —1,¢ =
1,a+b=1(< p) with [KK07, Theorem 5.4], we obtain the assertions. O

D.2. Setup for cohomology of Shimura varieties. Let us recall some general facts about coho-
mology of Shimura varieties. Let (G,h) be a Shimura data with E C C its reflex field. In particular,
G is a reductive group over Q. Let ¢ be an algebraic complex representation of G.??> Then it induces a
complex local system .Z¢ on {Sh(G,h)x @ C}. Let HéQ)(Sh(G, h) (C),.%) be the i-th L2-cohomology
of the complex manifold Sh(G, h)x(C) with coefficients in Z¢. Put

H’@(Sh(G, h), %) = ligH’@(Sh(G, h)k (C), %),
K

which is a smooth representation of G(A°). By the Matsushima formula for L2-cohomology, we have
an isomorphism

(D.1) {2)(Sh(G, h), Z) ~ @mdm Hi (g, Kq; foo ® Too) @ T

of G(A*°)-modules, where

e g := Lie Gg, and K¢ is a maximal connected compact subgroup of G(R),

e ¢ is the associated (g, Kg)-module of £, and

e T = Ty ® ™ runs through isomorphism classes of irreducible admissible representations of
G(A), where mgis.(m) is the discrete multiplicity of 7 (Definition B.1).

Here, we have to use [BC83, Section 4] to conclude that the continuous part of L2(G(Q)\G(A), x) does
not contribute to the L2-cohomology in the case of Shimura varieties. By Zucker’s conjecture (proved
independently by Looijenga [l.oo88] and Saper—Sturn [S590]), we have a canonical isomorphism

(D2) H{z)(Sh(G, h), %) ~ TH'(Sh(G, h), %)
of G(A*°)-modules, where
IH(Sh(G,h), %) = QIHZ( h(G,h)k ®g C, %)

is the direct limit over K of the complex analytic intersection cohomology of Sh(G,h)x @g C, where
Sh(G, h)f is the Baily-Borel compactification of Sh(G,h)x (over E).

2211 this article, we only need the case where £ is the trivial representation.
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Now let £ be a rational prime and choose an isomorphism ¢,: C = Q3°. Then the Q3°-local system
Ze®c,, Q3¢ descends to an (étale) Qf°-local system .Z; ,, on {Sh(G,h)x}. We then have a comparison
isomorphism

IHlét(Sh(Gv h)? gﬁ,u) = IHZ(Sh(Gv h)? gﬁ) AC,up Q?Ca
where

TH{,(Sh(G, h), Z,,) == lglIH (SK(G,h)k ®5 C, Z.,).

For an irreducible admissible representation 7> of G(A™), put
TH ,, (7°°) = Homgae g (as)) (10 7°°, THE (Sh(G, h), Z,,))
which is a finite dimensional representation of Gal(C/E), whose dimension is equal to
Z mdisc(ﬂ-oo ® 7700) dim¢ Hi(gv Ka; oo ® 7Too)a

Too

where 7o, runs through all irreducible admissible representations of G(R). We suppress £ in the
notation if it is the trivial representation.

D.3. Statements for cohomology of unitary Shimura curves. We fix a CM number field £ and
regard F as a subfield of C via a fixed complex embedding 71: E < C. Let ¢ € Gal(E/Q) be the
induced complex conjugation and put F = E°=!. Write ®p = {71,...,74} with d = [F : Q] as the set
of real embeddings of F', in which 7y is the restriction of 77.

