DRAFT VERSION OCTOBER 12, 2020
Typeset using IATEX twocolumn style in AASTeX63
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ABSTRACT

Autonomous digital sky surveys such as Pan-STARRS have the ability to image a very large number
of galactic and extra-galactic objects, and the large and complex nature of the image data reinforces
the use of automation. Here we describe the design and implementation of a data analysis process
for automatic broad morphology annotation of galaxies, and applied it to the data of Pan-STARRS
DR1. The process is based on filters followed by a two-step convolutional neural network (CNN)
classification. Training samples are generated by using an augmented and balanced set of manually
classified galaxies. Results are evaluated for accuracy by comparison to the annotation of Pan-STARRS
included in a previous broad morphology catalog of SDSS galaxies. Our analysis shows that a CNN
combined with several filters is an effective approach for annotating the galaxies and removing unclean
images. The catalog contains morphology labels for 1,662,190 galaxies with ~95% accuracy. The
accuracy can be further improved by selecting labels above certain confidence thresholds. The catalog

is publicly available.
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1. INTRODUCTION

With their ability to generate very large databases,
autonomous digital sky surveys have been enabling
research tasks that were not possible in the pre-
information era, and have been becoming increasingly
pivotal in astronomy. The ability of digital sky sur-
veys to image large parts of the sky, combined with the
concept of virtual observatories that make these data
publicly accessible (Djorgovski et al. 2001), has been in-
troducing a new form of astronomy research, and that
trend is bound to continue (Borne 2013; Djorgovski et al.
2013).

The Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS) (Kaiser 2004; Flewelling et al.
2016) is a comprehensive digital sky survey covering
~ 103 degree? per night using an array of two 1.8m tele-
scopes. Among other celestial objects, Pan-STARRS
images a very large number of galaxies. Due to the
complexity of galaxy morphology, the ability of current
photometric pipelines to analyze these galaxy images is
limited, and substantial information that is visible to the
humans eye is practically unavailable to users of digital
sky surveys data.
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To automate the analysis of galaxy images, several
methods have been proposed, including GALFIT (Peng
et al. 2002), GIM2D (Simard 1999), CAS (Conselice
2003), the Gini coefficient of the light distribution
(Abraham et al. 2003), Ganalyzer (Shamir 2011), and
SpArcFiRe (Davis and Hayes 2014). However, the abil-
ity of these methods to analyze a large number of real-
world galaxy images and produce clean data products
is limited, and catalogs of galaxy morphology were pre-
pared manually by professional astronomers (Nair and
Abraham 2010; Baillard et al. 2011).

Due to the high volumes of data, the available pool of
professional astronomers is not able to provide the suf-
ficient labor to analyze databases generated by modern
digital sky surveys, leading to the use of crowdsourcing
for that task (Lintott et al. 2008, 2011; Willett et al.
2013). The main crowdsourcing campaign for analy-
sis of galaxy morphology was Galaxy Zoo (Lintott et al.
2011), providing annotations of the broad morphology of
galaxies imaged by Sloan Digital Sky Survey (SDSS), as
well as other surveys such as the Cosmic Assembly Near-
infrared Deep Extragalactic Legacy (CANDELS). How-
ever, analyzing the broad morphology of SDSS galaxies
required ~3 years of work performed by over 10° volun-
teers, and led to ~ 7 -10* galaxies considered “super-
clean”. Given the huge databases of current and future
sky surveys, it is clear that even when using crowdsourc-
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ing, the throughout of manual classification might not
be sufficient for an exhaustive analysis of such databases.

The use of machine learning provided more effec-
tive methods for the purpose of galaxy image classi-
fication (Shamir 2009; Huertas-Company et al. 2009;
Banerji et al. 2010; Shamir et al. 2013; Schutter and
Shamir 2015; Kuminski et al. 2014; Dieleman et al. 2015;
Hocking et al. 2017; Kuminski and Shamir 2018; Silva
et al. 2018), and the use of such methods also pro-
vided computer-generated catalogs of galaxy morphol-
ogy (Huertas-Company et al. 2010; Simard et al. 2011;
Shamir and Wallin 2014; Kuminski and Shamir 2016;
Huertas-Company et al. 2015a,b; Timmis and Shamir
2017; Paul et al. 2018; Shamir 2019). Automatic anno-
tation methods were also tested on Pan-STARRS data
by using the photometric measurements of colors and
moments, classified by a Random Forest classifier to
achieve a considerable accuracy of ~ 89% (Baldeschi
et al. 2020).

