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When a liquid film drains on a vertical plate, the film becomes nonuniform near the vertical edge.
Here we experimentally report the three-dimensional (3D) self-similar shape of this film. Based on
the well-known 2D self-similar solution of a draining film far from the edge, we identify a new 3D
self-similar scaling, which converts the PDE for the film thickness with three independent variables
into an ODE. Interferometry is performed to measure the film thickness as a function of position
and time, and the results are in excellent agreement with the theoretical predictions.

The gravitational drainage of a liquid film on a sub-
strate is an example that has a two-dimensional (2D)
self-similar solution for the film height as a function of
position and time, as first recognized by Jeffreys [1]. In
particular, by balancing gravitational forcing and viscous
effects, the thickness of the draining film

hJ = (µx/ρgt)1/2, (1)

where µ the fluid viscosity, x the vertical length of the
film, ρ the fluid density and g the gravitational accel-
eration, which is known as Jeffreys’ solution [1] (or the
Reynolds’ thinning law [2]). Certainly there are many
examples of film drainage in other configurations, such
as foams [3], tear films [4] and coating flows [5–7].

Self-similarity usually occurs where a system lacks a
distinguished length scale or time scale [8]: e.g. unidi-
rectional laminar flow near a planar wall (Stokes first
problem) [9], corner flows [10], pinching of a liquid neck
[11], liquid spreading by surface tension [12] or gravity
[13, 14], etc. These self-similar solutions convert partial
differential equations (PDEs) that describe the dynamics
of the system with two independent variables to ordinary
differential equations (ODEs) with only one independent
variable. To the best of our knowledge, however, it is
rare that a self-similar scaling converts a PDE with more
than two independent variables into an ODE. One exam-
ple of a similarity solution to a three-dimensional (3D)
steady linear PDE is the case of rotary honing (the flow
in a corner induced by the rotation in its plane) [15]. Our
example below is for the case of an unsteady nonlinear
PDE.

In this Letter, we report that when studying exper-
imentally the draining film near the edges of a verti-
cal substrate of finite width, the film profile shows self-
similar features. For this edge configuration, there is no
distinguished length scale in the vertical or horizontal di-
rection. We identify a new self-similar scaling consistent
with Jeffreys’ solution in the far field: the PDE, which de-
scribes the film thickness profile with three independent
variables, is converted to an ODE. This 3D self-similarity
provides a universal law for the draining film shape with
an edge throughout the drainage time, and is in excellent
agreement with our experimental measurements.

In our experiments, to obtain a draining liquid film,

fluid is injected onto a vertical glass slide. After injection,
a portion of the fluid remains on the substrate as a liquid
film and gradually drains under gravity. Fig. 1(a) shows
a demonstration of the gravitationally draining film on a
glass slide after injecting water with blue dye. Immedi-
ately after the injection, the liquid film is approximately
horizontally uniform [t = 0 s, Fig. 1(a)]. The film then
gradually drains and becomes nonuniform: for t ≥ 2 s,
the liquid film is darker near the edge of the substrate
[Fig. 1(a, b)], which indicates that the film contains more
dye and thus is thicker near the edge than in the mid-
dle. This suggests that the draining film shape varies
horizontally near the edge, and is commonly observed as
long as the draining film is confined at its edge [17]; see
the schematic of the film shape in Fig. 2. The film shape
near the edge looks similar to the liquid rims of a dry
patch on an incline [18], but there is no inflow from out-
side and no dewetting of the liquid in our experiments.

While water might dewet on glass [17], silicone oil wets
glass well and is used for further investigations in this
Letter [see the material properties in the Supplemental
Material (SM) [16]]. In the experiments, the draining
silicone oil film is usually tens of micrometers in thick-
ness, and interferometry is performed to measure the film
thickness profile; see the sketch of the set-up in Fig. 1(c).
A helium-neon laser (wavelength λ = 633 nm) illumi-
nates the film, and the film thickness is measured accord-
ing to the interferometric pattern formed by the reflected
light rays from the air-oil and the glass-air interfaces.
Characteristic interferometric patterns are displayed in
Fig. 3(a-d). The film thickness difference between two
neighboring fringes is λ/(2n), where n = 1.4 is the refrac-
tive index of silicone oil, and this is used to reconstruct
the film thickness profile; see details of the imaging in
SM [16].