Let V be a hermitian space over E of rank 2 of signature (1,1) at 7 and (2,0) elsewhere. As
in Subsection C.1 especially Remark C.2, we have the Hodge map h = hvﬂ.{, the Shimura varieties
{Sh(G, h) x } defined over E, and their Baily—Borel compactification Sh(G, h) g, all of which are smooth
curves over F. By the discussion from Subsection D.2, we have an isomorphism

HE(Sh(G,h), @mdlsc H' (9, Kg; o) © 7%

of G(A*)-modules, where H(Sh(G, h),C) == lim HL(Sh(G,h) g, C). By Lemma D.2, up to equiva-
lence, there are only two representations 7, of G(R) with H!(g, Kq; 7o) # {0}, namely,

77(()}370)::7%:[1)@1@...@1’ W(g(o)’l):ﬂ?ﬁ@l@@l

Definition D.3. Let 7> be an irreducible admissible representation of G(A*).

o We say that 7 is stable cohomological if both mgo )®7r and 7r(0 b

multiplicity.

®7> have positive cuspidal

o We say that 7 is endoscopic cohomological if exactly one of 77&1;0) ® 7> and W(()g’l) ® 7 has
positive cuspidal multiplicity.
Denote C§! (resp. C") the set of isomorphism classes of stable (resp. endoscopic) cohomological
irreducible admissible representations of G(A). Put Cy = Cf [[ Csd.

Proposition D.4. Let 7 be an irreducible admissible representation of G(A>).

(1) If ©° is endoscopic cohomological, then there exists a unique adélic oscillator triple (u,e,x)
(Definition 4.11) with p of weight one and satisfying T{ € ®,,, such that 7 is isomorphic to
w(p, e, X). Moreover, Homgjg(ac) (7>, Hi(Sh(G,h),C)) has dimension 1.

2) If 7 is stable cohomological, then Homeia(asey (7™, Hs (Sh(G, h), C)) has dimension 2.

[G(A>)] B

Proof. Let V* be an isotropic skew-hermitian space over F of rank 2, which is unique up to isomor-

phism. The global inner transfer from U(V) to U(V*) is known; see, for example, [Har93]. More
precisely, let V be an irreducible U(V)(Ap)-submodule of L2, (U(V)) and denote V; its complex

conjugate space. We may choose an automorphic character £: E1\(A%)! — C* such that the global
theta lifting @ZF (1) v(Vr ® €) is nonzero. Then JL(V;) = @Z; (11),V v(Vr ® §) ® € is a subspace of
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L2, (U(V*)), which is an irreducible U(V*)(A r)-module and is independent of the choice of £&. Denote
by JL(r) the representation of U(V*)(Af) on JL(V;). Since the complement of L2
of automorphic characters, we have mgisc(m) = maqisc (JL(7)).

The Langlands—Arthur classification for U(V*) is known by [Rog90, Section 11]. Let 7* be an
irreducible cuspidal automorphic representation of U(V*)(A ). We have the (standard) base change
IT of 7*, which is an irreducible isobaric automorphic representation of GLy(Ag). We say that 7* is
stable (resp. endoscopic) if IT is cuspidal (resp. II ~ II; BII5 for two conjugate symplectic automorphic

characters II; and IIy).
(1,0)

Suppose that 7 is stable cohomological. Then both JL(ms™’ ® 7°°) and JL(ﬂég’l) ® m°) have
positive multiplicity and the same base change II. By Arthur’s multiplicity formula, IT has to cuspidal,

2 .
cusp 11 Lgjs. consists

and mdisc(m%’o) ®7>°) = mdlsc(mgo b ® ) = 1. In particular, (2) follows.

Suppose that 7 is endoscopic cohomological. Then by the same reasoning, we have I1 ~ I1; B Ils,

and Mmgjsc (7Tc(>o 0) ®R7T™) + mdlsc(m(,g o ®7>) = 1. Let 7 be the unique member in {7‘(‘&;’0) Q@ m®, wgg’l) ®

7} such that mgis.(7) = 1. Since JL(7) is endoscopic, both II; and Il are conjugate symplectic
automorphic characters of weight one. Thus, there exists a conjugate symplectic automorphic character
u of weight one such that L(s,II ® ) has a simple pole at s = 1. By Theorem B.4, we have a skew-
hermitian space W over E of rank 1 of determinant e € E~*/ Ng/p E* and an automorphic character
X' of UW)(AF), such that 7 is realized in the space of global theta lifting GXF,(;L,V),W(X/)' Let x be
the central character of 7. Then it is trivial at infinity. Thus, by Lemma D.1(4), there exist exactly
two adelic oscillator triples, which are (u,e,x) and (ux,€’, x), such that 7 is isomorphic to the
associated oscillator representation. In particular, the condition that u is of weight one and satisfies
71 € ®,, determines exactly one of the two triples. Therefore, (1) follows. O

