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Abstract
This work has been motivated by recent papers that quantify the density of values of
generic quadratic forms and other polynomials at integer points, in particular ones that
use Rogers’ second moment estimates. In this paper, we establish such results in a
very general framework. Given any subhomogeneous function (a notion to be defined)
f : R

n → R, we derive a necessary and sufficient condition on the approximating
function ψ for guaranteeing that a generic element f ◦ g in the G-orbit of f is ψ-
approximable; that is, | f ◦g(v)| ≤ ψ(‖v‖) for infinitelymany v ∈ Z

n .We also deduce
a sufficient condition in the case of uniform approximation. Here G can be any closed
subgroup of ASLn(R) satisfying certain axioms that allow for the use of Rogers-type
estimates.
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1 Introduction

Let f be an indefinite and nondegenerate quadratic form in n ≥ 3 real variables that
is not a real multiple of a quadratic form with rational coefficients. The Oppenheim–
Davenport Conjecture, proved in a breakthrough paper by Margulis [29], states that 0
is an accumulation point of f (Zn): in other words, for any ε > 0,

there exist infinitely many v ∈ Z
n with | f (v)| ≤ ε. (1.1)

Margulis’ approach, via the dynamics of unipotent flows on homogeneous spaces,
was not effective: given ε > 0, it did not give any bound on the length of the shortest
integer vector v for which (1.1) holds. Effective versions were later established for any
n ≥ 5 [6,10] using methods from analytic number theory, but these methods are not
applicable to the most difficult case n = 3. One of the difficulties in establishing effec-
tive variants of Margulis’ Theorem is proving the aforesaid bounds for any quadratic
form f as above. This difficulty is attenuated when one seeks to prove such bounds
only for generic f as above (with respect to the natural measure class). Recently, such
effective generic results have been proved both in the original setting of quadratic
forms and in related settings of other homogeneous polynomials; for example, see
[4,5,8,12,15–18,23,28,30].

In order to describe some of the aforementioned results in greater detail and to
lay the foundation for our own work in the present paper, let us introduce some
definitions. Given a norm ν on R

n , a function f : R
n → R, and a function ψ :

R≥0 → R>0 (to which we shall refer as an approximating function), let us say that f
is (ψ, ν)-approximable if ε in the right-hand side of (1.1) can be replaced byψ

(
ν(x)

)
.

Equivalently, f is (ψ, ν)-approximable if card
(
Z
n ∩ A f ,ψ,ν

) = ∞, where

A f ,ψ,ν := {
x ∈ R

n : | f (x)| ≤ ψ
(
ν(x)

)}
. (1.2)

The above definition is a way to quantify the density of f (Zn) at 0 in terms of the
approximating functionψ . We note that this definition is dependent also on the chosen
norm; under some mild assumptions, however, we shall see that this is not significant
for our purposes. Every specific example that we consider in this paper will satisfy
these mild assumptions. It is also clear that the definition of (ψ, ν)-approximability
also makes sense when ψ is defined only for all sufficiently large nonnegative real
numbers; however, it is convenient to assume that the domain of ψ is all of R≥0 by
arbitrarily extending the function, if necessary. We shall sometimes tacitly do so.
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Consider first the special case

ψ(z) = ϕs(z) := z−s, (1.3)

where s ≥ 0 is arbitrary. Let ν be any norm on R
n . It was recently shown by Athreya

and Margulis [4, Theorem 1.1] that for every p, q ∈ Z≥1 with p+ q = n ≥ 3, almost
every (with respect to the natural measure class) nondegenerate real quadratic form
Q of signature (p, q) is (ϕs, ν)-approximable for every s < n − 2. Previously this
was established by Ghosh, Gorodnik, and Nevo for n = 3 [15]; see also the work of
Bourgain [8], which deals with generic ternary diagonal forms. Similar results were
obtained in [4,16,23]. For instance [23, Theorem 1] generalizes [4, Theorem 1.1] as
follows: let

f (x) :=
p∑

j=1

xdj −
n∑

k=p+1

xdk , (1.4)

where p, q ∈ Z≥1, p + q = n ≥ 3, and 0 < d < n is an even integer; then for any
real s with 0 < s < n − d, almost every polynomial in the SLn(R)-orbit of f is
(ϕs, ν)-approximable.

We note that in all the aforementioned papers, a property stronger than ψ-
approximability has been established. Let us denote Z

n
=0 := Z
n

� {0}, and say that f
is uniformly (ψ, ν)-approximable if for every sufficiently large T ∈ R>0, there exists
v ∈ Z

n
=0 with

ν(v) ≤ T and | f (v)| ≤ ψ(T ).

In other words, if for any ε, T ∈ R>0, we set

B f ,ε,ν,T := {
x ∈ R

n : | f (x)| ≤ ε and ν(x) ≤ T
} = A f ,ε,ν ∩ {x ∈ R

n : ν(x) ≤ T }

(here, the ε in A f ,ε,ν stands for the constant function ψ ≡ ε), then f is uniformly
(ψ, ν)-approximable if and only if for every sufficiently large T ∈ R>0, the set
B f ,ψ(T ),ν,T contains a nonzero integer vector. See, for instance, [39, §1.1] for a discus-
sion of asymptotic versus uniform approximation inmetric number theory, and [25,26]
for some recent results in uniform metric Diophantine approximation. (“Asymptotic
approximation” is the sort of approximation that we have simply called “approxima-
tion” so far in this paper.) It is easy to verify that if the approximating function ψ

is nonincreasing and f does not represent 0 nontrivially, then the uniform (ψ, ν)-
approximability of f implies its (ψ, ν)-approximability. All the aforementioned
papers actually provide conditions sufficient for the uniform (ϕs, ν)-approximability
of generic elements of the SLn(R)-orbit of a given polynomial. For instance, [23, The-
orem 1] states that for f as in (1.4) and for any s < n − d, almost every polynomial
in the SLn(R)-orbit of f is uniformly (ϕs, ν)-approximable.

In this paper, we establish a generalization of the aforementioned results under
the mild conditions on f and ψ to which we previously alluded. Furthermore, our
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methods allowus to generalize to the case of vector-valued functionswith no additional
effort. We now introduce these conditions, which will require some more notation and
terminology. Now and hereafter, we shall denote by n an arbitrary element of Z≥2 and
by � an arbitrary element of Z≥1.

Definition 1.1 We define a non-strict partial order ≤ on R
� as follows. For any x =

(x1, . . . , x�) ∈ R
� and any y = (y1, . . . , y�) ∈ R

�, write x ≤ y if and only if for each
j ∈ {1, . . . , �}, one has x j ≤ y j .

Definition 1.2 Let

f = ( f1, . . . , f�) : R
n → R

� and ψ = (ψ1, . . . , ψ�) : R≥0 → (R>0)
�

be given, and let ν be an arbitrary norm on R
n .

• Weabuse notation andwrite | f | to denote the function (| f1|, . . . , | f�|) : R
n → R

�.

• We define A f ,ψ,ν := {
x ∈ R

n : | f (x)| ≤ ψ
(
ν(x)

)}
.

• For any T ∈ R>0 and any εεε ∈ (R>0)
� , we define

B f ,εεε,ν,T := {
x ∈ R

n : | f (x)| ≤ εεε and ν(x) ≤ T
}
.

• We say that f is (ψ, ν)-approximable if A f ,ψ,ν ∩ Z
n has infinite cardinality.

• We say that f is uniformly (ψ, ν)-approximable if B f ,ψ(T ),ν,T ∩ Z
n
=0 
= ∅ for

each sufficiently large T ∈ R>0.
• We say that f is subhomogeneous if f is Borel measurable and there exists a
constant d = d f ∈ R>0 such that for each t ∈ (0, 1) and each x ∈ R

n one has
| f (tx)| ≤ td | f (x)|.

• We say that ψ is regular if ψ is Borel measurable and there exist real numbers
a = aψ ∈ R>1 and b = bψ ∈ R>0 such that for each z ∈ R>0 one has bψψ(z) ≤
ψ(aψ z).

• We say that ψ is nonincreasing if each component function of ψ is nonincreasing
in the usual sense.

Note that subhomogeneity is our only assumption on f ; in particular, f need not be
a polynomial or even continuous. See [14, Definition 2.2] for another instance of using
the regularity assumption on the approximating function in the context of Diophantine
approximation.

Now and henceforth, we shall denote by m the Lebesgue measure on a Euclidean
space of any dimension. (The dimension will be clear from the context.) The following
is a special case of our main results, Theorems 3.4 and 3.8.

Theorem 1.3 Let η and ν be arbitrary norms on R
n, let f : R

n → R
� be subhomo-

geneous, and let ψ : R≥0 → (R>0)
� be regular and nonincreasing. Then

(i) If m
(
A f ,ψ,η

)
is finite (resp., infinite), then f ◦ g is (ψ, ν)-approximable for Haar

almost no (resp., almost every) g ∈ SLn(R).

(ii) Suppose that
∑∞

k=1

1

m(B f ,ψ(2k ),η,2k )
< ∞; then f ◦ g is uniformly (ψ, ν)-

approximable for Haar almost every g ∈ SLn(R).
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Part (i) is consistent with many other results in Diophantine approximation, where
the finitude versus infinitude of the volume of a certain set provides a necessary and
sufficient condition for the existence of finitely versus infinitely many solutions of
certain inequalities almost everywhere. That being said, it seems remarkable that so
very little needs to be assumed in order to have such a result. Moreover, a byproduct
of Theorem 1.3(i) is that, under the above assumptions on f andψ , the finitude versus
infinitude of m

(
A f ,ψ,ν

)
does not depend on the choice of the norm ν. This is stated

explicitly in Lemma 3.1 below.
We shall show in Sect. 4 that Theorem 1.3 implies the following result, a special

case of Corollary 4.1 that concerns the approximability of a function that is essentially
a generalized indefinite quadratic form:

Corollary 1.4 Let d ∈ R≥1, and fix any p, q ∈ Z≥1 with p + q = n. Let ν be a norm
on R

n . Let f : R
n → R be given by

f (x) :=
p∑

j=1

∣∣x j
∣∣d −

n∑

k=p+1

|xk |d . (1.5)

Let ψ : R≥0 → R>0 be regular and nonincreasing. The following then holds:

(i) If
∫ ∞

1
ψ(z)zn−(d+1) dz is finite (resp., infinite), then f ◦g is (ψ, ν)-approximable

for almost no (resp., almost every) g ∈ SLn(R).
(ii) Suppose that

∞∑

k=1

1

kψ(2k)
< ∞ if d = n;

∞∑

k=1

1

2(n−d)kψ(2k)
< ∞ if d < n.

