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Abstract

Let K be a bounded convex domain in R2 symmetric about the origin. The critical locus of K is
defined to be the (non-empty compact) set of lattices A in R? of smallest possible covolume such
that A N K = {0}. These are classical objects in geometry of numbers; yet all previously known
examples of critical loci were either finite sets or finite unions of closed curves. In this paper we give a
new construction which, in particular, furnishes examples of domains having critical locus of arbitrary
Hausdorff dimension between 0 and 1.
© 2021 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

1. Introduction

Counting lattice points in convex symmetric domains is a classical problem, which dates
back to Gauss and belongs to geometry of numbers, the branch of number theory that studies
number-theoretical problems by the use of geometric methods. Geometry of numbers in its
proper sense was pioneered by Minkowski, see [16] or the books [2,6] for a comprehensive
introduction to the subject.

A lattice A in R" is the set of all integer linear combinations of n linearly independent
vectors vy, ..., V, € R"; in other words

A=2Zvi+---+2Zv, =gZ", (1.1)

where g € GL,(Z) is the matrix with column vectors vy,...,v, € R". The most natural
example to consider is the grid of points Z" C R", which is generated by the standard basis
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of R" and corresponds to g = I,,, the n x n identity matrix. Note that gZ" = Z" if and only
if g € GL,(Z), where the latter stands for the group of invertible n x n matrices with integer
entries. Consequently, the space X, of lattices in R” is isomorphic, as a GL, (R)-space, to the
quotient space GL,(R)/ GL,(Z).

For any A € X, of the form (1.1) we define its covolume d(A) as the volume of the
parallelepiped spanned by vy, ..., v,. Clearly it does not depend on the choice of the generating
set and is equal to the absolute value of the determinant of g.

Let now K be a bounded convex domain in R” symmetric about the origin; denote by V(K)
the volume of K.

Definition 1.1. A lattice A C R" is called K-admissible if A N K = {0}. To K as above we
associate a real number A(K), called the critical determinant of K, given by

A(K) :=inf{d(A) : A is K-admissible} (1.2)

Perhaps one the most fundamental results in geometry of numbers is Minkowski’s Convex
Body Theorem, see e.g. [2, §$III.2.2], which states that for K as above, any lattice in R" with
covolume less than V(K)/2" must contain a point of K distinct from 0. In other words, for
any such K the critical determinant A(K) is positive, and, moreover, one has

V(K
A(K) > Q
2)‘[

This motivates the problem of exhibiting K-admissible lattices with the smallest covolume;

those are called K -critical.

Definition 1.2. A lattice A in R” is called K-critical if it is a K-admissible lattice with
d(/A) = A(K). The set of K-critical lattices is denoted by £(K) and is called the critical locus
of K.

Since admissibility is preserved by taking limits, this set is non-empty by a sequential
compactness argument due to Mahler, which can be found e.g. in [2, §V.4.2]. The critical locus
L(K) can be thought of as a subset of X,, and we will endow it with the topology induced
from GL,(R)/ GL,(Z). With this topology it is compact, again by Mahler’s argument.

It is worthwhile to point out that K -critical lattices are in one-to-one correspondence with
the densest lattice packings of R” by translates of K. Indeed, suppose that A is K-admissible.
Then it is easy to see that the collection of sets

{2v+ K :v e A}

is pairwise disjoint. And, conversely, if such a collection of sets is pairwise disjoint for some A,
then A must be K-admissible. Minimizing the covolume of A over all admissible lattices thus
corresponds to maximizing the relative area covered by the collection of the above sets. Another
motivation for studying critical loci of convex symmetric domains comes from Diophantine
approximation, see Section 4 for more detail.

From now on let us restrict our attention to the case n = 2. Critical loci of planar domains
have been systematically studied by Mahler in a series of papers written in the 1940s, see
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Section 2 for a list of examples. Perhaps the most straightforward is the case when
K=D:={xy):x*+y> <1}
is the unit disc: then one has A(D) = \/3/2, and

_ L1210,
L(D)_{k[o ﬁ/z]Z.keSOQ)}, (1.3)

which is homeomorphic to S'.

However all examples of sets £(K) previously constructed by Maher and others were either
finite sets or finite unions of closed curves, and there does not exist a precise description of
compact subsets of X, which can arise as critical loci of convex symmetric bounded domains
of R?. (The situation for n > 2 is even further from being understood.) For instance, after
studying Examples 2.2-2.5, one may pose the following natural question:

Is it possible for some K to have critical locus homeomorphic to a Cantor set?

We give a construction that shows that this is indeed possible. In particular, we prove

Theorem 1.3. Each non-empty closed subset of L(D), where D C R? is the unit disc, is the
critical locus of some convex symmetric domain K O D.