Here we use automatic image analysis to prepare a
catalog of the broad morphology of ~ 1.7 - 10° Pan-
STARRS DRI galaxies. The catalog was generated by
using a data analysis process that involves several steps
and two convolutional neural networks (CNN) that au-
tomated the annotation process to handle the high vol-
ume of data.

2. DATA

The galaxy image data is sourced from the first data
release (DR1) of Pan-STARRS (Hodapp et al. 2004;
Flewelling et al. 2016; Chambers et al. 2016). First,
all objects with Kron r magnitude of less than than 19
and identified by Pan-STARRS photometric pipeline as
extended in all bands were selected.

To filter objects that are too small to identify mor-
phology, objects that have Petrosian radius smaller than
5.5” were removed. To remove stars, objects that their
PSF i magnitude subtracted by their Kron i magnitude
was greater than 0.05 were also removed. That led to a
dataset of 2,394,452 objects (Timmis and Shamir 2017).
Objects that were flagged by Pan-STARRS photomet-
ric pipeline as artifacts, had a brighter neighbor, defect,
double PSF, or a blend in any of the bands were excluded
from the dataset. That led to a dataset of 2,131,371 ob-
jects assumed to be sufficiently large and clean to allow
morphological analysis. Figure 1 shows the distribution
of the r Kron magnitude of the galaxies in the dataset.

The galaxy images were then downloaded using Pan-
STARRS cutout service. The images are in the JPG
format and have a dimensionality of 120x120 pixels as
in (Kuminski and Shamir 2016). Pan-STARRS cutout
provides JPG images for each of the bands. Here we use
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Figure 1. Distribution of the r Kron magnitude of the galaz-
ies in the dataset.

the images of the g band, as the color images using the
y, i, and g bands are in many cases noisy, and do not
allow effective analysis of the morphology. The process
of downloading the data was completed in 62 days.
The initial scale of the cutout was set to 0.25” per
pixel. For each image that was downloaded, all bright
pixels (grayscale value higher than 125) located on the
edge of the frame were counted. If more than 25% of the
pixels on the edge of the frame were bright, it is an indi-
cation that the object does not fully fit inside the frame.
In that case, the scale was increased by 0.05”, and the
image was downloaded again. That was repeated until
the number of bright pixels on the edge was less than
25% of the total edge pixels, meaning that the object
is inside the frame. The JPG images are far smaller
than the FITS images. A 120x120 JPG image retrieved
through Pan-STARRS cutout service is normally of size
of ~3KB, while an image of the same dimensions in
the FITS format will be ~76KB. Although the FITS
files provide more information, downloading the files in
FITS format is substantially slower. While download-
ing the JPG images lasted 62 days, downloading the
same number of images in the much larger FITS format
will require a far longer period of time. The JPG im-
ages do not allow photometry, but they are smaller than
the FITS files and provide visual information about the
shape of the galaxy, which is the information required for
the morphological classification of the galaxies. As ex-
plained in Section 3.1, the training of the neural network
was done with images retrieved from Pan-STARRS, with
the exact same size and format as the images that were
annotated by the neural network after it was trained.

3. IMAGE ANALYSIS METHOD

The filtering of the data described in Section 2 aims
at removing objects that are not clean galaxy images.
That allows to reduce the number of images downloaded
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and classified in the next step with the deep neural net-
work. The removal of objects that are not galaxy images
also makes the neural network more accurate due to the
higher consistency of the data it is trained with.

To remove saturated images and images that have too
few features to allow morphological classification, two
additional filters are used. The first filter finds the ratio
of fully saturated pixels (a grayscale value of 255 in the
JPG image) to the total number of pixels and discards
the image if this ratio is higher than 15:1000. Since
a high number of saturated pixels is not expected in
a clean galaxy image, the simple threshold of 1.5% is
sufficient to identify and reject saturated images that
are not galaxy images. This step rejected 30,220 objects
that were identified as saturated.

The second filter uses the Otsu global threshold
method (Otsu 1979) to separate the image into fore-
ground and background pixels. If the number of fore-
ground pixels is less than 1.8% of the total image, the
image is marked as having too few distinguishable fea-
tures. This filter rejected 375,107 galaxies that were
identified as having too little foreground to allow iden-
tification. Together, these filters removed 405,327 im-
ages (~19%) from the data set. The thresholds were
determined experimentally by observing galaxy image
samples. Table 1 shows examples of several objects that
were filtered based on too few foreground pixels or too
many saturated pixels.