Then f ◦ g is uniformly (ψ, ν)-approximable for almost every g ∈ SLn(R).

Since d ≥ 1 in (1.5) is assumed to be arbitrary as opposed to an even integer as in
(1.4), the above corollary generalizes the aforementioned work of Athreya–Margulis
and Kelmer–Yu. In particular, we can conclude that for ν and f as in Corollary 1.4
and for almost every g ∈ SLn(R), the function f ◦ g is

• (ϕn−d , ν)-approximable (the critical exponent case), and

• uniformly (ψ, ν)-approximable, where ψ(z) = (log z)1+ε

zn−d
for an arbitrary ε > 0

(the critical exponent case with a logarithmic correction).

We note that for any regular and nonincreasingψ : R≥0 → R>0 and any d ∈ R>n,

the integral in Corollary 1.4(i) converges because it is majorized by

ψ(1)
∫ ∞

1
zn−(d+1) dz < ∞;
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in this case, almost every element in the SLn(R) orbit of f in (1.5) is not (ψ, ν)-
approximable and hence is not uniformly (ψ, ν)-approximable. Other applications of
Theorem 1.3 can be found in Sect. 4.

Historically, there have been several different approaches to this circle of problems.
In particular, the papers [16] and [15] continue the line of thought behind Margulis’
proof of the Oppenheim Conjecture, reducing the problem to studying the action of
the stabilizer of the function f on the space of lattices, and using ergodic properties
of the action to establish quantitative density of f (Zn). In the present paper, however,
we follow the methods of [4,23], which have their origin in the work of Rogers and
Schmidt [31,32,34] and involve studying the asymptotics of the number of lattice points
of generic lattices in families of subsets of R

n . One of the advantages of the approach
taken in this paper is that it makes it possible to significantly generalize the setting. In
particular, one can work with vector-valued functions f = ( f1, . . . , f�) : R

n → R
�,

and can consider specific subsets of Z
n, for example the set of all primitive integer

points Z
n
pr.

It is also worth mentioning that the aforementioned papers were dealing with the
density of f (Zn) in R, not just at zero. In other words, for various examples of
polynomials f , these papers presented conditions depending on s ∈ R>0 sufficient
for showing that for every ξ ∈ R, almost every g ∈ SLn(R), and every sufficiently
large T ∈ R>0 there exists v ∈ Z

n
=0 for which

ν(v) ≤ T and |ξ − f (gv)| ≤ T−s . (1.6)

See, for instance, the two recent papers [17,18] of Ghosh–Kelmer–Yu. We discuss
a possible approach to this case, the inhomogeneous one, in Sect. 5.1, and plan to
address it in a forthcoming paper.

Theorems 3.4 and 3.8, our main results, are essentially a generalization of Theorem
1.3 to a class of groups that act onR

n and satisfy certain axioms,whichSLn(R)happens
to satisfy. Another example of such a group is Spn(R), the group of symplectic linear
isomorphisms of R

n when n ∈ Z>0 is even, or the group ASLn(R) := SLn(R) � R
n

of unimodular affine isomorphisms of R
n . For the infinite measure case of Theorem

3.4, we actually obtain a quantitative version when we stipulate that the element g lie
in an arbitrary fixed compactum of the group.

Let us briefly delineate the structure of this paper. In Sect. 2, we define a class of
groups that satisfy certain axioms conducive to proving our main Diophantine results.
The utility of these axioms is that they enable us to prove generic counting results in
certain spaces of lattices; our approach is a generalization of the method developed
by Schmidt in [34]. Using the axioms on f and ψ that have already been introduced,
we then proceed in Sect. 3 to transfer the results concerning the space of lattices
to those concerning Diophantine approximation. In Sect. 4, we then discuss specific
examples of subhomogeneous f to obtain conditions for approximability in terms of
the convergence or divergence of certain infinite series or improper integrals, as in
Corollary 1.4.

Possible examples with which we do not concern ourselves here abound: one can,
for example, take f to be a system of several quadratic forms or a pair consisting of a
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Khintchine-type theorems for values of subhomogeneous… 529

quadratic and a linear form, as in the papers [5,19,20]. It also appears very likely that
one could use [21, Proposition 5.2 and Theorem 6.1] to prove S-arithmetic analogues
over Q of the results of this paper. Further possible extensions and open questions are
mentioned in Sect. 5.

2 Counting results for generic lattices

Let G be a closed subgroup of ASLn(R), and let 	 be the subgroup of G defined by

	 := {g ∈ G : gZ
n = Z

n}. (2.1)

Now and hereafter, we assume that 	 is a lattice in G; that is, 	 is a discrete subgroup
of G whose covolume in G is finite. (In each particular example of such a group G
that we shall consider, the subgroup 	 will indeed be a lattice in G.) Set X := G/	.

Notice that we then have a well-defined bijection between X and {gZ
n : g ∈ G} that

is given by g	 ←→ gZ
n . We therefore identify X with {gZ

n : g ∈ G}, and we equip
X with the quotient topology.

Now let P be any 	-invariant subset of Z
n . Given any 
 ∈ X , fix any g ∈ G

for which 
 = gZ
n ; then define 
P := gP. Then 
P is well-defined because P is

	-invariant.
Given any function f : R

n → R≥0, we define its P-Siegel transform f̂
P : X →

[0,∞] by

f̂
P

(
) :=
∑

v∈
P

f (v).

We equip G with the left Haar measure μG that is normalized so that any fundamental
Borel set inG for X hasμG -measure equal to 1.We then letμX be the leftG-invariant
Borel probability measure on X that is induced fromμG in the canonical manner. Note
that if f is Borel measurable, then f̂

P
is μX -measurable.

Let us now introduce the axioms on G to which we alluded at the end of the
introduction.

Definition 2.1 Let G and P be as above.

(i) We say that G is of P-Siegel type if there exists a constant c = cP ∈ R>0
such that for any bounded and compactly supported Borel measurable function
f : R

n → R≥0 we have

∫

X
f̂

P
dμX = c

∫

Rn
f dm. (2.2)

(ii) Let r ∈ R≥1 be given. We say that G is of (P, r)-Rogers type if there exists
a constant D = DP,r ∈ R>0 such that for any bounded Borel E ⊂ R

n with
m(E) > 0 we have
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530 D. Kleinbock and M. Skenderi

∥∥
∥∥1̂E

P −
(∫

X
1̂E

P dμX

)
1X

∥∥
∥∥
r

≤ D · m(E)1/r . (2.3)

Remark 2.2 (i) The definition of P-Siegel type is nothing more than the assertion
that a variant of the Siegel Mean Value Theorem—-first proved by Siegel in the
context of SLn(R)/SLn(Z) in the seminal paper [36]—-holds for the P-Siegel
transform on X . Using Lebesgue’s Monotone Convergence Theorem, it is easy
to see that if G is of P-Siegel type, then (2.2) holds for any L1 function f :
R
n → R≥0. Similarly, if there exists r ∈ [1,∞) for which G is of (P, r)-Rogers

type, then (2.3) is satisfied for any (not necessarily bounded) Borel E ⊂ R
n of

finite measure.
(ii) Assuming that G is of P-Siegel type, the assumption of (P, 2)-Rogers type is

equivalent to the assumption that for any bounded Borel E ⊂ R
n, the variance

of the random variable 1̂E
P is bounded from above by a uniform scalar multiple

of the expectation of 1̂E
P . This condition was used by Schmidt to great effect

in [34]; see a remark after Theorem 2.9 below. The definition of (P, r)-Rogers
type for arbitrary r ∈ [1,∞) is a natural generalization of this condition.

(iii) Notice that if G is of P-Siegel type, then G is of (P, 1)-Rogers type.

Before we provide some examples of groups that satisfy the various Siegel and
Rogers type axioms, let us record and prove some simple facts that will be helpful
going forward.

Proposition 2.3 (Logarithmic Convexity of L p Norms) Let (Y , μ) be a measure space.

Let r , t ∈ R≥1 and θ ∈ (0, 1) be arbitrary. Set s :=
(

θ

r
+ 1 − θ

t

)−1

≥ 1. For each

f ∈ Lr (Y , μ) ∩ Lt (Y , μ) we then have

‖ f ‖s ≤ ‖ f ‖θ
r · ‖ f ‖1−θ

t .

Proof This is a well-known special case of the Riesz–Thorin interpolation theorem.
For proofs of this special case and the general theorem, see [13, Proposition 7.37] and
[13, Theorem 7.38], respectively. ��
Corollary 2.4 Suppose that the group G is of (P, 1)-Rogers type and that there exists
s ∈ R>1 for which G is of (P, s)-Rogers type. Then for each r ∈ (1, s) the group G
is of (P, r)-Rogers type.

Proof Let r ∈ (1, s). Fix θ ∈ (0, 1) for which
1

r
= θ

1
+ 1 − θ

s
. Let D1 = DP,1 and

Ds = DP,s be as in Definition 2.1. Let E ⊂ R
n be a bounded Borel set. The foregoing

proposition implies

∥∥∥∥1̂E
P −

(∫

X
1̂E

P dμX

)
1X

∥∥∥∥
r

≤
∥∥∥∥1̂E

P −
(∫

X
1̂E

P dμX

)
1X

∥∥∥∥

θ

1
·
∥∥∥∥1̂E

P −
(∫

X
1̂E

P dμX

)
1X

∥∥∥∥

1−θ

s

≤ Dθ
1m(E)θ · D1−θ

s m(E)
1−θ
s = Dθ

1D
1−θ
s m(E)1/r .