In particular, one can choose a closed subset of £(D) homeomorphic to the middle-third
Cantor set, or to any other closed fractal subset of [0, 1].

More generally, instead of D we can take any irreducible strictly convex' symmetric domain.
The concept of irreducibility, introduced by Mahler in [13], is as follows:

Definition 1.4. A convex symmetric bounded domain K in R? is said to be irreducible if
each convex symmetric bounded H ; K has A(H) < A(K). K is said to be reducible if it is
not irreducible, that is, if there exists H ;CéK with A(H) = A(K).

Here and hereafter H, K will always denote convex symmetric bounded domains in R?. We
remark that Mahler actually defines a stronger notion of irreducibility; namely, according to his
definition K is irreducible if all bounded symmetric star domains S ; K have A(S) < A(K).
However for convex domains K it is equivalent to the one given in Definition 1.4; this follows
from [14, Theorem 1], see a footnote to Lemma 2.8.

Among the examples in Section 2, the square [—1.1], the disc D and their images under
linear transformations are irreducible. A far more interesting example of an irreducible domain
is the curvilinear octagon described in [15, Section 12], see Remark 3.3.

Mabhler studied irreducible domains and proved a number of fundamental results illustrating
their importance. For example, the theorem stated below shows that irreducible domains are
ubiquitous in the following sense:

Theorem 1.5 ([ /4], Theorem 1). Every K C R? contains an irreducible H with A(H) = A(K).

I The strict convexity of H means that the line joining two distinct points on dH cannot intersect d H at any
other points.

721



mm Wondershare
PDFelement

Trial Version g

D. Kleinbock, A. Rao and S. Sathiamurthy Indagationes Mathematicae 32 (2021) 719-728

In Section 2, capitalizing on this and other results of Mahler, we prove

Theorem 1.6. If K is irreducible but not a parallelogram, then there is a continuous map
¢ : [0, 11 = X, which descends to a homeomorphism S' — L(K).

In the case of a parallelogram, as made explicit in Example 2.3, the critical locus is
topologically the wedge of two circles.

Corollary 1.7. If K is not a parallelogram, L(K) is a closed subset of an embedded circle
L(H), the critical locus of some irreducible non-parallelogram H.

This simple corollary of Theorems 1.5 and 1.6 is proved in Section 2, and our main theorem
is a partial converse to it:

Theorem 1.8. If H C R? is strictly convex and irreducible, so that L(H) is an embedded
circle inside X,, then each non-empty closed subset of L(H) is the critical locus of some
domain K D H.

In view of the irreducibility of D, Theorem 1.3 is clearly a special case of Theorem 1.8.
Note that the above theorem does not hold for parallelograms. Indeed, if H is a parallelogram,
one can consider any subset of £(H) homeomorphic to the transverse intersection of two line
segments; clearly it could never be embedded in a circle, and therefore, as Corollary 1.7 would
imply, could not be a critical locus of any K. At the end of Section 3 we discuss the further
possibility of the strict convexity assumption being removed for non-parallelogram irreducible
domains.

As for the rest of the article, Section 2 gives the basic theorems on irreducible domains
and critical lattices and examples to motivate the study, and Section 3 contains the proof of
Theorem 1.8.

2. Preliminaries and examples

The following fundamental and intuitive theorem on admissible and critical lattices is taken
from [2, §V.8.3] where one may also find a formal proof. It shows that critical lattices are
realized by inscribed parallelograms in the domains.

Theorem 2.1. Let A be K -critical, and let C be the boundary of K. Then one can find three
pairs of points £p1, £p2, £Pp3 of the lattice on C. Moreover these three points can be chosen
such that

P +pP2=p3 2.1)

and any two vectors among py, P2, P3 form a basis of A.

Conversely, if p1, p2, p3 satisfying (2.1) are on C, then the lattice generated by p, and p;
is K-admissible. Furthermore no additional (excluding the six above) point py of A is on C
unless K is a parallelogram.

In light of this theorem, we may discuss the critical loci for the following examples of
domains K C R?.
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Example 2.2. As was mentioned in the introduction, when K = D, the unit disc, one has that
A(D) = \/§/2, and the set of critical lattices is given by (1.3).

q-P q

Points p and q generate a critical lattice.
All other critical lattices are obtained by rotating this one.

More precisely, the map ¢ : R — X, given by
| cost —sint 1 1/2 5
¢ ’_|: sint  cost ]|: 0 3/2 ]Z
descends to a homeomorphism R/ (%) ~ L(D).
This is an example of an irreducible domain. For if H is a subset of D with A(H) = A(D),
then all D-critical lattices are H-admissible and thus also H-critical. Then the first part of
Theorem 2.1 shows that each D-critical lattice ¢(#) above must contain three pairs of points

on 0 H. Since H C D, those three pairs of points must coincide exactly with the set ¢(¢)NadD,
thus showing that the boundaries of H and D coincide.