3.1. Primary classification

The classifier used for the purpose of annotating the
galaxy images is a deep convolutional neural network
(DCNN) based on the LeNet-5 architecture (LeCun
et al. 1998). To adjust the model for input images of
size 120x120 instead of 32x32, the kernel in the first
convolutional layer was changed from 5x5 with stride 1
to 10x 10 with stride 2, and the filter in the first pool-
ing layer was similarly changed from 2x2 with stride 2
to 4x4 with stride 4. Each of the following layers has
identical hyperparameters except for the output layer,
where the number of classes is reduced from 10 to 2.
The SoftMax output layer of the model provides a de-
gree of certainty for the annotations that allows control-
ling the size/accuracy trade-off of the catalog, as will be
discussed in Section 4.

Training samples were obtained using the debiased
“superclean” Galaxy Zoo annotations. “Superclean” ob-
jects are objects on which 95% or more of the annotators
agreed on their morphology with correction for the red-
shift bias (Lintott et al. 2011). That selection leads to
a subset of very consistent annotations (Lintott et al.
2011), but it also filters the vast majority of Galaxy Zoo

Table 1. Examples of images filtered for having too few
foreground pixels or having too many saturated pixels.

Image Saturated | Foreground
pixels (%) | pixels (%)

6.1 10.7

13.5 21.7

30.9 34.9

0.06 1.4

0.16 1.1

annotations that do not satisfy these requirements. The
Galaxy Zoo crowdsourcing campaign annotated galaxies
imaged by SDSS, which is a different instrument with
a different image processing pipeline. Although it has
been shown in the past that neural networks trained
with data from one telescope can be used to classify
data acquired by other telescopes (Dominguez Sdnchez
et al. 2019), it has also been shown that the accuracy
of such networks is inferior to the accuracy of a neural
network trained and tested with data from the same in-
strument (Dominguez Sanchez et al. 2019). Since a large
number of galaxies annotated by Galaxy Zoo were also
imaged by Pan-STARRS, the Pan-STARRS images of
these galaxies can be fetched and be used as the train-
ing data, so that the images used to train the neural
network are imaged by the same instrument that im-
aged the galaxies annotated by that network.

Due to the substantial overlap between the footprint
of Pan-STARRS and SDSS, the idea of using SDSS
data as labels to train machine learning systems with
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Pan-STARRS data has been used in the past. For in-
stance, Tarrio and Zarattini (2020) used spectroscopic
data from SDSS as labels for training a machine learn-
ing system that can determine the photometric redshift
of Pan-STARRS galaxies.

In order to train the neural network with images from
the same instrument that it is expected to annotate, the
images of the galaxies annotated by Galaxy Zoo were
retrieved from Pan-STARRS. Pan-STARRS has a differ-
ent footprint than SDSS, so not all galaxies annotated by
Galaxy Zoo are also imaged by Pan-STARRS. However,
22,456 Galaxy Zoo galaxies with “superclean” annota-
tions were matched with galaxies in Pan-STARRS DR1
based on their right ascension and declination (within
difference of 0.0001 degrees). These images were fetched
from Pan-STARRS and were used for training the neural
network.

Figure 2 shows the distribution of the r exponential
magnitude of the Galaxy Zoo galaxies that their anno-
tations were used for the compilation of the training set.
The magnitude distribution is somewhat different from
the magnitude distribution of the Pan-STARRS galax-
ies shown in Figure 1, which can be explained by the
17.77 limiting r Petrosian magnitude applied to the ini-
tial Galaxy Zoo sample (Lintott et al. 2008). As men-
tioned above, the SDSS images themselves were not used
for the training.
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Figure 2. Distribution of the r exponential magnitude of
the galaxies in the Galazy Zoo dataset from which the anno-
tations were taken.

Figures 3 and 4 show the histograms of the redshift
distribution of the galaxies in Pan-STARRS and SDSS,
respectively. The number of Pan-STARRS galaxies with
redshift is small since Pan-STARRS does not collect
spectra, and the spectra was only taken from SDSS
galaxies that overlapped with Pan-STARRS galaxies.
The two graphs show that the distribution of the red-
shift is similar in both datasets.

0.0 0.1 0.2 0.3 0.4 0.5
Redshift

Figure 3. Distribution of the redshift of the galaxies in the
Pan-STARRS dataset. The redshift values were taken from
SDSS.
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Figure 4. Distribution of the redshift of the galaxies in the
Galazy Zoo dataset from which the annotations were taken.