��
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In this paper, the examples of G that we shall consider are ASLn(R), SLn(R), and
also Spn(R) when n is even. When G = ASLn(R), it is clear that the only 	-invariant
subset of Z

n is Z
n itself. If G = SLn(R) or G = Spn(R) (for even n only in the

latter case), then 	 acts transitively on Z
n
pr; in these cases, two obvious choices of P

are therefore P = Z
n
pr and P = Z

n
=0. We now record the various Siegel and Rogers
axioms that the groups just mentioned satisfy.

In the following theorem and thereafter, ζ denotes the Euler–Riemann zeta function.
Let us mention that the following theorem is a compilation of results that are by now
standard in the literature.

Theorem 2.5 (i) The group ASLn(R) is of Z
n-Siegel type with cZn = 1.

(ii) The group SLn(R) is of Z
n
pr-Siegel type with cZn

pr
= 1/ζ(n) and of Z

n
=0-Siegel
type with cZ

n
=0
= 1.

(iii) Suppose n is even. Then the groupSpn(R) is ofZn
pr-Siegel typewith cZn

pr
= 1/ζ(n)

and of Z
n
=0-Siegel type with cZ

n
=0
= 1.

Proof (i) From Lemma 3 of [2] and the ensuing discussion therein, we see that this
claim holds with cZn = 1.

(ii) By the main theorem in [36] and [36, (25)], it follows that for every bounded and
compactly supported Riemann integrable function f : R

n → R≥0, we have

∫

Rn
f dm =

∫

X
f̂ Z

n
=0 dμX

and

∫

Rn
f dm = ζ(n)

∫

X
f̂ Z

n
pr dμX .

The desired results now follow from Lebesgue’s Monotone Convergence Theo-
rem.

(iii) After making the requisite changes in notation, the assertion that Spn(R) is of
Z
n
pr-Siegel type with cZn

pr
= 1/ζ(n) is precisely the content of [22, (0.6)]. Let

f : R
n → R≥0 be a compactly supported Borel measurable function. For any

k ∈ Z, define fk : R
n → R≥0 by fk(x) := f (kx). Then for any 
 ∈ X ,

f̂ Z
n
=0 (
) =

∑

v∈
�{0}
f (v) =

∞∑

k=1

∑

v∈
pr

f (kv) =
∞∑

k=1

∑

v∈
pr

fk(v) =
∞∑

k=1

f̂k
Z
n
pr (
).

It is now easy to conclude that Spn(R) is of Z
n
=0-Siegel type with cZ

n
=0
= 1.

��
Theorem 2.6 (i) The group ASLn(R) is of (Zn, 2)-Rogers type.

(ii) Suppose n ≥ 3. Then SLn(R) is of
(
Z
n
pr, 2

)
-Rogers type and of (Zn
=0, 2)-Rogers

type.
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(iii) Suppose n is even and n ≥ 4. Then Spn(R) is of
(
Z
n
pr, 2

)
-Rogers type and of

(Zn
=0, 2)-Rogers type.

Proof (i) The result [2, Lemma 4] shows that for any bounded Borel E ⊂ R
n, we

have
∥∥∥
∥1̂E

Zn −
(∫

X
1̂E

Zn dμX

)
1X

∥∥∥
∥
2

= m(E)1/2.

(ii) Let E ⊂ R
n be bounded and Borel. Since

∫

X
1̂E

Z
n
pr dμX = 1

ζ(n)
m(E), a simple

change of notation and a routine algebraic manipulation of [22, (0.2)] yield

∥∥
∥∥1̂E

Z
n
pr − m(E)

ζ(n)
1X

∥∥
∥∥
2

≤
√

2

ζ(n)
m(E)1/2.

Hence, SLn(R) is of (Zn
pr, 2)-Rogers type.

Let B denote the closed Euclidean ball in R
n that is centered at the origin and

whose measure is equal to m(E). By [32, Theorem 1 and Lemma 1], it follows

∥∥∥1̂E
Z
n
=0

∥∥∥
2

2
≤
∥∥∥1̂B

Z
n
=0

∥∥∥
2

2
≤ m(E)2 +

∑

k,q∈Z
=0:gcd(k,q)=1

∫

Rn
1B(kx)1B(qx) dm(x).

As in the proof of [3, Theorem 2.2], we have

∑

k,q∈Z
=0:gcd(k,q)=1

∫

Rn
1B(kx)1B(qx) dm(x) ≤ 8

ζ(n − 1)

ζ(n)
m(E).

Hence, SLn(R) is of (Zn
=0, 2)-Rogers type.

(iii) Let E ⊂ R
n be bounded and Borel. Since

∫

X
1̂E

Z
n
pr dμX = 1

ζ(n)
m(E), a simple

change of notation and a routine rearrangement of [22, (0.10)] yield

∥∥∥∥1̂E
Z
n
pr −

(∫

X
1̂E

Z
n
pr dμX

)
1X

∥∥∥∥
2

≤ 2√
ζ(n)

m(E)1/2.

Since
∫

X
1̂E

Z
n
=0 dμX = m(E), a simple change of notation and a routine rear-

rangement of [22, (0.11)] yield

∥
∥∥∥1̂E

Z
n
=0 −

(∫

X
1̂E

Z
n
=0 dμX

)
1X

∥
∥∥∥
2

≤ 2ζ
( n
2

)

√
ζ(n)

m(E)1/2.

Before handling the case of SL2(R), we first prove an interpolation result that we
shall have to use.
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Lemma 2.7 Let G be a closed subgroup of SLn(R), and let 	 be as in (2.1). Suppose
further that G is of Z

n
pr-Siegel type with cZn

pr
= 1/ζ(n) and of (Zn

pr, 2)-Rogers type.

For each r ∈ (1, 2) it then follows that G is of
(
Z
n
=0, r

)
-Rogers type.

Proof Arguing as in (iii) of Theorem 2.5, we conclude that G is of Z
n
=0-Siegel type

with cZ
n
=0

= 1. Let D = DZn
pr,2 ∈ R>0 be as in Definition 2.1. Let A ⊂ R

n be
bounded and Borel. Then

∥∥∥∥1̂A
Z
n
pr − m(A)

ζ(n)
1X

∥∥∥∥
2

≤ Dm(A)1/2.

Since G is of Z
n
pr-Siegel type with cZn

pr
= 1/ζ(n), we have

∥∥∥
∥1̂A

Z
n
pr − m(A)

ζ(n)
1X

∥∥∥
∥
1

≤ 2m(A)

ζ(n)
.

Let r ∈ (1, 2) be given. Set θ := 2

r
− 1; then θ ∈ (0, 1) and r =

(
θ

1
+ 1 − θ

2

)−1

.

By the logarithmic convexity of the L p norms, one has

∥∥
∥∥1̂A

Z
n
pr − m(A)

ζ(n)
1X

∥∥
∥∥
r

≤
∥∥
∥∥1̂A

Z
n
pr − m(A)

ζ(n)
1X

∥∥
∥∥

θ

1
·
∥∥
∥∥1̂A

Z
n
pr − m(A)

ζ(n)
1X

∥∥
∥∥

1−θ

2

≤
(

2

ζ(n)

)θ

m(A)θ · D1−θm(A)
1−θ
2 = 2θ D1−θ

ζ(n)θ
m(A)1/r .

Now let E ⊂ R
n be bounded and Borel. For each k ∈ Z>0, let

Ek := {x ∈ R
n : kx ∈ E}.

We then have

∥
∥∥1̂E

Z
n
=0 − m(E)1X

∥∥
∥
r

=
∥∥
∥∥
∥

∞∑

k=1

(
1̂Ek

Z
n
pr − m(Ek)

ζ(n)
1X

)∥∥∥∥∥
r

≤
∞∑

k=1

∥∥∥∥1̂Ek
Z
n
pr − m(Ek)

ζ(n)
1X

∥∥∥∥
r

≤
∞∑

k=1

2θ D1−θ

ζ(n)θ
m(Ek)

1/r =
(
2θ D1−θ

ζ(n)θ

∞∑

k=1

k−n/r

)

m(E)1/r .

Since 1<r <2 ≤ n, it follows that DZ
n
=0,r

:=
⎛

⎜
⎝
2θ
(
DZn

pr,2

)1−θ

ζ(n)θ

∑∞
k=1

k−n/r

⎞

⎟
⎠<∞.

��
Theorem 2.8 The group SL2(R) is of

(
Z
n
pr, 2

)
-Rogers type; for each r ∈ (1, 2) the

group SL2(R) is of
(
Z
n
=0, r

)
-Rogers type.
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Proof If E is any bounded Borel subset of R
n that has sufficiently large volume, then

[3, (4.4)] yields

∥∥∥∥1̂E
Z
n
pr − m(E)

ζ(2)
1X

∥∥∥∥
2

≤ 4m(E)1/2.

This implies the first assertion by choosing the constant DZn
pr,2 of Definition 2.1 (ii)

to be sufficiently large. The second assertion now follows at once from Lemma 2.7. ��
Now that we have considered some examples of groups that satisfy the Siegel

and Rogers axioms, let us state and prove the first results that make these axioms
worthwhile.

Theorem 2.9 Let G be a closed subgroup of ASLn(R), let 	 be as in (2.1), and let P
be a 	-invariant subset of Z

n . Suppose G is of P-Siegel type with c = cP . Let E be
a Borel measurable subset of R

n .

(i) If m(E) < ∞, then μX ({
 ∈ X : card (
P ∩ E) < ∞}) = 1.

For the remaining statements of this theorem, suppose in addition to the preceding
hypotheses that we are given r ∈ R>1 for which G is of (P, r)-Rogers type.

(ii) Suppose m(E) = ∞. Let ‖·‖ be a norm on R
n and for each t ∈ R>0, set

Et := {x ∈ E : ‖x‖ ≤ t}.

Then for μX -almost every 
 ∈ X , one has lim
t→∞

card (
P ∩ Et )

c m (Et )
= 1. In partic-

ular, μX ({
 ∈ X : card (
P ∩ E) = ∞}) = 1.