Example 2.3. When K is the square with side-length 2 and sides perpendicular to the
coordinate axes, Theorem 2.1 again shows that the critical lattices are given by

{[(1) i]ZzzteR}U{[i ?]ZzzteR}, 2.2)

which is topologically a wedge of two circles. In this case too, K is irreducible by the same
application of Theorem 2.1 as in the case of the unit disc.

Shearing the standard lattice along each axis gives rise to all the critical lattices.
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Example 2.4. When K is a hexagon, there is exactly one critical lattice. This lattice is
spanned by the two vectors on the midpoints of adjacent sides. Moreover, in this case one
has V(K) = 4A(K). This follows as a corollary of Theorem 2.1, and a proof can be found
in [2, §V.8.4]. It is also known [15, Theorem 5] that when K is a 2n-gon with n > 3, there
can only be a finite number of critical lattices.

The lattice generated by p and q is the only critical lattice.

Example 2.5. If K is the unit ball of the L” norm on R> (1 < p < oo, p # 2), then,
depending on p, the critical locus comprises either of one or two lattices. For a historical
account and a proof of this (Minkowski’s conjecture), see the paper [5].

Remark 2.6. If H = gK for some g € GL,(R), then the critical loci of H and K are related
by L(H) = gL(K). Also, irreducibility is preserved under transformation by g.

We now collect the results needed to make Theorem 1.6 more precise. Moreover, the
parameterization of the critical locus arising will be crucial to our result.

Lemma 2.7 ([14], Lemma 6). Suppose that K is not a parallelogram, A is K -critical, and
letp; :i =1,...,6 be the points of A contained in C = 3K, labeled in a counter-clockwise
order. Let A; denote open segment of C between p; and p;11. If A’ is another K -critical lattice
distinct from A, then each A; contains exactly one point of A'.

Lemma 2.8 ([/4], Lemma 9%). Assume K is not a parallelogram and is irreducible. Then for
each p € C = 0K there is exactly one critical lattice of K containing p.

Proof of Theorem 1.6. Fix A, any critical lattice for K, and let C denote the boundary of
K. Let p; denote the six points of C N A oriented counter-clockwise. By convexity, one can
parameterize the closed segment of C between p; and p, by a continuous map p : [0, 1]
— R2.

From Lemma 2.8 above, we see that each p(¢) belongs to a unique K -critical lattice A,. Let
q(t) denote the point of A, N C coming after p(¢) going counter-clockwise in angle. We claim

2 Even though the statement of Lemma 2.8 is taken almost verbatim from Mahler’s paper, our meaning is changed
in light of the different definitions of irreducibility. Logically speaking, one can use [14, Theorem 1] to show that
the two definitions of irreducibility are equivalent.
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that the function q is continuous. If not, then for some ¢ we would find a neighborhood U of
q(t) with a converging sequence f, — t but q(¢,) ¢ U. Continuity of p implies p(z,) — p(?).
Without loss of generality, we can assume #, < t so that applying Lemma 2.7 to a lattice A
containing a point in U N C between q(¢) and each q(z,) gives a contradiction. Thus we can
set

$(1) = [p(t) Q)] 27,

which, in light of Lemma 2.7, descends to the required homeomorphism. [

Proof of Corollary 1.7. Suppose that K is not a parallelogram. By Theorem 1.5, K contains
an irreducible H with A(K) = A(H). It follows that we have the containment £(K) C L(H).
Moreover we claim that H cannot be a parallelogram.
For if this were the case, as made explicit in Example 2.3 above, A(H) would have to equal
%H). However, we also have that V(H) < V(K) and that @ < A(K). Together these give
V(H) V(K)

A(H) = 4 < 4 < A(K),

a contradiction.
Since H is not a parallelogram, Theorem 1.6 applies and we are done. [J

Remark 2.9. Mabhler proved (cf. Theorem 3 in [15]) that for such K, the boundary C is a
C! submanifold of R?. Thus the preceding proof can be modified to show that £(K) is a C!
submanifold of the space of lattices.

3. Proof of Theorem 1.8

The proof of our theorem will be based on the following simple observation:

Lemma 3.1. If H C K and one of the H-critical lattices is also K-admissible, then L(K) is
exactly the set of K-admissible lattices in L(H).

Proof. Since H C K, we have that A(H) < A(H). Further, the existence of an H-critical
and K-admissible lattice shows that we have the equality A(H) = A(K).

First, let A be K-critical. It is then also H-admissible with d(A) = A(K) = A(H). Thus it
is H-critical and, by definition, also K-admissible.

