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Abstract

Let K be a bounded convex domain in R2 symmetric about the origin. The critical locus of K is
defined to be the (non-empty compact) set of lattices Λ in R2 of smallest possible covolume such
that Λ ∩ K = {0}. These are classical objects in geometry of numbers; yet all previously known
examples of critical loci were either finite sets or finite unions of closed curves. In this paper we give a
new construction which, in particular, furnishes examples of domains having critical locus of arbitrary
Hausdorff dimension between 0 and 1.
c⃝ 2021 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

1. Introduction

Counting lattice points in convex symmetric domains is a classical problem, which dates
back to Gauss and belongs to geometry of numbers, the branch of number theory that studies
number-theoretical problems by the use of geometric methods. Geometry of numbers in its
proper sense was pioneered by Minkowski, see [16] or the books [2,6] for a comprehensive
introduction to the subject.

A lattice Λ in Rn is the set of all integer linear combinations of n linearly independent
vectors v1, . . . , vn ∈ Rn; in other words

Λ = Zv1 + · · · + Zvn = gZn, (1.1)

where g ∈ GLn(Z) is the matrix with column vectors v1, . . . , vn ∈ Rn . The most natural
example to consider is the grid of points Zn

⊂ Rn , which is generated by the standard basis

∗ Corresponding author.
E-mail addresses: kleinboc@brandeis.edu (D. Kleinbock), anrg@brandeis.edu (A. Rao),

ssathiam@andrew.cmu.edu (S. Sathiamurthy).
https://doi.org/10.1016/j.indag.2021.03.003
0019-3577/ c⃝ 2021 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/indag
https://doi.org/10.1016/j.indag.2021.03.003
http://www.elsevier.com/locate/indag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.indag.2021.03.003&domain=pdf
mailto:kleinboc@brandeis.edu
mailto:anrg@brandeis.edu
mailto:ssathiam@andrew.cmu.edu
https://doi.org/10.1016/j.indag.2021.03.003


D. Kleinbock, A. Rao and S. Sathiamurthy Indagationes Mathematicae 32 (2021) 719–728

e
q

p
s

a

c
a

d

t

h

of Rn and corresponds to g = In , the n × n identity matrix. Note that gZn
= Zn if and only

if g ∈ GLn(Z), where the latter stands for the group of invertible n × n matrices with integer
ntries. Consequently, the space Xn of lattices in Rn is isomorphic, as a GLn(R)-space, to the
uotient space GLn(R)/GLn(Z).

For any Λ ∈ Xn of the form (1.1) we define its covolume d(Λ) as the volume of the
arallelepiped spanned by v1, . . . , vn . Clearly it does not depend on the choice of the generating
et and is equal to the absolute value of the determinant of g.

Let now K be a bounded convex domain in Rn symmetric about the origin; denote by V (K )
the volume of K .

Definition 1.1. A lattice Λ ⊂ Rn is called K -admissible if Λ ∩ K = {0}. To K as above we
ssociate a real number ∆(K ), called the critical determinant of K , given by

∆(K ) := inf {d(Λ) : Λ is K -admissible} (1.2)

Perhaps one the most fundamental results in geometry of numbers is Minkowski’s Convex
Body Theorem, see e.g. [2, §III.2.2], which states that for K as above, any lattice in Rn with
ovolume less than V (K )/2n must contain a point of K distinct from 0. In other words, for
ny such K the critical determinant ∆(K ) is positive, and, moreover, one has

∆(K ) ≥
V (K )

2n
.

This motivates the problem of exhibiting K -admissible lattices with the smallest covolume;
those are called K -critical.

Definition 1.2. A lattice Λ in Rn is called K -critical if it is a K -admissible lattice with
(Λ) = ∆(K ). The set of K -critical lattices is denoted by L(K ) and is called the critical locus

of K .

Since admissibility is preserved by taking limits, this set is non-empty by a sequential
compactness argument due to Mahler, which can be found e.g. in [2, §V.4.2]. The critical locus
L(K ) can be thought of as a subset of Xn , and we will endow it with the topology induced
from GLn(R)/GLn(Z). With this topology it is compact, again by Mahler’s argument.