Remark D.5. The proof of Proposition D.4(1) implies that for 7°° ~ w(u,e,x) that is endoscopic
(1

cohomological, we have mcusp(mso 0 & o0 ) =1 (resp. mwsp(wOo Vg moe ) = 1) if and only if there exists
some e € EX~ such that

e ¢, =eNg, /g, B for every nonarchimedean place v of F,

e 7/(e) has negative imaginary part for i = 2,...,d, where 7/ is the unique element in ®, above
T;, and

e 7 (e) has negative (resp. positive) imaginary part.

Now we study the f-adic cohomology of {Sh(G,h)k } k. Take a rational prime ¢ and an isomorphism
v: C = Q°. Put

H (Sh(G, h), Q) = @H «(Sh(G, h)x ©p C, QF°).
By the comparison theorem, we have a canonical isomorphism
H(let (%(Ga h)7 Qgc) = H]IB(Sih(Ga h)7 (C) ®(C,Lg Q?C

of G(A*°)-modules. For an irreducible admissible representation 7> of G(A*°), the Qj°-vector space

H}/z (7'(00) = HOIIlQaZc[G(Aoo)} (Lg o 7[‘007 Hét (ST(G, h)’ Q?e))

is a representation of Gal(C/E), which we denote by p,, (7).

Suppose that 7 is endoscopic cohomological. Then by Proposition D.4, we obtain an f-adic
character p,, (7°°): Gal(C/E) — (Q3¢)*. It induces, via the isomorphism ¢, an automorphic character
pe(m): EX\A} — C*. It is easy to see that the character py(7°°) does not depend on the choice of
the isomorphism ¢y, which justifies its notation.

Theorem D.6. Let 7 be an irreducible admissible representation of G(A), and £ a rational prime.
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(1) Suppose that ©*° is endoscopic cohomological, which is isomorphic to w(u, e, x) with u of weight
one and satisfying 71 € ®,, as in Theorem D./(1). Then

oor{u‘lw if Mewsp(r&0 @ 7°) = 1;

pe(m _
/’LC}VC : | ‘El/Q meCusp( ( )®7T ) L.

(2) Suppose that w is stable cohomological. Then for every vp: C = Q3°, we have
(a) p,,(7°) is an irreducible two-dimensional representation of Gal(C/E);
(b) pug() = p,, (1%)°(1);
(c) if we let II°® be the irreducible admissible representation of GLa(A%) that is the standard
base change of m°, then for every nonarchimedean place w of E coprime to ¢,

WD(p,, () | Gal(ES / Ew))"™ = 14 0 L p,, (T35 det |,'/?)
holds, where £ g, denotes the local Langlands correspondence for GLa g, .

The proof of the theorem will be given in Subsection D.4.

The theorem reveals some information about the Albanese variety (Jacobian) Ax of Sh(G,h)g
We have a homomorphism €>°(K\G(A>)/K,Q) — End(Ag)q of Q-algebras induced by the Hecke
actions. Note that Gal(C/Q) acts on Cy through the coefficients, which preserves the two subsets C§f
and C%nd. Therefore, we obtain an isogeny decomposition

(D.3) A ~ AL x A%
(over E) such that under the canonical isomorphism in Lemma 2.4(1), we have isomorphisms

Hp(A%,C) =~ €D Hp(Sh(G,h)k, C)[(n)"],

T ECH

HE(ARY,C)~ @ Hi(Sh(G,h)k, C)[(>)"]

o0 Ecend

of €°(K\G(A*>®)/K,Q)-modules.