(iii) Let {Fk}k∈Z≥1 be Borel measurable subsets of R
n with 0 < m(Fk) < ∞ for

each k ∈ Z≥1. Suppose
∑∞

k=1
m(Fk)

1−r < ∞. Then the following holds: for

μX -almost every 
 ∈ X , there exists some k
 ∈ Z≥1 such that for each integer
k ≥ k
, we have 
P ∩ Fk 
= ∅.

Proof (i) Suppose m(E) < ∞. Apply (2.2) to 1E : R
n → R≥0; this is valid in

light of Remark 2.2(i). This shows that for μX -almost every 
 ∈ X , one has
1̂E

P (
) = card (
P ∩ E) < ∞.

(ii) For each t ∈ R>0, define ht : X → R≥0 by

ht (
) := 1̂Et
P (
) = card (
P ∩ Et ) .

For each t ∈ R>0, one has
∫

X
ht dμX = c m(Et ). Let D = DP,r be as in

Definition 2.1. Fix any γ ∈ R with γ > (r − 1)−1. For each k ∈ Z≥1, fix
tk ∈ R>0 for which m

(
Etk

) = kγ . Let ε ∈ R>0 be given. For each k ∈ Z≥1, it
follows from Markov’s inequality and the hypotheses on G that we have
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μX

({

 ∈ X :

∣∣
∣
∣
htk (
)

c m(Etk )
− 1

∣∣
∣
∣ ≥ ε

})
≤ 1

εr

∥
∥
∥
∥
∥

htk
c m

(
Etk

) − 1X

∥
∥
∥
∥
∥

r

r

≤ 1

εr

(
D

c

)r

m
(
Etk

)1−r =
(

D

ε c

)r

kγ (1−r).

Since ε ∈ R>0 is arbitrary and γ (1 − r) < −1, the Borel–Cantelli lemma now

implies that for μX -almost every 
 ∈ X , we have lim
k→∞

card
(

P ∩ Etk

)

c m
(
Etk

) = 1.

For any k ∈ Z≥1 and any t ∈ [
tk, tk+1) , we have

kγ

(k + 1)γ
htk

m(Etk )
= htk

m(Etk+1)
≤ ht

m(Et )
≤ htk+1

m(Etk )
= (k + 1)γ

kγ

htk+1

m(Etk+1)
.

The result follows.
(iii) Let D = DP,r be as in Definition 2.1. For each k ∈ Z≥1 we have

μX
({


 ∈ X : 
P ∩ Fk = ∅
}) ≤ μX

({

 ∈ X :

∣∣
∣̂1Fk

P
(
) − c m(Fk)

∣∣
∣
r ≥ (c m(Fk))

r
})

≤
∥∥
∥̂1Fk

P − c m(Fk)1X

∥∥
∥
r

r

(
c m(Fk)

)−r

≤ Drm(Fk)
(
c m(Fk)

)−r = Drc−rm(Fk)
1−r .

The desired result now follows from the Borel–Cantelli lemma.
��

Statement (ii) of the foregoing theorem is a variation of a very general counting
result due to Schmidt: see [34]. See also [37, Chapter 1, Lemma 10] for a result
abstracted by Sprindžuk from the work of Schmidt. Following Sprindžuk, it is not
difficult to state and prove part (ii) of the above theorem with an estimate for an error
term. Let us alsomention that our proof of (ii) is similar to an argument used byDurrett
in his proof of [11, Chapter 1, Theorem 6.8].

Remark 2.10 Let G be a closed subgroup of ASLn(R), let 	 be as in (2.1), and let P
be a 	-invariant subset of Z

n . Suppose that G is of P-Siegel type, and suppose that
there exists r ∈ R>1 for which G is of (P, r)-Rogers type. It is now easy to prove a
probabilistic analogue of theMinkowski convex body theorem. Indeed, let c = cP and
D = DP,r be as in Definition 2.1; let E be a Borel subset ofR

n with 0 < m(E) < ∞.

As in the proof of Theorem 2.9(iii), it follows that

μX ({
 ∈ X : 
P ∩ E = ∅}) ≤ Drc−rm(E)1−r .

This sort of result, with r = 2, was first established by Athreya–Margulis for G =
SLn(R) and P = Z

n
=0 [3, Theorem 2.2], and then by Athreya for G = ASLn(R) and
P = Z

n [2, Theorem 1].
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Remark 2.11 Suppose n ≥ 2 is arbitrary and G = SLn(R). In [38, Corollary 2.14],
Strömbergsson proves that the bound of Athreya–Margulis in [3, Theorem 2.2] is
sharp. It now follows from the preceding remark that for each r ∈ R>2 and each
subset P of Z

n
=0 that is 	 = SLn(Z)-invariant, we have that the group G is not of
(P, r)-Rogers type.

Remark 2.12 Suppose n ≥ 2 is arbitrary and G = R
n, which is a closed subgroup of

ASLn(R). Then 	 = Z
n , and X = R

n/Z
n is the n-dimensional torus. It is easy to

see that R
n is then of Z

n-Siegel type with cZn = 1. For each r ∈ R>1, however, R
n

is is not of (Zn, r)-Rogers type. This may be seen from the spectacular impossibility
of obtaining a result as in Remark 2.10. For any ε ∈ (0, 1), define Uε := R

n−1 ×(
1

2
− ε

2
,
1

2
+ ε

2

)
⊆ R

n−1 × (0, 1). For each ε ∈ (0, 1), we then have m(Uε) = ∞
and μX ({
 ∈ X : 
Zn ∩Uε = ∅}) = 1 − ε.

In the following section, we transfer our counting results for generic lattices to
statements involving small values of generic functions, thereby establishing a more
general version of Theorem 1.3.

3 Zero-full laws in diophantine approximation

We begin by proving two lemmata.

Lemma 3.1 Let f : R
n → R

� be subhomogeneous, and let ψ : R≥0 → (R>0)
� be

regular and nonincreasing. Let η and ν be any norms on R
n, and let s ∈ R>0. Then

m(A f ,sψ,η) < ∞ if and only if m(A f ,ψ,ν) < ∞.

Proof Suppose without loss of generality that the image of f is a subset of
(
R≥0

)�
.

Let a = aψ , b = bψ, and d = d f be as in Definition 1.2; let x ∈ A f ,ψ,η. Let s ∈ R>0

be given. Suppose first s ≤ 1. Then s1/d ∈ (0, 1], and thus

f
(
s1/dx

) ≤ s f (x) ≤ sψ
(
η(x)

) ≤ sψ
(
η(s1/dx)

)
.

This proves s1/d A f ,ψ,η ⊆ A f ,sψ,η. Also, note that A f ,sψ,η ⊆ A f ,ψ,η. Hence, the
Lebesgue measure of A f ,sψ,η is finite if and only if the Lebesgue measure of A f ,ψ,η

is finite. Suppose next s ≥ 1. By repeating the preceding argument with sψ in place
of ψ and s−1 in place of s, we obtain the same conclusion for s ≥ 1.

Now, using the equivalence of the two norms, fix C ∈ R>1 for which C−1η ≤
ν ≤ Cη. Fix a positive integer k for which ak > C . Suppose that A f ,ψ,ν has infinite
Lebesgue measure. Let x ∈ A f ,ψ,ν . By a simple induction,

f (x) ≤ ψ
(
ν(x)

) ≤ ψ
(
C−1η(x)

)
≤ b−kψ

(
akC−1η(x)

) ≤ b−kψ
(
η(x)

)
.

Thus, the Lebesgue measure of A f ,b−kψ,η is infinite as well. In conjunction with the
foregoing and by symmetry, this completes the proof. ��
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Lemma 3.2 Letψ : R≥0 → (R>0)
� be regular and nonincreasing. Then the following

holds: for any c ∈ R≥0 there exists s ∈ R>0 such that for each x ∈ [0, c] and each
y ∈ R>c, one has ψ(y − x) ≤ sψ(y).

Proof Let a = aψ and b = bψ be as in Definition 1.2. Let c ∈ R≥0. Define

s := max
1≤i≤�

(
1

b
,

ψi (0)

ψi (
ac
a−1 )

)

.

Let x ∈ [0, c] and y ∈ R>c. We consider two cases.

• Case 1: suppose y ≤ ac

a − 1
. Then

ψ(y − x) ≤ ψ(0) ≤ sψ

(
ac

a − 1

)
≤ sψ(y).

• Case 2: suppose y >
ac

a − 1
.Since c ≥ x ≥ 0 and a−1 > 0, it follows y >

ax

a − 1
;

hence, y − x >
y

a
. Thus,

ψ(y − x) ≤ ψ
( y
a

)
≤ 1

b
ψ
(
a · y

a

)
= 1

b
ψ(y) ≤ sψ(y).

This completes the proof. ��

Before proving our main results, let us first augment two definitions given in §1.

Definition 3.3 In this definition, assume that we are using the same notation as in
Definition 1.2. Now take an arbitrary subset P of Z

n and

• say that f is (ψ, ν,P)-approximable if A f ,ψ,ν ∩ P has infinite cardinality;
• say that f is uniformly (ψ, ν,P)-approximable if B f ,ψ(T ),ν,T ∩P 
= ∅ for each
sufficiently large T ∈ R>0.

Notice that by taking P = Z
n
=0 in the above definition we recover the previously

defined notions of asymptotic and uniform (ψ, ν)-approximability. We now state and
prove our main result on asymptotic approximation.

Theorem 3.4 Let G be a closed subgroup of ASLn(R), let 	 be as in (2.1), and let
P be a 	-invariant subset of Z

n . Suppose G is of P-Siegel type. Let c = cP be
as in Definition 2.1(i). Let ψ : R≥0 → (R>0)

� be regular and nonincreasing; let
f : R

n → R
� be subhomogeneous; let ν and η be norms on R

n.