It is worthwhile to point out that K -critical lattices are in one-to-one correspondence with
the densest lattice packings of Rn by translates of K . Indeed, suppose that Λ is K -admissible.
Then it is easy to see that the collection of sets

{2v + K : v ∈ Λ}

is pairwise disjoint. And, conversely, if such a collection of sets is pairwise disjoint for some Λ,
hen Λ must be K -admissible. Minimizing the covolume of Λ over all admissible lattices thus

corresponds to maximizing the relative area covered by the collection of the above sets. Another
motivation for studying critical loci of convex symmetric domains comes from Diophantine
approximation, see Section 4 for more detail.

From now on let us restrict our attention to the case n = 2. Critical loci of planar domains
ave been systematically studied by Mahler in a series of papers written in the 1940s, see
720
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Section 2 for a list of examples. Perhaps the most straightforward is the case when

K = D := {(x, y) : x2
+ y2 < 1}

is the unit disc: then one has ∆(D) =
√

3/2, and

L(D) =

{
k

[
1 1/2
0

√
3/2

]
Z2

: k ∈ SO(2)
}
, (1.3)

which is homeomorphic to S1.
However all examples of sets L(K ) previously constructed by Maher and others were either

finite sets or finite unions of closed curves, and there does not exist a precise description of
compact subsets of X2 which can arise as critical loci of convex symmetric bounded domains
of R2. (The situation for n > 2 is even further from being understood.) For instance, after
studying Examples 2.2–2.5, one may pose the following natural question:

Is it possible for some K to have critical locus homeomorphic to a Cantor set?

We give a construction that shows that this is indeed possible. In particular, we prove

Theorem 1.3. Each non-empty closed subset of L(D), where D ⊂ R2 is the unit disc, is the
critical locus of some convex symmetric domain K ⊃ D.

In particular, one can choose a closed subset of L(D) homeomorphic to the middle-third
Cantor set, or to any other closed fractal subset of [0, 1].

More generally, instead of D we can take any irreducible strictly convex1 symmetric domain.
The concept of irreducibility, introduced by Mahler in [13], is as follows:

Definition 1.4. A convex symmetric bounded domain K in R2 is said to be irreducible if
each convex symmetric bounded H ⫋ K has ∆(H ) < ∆(K ). K is said to be reducible if it is
not irreducible, that is, if there exists H⫋K with ∆(H ) = ∆(K ).

Here and hereafter H, K will always denote convex symmetric bounded domains in R2. We
remark that Mahler actually defines a stronger notion of irreducibility; namely, according to his
definition K is irreducible if all bounded symmetric star domains S ⫋ K have ∆(S) < ∆(K ).
However for convex domains K it is equivalent to the one given in Definition 1.4; this follows
from [14, Theorem 1], see a footnote to Lemma 2.8.

Among the examples in Section 2, the square [−1.1]2, the disc D and their images under
linear transformations are irreducible. A far more interesting example of an irreducible domain
is the curvilinear octagon described in [15, Section 12], see Remark 3.3.

Mahler studied irreducible domains and proved a number of fundamental results illustrating
their importance. For example, the theorem stated below shows that irreducible domains are
ubiquitous in the following sense:

Theorem 1.5 ([14], Theorem 1). Every K ⊂ R2 contains an irreducible H with ∆(H ) = ∆(K ).

1 The strict convexity of H means that the line joining two distinct points on ∂H cannot intersect ∂H at any
other points.
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In Section 2, capitalizing on this and other results of Mahler, we prove

Theorem 1.6. If K is irreducible but not a parallelogram, then there is a continuous map
φ : [0, 1] → X2 which descends to a homeomorphism S1

→ L(K ).

In the case of a parallelogram, as made explicit in Example 2.3, the critical locus is
topologically the wedge of two circles.

Corollary 1.7. If K is not a parallelogram, L(K ) is a closed subset of an embedded circle
L(H ), the critical locus of some irreducible non-parallelogram H.

This simple corollary of Theorems 1.5 and 1.6 is proved in Section 2, and our main theorem
is a partial converse to it:

Theorem 1.8. If H ⊂ R2 is strictly convex and irreducible, so that L(H ) is an embedded
circle inside X2, then each non-empty closed subset of L(H ) is the critical locus of some
domain K ⊃ H.