Put CY = C¥/ Gal(C/Q), the set of Gal(C/Q)-orbits in C§}. For every orbit 7°°, denote by M (z>°) C
C its field of definition, namely, the fixed field of the stabilizer of #*° in Gal(C/Q); it is a number
field, either totally real or CM. By Theorem D.6(2) and a standard argument, we may associate to
m>° a (simple) abelian variety A(z°) over E, which satisfies

o dim A(x™) — [M(z*™) : Q,
o EndE( (*°))g =~ M (7*°), and
A(m™®) ®p.c F is isogenous to A(z>)V.

In fact, A(z™) is of strict GL(2)-type in the terminology of [Y7713, Section 3.2.1]. Finally, note that
for every open compact subgroup K of G(A®), the dimension of K-fixed vectors in a representations

in 7°° depends only on the orbit, which we denote by dimc (z>)%. Theorem D.6(2) has the following
corollary.

Corollary D.7. For every sufficiently small open compact subgroup K of G(A>), we have an isogeny
decomposition

o0\ K
Aig ~ H A dlmc )
Eoo Egst

compatible with changing K in the obvious way. In particular, A% does not have factors that are of
CM type. Moreover, A(m$°) is isogenous to A(x3°) for m$°, m3° € CX¥ if and only if there exist m° € w$°
and 3¢ € ©S° that have the same standard base change to GLa(A%).

The isogeny decomposition of A%?d is a special case of Corollary 4.20.



82 YIFENG LIU

D.4. Proof of Theorem D.6. We prove Theorem D.6 by first establishing a congruence relation for
the Shimura curve Sh(G,h)x over a set of primes of E of density 1.
To state the congruence relation, we fix a prime q of F, with the underlying rational prime p, such
that
o G ®qg Qp is unramified (in particular, p is unramified in E), and
e  # q°, that is, g has degree 1 over F.
Denote by p the prime of F' underlying q. We identify F}, with E;. Choose a uniformizer w of F,. Put
Op = OF,, k = Oy /w0, and q := #r. Fix a maximal unramified extension F'" of F}, with O3 the
ring of integers and k¢ := ﬁ;r/wﬁ;‘r the residue field. Let o: O — O be the g-th Frobenius map.
Fix a basis of the Ej-vector space V ®g E; under which we identify U(V ®p F,) with GLo, Fy-

Let Iwy, = (wﬁgp Z‘;) C GL3(0y,) be an Iwahori subgroup. We consider open compact subgroups

K C G(A®) of the form GL2(0y) x K} x KP where GL2(0y) x K} is a hyperspecial maximal subgroup
of G(Qp) and KP? is a sufficiently small open compact subgroup of G(A°>P). For such K, we put
Ky = Iwp x K} x KP. We have the projection morphism 7: Sh(G,h)g;, — Sh(G,h)g, and an
isomorphism
tw: Sh(G,h) g, — Sh(G,h) g,
induced by the Hecke translation of the element (; “). In view of the reciprocity map in Remark C.2,
the morphism
to®o: Sih(Gr7 h)KIW XF, Fpnr — Sih(G,h)KIW X F, F;lr

preserves every connected component.

We will show in Proposition D.8 that Sh(G,h) (resp. Sh(G,h)g;,) admits a smooth model (resp.
a stable model) Sk (resp. Sk, ) over 0,. By [LL99, Proposition 4.4(a)], the morphism t extends
(uniquely) to a morphism ts: Sk,, — Sk, which has to be an isomorphism; and 7 extends (uniquely)
to a morphism 7: Sk, — Sk. Finally, to ease notation, we put 7x = Sk Qg, K and Tg,, =S Ky @0, K
for the special fibers.

Proposition D.8. Let the notation be as above. We have

(1) The smooth projective F,-curve Sh(G,h) admits a smooth model Sk over O,.

(2) The smooth projective F,-curve Sh(G,h),, admits a stable model Sk, over O,.