(i) Suppose m
(
A f ,ψ,η

)
< ∞. Then for almost every g ∈ G the function f ◦ g is not

(ψ, ν,P)-approximable.
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(ii) Suppose m
(
A f ,ψ,η

) = ∞, and suppose there exists r ∈ R>1 for which G is of
(P, r)-Rogers type. Then for each nonempty compact subset K of G there exist
constants DK ∈ R≥1, EK ∈ R≥0 and JK ∈ R≥1 such that for μG-almost every
g ∈ K we have

lim sup
T→∞

card
{
v ∈ P : ( f ◦ g)(v) ≤ ψ

(
ν(v)

)
and 2DK EK < ν(v) ≤ T

}

m
({
t ∈ Rn : f (t) ≤ JKψ

(
ν(t)

)
and EK < ν(t)≤DK T + EK

}) ≤cP ,

(3.1)

and

lim inf
T→∞

card
{
v ∈ P : ( f ◦ g)(v) ≤ ψ

(
ν(v)

)
and EK D−1

K < ν(v) ≤ DK EK + DK T
}

m
({

t ∈ Rn : f (t) ≤ J−1
K ψ

(
(ν(t)

)
and 2EK < ν(t) ≤ T

}) ≥ cP .

(3.2)

Moreover, if K ⊆ SLn(R), then each of the above inequalities holdswith EK = 0.
In particular, for almost every g ∈ G the function f ◦g is (ψ, ν,P)-approximable.

Proof Let us denote elements of ASLn(R) by 〈h, z〉, where h ∈ SLn(R) and z ∈ R
n ;

that is,

〈h, z〉 : R
n → R

n is the affine transformation given by x �→ hx + z. (3.3)

We suppose without loss of generality that the image of f is a subset of
(
R≥0

)�
.

For any h ∈ SLn(R) we write ‖h‖ to denote the operator norm of h when both the
domain and codomain of h are equipped with the norm ν on R

n that is mentioned in
the hypotheses.

Suppose that m
(
A f ,ψ,η

)
< ∞. Lemma 3.1 implies that for any N ∈ Z≥1 we have

m
(
A f ,Nψ,ν

)
< ∞. Theorem 2.9(i) then implies

μX
({


 ∈ X : card (
P ∩ A f ,Nψ,ν

) = ∞}) = 0,

which is equivalent to

μG
({
g ∈ G : card (gP ∩ A f ,Nψ,ν

) = ∞}) = 0. (3.4)

Let a = aψ, b = bψ, and d = d f be as in Definition 1.2. Let g = 〈h, z〉 be any
element of G for which

f ◦ g is (ψ, ν,P) -approximable. (3.5)

Let D := max
{
‖h‖,

∥∥∥h−1
∥∥∥
}

, and let E := ν(z). Let k be a nonnegative integer for

which ak ≥ D. LetC := b−k .Appealing to Lemma 3.2, we let F ∈ R>0 be a constant

123



Khintchine-type theorems for values of subhomogeneous… 539

for which the following is true: for each x ∈ [0, E] and each y ∈ (E,∞), we have
ψ(y − x) ≤ Fψ(y). Finally, let N be any integer with N ≥ CF .

Let v be an arbitrary element of the infinite set
{
x ∈ P ∩ A f ◦g,ψ,ν : ν(x) > 2DE

}
.

Notice that

∥∥∥h−1
∥∥∥ ν(hv) ≥ ν(v) > 2DE ≥ 2

∥∥∥h−1
∥∥∥ E,

whence ν(hv) > 2E . Hence,

ν(hv + z) ≥ ν(hv) − ν(z) > 2E − ν(z) = E .

Since ( f ◦ g)(v) ≤ ψ
(
ν(v)

)
, it follows

f (gv) ≤ ψ
(
ν(v)

) ≤ ψ

(
ν(hv)
‖h‖

)
≤ b−kψ

(
ak

ν(hv)
‖h‖

)
≤ Cψ

(
ν(hv)

)

≤ Cψ
(
ν(hv + z) − ν(z)

) ≤ CFψ
(
ν(hv + z)

)

≤ Nψ
(
ν(hv + z)

) = Nψ
(
ν(gv)

)
.

Thus, card
(
gP ∩ A f ,Nψ,ν

) = ∞; hence, in view of (3.4), the set of g ∈ G that satisfy
(3.5) is null. This proves (i).

Suppose now that m
(
A f ,ψ,η

) = ∞; suppose further that there exists r ∈ R>1
for which G is of (P, r)-Rogers type. Let ε ∈ R>0 be given. Let K be an arbitrary
nonempty compact subset of G. Since the inversion map is a homeomorphism and
finite unions of compact sets are compact, we assume without loss of generality that
K = K−1. Defineπ : ASLn(R) → SLn(R) andρ : ASLn(R) → R

n byπ : 〈h, z〉 �→
h and ρ : 〈h, z〉 �→ z. Note that π is a group homomorphism. We define

DK := sup {‖h‖ : h ∈ π(K )} , EK := sup {ν(z) : z ∈ ρ(K )} . (3.6)

Note that EK = 0 if and only if K ⊆ SLn(R). Note that DK ≥ 1. Let a = aψ and

b = bψ be as in Definition 1.2. Set k := min
{
j ∈ Z≥0 : a j ≥ DK

}
. Set CK := b−k .

Note that CK ≥ 1. Appealing to Lemma 3.2, we let FK ∈ R≥1 be a constant for
which the following is true: for each x ∈ [0, EK ] and each y ∈ (EK ,∞), we have
ψ(y − x) ≤ FKψ(y). Set JK := CK FK .

Let 〈h1, z1〉 ∈ K be arbitrary. Let R be any real number with R > 2DK EK . Let x
be any element of R

n with 2DK EK < ν(x) ≤ R. Then

∥∥∥h−1
1

∥∥∥ ν(h1x) ≥ ν(x) > 2DK EK ≥ 2
∥∥∥h−1

1

∥∥∥ EK ,

whence ν(h1x) > 2EK . It follows

ν(h1x + z1) ≥ ν(h1x) − ν(z1) > 2EK − ν(z1) ≥ EK .
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Suppose further that f (h1x + z1) ≤ ψ
(
ν(x)

)
. Then

f (h1x + z1) ≤ ψ
(
ν(x)

) ≤ ψ

(
ν(h1x)
‖h1‖

)
≤ b−kψ

(
ak

ν(h1x)
‖h1‖

)
≤ CKψ

(
ν(h1x)

)

≤ CKψ
(
ν(h1x + z1) − ν(z1)

) ≤ CK FKψ
(
ν(h1x + z1)

) = JKψ
(
ν(h1x + z1)

)
.

Finally, we note that ν(h1x + z1) ≤ DK R + EK . We have therefore shown

〈h1, z1〉
{
t ∈ A f ◦〈h1,z1〉,ψ,ν : 2DK EK < ν(t)≤ R

}⊆{
t ∈ A f ,JK ψ,ν : EK < ν(t) ≤ DK R+EK

}
.

(3.7)
By Lemma 3.1, we have m

({
t ∈ A f ,JKψ,ν : ν(t) > EK

}) = ∞. By using (3.7) and
then applying Theorem 2.9(ii), it follows that forμG -almost every 〈h, z〉 ∈ K and any
ε ∈ R>0 there exists some T〈h,z〉 ∈ R>0 such that for every T ≥ T〈h,z〉, we have

card
{
v ∈ P : ( f ◦ 〈h, z〉)(v) ≤ ψ

(
ν(v)

)
and 2DK EK < ν(v) ≤ T

}

m
({
t ∈ Rn : f (t) ≤ JKψ

(
ν(t)

)
and EK < ν(t) ≤ DK T + EK

})

≤ card
{
w ∈ 〈h, z〉P : f (w) ≤ JKψ

(
ν(w)

)
and EK < ν(w) ≤ DK T + EK

}

m
({
t ∈ Rn : f (t) ≤ JKψ(ν

(
t)
)
and EK < ν(t) ≤ DK T + EK

})

< cP + ε.

It follows that (3.1) holds for μG -almost every 〈h, z〉 ∈ K .
Now let 〈h2, z2〉 ∈ K be arbitrary. Let R′ be any real number with R′ > 2EK . By

an argument similar to the one given for (3.7), one can show

〈h2, z2〉−1
{
t ∈ A f ,J−1

K ψ,ν
: 2EK < ν(t)≤ R′}⊆

{
t ∈ A f ◦〈h2,z2〉,ψ,ν : EK D−1

K <ν(t) ≤ DK (EK +R′)
}

.

(3.8)

By Lemma 3.1, we have m
({

t ∈ A f ,J−1
K ψ,ν

: ν(t) > 2EK

})
= ∞. By using (3.8)

and then applying Theorem 2.9(ii), it follows that forμG -almost every 〈h, z〉 ∈ K and
any ε ∈ R>0 there exists some T ′〈h,z〉 ∈ R>0 such that for every real T ≥ T ′〈h,z〉, we
have

card
{
v ∈ P : ( f ◦ 〈h, z〉)(v) ≤ ψ

(
ν(v)

)
and EK D−1

K < ν(v) ≤ DK (EK + T )
}

m
({

t ∈ Rn : f (t) ≤ J−1
K ψ

(
ν(t)

)
and 2EK < ν(t) ≤ T

})

≥
card

{
w ∈ 〈h, z〉P : f (w) ≤ J−1

K ψ
(
ν(w)

)
and 2EK < ν(w) ≤ T

}

m
({

t ∈ Rn : f (t) ≤ J−1
K ψ

(
ν(t)

)
and 2EK < ν(t) ≤ T

})

> cP − ε.

Thus, (3.2) holds for μG -almost every 〈h, z〉 ∈ K . The final statement of (ii) now
follows from the σ -compactness of G and an application of Lemma 3.1. ��

We now prepare to prove our results on uniform approximation. We first prove a
lemma similar to Lemma 3.1.
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Lemma 3.5 Let f : R
n → R

� be subhomogeneous, with d = d f ∈ R>0 as in
Definition 1.2.

(i) Let ν be an arbitrary norm on R
n, let t ∈ (0, 1), T ∈ R>0, and εεε ∈ (R>0)

� .