In view of the irreducibility of D, Theorem 1.3 is clearly a special case of Theorem 1.8.
Note that the above theorem does not hold for parallelograms. Indeed, if H is a parallelogram,
one can consider any subset of L(H ) homeomorphic to the transverse intersection of two line
segments; clearly it could never be embedded in a circle, and therefore, as Corollary 1.7 would
imply, could not be a critical locus of any K . At the end of Section 3 we discuss the further
possibility of the strict convexity assumption being removed for non-parallelogram irreducible
domains.

As for the rest of the article, Section 2 gives the basic theorems on irreducible domains
and critical lattices and examples to motivate the study, and Section 3 contains the proof of
Theorem 1.8.

2. Preliminaries and examples

The following fundamental and intuitive theorem on admissible and critical lattices is taken
from [2, §V.8.3] where one may also find a formal proof. It shows that critical lattices are
realized by inscribed parallelograms in the domains.

Theorem 2.1. Let Λ be K -critical, and let C be the boundary of K . Then one can find three
pairs of points ±p1,±p2,±p3 of the lattice on C. Moreover these three points can be chosen
such that

p1 + p2 = p3 (2.1)

and any two vectors among p1, p2, p3 form a basis of Λ.
Conversely, if p1,p2,p3 satisfying (2.1) are on C, then the lattice generated by p1 and p2

is K -admissible. Furthermore no additional (excluding the six above) point p4 of Λ is on C
unless K is a parallelogram.

In light of this theorem, we may discuss the critical loci for the following examples of
domains K ⊂ R2.
722
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Example 2.2. As was mentioned in the introduction, when K = D, the unit disc, one has that
∆(D) =

√
3/2, and the set of critical lattices is given by (1.3).

p

qq − p

Points p and q generate a critical lattice.
All other critical lattices are obtained by rotating this one.

More precisely, the map φ : R → X2 given by

φ(t) :=

[
cos t − sin t
sin t cos t

] [
1 1/2
0

√
3/2

]
Z2

descends to a homeomorphism R/(πZ3 ) ≃ L(D).
This is an example of an irreducible domain. For if H is a subset of D with ∆(H ) = ∆(D),

then all D-critical lattices are H -admissible and thus also H -critical. Then the first part of
Theorem 2.1 shows that each D-critical lattice φ(t) above must contain three pairs of points
on ∂H . Since H ⊂ D, those three pairs of points must coincide exactly with the set φ(t)∩∂D,
hus showing that the boundaries of H and D coincide.

Example 2.3. When K is the square with side-length 2 and sides perpendicular to the
coordinate axes, Theorem 2.1 again shows that the critical lattices are given by{[

1 t
0 1

]
Z2

: t ∈ R
} ⋃ {[

1 0
t 1

]
Z2

: t ∈ R
}
, (2.2)

which is topologically a wedge of two circles. In this case too, K is irreducible by the same
pplication of Theorem 2.1 as in the case of the unit disc.

Shearing the standard lattice along each axis gives rise to all the critical lattices.
723
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Example 2.4. When K is a hexagon, there is exactly one critical lattice. This lattice is
spanned by the two vectors on the midpoints of adjacent sides. Moreover, in this case one
has V (K ) = 4∆(K ). This follows as a corollary of Theorem 2.1, and a proof can be found
in [2, §V.8.4]. It is also known [15, Theorem 5] that when K is a 2n-gon with n ≥ 3, there
can only be a finite number of critical lattices.

p

q

q − p

The lattice generated by p and q is the only critical lattice.

Example 2.5. If K is the unit ball of the L p norm on R2 (1 < p < ∞, p ̸= 2), then,
depending on p, the critical locus comprises either of one or two lattices. For a historical
account and a proof of this (Minkowski’s conjecture), see the paper [5].

Remark 2.6. If H = gK for some g ∈ GL2(R), then the critical loci of H and K are related
by L(H ) = gL(K ). Also, irreducibility is preserved under transformation by g.

We now collect the results needed to make Theorem 1.6 more precise. Moreover, the
parameterization of the critical locus arising will be crucial to our result.