(3) The k-scheme Tk, has two irreducible components TI?IW and Ty, , satisfying that
(a) 7 =1 | TIJ{IW: TI?IW — Tk s an isomorphism;
(b) 7= =7 | Ty, : T, — Tk is a finite flat morphism of degree q;
(¢) tm ® o induces an isomorphism between TI?IW @ K and Ty, @y K*;
(d) the morphism (7~ ®id) o (tm ® o) o (7t ®id)™! coincides with the absolute q-th Frobenius

morphism of Tk @, K*.

Proof. We first assume F # Q. Then we have Sh(G,h)x = Sh(G,h)g. We will reduce the proposition
to (a weak form of) the congruence relation in [Car86, Proposition 10.3] by changing the Shimura
datum.?® Choose a quaternion algebra over B together with an embedding E < B of F-algebras,
such that the induced hermitian form on B is isomorphic to V. In particular, B is indefinite at 7 and
definite at all other places of F'; B is division at a nonarchimedean place v of F' if and only if V,, is
anisotropic. We identify V with B as hermitian spaces. Let (B* x EX)! be the subgroup of BX x E*
consisting of elements (b, ) such that Np /pb-Ng/pe=1, viewing as a reductive group over F'. Then
we have a short exact sequence

1= Gur— (B x EX)! = UV) =1,

23In [Carg6], the initial Shimura variety is a quaternionic Shimura curve, and the auxiliary Shimura variety is a
(quaternionic) unitary Shimura curve of PEL type. However, in our case, the initial Shimura variety is unitary Shimura
curve of non-PEL type, and the auxiliary Shimura variety we introduce below is a quaternionic Shimura curve, which is
the initial Shimura variety of Carayol. So strictly speaking, to obtain this proposition, we have to change Shimura data
twice but the second step has already been carried out by Carayol. Such consideration was also used in [Liullb].
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where the homomorphism Gy, p — (B* x EX)! is given by e — (e,e™!). The fixed basis of V ®pg E;
identifies B @p F, with Maty(F}), and further (B ®@p F,)* with U(V)(F}).

Put G’ := Resp/gp B* and let h’' be the Hodge map that is inverse** to the one given in [Cars6,
0.1]. We have the Shimura curve Sh(G’,h')g defined over F. Here, the open compact subgroup
K' € G'(A) is of the form K}, x K'P, where K, is hyperspecial maximal of the form GLa(&}) x
K. Replacing GLa(0y) by Iwy, we obtain K7, hence the Shimura curve Sh(G’,h’) Ky - Applying
the constructions for the Shimura data (G,h) to (G',h’), we obtain Sh(G',h")gs, Sh(G', W)k, , ',
and t_. By Deligne’s theory of connected Shimura varieties [Del79] (or see [Car86, Section 4]), for
every connected component Sh(G, h)}( of Sh(G,h)x ®F, F}", there exists some K7 and a connected

component Sh(G’, 1’ )}(, of Sh(G',h') g @, Fy™ such that there is a commutative diagram

Sh(G,h)k, —==Sh(G, h/)}qw

Sh(G, h)l, —=— Sh(G/, )1,

where Sh(G, h)klw =m" Sh(G, h)}( and Sh(G/, h')zqw = /71 Sh(G/, h’)}(,, under which the automor-
phism t5 ® o of Sh(G, h)}ﬁ coincide with the automorphism t_ ® o of Sh(G’,h’)E{, respectively.
w Iw

Therefore, the proposition will follow from the version for (G’ h’).?

To release ourselves from the clumsy notation, we will now suppress the “prime” in all superscripts;
in particular, the group G now is Resp/g B*. Then (1) follows from [Car&6, Proposition 6.1]. For the
remaining claims, we need some preparation.