For the other containment, let A € L(H) be K-admissible. Since A(H) = A(K), A must
in fact be K-critical. [

Proof of Theorem 1.8. Take H, not a parallelogram and irreducible, and say Z C L(H) is
non-empty and compact. Let A € Z. Let C denote the boundary of H, and, as before, let us
label the six points of A N C as py, ..., ps (ordered by angle). Let p(r) denote a continuous
parameterization of the segment C from p; to p, by the interval [0, 1] (see diagram (3.1)
below), let A, denote the unique critical lattice containing p(¢), and let q(¢) denote the point
of A, N C coming after p(¢) (going counter-clockwise).
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q) p() = q(0)
pb;)
p(a;)
p(0)
An illustration when H is a disc. The union of H and two curvilinear regions.

3.1)

We use the parameterization ¢(¢) = [p(¢) q(t)]Z2 for L(H). We can now assume that our
non-empty, closed set is the image under ¢ of some compact Q C [0, 1] with {0, 1} C Q. Set

[0, 11~ Q =|_|(@, by

Now, for each i, consider p(a;), p(b;). In light of Remark 2.9, we can find tangent lines
Ly, L, to C at these two points. Let 7; be the curvilinear triangle bounded by the three curves
Li,Ly and C; = {p(t) : a; <t < b;}. We define K; to be the union H U T; U (—T;) as is
illustrated in Diagram (3.1) below. Note that the lines L, L, are not parallel; one argument is
that — L is also a tangent line to C by symmetry and strict convexity would prevent L, from
being parallel to either of these. Moreover, strict convexity also implies that the curve segment
C; is contained in K;.

We now define K to be the union | J K;. Clearly K is a bounded, open, convex, symmetric
domain containing H. Moreover, K and H share the boundary points

p@), q(), q) —p@)

for each r € Q, which shows that the H-critical lattice ¢(0) is K-admissible.

Lemma 3.1 thus applies to show that £(K) is exactly the set of K-admissible lattices of
L(H). For any t € Q, the H-critical lattice ¢(¢) is K-admissible by Theorem 2.1. On the other
hand, for t ¢ Q, ¢(¢) is not K-admissible since C; C K. This ends the proof. [

Remark 3.2. Note the construction of above can be modified to ensure that K is C' by
smoothing an edge of each curvilinear triangle.

Remark 3.3. Our method does not work for non-parallelogram H which are not strictly
convex, and it even seems unlikely that the theorem holds in that generality. The interested
reader is encouraged to examine the following irreducible domain, explicitly described in
[15, Section 12]. It is central to a conjecture, going back to Reinhardt [18], concerning domains
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area(H)

H that have minimal packing density A

The curvilinear octagon with one of its critical lattices.

Reinhardt proved that such a domain exists and proposed this curvilinear octagon as the unique
candidate. See [7] for a historical account along with some partial results.

4. Connections to Diophantine approximation

Given a non-decreasing function ¥ : Rt — (0, 1], say that a real number « is v -Dirichlet-
improvable if the system of inequalities

lag — pl =¢(T) and |q| =T 4.1

has a nonzero solution (p,q) € Z? for all sufficiently large 7. Dirichlet’s Theorem, see
[19, Theorem II.1E], asserts that the system (4.1) always has a nonzero integer solution if
¥(T) = 1/T. On the other hand, it is known [4,17] that the choice ¥(T) = ¢/T with ¢ < 1
produces a null set of 1-Dirichlet-improvable numbers. A precise criterion for this set to have
zero/full measure has been recently obtained by the first-named author and Wadleigh [10].
It was also shown in that paper that the property of being i-Dirichlet-improvable can be
equivalently phrased in terms of dynamics on the space X, of unimodular lattices in R

Namely, take K to be the unit ball with respect to the supremum norm || - || on R”, and let
t
g = [/% eg,} then « is Dirichlet-improvable if and only if the one-parameter trajectory
{gt B ﬂ Zzztzo} C X» 4.2)

eventually stays away from a certain family (determined by ) of shrinking neighborhoods
of the critical locus £(K) described in Example 2.3. See [10, Proposition 4.5] for a precise
statement, and [3,8,11,12] for other instances of the correspondence between Diophantine
approximation and dynamics, usually referred to as the Dani Correspondence.

Recently, in [1,9] a generalization of the property of being yr-Dirichlet-improvable was
introduced with the supremum norm replaced by an arbitrary norm v on R?. Similarly to the
above, that property can be restated in terms of the trajectory (4.2) eventually staying away
from a family of shrinking neighborhoods of the critical locus £(K'), where K is the unit ball
with respect to v (see [9, Proposition 2.1]). This has been one of the motivating factors for the
study of critical loci undertaken in the present paper.
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