Lemma 2.7 ([14], Lemma 6). Suppose that K is not a parallelogram, Λ is K -critical, and
let pi : i = 1, . . . , 6 be the points of Λ contained in C = ∂K , labeled in a counter-clockwise
order. Let Ai denote open segment of C between pi and pi+1. If Λ′ is another K -critical lattice
distinct from Λ, then each Ai contains exactly one point of Λ′.

Lemma 2.8 ([14], Lemma 92). Assume K is not a parallelogram and is irreducible. Then for
each p ∈ C = ∂K there is exactly one critical lattice of K containing p.

Proof of Theorem 1.6. Fix Λ, any critical lattice for K , and let C denote the boundary of
K . Let pi denote the six points of C ∩ Λ oriented counter-clockwise. By convexity, one can
parameterize the closed segment of C between p1 and p2 by a continuous map p : [0, 1]
→ R2.

From Lemma 2.8 above, we see that each p(t) belongs to a unique K -critical lattice Λt . Let
q(t) denote the point of Λt ∩ C coming after p(t) going counter-clockwise in angle. We claim

2 Even though the statement of Lemma 2.8 is taken almost verbatim from Mahler’s paper, our meaning is changed
in light of the different definitions of irreducibility. Logically speaking, one can use [14, Theorem 1] to show that
the two definitions of irreducibility are equivalent.
724
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that the function q is continuous. If not, then for some t we would find a neighborhood U of
q(t) with a converging sequence tn → t but q(tn) /∈ U . Continuity of p implies p(tn) → p(t).
Without loss of generality, we can assume tn < t so that applying Lemma 2.7 to a lattice Λ

containing a point in U ∩ C between q(t) and each q(tn) gives a contradiction. Thus we can
set

φ(t) = [p(t) q(t)]Z2,

which, in light of Lemma 2.7, descends to the required homeomorphism. □

Proof of Corollary 1.7. Suppose that K is not a parallelogram. By Theorem 1.5, K contains
an irreducible H with ∆(K ) = ∆(H ). It follows that we have the containment L(K ) ⊂ L(H ).
Moreover we claim that H cannot be a parallelogram.

For if this were the case, as made explicit in Example 2.3 above, ∆(H ) would have to equal
V (H )

4 . However, we also have that V (H ) < V (K ) and that V (K )
4 ≤ ∆(K ). Together these give

∆(H ) =
V (H )

4
<

V (K )
4

≤ ∆(K ),

a contradiction.
Since H is not a parallelogram, Theorem 1.6 applies and we are done. □

Remark 2.9. Mahler proved (cf. Theorem 3 in [15]) that for such K , the boundary C is a
C1 submanifold of R2. Thus the preceding proof can be modified to show that L(K ) is a C1

submanifold of the space of lattices.

3. Proof of Theorem 1.8

The proof of our theorem will be based on the following simple observation:

Lemma 3.1. If H ⊂ K and one of the H-critical lattices is also K -admissible, then L(K ) is
exactly the set of K -admissible lattices in L(H ).

Proof. Since H ⊂ K , we have that ∆(H ) ≤ ∆(H ). Further, the existence of an H -critical
and K -admissible lattice shows that we have the equality ∆(H ) = ∆(K ).

First, let Λ be K -critical. It is then also H -admissible with d(Λ) = ∆(K ) = ∆(H ). Thus it
is H -critical and, by definition, also K -admissible.

For the other containment, let Λ ∈ L(H ) be K -admissible. Since ∆(H ) = ∆(K ), Λ must
in fact be K -critical. □

Proof of Theorem 1.8. Take H , not a parallelogram and irreducible, and say Z ⊂ L(H ) is
non-empty and compact. Let Λ ∈ Z . Let C denote the boundary of H , and, as before, let us
abel the six points of Λ ∩ C as p1, . . . ,p6 (ordered by angle). Let p(t) denote a continuous
arameterization of the segment C from p1 to p2 by the interval [0, 1] (see diagram (3.1)
elow), let Λt denote the unique critical lattice containing p(t), and let q(t) denote the point
f Λ ∩ C coming after p(t) (going counter-clockwise).
t
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i

C

p(0)

p(1) = q(0)q(1)

p(ai )

p(bi )

An illustration when H is a disc. The union of H and two curvilinear regions.