For n > 1, put K, = (Iz + @" GLa(0})) x K x KP. In [Cars6, 1.4.4], Carayol constructed an
Oy-divisible group Eo over Sh(G,h)g, such that the pullback of Ex[p"] to Sh(G,h)g,, is trivial. By
the construction, the subgroup Sh(G,h)x, x (§) € Sh(G,h)k, x (p~1/6,)? is stable under the action
(given in [Car86, 1.4.2]) of Iw,. In particular, it defines an O)-stable subgroup Cp, of E[p] over
Sh(G, h)g,,, of rank g. By [Car86, Proposition 6.4], the 0,-divisible group E, extends uniquely to an
O,-divisible group € over Sk such that £ | Tx is of dimension 1 and &y-height 2.

We define a functor Sk, over Sk such that for every Sk-scheme u: S — Sk, the set Sk, (5)
consists of Op-stable finite flat S-subgroups of u*€x[p] of rank ¢. As pointed out in [Car86, Sec-
tion 6.7], the supersingular locus of £ is discrete. Thus, it follows from [Car86, Proposition 6.6]
and the Grothendieck—Messing theory that the above functor is represented by a finite flat morphism
7: Sk, — Sk of schemes (of degree g + 1), satisfying that Sk, is a semi-stable curve over 0.
Moreover, since the special fiber Tk, = Sk, ®g, r does not contain genus zero curves as irreducible
components, Sk, is a stable curve over €),. The subgroup Cry, constructed above induces a morphism
v: Sh(G,h)g,, — Sky, ®g, Fy of schemes over Sh(G,h)x. By the construction of E., it is easy to
see that the morphism 7: Sk, ®g, Fy — Sk ®g, I, = Sh(G, h)k is étale and generically irreducible.
Thus, ¢ is an isomorphism since both sides are finite étale of degree ¢ + 1 and generically irreducible
over Sh(G,h)f. Thus, (2) follows, and we will identify Sk, ®g, F, with Sh(G,h) g, via ¢.

Let (7*€x, C1w) be the universal object over Sk, . Denote by TEI ., (resp. Tr ) the Zariski closure of

the locus in Tk, where Cry, is continuous (resp. étale). Then ’Téw are union of irreducible components
and they cover Tk, . To prove (3), we have to consider full Drinfeld level structures at p. For n > 1,
let Sk, be the functor over Sk such that for every Si-scheme u: S — Sk, the set Sk, (S) consists
of Drinfeld level structures ¢: (p~"/0,)? — Morg(S,u*Ex[p"]) (see [Cars6, Section 7.2] for more

24This is to ensure that the actions of ¢ on the connected components of Sh(G,h) ®z C and Sh(G’,h’) ®r C are

e ﬁ,efl
compatible with the composite homomorphism F, ~ Ef L—)% E';.
25Here, we have to use the fact that constructing smooth (resp. stable) models of smooth projective curves over &,
is equivalent to constructing them after the base change to 0,"; see, for example, [DM69, Section 1].
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details). By [Car86, Proposition 7.4], it is represented by a finite flat morphism 7, : Sk, — Sk of
schemes (of degree # GL2(0,/p™)), such that m, ®g, F, is canonically isomorphic to the projection
Sh(G,h)k, — Sh(G,h)x. Now we take n = 1, we define a morphism 7y, : S, — Sk;,, by sending a
Drinfeld level structure ¢ to the subgroup 3,4+ [¢(c)] where AT C (p~1/0,)? is the line with the
second coordinate zero. Then 71, ®g, [}, is canonically isomorphic to the projection Sh(G,h)x, —
Sh(G,h)k,,. Let 7?(61‘1 be the induced reduced subscheme of Sk, ®¢, £*°. Then by [Cars6, 9.4.1], the
morphism 7'}(61‘1 — Tk @y k2 is finite flat of degree (¢ — 1)g(q + 1). For every line A in (p~1/0;)?,
let 7?(61?14 be the locus where ¢ | A = 0. Then by [Car&6, Proposition 9.4.4], {7}?}.4}14 is the set of all
irreducible components of Tf{eld. Since GLa(k) acts transitively on {7}91%} A, each 7}61‘1 4 1s of degree
q(qg — 1) over T ®, k*°. By definition, the image of 7}91% under 7y, is contained in 7}?1 . (resp.
Tk,,) if and only if A = AT (resp. A # AT). If A # AT, then mry: Ty — Ty ®, 52 is étale of
degree g — 1 since to recover the Drinfeld level structure is equivalent to choosing a basis of AT. Thus,
deg(m | Tg, ) = q. Since deg(m | Ti: ) > 1, we must have deg(r | T, ) = ¢ and deg(n | Ty, ) =1, and
both Ty, —and '7';1 ., are irreducible. Thus, (3a) has been verified as a finite flat morphism of degree
1 must be an isomorphism, and (3b) also follows. For (3c,3d), put Sk = @n Sk, . Let AL (resp.
A7) be the subspace of F with the second (resp. first) coordinate zero. In view of the notation of
[Car86, Section 10.3],%° we have subschemes (Skoe®K™) g+ of Sk @K™, which map surjectively to