Then t B f ,εεε,ν,T ⊆ B f ,tdεεε,ν,tT .
(ii) Let ν and η be arbitrary norms on R

n . Then there exists C∗ = C∗
ν,η ∈ R≥1 such

that for each C ∈ [C∗,∞), each T ∈ R>0, and each εεε ∈ (R>0)
� , we have

C−1B f ,εεε,ν,T ⊆ B f ,C−dεεε,η,T ⊆ B f ,εεε,η,T ⊆ C B f ,C−dεεε,ν,T ⊆ C B f ,εεε,ν,T .

Proof Let x ∈ t B f ,εεε,ν,T . Then, since t−1x ∈ B f ,εεε,ν,T , we have

ν(x) = tν(t−1x) ≤ tT and | f (x)| ≤ td | f (t−1x)| ≤ tdεεε.

Hence, x ∈ B f ,tdεεε,ν,tT , which proves (i).

For (ii), fix C∗ = C∗
ν,η ∈ R≥1 for which

(
C∗)−1

η(·) ≤ ν(·) ≤ C∗η(·). Fix any

C ∈ [C∗,∞) and let x ∈ C−1B f ,εεε,ν,T . We have η(x) ≤ ν(Cx) ≤ T . Moreover, one
has

| f (x)| ≤ C−d | f (Cx)| ≤ C−dεεε ≤ εεε �⇒ C−1B f ,εεε,ν,T ⊆ B f ,C−dεεε,η,T ⊆ B f ,εεε,η,T .

Interchanging ν and η and then arguing similarly, one obtains

B f ,εεε,η,T ⊆ C B f ,C−dεεε,ν,T ⊆ C B f ,εεε,ν,T .

This completes the proof. ��
Let us now introduce some definitions and then prove another lemma.

Definition 3.6 Let f : R
n → R

� and ψ : R≥0 → (R>0)
� be arbitrary maps. Let ν be

an arbitrary norm on R
n, and let P be an arbitrary subset of Z

n . Let t• = (tk)k∈Z≥1
be

any strictly increasing sequence of elements of R>0 with lim
k→∞ tk = ∞. We say that f

is t•-uniformly (ψ, ν,P)-approximable if B f ,ψ(tk ),ν,tk ∩P 
= ∅ for each sufficiently
large k ∈ Z≥1.

Definition 3.7 Let t• = (tk)k∈Z≥1
be any strictly increasing sequence of elements

of R>0 with lim
k→∞ tk = ∞. We say that t• is quasi-geometric if, in addition to the

preceding, the set

{
tk+1

tk
: k ∈ Z≥1

}
is bounded.

Theorem 3.8 Let G be a closed subgroup of ASLn(R), let 	 be as in (2.1), and let P
be a 	-invariant subset of Z

n . Let t• = (tk)k∈Z≥1
be any strictly increasing sequence

of elements of R>0 with lim
k→∞ tk = ∞. Suppose G is of P-Siegel type, and suppose

we are given r ∈ R>1 for which G is of (P, r)-Rogers type. Let ψ : R≥0 → (R>0)
�
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542 D. Kleinbock and M. Skenderi

be Borel measurable, and let f : R
n → R

� be subhomogeneous. Suppose also that
there exists some norm η on R

n for which

∞∑

k=1

m(B f ,ψ(tk ),η,tk )
1−r < ∞. (3.9)

Let ν be an arbitrary norm on R
n. We then have the following.

(i) For almost every g ∈ G the function f ◦g is t•-uniformly (ψ, ν,P)-approximable.
(ii) Suppose further that ψ is nonincreasing and regular, and the sequence t• is

quasi-geometric. Then for almost every g ∈ G the function f ◦ g is uniformly
(ψ, ν,P)-approximable.

Proof (i) Let K be a nonempty compact subset ofG; as in the proof of Theorem 3.4,
assume without loss of generality that K = K−1. Define the constants DK , EK

by (3.6). Lemma 3.5 and (3.9) imply that the series
∞∑

k=1

m(B f ,ψ(tk ),ν,tk/(2DK ))
1−r

converges. Applying Theorem 2.9(iii), we obtain the following: For almost every
g ∈ G there exists Mg ∈ Z≥1 such that for each k ∈ Z with k ≥ Mg there exists
some vk ∈ P with

ν (gvk) ≤ tk
2DK

and | f (gvk)| ≤ ψ (tk) . (3.10)

For each such g ∈ G, we assume without loss of generality that for each k ∈ Z

with k ≥ Mg,we have tk > 2EK . If, in addition, g ∈ K , then for any vk as above
it now follows from (3.10) that we have ν(vk) ≤ tk . Indeed, if not, then we write
g−1 = 〈h, z〉, as in (3.3), and note that

ν
(
h(gvk) + z

) = ν(vk) > tk �⇒ ν
(
h(gvk)

)
> tk − ν(z) ≥ tk − EK ≥ tk

2

�⇒ ν(gvk) >
tk

2DK
,

which is a contradiction. Therefore, for μG -almost every g ∈ K and with Mg

as above, it follows that for every k ∈ Z with k ≥ Mg there exists vk ∈ P with
|( f ◦ g)(vk)| ≤ ψ (tk) and ν(vk) ≤ tk . Hence, for μG-almost every g ∈ K , the
function f ◦ g is t•-uniformly (ψ, ν,P)-approximable. Since G is σ -compact,
the same holds for almost every g ∈ G.

(ii) Let a = aψ and b = bψ be as in Definition 1.2. Fix j ∈ Z≥1 for which

sup
{
tk+1/tk : k ∈ Z≥1

}
< a j and

∞∑

k=1

m(B f ,b jψ(tk ),η,tk )
1−r < ∞;

notice that this is indeed possible in light of Definition 3.7, Lemma 3.5, and (3.9).
By statement (i), we know that for almost every g ∈ G, the function f ◦ g is
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t•-uniformly
(
b jψ, ν,P)-approximable. Now let h : R

n → R
� be any function

that is t•-uniformly
(
b jψ, ν,P)-approximable. Fix M ∈ Z≥1 such that for each

k ∈ Z≥M the set Bh,b jψ(tk),ν,tk ∩P is nonempty. Let T ∈ (tM+2,∞) be arbitrary.
Then there exists i ∈ Z≥M+2 for which ti ≤ T < ti+1. Note that there exists
v ∈ P with ν(v) ≤ ti and |h(v)| ≤ b jψ(ti ). We then have ν(v) ≤ ti ≤ T and

|h(v)| ≤ b jψ(ti ) ≤ b jb− jψ
(
a j ti

)
= ψ

(
a j ti

)
≤ ψ (ti+1) ≤ ψ(T ).

��
Proof of Theorem 1.3 Theorem 1.3 is now an immediate consequence of Theorems
2.6(ii), 2.8, 3.4, and 3.8(ii) with P = Z

n
=0 and t• = (2k)k∈Z≥1 .

Remark 3.9 Denote by Zn the group of scalar n × n matrices (that is, the center of
GLn(R)). For any G as in Theorem 2.9 set G̃ := G × Zn ; we have, for example,

S̃Ln(R) = GLn(R) and ˜ASLn(R) = AGLn(R). It is then clear from the Fubini–
Tonelli Theorem that every result of this section that was established for G also holds,
mutatis mutandis, for G̃. The same remark applies to the corollaries derived in the
next section. Alternatively, the GLn(R) analogue of our results follows easily from
the corollary to Theorems 1 and 2 in [34], via an application of Lemma 3.1.

Remark 3.10 Let us note that the null and conull subsets of G in each part of Theorem
3.4 and in Theorem 3.8(ii) may be chosen independently of the norm. This is an
immediate consequence of the facts that all norms on R

n are equivalent, that any
positive multiple of a norm is a norm, that Z≥1 is countable and unbounded, and that
ψ = (ψ1, . . . , ψ�) : R≥0 → (R>0)

� is assumed to be nonincreasing in the results
that were just mentioned.

In the following section, we apply Theorems 3.4 and 3.8 to investigate the orbits of
several specific subhomogeneous functions f .Wedo so by performing several volume
calculations.

4 Examples and volume calculations

Let us state the conventions that will be in force throughout this section. We shall let
G denote a closed subgroup of ASLn(R), n ∈ Z≥2, and P denote a 	-invariant subset
of Z

n, where 	 is as (2.1). We shall assume G is of P-Siegel type and that there exists
r ∈ R>1 for which G is of (P, r)-Rogers type. We let η denote an arbitrary norm
on R

n, and we let ψ : R≥0 → R>0 denote an arbitrary nonincreasing and regular
function.

Corollary 4.1 Let d ∈ R≥1, and fix any p, q ∈ Z≥1 with p+q = n. Define f : R
n →

R by (1.5). Define the norm ν on R
n = R

p × R
q by

ν
(
(x, y)

) := max (‖x‖d , ‖y‖d) , (4.1)

where ‖·‖d denotes the �d norm on each of the spacesR
p andR

q .For each k ∈ {p, q},
we let vk denote the volume of the unit ball in R

k and let v′
k denote the volume of the
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544 D. Kleinbock and M. Skenderi

unit sphere in R
k (each taken with respect to the �d norm on R

k). Then the following
hold.

(i) There exists some M ∈ R≥1 such that for any T ≥ S ≥ M we have

m
(
A f ,ψ,ν ∩ {x ∈ R

n : S ≤ ν(x) ≤ T })

=
∫ T

S
zn−1

[

vpv
′
q

(

1 −
(
1− ψ (z)

zd

)p/d
)

+vqv
′
p

(

1−
(
1 − ψ (z)

zd

)q/d
)]

dz.

(ii) Foralmost every g ∈ G the function f ◦g is (resp., is not) (ψ, η,P)-approximable
if the integral ∫ ∞

1
ψ(z)zn−(d+1) dz (4.2)

is infinite (resp., finite).
(iii) Suppose that the series

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

k=1

(
kψ(2k)

)1−r
if d = n

∞∑

k=1

(
2(n−d)kψ(2k)

)1−r
if d 
= n

(4.3)

converges. Then for almost every g ∈ G the function f ◦g is uniformly (ψ, η,P)-
approximable.