(3.1)

We use the parameterization φ(t) := [p(t) q(t)]Z2 for L(H ). We can now assume that our
non-empty, closed set is the image under φ of some compact Q ⊂ [0, 1] with {0, 1} ⊂ Q. Set

[0, 1] ∖ Q =

⨆
(ai , bi ).

Now, for each i , consider p(ai ), p(bi ). In light of Remark 2.9, we can find tangent lines
L1, L2 to C at these two points. Let Ti be the curvilinear triangle bounded by the three curves
L1, L2 and Ci = {p(t) : ai ≤ t ≤ bi }. We define Ki to be the union H ∪ Ti ∪ (−Ti ) as is
llustrated in Diagram (3.1) below. Note that the lines L1, L2 are not parallel; one argument is

that −L1 is also a tangent line to C by symmetry and strict convexity would prevent L2 from
being parallel to either of these. Moreover, strict convexity also implies that the curve segment

i is contained in Ki .
We now define K to be the union

⋃
Ki . Clearly K is a bounded, open, convex, symmetric

domain containing H . Moreover, K and H share the boundary points

p(t), q(t), q(t) − p(t)

for each t ∈ Q, which shows that the H -critical lattice φ(0) is K -admissible.
Lemma 3.1 thus applies to show that L(K ) is exactly the set of K -admissible lattices of

L(H ). For any t ∈ Q, the H -critical lattice φ(t) is K -admissible by Theorem 2.1. On the other
hand, for t /∈ Q, φ(t) is not K -admissible since Ci ⊂ K . This ends the proof. □

Remark 3.2. Note the construction of above can be modified to ensure that K is C1 by
smoothing an edge of each curvilinear triangle.

Remark 3.3. Our method does not work for non-parallelogram H which are not strictly
convex, and it even seems unlikely that the theorem holds in that generality. The interested
reader is encouraged to examine the following irreducible domain, explicitly described in
[15, Section 12]. It is central to a conjecture, going back to Reinhardt [18], concerning domains
726
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H that have minimal packing density area(H )
∆(H ) .

The curvilinear octagon with one of its critical lattices.

Reinhardt proved that such a domain exists and proposed this curvilinear octagon as the unique
candidate. See [7] for a historical account along with some partial results.

4. Connections to Diophantine approximation

Given a non-decreasing function ψ : R+
→ (0, 1], say that a real number α is ψ-Dirichlet-

improvable if the system of inequalities

|αq − p| ≤ ψ(T ) and |q| ≤ T (4.1)

has a nonzero solution (p, q) ∈ Z2 for all sufficiently large T . Dirichlet’s Theorem, see
[19, Theorem II.1E], asserts that the system (4.1) always has a nonzero integer solution if
ψ(T ) = 1/T . On the other hand, it is known [4,17] that the choice ψ(T ) = c/T with c < 1
produces a null set of ψ-Dirichlet-improvable numbers. A precise criterion for this set to have
zero/full measure has been recently obtained by the first-named author and Wadleigh [10].
It was also shown in that paper that the property of being ψ-Dirichlet-improvable can be
equivalently phrased in terms of dynamics on the space X2 of unimodular lattices in R2.
Namely, take K to be the unit ball with respect to the supremum norm ∥ · ∥ on Rn , and let

gt :=

[
et 0
0 e−t

]
; then α is Dirichlet-improvable if and only if the one-parameter trajectory{

gt

[
1 α

0 1

]
Z2

: t ≥ 0
}

⊂ X2 (4.2)

eventually stays away from a certain family (determined by ψ) of shrinking neighborhoods
of the critical locus L(K ) described in Example 2.3. See [10, Proposition 4.5] for a precise
statement, and [3,8,11,12] for other instances of the correspondence between Diophantine
approximation and dynamics, usually referred to as the Dani Correspondence.

Recently, in [1,9] a generalization of the property of being ψ-Dirichlet-improvable was
introduced with the supremum norm replaced by an arbitrary norm ν on R2. Similarly to the
above, that property can be restated in terms of the trajectory (4.2) eventually staying away
from a family of shrinking neighborhoods of the critical locus L(K ), where K is the unit ball
with respect to ν (see [9, Proposition 2.1]). This has been one of the motivating factors for the

study of critical loci undertaken in the present paper.
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