The interferometric images [Fig. 3(a)] imply a 3D
shape of the draining film: far from the edge, the film
has no memory of the initial film shape during the injec-
tion and quickly converges to Jeffrey’s solution [17]; the
film thickness varies near the edge, but the interferomet-
ric patterns are similar for different vertical positions x,
times t or viscosities µ [Fig. 3(a-d)], which suggest sim-
ilar film shapes. Extensive quantitative measurements
are reported below. Inspired by these observations, we
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FIG. 1. Draining film on a vertical glass substrate. (a) A time series of water (with 0.5 wt% methylene blue hydrate) draining
on a glass slide. A pipette moves horizontally along the glass substrate and gradually injected the fluid. The background light
is provided by a LED panel. See the movie in SM [16]. (b) The horizontal variation of light intensity I (= grayscale/255)
at different times t, along the bottom dashed line in (a). (c) A sketch of the interferometric set-up for measuring liquid film
thickness.

FIG. 2. A schematic of a vertical draining film near an edge.

construct a model to predict the draining film thickness
accounting for the edge.

We consider a liquid film draining on a vertical sub-
strate (Oxy); see the schematic in Fig. 2. Ox points
downwards along the vertical edge of the plate. Oy points
horizontally along the top pinned contact line of the liq-
uid on the substrate. Assuming that |∂/∂y| � |∂/∂x|
near the edge, we start with a standard thin-film analysis
where the film thickness h(x, y, t) satisfies the nonlinear
PDE [14]
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where γ is the surface tension of the fluid. The three
terms in Eq. (2) are viscous, surface tension and gravi-
tational drainage terms, respectively. Note that Jeffreys’
solution [Eq. (1)] is derived by balancing the viscous and
gravitational drainage terms. As the surface tension term
appears because of the edge configuration, we assume
that the 3D film thickness profile h(x, y, t) is self-similar
and tied to Jeffreys’ solution, according to

h(x, y, t) = hJ(x, t)F (η) = (µx/ρgt)1/2F (η), (3)

where η = Axαtβy is a new scaled independent variable
that combines the horizontal and vertical positions and
time. Substituting Eq. (3) into Eq. (2), A, α and β are
determined and the PDE in Eq. (2) with three indepen-
dent variables becomes an ODE for F (η),
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where

η =
(ρg)3/8t1/8y

γ1/4µ1/8x3/8
. (5)

The boundary conditions are F = 0 at η = 0 and F = 1
as η →∞ (this boundary condition in the far field repre-
sents two boundary conditions: at infinity, the diverging
terms in the solution need to cancel each other, which
yields two equations for the form of the solution; see de-
tails in SM [16]), i.e., the film thickness is zero at the
edge and tends to hJ(x, t) far from the edge.

Note that Eq. (4) is a fourth-order nonlinear ODE and
has a possible singularity at the edge (η = 0) [8, 19]. Fully
solving Eq. (4) requires examining the microscopic struc-
ture of the film near the edge [8], and a fourth boundary
condition (e.g. the contact condition ∂h/∂y at the edge)
is needed. Here we note that F ′(0) can be arbitrary since
the contact line is at the edge. We set F ′(0) = 0, which
is consistent with a local solution to the ODE of the form
F (η) = Cη4, where C = 1/104; see details in SM [16].
Rather than fully solving Eq. (4), our goal throughout
this Letter is to demonstrate the macroscopic self-similar
structure of the film away from the singularity. The mi-
croscopic structure does not affect the macroscopic film
shape and the scaling [1, 12, 13]. The scaling [Eq. (5)],
which converts the space as well as time, is our most im-
portant deduction. To demonstrate the structure of the
solution of Eq. (4), we numerically compute the solution
of Eq. (4) (details in SM [16]); see the gray solid line in
Fig. 3(f).