For the next example, we consider the space of products of n linearly independent
linear forms on R

n . In what follows, for each j ∈ Z≥0, we write log j to denote the
function R>0 → R given by z �→ (log z) j .

Corollary 4.2 Define f : R
n → R by f (x1, . . . , xn) := x1 · · · xn. Let ν denote the

maximum norm on R
n . Then there exists M ∈ R≥1 such that:

(i) For any T ≥ S ≥ M we have

m
(
A f ,ψ,ν ∩ {x ∈ R

n : S ≤ ν(x) ≤ T }) = 2n n
∫ T

S

ψ(z)

z

⎡

⎣
n−2∑

i=0

1

i ! log
i
(

zn

ψ(z)

)
⎤

⎦ dz.

(4.4)
(ii) For almost every g ∈ G the function f ◦g is (resp., is not) (ψ, η,P)-approximable

if the integral

∫ ∞

1

ψ(z)

z
logn−2

(
zn

ψ(z)

)
dz

is infinite (resp., finite).
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(iii) Suppose that the series

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

k=1

(
kψ(2k)

)1−r
if n = 2

∞∑

k=1

(
ψ(2k) logn−1 (2kψ(2k)−1/n)

)1−r
if n > 2

converges. Then for almost every g ∈ G the function f ◦g is uniformly (ψ, η,P)-
approximable.

Notice that Corollary 4.2(ii) is similar to [24, Theorem 1.11]; indeed, [24, Theorem
1.11] implies Corollary 4.2(ii) in the special case that G = SLn(R), P = Z

n
=0 and
η is the maximum norm on R

n . Whereas the proof of Kleinbock–Margulis in [24]
relied on the Dani correspondence and the exponential mixing of the SLn(R)-action
on SLn(R)/SLn(Z), our proof only uses the expectation and variance formulae of the
Siegel transforms.

The next example is of interest because of its relation to the Khintchine–Groshev
Theorem; see Remark 4.5.

Corollary 4.3 Let � ∈ {1, . . . , n − 1} and a = (a1, . . . , a�) ∈ (R>0)
� be given. Define

f : R
n → R by

f (x1, . . . , xn) := max
(|x1|a1, . . . , |x�|a�

)
.

Set a :=
∑�

i=1
a−1
i . Let ν denote the maximum norm on R

n . Then:

(i) There exists some M ∈ R>0 such that for any T ≥ S ≥ M we have

m
(
A f ,ψ,ν ∩ {x ∈ R

n : S ≤ ν(x) ≤ T }) = 2n(n − �)

∫ T

S
ψ(z)azn−(�+1) dz.

(ii) Foralmost every g ∈ G the function f ◦g is (resp., is not) (ψ, η,P)-approximable
if the integral

∫ ∞

1
ψ(z)azn−(�+1) dz

is infinite (resp., finite).

(iii) Suppose that
∑∞

k=1

(
2(n−�)kψ(2k)a

)1−r
converges. Then for almost every g ∈

G the function f ◦ g is uniformly (ψ, η,P)-approximable.

Before proving these corollaries, let us make a few remarks.

Remark 4.4 (i) Corollary 1.4 is clearly a special case of Corollary 4.1.
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546 D. Kleinbock and M. Skenderi

(ii) The n = 2 case of Corollary 4.2 coincides with the n = d = 2 case of Corollary
4.1; however, the two volume formulas are slightly different due to the difference
in the choice of norms.

(iii) In each corollary, part (i) does not require the regularity of ψ and is valid for any
nonincreasing function ψ : R≥0 → R>0.

(iv) In each of the corollaries, parts (ii) and (iii) may be used to calculate the criti-
cal exponents for asymptotic and uniform approximability, respectively: that is,
the supremum of the set of all s ∈ R≥0 such that almost every element in the
G-orbit of f is (ϕs, ν,P)-approximable or uniformly (ϕs, ν,P)-approximable,
respectively, where ϕs is as in (1.3). In each corollary, one readily obtains
that this supremum, if finite, is actually a maximum in the case of asymptotic
approximation, and also that the critical exponents for asymptotic and uniform
approximability coincide.

(v) Instead of using the sequence
(
2k
)
in part (iii) of each corollary, one may

instead use any quasi-geometric sequence (tk) that in addition is lacunary; that is,

inf

{
tk+1

tk
: k ∈ Z≥1

}
> 1. In fact, it is not hard to prove that if F : R>0 → R>0

is any Borel measurable function that satisfies some additional mild conditions,
then the following are equivalent:

(a) There exists a quasi-geometric sequence (tk)k∈Z≥1
for which

∑∞
k=1

F(tk) <

∞.

(b)
∫ ∞

1

F(x)

x
dx < ∞.

(c)
∞∑

k=1

F(tk) < ∞ for any quasi-geometric and lacunary sequence (tk)k∈Z≥1
.

Let us now proceed to prove the corollaries.

Proof of Corollary 4.1 Recall that the function f : R
n → R is defined by (1.5); that is,

f
(
(x, y)

) = ‖x‖dd −‖y‖dd . For any T ≥ S ≥ 0 and with the norm ν on R
n = R

p ×R
q

given by (4.1), we define

AT
S := {

(x, y) ∈ A f ,ψ,ν : S ≤ ν ((x, y)) ≤ T
}
,

xA
T
S := AT

S ∩ {
(x, y) ∈ R

p × R
q : ‖y‖d ≤ ‖x‖d

}
,

yA
T
S := AT

S ∩ {
(x, y) ∈ R

p × R
q : ‖x‖d ≤ ‖y‖d

}
.

Since the function R>0 → R given by z �→ zd − ψ(z) is strictly increasing and
unbounded from above, there exists M ∈ R≥1 such that for each z ∈ [M,∞), we
have zd − ψ(z) > 0. Now suppose that T ≥ S ≥ M . Then

m
(
xA

T
S

)
= m

({
(x, y) ∈ R

p × R
q : d

√
‖x‖dd − ψ (‖x‖d ) ≤ ‖y‖d ≤ ‖x‖d and S ≤ ‖x‖d ≤ T

})

= vq

∫

{x∈Rp :S≤‖x‖d≤T }

(
‖x‖qd −

(
‖x‖dd − ψ (‖x‖d )

)q/d
)

dx
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= vqv
′
p

∫ T

S
z p−1

(
zq −

(
zd − ψ (z)

)q/d
)

dz

= vqv
′
p

∫ T

S
zn−1

(

1 −
(
1 − ψ (z)

zd

)q/d
)

dz.

By symmetry, we have

m
(
yA

T
S

)
= vpv

′
q

∫ T

S
zn−1

(

1 −
(
1 − ψ (z)

zd

)p/d
)

dz,

which completes the proof of (i).
By using the Taylor expansions of the functions x �→ 1− (1 − x)p/d and x �→ 1−

(1 − x)q/d around 0, it is easy to see that there exist some S ∈ R≥M andC1,C2 ∈ R>0
such that

z ∈ [S, ∞) �⇒
{

1 −
(
1 − ψ (z)

zd

)p/d
, 1 −

(
1 − ψ (z)

zd

)q/d
}

⊂
[
C1

ψ (z)

zd
,C2

ψ (z)

zd

]
.

(4.5)
It is thus a consequence of (i) and (4.5) thatm(A f ,ψ,ν) = ∞ if and only if the integral
(4.2) is infinite; hence, statement (ii) follows from Theorem 3.4. As for (iii), note that
the series (4.3) diverges when d > n; thus, let us assume d ≤ n. Using (i) and (4.5),
we infer that there exists some C ∈ R>0 such that for any T ∈ [S,∞), we have

m
(
B f ,ψ(T ),ν,T

) = m
({
x ∈ R

n : | f (x)| ≤ ψ(T ) and ν(x) ≤ T
})

≥ m
(
A f ,ψ(T ),ν ∩ {x ∈ R

n : S ≤ ν(x) ≤ T })

≥ Cψ(T )

∫ T

S
zn−(d+1) dz

=
{
Cψ(T )(log T − log S) if d = n,

(n − d)−1Cψ(T )
(
T n−d − Sn−d

)
if d < n.

Thus, there exists some C ′ ∈ R>0 such that for each sufficiently large T ∈ R>0, we
have

m
(
B f ,ψ(T ),ν,T

) ≥
{
C ′ψ(T ) log T if d = n,

C ′ψ(T )T n−d if d < n.

Letting T = tk = 2k for each sufficiently large k ∈ Z≥1 and applying Theorem 3.8
implies (iii). ��
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Proof of Corollary 4.2 Recall that ν is the maximum norm onR
n and f (x) = x1 · · · xn .

For each k ∈ {0, . . . , n − 2} and z ∈ R>0, define

Ik(z, ψ) :=
∫ z

0
. . .

∫ z

0︸ ︷︷ ︸
k times

min

(

z,
ψ(z)

z
∏k

i=1 yi

)

dy1 · · · dyk;

when k = 0 here, there is no integration, and the empty product
∏0

i=1 yi is equal
to 1 by convention. It is easy to see that the left hand side of (4.4) is equal to

2n n
∫ T

S
In−2(z) dz. For each k and z as above, we now establish the following explicit

formula:

Ik(z, ψ) = min

(
zk+1,

ψ(z)

z

) k∑

i=0

1

i ! max

(
0, log

( zk+2

ψ(z)

))i

=

⎧
⎪⎪⎨

⎪⎪⎩

zk+1 if ψ(z) ≥ zk+2;
ψ(z)

z

k∑

i=0

1

i ! log
i
( zk+2

ψ(z)

)
otherwise.