Téw®nf€a‘: under the composite map Sk, — Sk, vy S K. » Fespectively. Note that the endomorphism
tw lifts to Sk, by the Hecke translation. By [Car86, Proposition 10.3], the morphism ty ® 0?7 and
the Hecke translation by (; !) induce the same map on the underlying set of (Sk, ®k) A% - Since
the Hecke translation by (; ') maps (Sk. ®k*°) At t0 (Sk ®K™) -, we obtain (3c). For (3d), since
(1) acts trivially on Tk, we know, again by [Cars6, Proposition 10.3], that (e ® id) o (t ® o)
coincides with 7o, ® id on the underlying set of (Sk_ ®k*) AL where 7 : Sk, — Sk is the obvious
projection. This implies that t == (7~ ® id) o (tx ® 0) o (7T ® id) ™! induces the identity map on the
underlying set of Tx ®, k¢, which has to be purely inseparable. We factors t as the composite map

TK O prr t_l> (TK ®Or KaC)(q) M&) TK R prty

Now t’ is k*“-linear, purely inseparable, inducing the identity map on the underlying set, and of
degree ¢ by (3b,3c), so it has to be the relative ¢g-th Frobenius morphism by [SP, 0CCZ]. Thus, t is
the absolute g-th Frobenius morphism. The proposition is finally proved in the case where F' # Q.
When F' = Q, we can still deduce the proposition to the one for Sh(G’,h’) g, which is either: (i)
a Shimura curve associated to a division rational quaternion algebra, or (ii) a compactified modular
curve. In both cases, Sh(G/,h)k is already a moduli space. In case (i), the conclusions of the
proposition can be found in [Buz97]. In case (ii), the proposition is well-known (see [DR 73, KM&5]). O

Corollary D.9. For every rational prime £ # p, the action (c71)* of the geometric Frobenius at q on
H} (Sh(G,h)x @5 C, Q%) satisfies the equation

X% —t5L X + q{w)* =0,
where (w): Sh(G,h)k — Sh(G, h)k is the Hecke translation given by (¥ ). Here, we regard t as a
correspondence on Sh(G,h)k.
Proof. Tt suffices to show t% = (67 1)* + ¢(w)* o o* for actions on H}, (Sh(G,h)x ®g C,Q3¢). By com-

parison, it suffices to prove this identity on Tx. However, by Proposition D.8(3), the correspondence

tw on T decomposes as the sum of
ot + t:; - m T S + ot
TK \ TKIW ? TKIW ? TK ) TK < TKIW > TKIW ? TK 5

260ur Sk, is Carayol's M.
27Here, our o is the (arithmetic) Frobenius, which is inverse to the one that should appear in [Car86, Proposition 10.3].
Such difference is due to the fact that our choice of the Hodge map for Resp/q B* is inverse to Carayol’s.
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where t£ is the restriction of ts to Tiw, respectively. By Proposition D.8(3d), the action of (7~ o
tr o (wF)™1)* coincides with the action of (¢71)* on H} (Sh(G,h)x ®g C,Q3°); and the action of
(7~ otk o (7)), coincides with the action of ¢(c71), = go* on H} (Sh(G,h)x ®5 C, Q).