Away from the edge, taking f = F − 1 where |f | � 1,
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FIG. 3. Thickness profile of draining silicone oil films on glass substrates. (a-d) Interferometric images for silicone oil films
with (a) µ = 102 mPa · s and t = 1 min, (b) µ = 102 mPa · s and t = 5 min, (c) µ = 102 mPa · s and t = 25 min and (d)
µ = 540 mPa · s and t = 25 min, respectively. The blue dashed lines show the positions of the peaks of the draining films y0.
See the movies in SM [16]. (e) The normalized film thickness far from the edge, at x = 3, 6 and 9 mm and y = 6.3 mm [red
crosses in (a-d)], as a function of time t. (f) The normalized film thickness h/hJ as a function of the normalized horizontal
position η. The film thickness profiles on the red dashed lines in (a-d) are displayed. The gray solid and dashed lines show the
solutions of Eq. (4) and Eq. (6), respectively (details in SM [16]).

Eq. (4) can be further linearized to obtain

f ′′′′ − 3

4
ηf ′ + 3f = 0, (6)

which has analytical solutions in terms of hypergeometric
functions [20] and demonstrates the first-order perturba-
tion of the film thickness profile away from the edge; see
details in SM [16].

Our scaling to the thin-film equation suggests a self-
similar 3D shape of the draining film, which we have
validated with the interferometric measurements of the
film thickness. To reconstruct the film thickness profile,
we first measure the film thickness near the middle of the

substrate, far from the edge, at the fixed points x = 3, 6
and 9 mm and y = 6.3 mm [red crosses in Fig. 3(a-d)],
respectively. During drainage, by counting the interfer-
ometric fringes that pass through a fixed point, the film
thickness variation with time ∆hJ(x, t) is measured. In
particular, we represent ∆hJ(x, t) = at−1/2 − b, where a
and b are fitting parameters, and the film thickness at the
fixed point is then calculated as hJ(x, t) = ∆hJ(x, t) + b.
Such fitting provides robust estimations of the film thick-
ness [17]. Fig. 3(e) shows the calculated normalized film
thickness hJ as a function of time t, which is in excel-
lent agreement with the prediction of Jeffreys’ solution
(dashed line).
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FIG. 4. The scaled horizontal position of the film peak as a function of (a) time t and (b) vertical position x (note the
logarithmic axes). Five experiments with different silicone oils are performed (viscosity µ = 20.8, 51.5, 102, 540 and 1081 mPa · s,

respectively), and the scaled y0, (a) (ρg)3/8

γ1/4µ1/8x3/8
y0 and (b) (ρg)3/8t1/8

γ1/4µ1/8 y0, are displayed respectively with (a) vertical positions

x = 3, 6 and 9 mm and (b) times t = 1, 5 and 25 min. The insets show the unscaled y0 with logarithmic axes.

Base on the calculated film thickness near the mid-
dle hJ(x, t), the film thickness profile near the edge is
then measured, by counting the fringes that are passed
when horizontally moving from the middle to the edge,
along the red dashed lines in Fig. 3(a-d). As a result,
we find that the measured film shapes are self-similar:
though the drainage times t, the vertical positions x and
the viscosities µ vary in the different measurements, by
normalizing the film thickness by Jeffreys’ solution and
normalizing the horizontal position by Eq. (5), the film
shapes become approximately identical [Fig. 3(f)]. In
general, from the edge (η = 0) to the middle (η → ∞),
the film thickness first increases until it reaches a peak
[η = η0; the positions of the peak are marked as blue
dashed lines in Fig. 3(a-d)], and then decreases and os-
cillates towards hJ(x, t). Near the edge, the horizontal
variation of the film thickness is sharp and the fringes
are narrow and beyond the resolution of the image anal-
ysis. Also, due to the sharp slope at the interface near
the edge, the reflected light is not collected and dark
regions are obtained [Fig. 3(a-d)]. We imaged the film
shape with higher magnification, and the film thickness
increased monotonically near the edge towards the peak
(see SM [16]). The values of the film thickness displayed
in Fig. 3(f) are close to the film thickness in the middle,
i.e., h/hJ ∼ 1. Therefore, the film thickness profile ap-
proximately satisfies the linearized Eq. (6), and we can
construct a film thickness profile similar to the observed
macroscopic film structure by Eq. (6). Both the com-
puted numerical solution of Eq. (4) and the constructed
analytical solution of the linearized Eq. (6) [the gray solid
and dashed lines in Fig. 3(f)] reproduce well the details
of our experimental measurements.