(4.6)

(Here, the second equality is obvious.) In this formula and in the remainder of this
proof, we adopt the convention 00 = 1. We now prove this formula by induction on
k. The base case k = 0 is clear. Now suppose that for some k ∈ {1, . . . , n − 3}, we
have

Ik−1(z, ψ) = min

(
zk,

ψ(z)

z

) k−1∑

i=0

1

i ! max

(
0, log

( zk+1

ψ(z)

))i

;

then

Ik(z, ψ) =
∫ z

0
Ik−1

(
z, 1

yψ
)
dy

=
∫ z

0
min

(
zk,

ψ(z)

yz

) k−1∑

i=0

1

i ! max

(
0, log

( yzk+1

ψ(z)

))i

dy. (4.7)

Consider first the case ψ(z) ≥ zk+2. Then for any 0 < y ≤ z, one has

zk ≤ ψ(z)

yz
⇐⇒ yzk+1

ψ(z)
≤ 1;
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and (4.7) gives Ik(z, ψ) =
∫ z

0
zk dy = zk+1. If ψ(z) < zk+2, then

Ik(z, ψ) =
∫ ψ(z)

zk+1

0
zk dy +

∫ z

ψ(z)
zk+1

ψ(z)

yz

k−1∑

i=0

1

i ! log
i
( yzk+1

ψ(z)

)
dy

= ψ(z)

z

[

1 +
k−1∑

i=0

1

i !
∫ z

ψ(z)
zk+1

logi
( yzk+1

ψ(z)

) dy

y

]

= ψ(z)

z

⎡

⎣1 +
k−1∑

i=0

1

i !
1

i + 1
logi+1

( yzk+1

ψ(z)

)∣∣∣∣

z

ψ(z)
zk+1

⎤

⎦

= ψ(z)

z

k∑

i=0

1

i ! log
i
( zk+2

ψ(z)

)
.

This proves (4.6). Now fix M ∈ R≥1 such that for each z ∈ R≥M , we have
ψ(z) < zn . Then (4.6) implies that for each z ∈ R≥M , we have In−2(z, ψ) =
ψ(z)

z

∑n−2

i=0

1

i ! log
i
( zn

ψ(z)

)
. This establishes (4.4) for any T ≥ S ≥ M and proves

(i).

In the expression
∑n−2

i=0

1

i ! log
i
( zn

ψ(z)

)
, the term that corresponds to i = n − 2

dominates as z → ∞; statement (ii) now follows from (i) and Theorem 3.4.
Finally, arguing as in the proof of Corollary 4.1(iii), we see that there exist S ∈ R≥M

and C,C ′ ∈ R>0 such that for any T ∈ [S,∞) we have

m
(
B f ,ψ(T ),ν,T

) ≥ m
(
A f ,ψ(T ),ν ∩ {x ∈ R

n : S ≤ ν(x) ≤ T })

≥ C
∫ T

S

ψ(T )

z
logn−2

( zn

ψ(T )

)
dz

= nn−2 Cψ(T )

∫ T

S
logn−2

( z

ψ(T )1/n

) dz

z

≥
{
C ′ψ(T )(log T − log S) if n = 2,

C ′ψ(T )
[
logn−1

(
T

ψ(T )1/n

)
− logn−1

(
S

ψ(T )1/n

)]
if n > 2.

Thus, there exists C ′′ ∈ R>0 such that for each sufficiently large T ∈ R>0, we have

m
(
B f ,ψ(T ),ν,T

) ≥
⎧
⎨

⎩

C ′′ψ(T ) log T if n = 2,

C ′′ψ(T ) logn−1
( T

ψ(T )1/n

)
if n > 2.

Letting T = tk = 2k for each sufficiently large k ∈ Z≥1 and applying Theorem 3.8
implies (iii).
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Proof of Corollary 4.3 Recall that ν is the maximum norm on R
n, and

f (x1, . . . , xn) = max
(|x1|a1, . . . , |x�|a�

)
.

Fix M ∈ R>0 such that for each z ∈ R≥M and each i ∈ {1, . . . , �} we have
ψ(z)1/ai < M . Take T ≥ S ≥ M , and set

A := A f ,ψ,ν ∩ {x ∈ R
n : S ≤ ν(x) ≤ T }

and A≥0 := A ∩ (
R≥0

)n
. By symmetry, it is clear that m(A) = 2n m

(
A≥0

)
. For any

x = (x1, . . . , xn) ∈ A≥0 and any i ∈ {1, . . . , �} one has

|xi | ≤ ψ
(
ν(x)

)1/ai ≤ ψ(S)1/ai < S ≤ ν(x),

which implies ν(x) ∈ {|x�+1|, . . . |xn|} . Consequently,

A≥0 =
⋃

i=1,...,�; j=�+1,...,n

Bi j ,

where for any i ∈ {1, . . . , �} and j ∈ {� + 1, . . . , n} we set

Bi, j := A≥0 ∩ {
x ∈ R

n : max
(|x1|a1, . . . , |x�|a�

) = |xi |ai and ν(x) = |x j |
}
.

In other words,

Bi, j =

⎧
⎪⎨

⎪⎩
x ∈ R

n

∣∣
∣∣∣∣∣

S ≤ x j ≤ T , 0 ≤ xi ≤ ψ
(
x j
)1/ai ,

0 ≤ xp ≤ x
ai /ap
i ∀ p ∈ {1, . . . , �} � {i},

0 ≤ xq ≤ x j ∀ q ∈ {� + 1, . . . , n} � { j}

⎫
⎪⎬

⎪⎭
.

Therefore,

m(Bi, j ) =
∫ T

S
xn−�−1
j

∫ ψ(x j )1/ai

0

∏

p∈{1,...,�}�{i}
x
ai /ap
i dxi dx j

(

recall the notation a =
�∑

i=1

a−1
i

)

=
∫ T

S
xn−�−1
j

∫ ψ(x j )1/ai

0
x
ai (a−a−1

i )

i dxi dx j

=
∫ T

S
xn−�−1
j

1

aia

(
ψ(x j )

1/ai
)ai a dx j

= 1

aia

∫ T

S
zn−�−1ψ(z)a dz.
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It follows that

m(A)=2n(n − �)

�∑

i=1

1

aia

∫ T

S
ψ(z)azn−(�+1) dz = 2n(n − �)

∫ T

S
ψ(z)azn−(�+1) dz,

which proves (i). The other statements follow by arguing as in the proofs of Corollaries
4.1 and 4.2. ��
Remark 4.5 More generally, one can take � nonincreasing and regular functions
ψ1, . . . , ψ� : R≥0 → R>0 and, using the same argument, show that for a.e. g ∈ G,
the system of inequalities

|(gv)i | ≤ ψi
(
ν(v)

)
, i = 1, . . . , �

(here, (gv)i denotes the i th component of gv) has finitely (resp. infinitely) many
solutions v ∈ P if and only if the integral

∫ ∞

1

[
�∏

i=1

ψi (z)

]

zn−(�+1) dz

is finite (resp. infinite). In the case G = SLn(R) and P = Z
n
=0 this can also be

derived from Schmidt’s generalization of the Khintchine–Groshev Theorem; see [33,
Theorem 2].

5 Concluding remarks

5.1 Inhomogeneous approximation

It is a natural problem to extend the methods of this paper to the inhomogeneous
setting: that is, to study integer solutions of the system (1.6) for fixed ξ and almost
every g, or vice versa, as is done in [17,18] for quadratic forms.Essentially this amounts
to replacing the function f with f − ξ , thereby getting rid of the subhomogeneity
condition, which is crucial for transforming the results about generic lattices to those
for generic forms.

On the other hand, it is not hard to see that the assumption of Theorem 3.4 that f
be subhomogeneous may be replaced with the assumption that f be Borel measurable
and

• for any norms η and ν on R
n and any s ∈ R>0, the Lebesgue measure of A f ,sψ,η

is finite if and only if that of A f ,ψ,ν is finite.

Similarly, one can weaken the subhomogeneity assumption of Theorem 3.8. This
makes it possible to consider inhomogeneous problems for some classes of functions
f , to be addressed in a forthcoming paper.
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5.2 Counting the number of solutions

Acomparison of Theorem 2.9(ii) with Theorem 3.4(ii) clearly shows a loss of informa-
tion: a precise counting result for the number of lattice points in an increasing family
of subsets of R

n turns into a rough estimate in the setting of generic subhomogeneous
functions, with constants dependent on a compact subset of G. It is not clear whether,
in the setting of Theorem 3.4(ii), the limit

lim
T→∞

card
{
v ∈ P : ( f ◦ g)(v) ≤ ψ

(
ν(v)

)
and ν(v) ≤ T

}

m
({
t ∈ Rn : f (t) ≤ ψ

(
ν(t)

)
and ν(t) ≤ T

})

exists for almost every g ∈ G. It is also not clear whether any Khinchine-type results
can be established without assuming the regularity of ψ .

5.3 Moremetric number theory

In general, the philosophy of this paper has been rooted inmetric Diophantine approxi-
mation, which, in its simplest incarnation, studies the rate of approximation of typical
real numbers α by rational numbers p/q. Our Khintchine-type theorems naturally
give rise to many further questions. For example, in the m

(
A f ,ψ,η

) = ∞ case of
Theorem 1.3, one may wish to study the Hausdorff dimension of the null set con-
sisting of all g ∈ SLn(R) for which f ◦ g is not (ψ, ν)-approximable. In the case
of a critical exponent, this might produce an analogue of badly approximable objects
that constitute a set that is of full Hausdorff dimension or is winning in the sense of
W.M. Schmidt [35]. Such a result is established in [27] for binary indefinite quadratic
forms, that is, for the case n = d = 2 of Corollary 1.4. Namely, let ν be an arbitrary
norm on R

2. Then it follows from [27, Theorem 1.2] that the set

{g ∈ SL2(R) : ∃ ε > 0 such that f ◦ g is not(ε, ν)-approximable} (5.1)

has fullHausdorff dimension. (Theproof actually yields a stronger hyperplane absolute
winning property introduced in [9] and known to imply winning, which then implies
full Hausdorff dimension.) See also [1] for higher-dimensional generalizations. Note
that Corollary 1.4 implies that the set (5.1) has Haar measure zero.

Alternatively, in the m
(
A f ,ψ,η

)
< ∞ case of Theorem 1.3, one can ask for the

Hausdorff dimension of the null set consisting of all g ∈ SLn(R) for which f ◦ g is
(ψ, ν)-approximable. It seems natural to seek an analogue of the mass transference
principle ofBeresnevich–Velani in [7]; that being said, the lim sup sets in question have
a complicated structure, and the standard techniques do not appear to be applicable.
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