For the first part, we have on H} (Tx ®, ¢, Q3°) that

So(th) o (mT) = af o (r ) o (1)) o (th) o (n )"
= (rfo(@))o(n”otLo (@) ™) = (o (x))o (07 = (c71)

as 71 is an isomorphism by Proposition D.8(3a).

For the second part, we have on H}, (Tx ®, £2¢,Q3¢) that

o (tz) o (mh) =7 o (t5) ™) o (@) o (1) =77 o (t). 0 (@) o (v ) 7).

) Do (w)* = (7r otg o (1)) o (w)”

= g0 o (m)* = q{w)* 0 0"

:ﬂ*o( ) (7(

Adding the two parts, we obtain the desired identity. O

Proof of Theorem D.6. Let m° be an irreducible admissible representation of G(A>). Denote by
Y (7w°) the set of primes q of F such that q has degree 1 over F' and m,° is an unramified representation
of G(Qp), where p is the underlying rational prime of q. It is clear that X(7°°) Chebotarev density 1
among all primes of F.

We consider (2) first. Let £ be a rational prime and let ¢;: C = Q3¢ be an isomorphism. Let II be the

standard base change of either 7rc(>o 0) Q7> or 7r<(>O )®7r°° Then IT is cuspidal. In [BR93, Section 4], the

authors constructed an irreducible Galois representation pr,,: Gal(C/E) — GL2(Qj°) that satisfies
(2¢) at all but finitely many nonarchimedean places w of E coprime to £. On the other hand, Corollary
D.9 already implies (2c) for p,,(7°°) at places w = q € X(7>°) that is coprime to £. By the Chebotarev
density theorem, p,,(7°°) and prr,, are isomorphic, which implies (2a). Moreover, (2b) also follows
from the Chebotarev density theorem; and (2c) follows from [Carl2, Theorem 1.1].

Now we consider (1). Put fi := pp(n>): EX\A} — C* for simplicity. We also put p; = p| |El/2

and po = pcy| |];1/2. Then Corollary D.9 implies that for every q € X(7°°) that is coprime to ¢, we
have fiq € {pt1q, ptoq}. We claim that fi € {u1,pu2}. For i = 1,2, let ¥; be the set of primes v of E
such that fi, = iy, and let d; be the upper density of ¥;. Then we have §; + do > 1. Without lost of
generality, we assume that 6; > 0. Then by [Raj00, Theorem 1], there exists a Dirichlet character n;
of E such that fi = p1m1. If n1 = 1, then we are done. Otherwise, §; < 1, and then d2 > 0. By the
same argument, we have another Dirichlet character 1y of E such that i = pone. Thus, pipy lisa
Dirichlet character, which is not true. Therefore, we must have i € {u1, uo}. We are left to determine
which one i is.

Fix an open compact subgroup K C G(A™) such that (75)% # {0}. Let Ax be the Jacobian of
Sh(G,h)g. Let # be the Gal(C/Q)-orbit of 7. Using Hecke operators, we may find a surjective
homomorphism ¢: A — B of abelian varieties over E such that the induced map ¢*: H5(B, Q) —
Hi (Ak, Q)[z™] is an isomorphism. Let By be some simple factor of B over E. Then By has complex
multiplications by some subfield My C C, which has to contain M, (Definition 4.3). There are two
cases.

If mcusp(ﬂéo 0% ) = 1, then H (X, C)[r>°] has Hodge type (1,0). Thus, & is the associated CM
character of By. In particular, we have fir, () = 1/z, where we have identified C with F ®,, R through

the embedding 74, which implies that i = p |;31 2,

If mcusp(m(x, Y@ o ) = 1, then H (X, C)[7>°] has Hodge type (0,1). Thus, fi° is the associated CM

character of By. In particular, we have fi, () = 1/Z, which implies that i = p°x| |;;1/ 2,

Theorem D.6 is all proved. g
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