The film thickness profile presented in Fig. 3(f) shows
that the film reaches a peak near the edge and then os-

cillates towards hJ away from the edge. The peaks of the
film thickness act as a signature of the film shape near
the edge; see the blue dashed lines in Fig. 3(a-d). Also,
the self-similarity for the film thickness profile suggests
that the normalized horizontal position η0, where the film
thickness is a maximum, should be identical for all drain-
ing films, regardless of t, x or µ. In the experiments, the
horizontal positions of the peak y0 are measured, with a
large range of drainage times t = 100 to 2000 s, vertical
positions x = 0.1 to 10 mm and fluid viscosities µ = 20
to 1000 mPa · s. As η0 ≈ 1.9 [Fig. 3(f)], the expression
of η [Eq. (5)] suggests that y0 ∝ t−1/8 and y0 ∝ x3/8,
and these power-law behaviors are observed in the ex-
periments: though the unscaled y0 varies significantly
with t or x (the insets in Fig. 4), we predict that the
scaled variables collapse to master curves of power laws
of t and x respectively (Fig. 4), according to Eq. (5).
The experimental best fits for the scaled y0 with t and x
are, respectively, y0 ∝ t−0.117±0.002 and y0 ∝ x0.378±0.005
(dashed lines in Fig. 4). Note that the fitting of the scaled
y0 with x is processed for x ≥ 10−3 m, since the scaled
y0 deviates for x < 10−3 m due to the uncertainties in
the measurements and |∂/∂y| � |∂/∂x| is not perfectly
satisfied near the top contact line (x = 0). Both the best
fits are close to our self-similar predictions and thus the
universality of the 3D self-similar shape of the film near
the edge is validated.

In this Letter, we determine the 3D self-similar shape
for a gravitational draining liquid film near an edge on
a vertical plate. While there is no distinguished length
scale in the horizontal direction, based on Jeffreys’ solu-
tion, a new self-similar scaling is derived, converting the
unsteady nonlinear PDE that describes the film thickness
profile with three independent variables into an ODE.
The self-similar shape of the draining film is then val-
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idated by interferometric experiments in a large range
of t, x and µ. New power laws of time and vertical
position are also established near the edge. According
to Eq. (5), increasing the surface tension, viscosity and
vertical length of the liquid film extends the region in-
fluenced by the edge, while increasing the density and
drainage time shrinks this region. Further, the draining
law applies to a draining water film that slowly dewets
(see SM [16]). Also, inclining the plate with a small an-
gle θ leads to identical results while the gravitational ac-

celeration is modified as g′ = gcosθ. This study pro-
vides guidelines for understanding and estimating drain-
ing films with edge configurations. The ideas presented
may offer an approach to other thin film flows affected
by edges.
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[18] J. Sébilleau, L. Lebon, and L. Limat, “Stability of a dry
patch in a viscous flowing film,” Eur. Phys. J. Spec. Top.
166, 139–142 (2009).

[19] A. A. Pahlavan, L. Cueto-Felgueroso, G. H. McKinley,
and R. Juanes, “Thin films in partial wetting: internal
selection of contact-line dynamics,” Phys. Rev. Lett. 115,
034502 (2015).

[20] H. A. Stone and C. Duprat, “Model problems coupling
elastic boundaries and viscous flows,” in Fluid Structure
Interactions in Low-Reynolds-Number Flows, edited by
C. Duprat and H. A. Stone (Royal Society of Chemistry,
2016) pp. 78–99.

[21] Y. Rotenberg, L. Boruvka, and A. W. Neumann, “De-
termination of surface tension and contact angle from the
shapes of axisymmetric fluid interfaces,” J. Colloid Interf.
Sci. 93, 169–183 (1983).