Galaxy Zoo manual annotations have been shown in
the past to be sensitive to the spin direction of the galax-
ies (Land et al. 2008). To eliminate the possible effect of
spin patterns, the training set was augmented such that
all galaxies were mirrored, and both the original and
mirrored image of each galaxy were used in the train-
ing set. That resulted in a training set of 31,564 spi-
ral images and 13,348 elliptical images. Mirroring the
spiral galaxies ensures a symmetric dataset that is not
biased by certain preferences of the human volunteers
who annotated the galaxies. That is, while mirroring
the images in the training set is often used when train-
ing deep neural networks for augmenting the data and
increasing the number of training samples, in this case it
was also used to produce a symmetric unbiased dataset.
Mirroring of the elliptical galaxies was done to ensure
consistency in the manner training data are handled,
and avoid a situation in which different classes are han-
dled differently.

The classifier is implemented in Python 3 using Ten-
sorFlow (Abadi et al. 2015) and Keras (Chollet et al.
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2015). The model was trained for 250 epochs on a
70% training subset and ended with 98.7% accuracy
when evaluated against the remaining 30% testing sub-
set. Figure 5 shows the confusion matrix and receiver
operating characteristic (ROC) curve of the classifica-
tion. The high accuracy shows that although the galaxy
images were labeled with annotations made with SDSS
galaxies, the annotations were still consistent in Pan-
STARRS images. That consistency indicates that the
two sky surveys are roughly equivalent in the informa-
tion they provide about the morphology of the galaxies.

Loss was computed using categorical cross entropy,
and stochastic gradient descent (SGD) was used as the
optimizer. Various activation functions including ReLU
were tested, and gave comparable classification accu-
racy. The tanh activation used by LeNet-5 gave the
best performance and therefore was used for the model.
Classification on the total data set (excluding those re-
moved by the filtering step) labeled 904,550 images as
elliptical galaxies and 821,494 images as spiral galaxies.

Predicted label
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spiral liptical ROC Curve

True label

elliptical 79 3297 02

00 — AUC=1.00
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4
False Positive Rate

Figure 5. Confusion matrix and ROC curve of the classifi-
cation of the 30% test samples.

3.2. Secondary Classification

Following the classification described in Section 3.1,
the set of images predicted as spiral was shown to con-
tain a significant number of “ghosts”, or unclean images.
The CNN classifier interpreted the unclean images as
patterns of spiral features, leaving the elliptical predic-
tions relatively clean.

To remove these ghosts, we constructed a second deep
CNN to separate them from the true spirals. The archi-
tecture of this model is simpler than the first, using three
convolutional layers with filter sizes of 7x7x8, 5x5x32,
and 3x3x64, ReLU activation function, and a single
SoftMax output layer. Between the convolutional layers
there are max pooling layers that each reduce the input
dimensions by half. The model uses the Adam optimizer
and categorical cross entropy for loss.

For training, several hundred ghost images were ini-
tially selected from the set of galaxy images that were
mistakenly predicted as spirals, and an equal number of
spiral galaxy images were randomly selected from the

original spiral training set. These images were divided
into 70% training and 30% testing subsets as before.
The model converged during training, and the images
originally labeled as spirals were further classified into
true spirals and ghosts. This process was repeated sev-
eral times by selecting additional training images from
those labeled as “ghosts” until the size of the training set
reached 4,000 images. Testing the neural network shows
that the network identifies “ghosts” with accuracy very
close to 100%, and almost no false positives. Figure 6
shows the confusion and matrix and ROC curve when
testing 1,200 images of spiral galaxies and ghosts. The
final iteration of this classifier identified a total of 63,854
images as “ghosts” (~ 7.8%), removing them from the
set of spiral galaxies.

Predicted label
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Figure 6. Confusion matrix and ROC curve of the classifi-
cation of the 1,200 ghosts and spiral galaxies.

4. RESULTS

The application of the methods described in Section 3
to the Pan-STARRS images described in Section 2 pro-
vided a catalog of 1,662,190 galaxies. The catalog is
accessible through a simple CSV file that can be down-
loaded at https://figshare.com/articles/PanSTARRS_
DR1_Broad_Morphology_Catalog/12081144. Each row
in the catalog is a galaxy, and includes the Pan-STARRS
object ID of the galaxy, its right ascension, declination,
and the probability of the galaxy to be spiral or ellip-
tical as estimated by the SoftMax layer of the CNN as
described in Section 3. Figure 7 shows the number of
galaxies available after applying a threshold to the out-
put of the SoftMax layer of the model.

The catalog includes 904,550 galaxies identified as el-
liptical and 757,640 identified as spiral. It should be
noted that the annotation of a galaxy as an elliptical
galaxy means that no spiral features were identified.
However, the ability of an algorithm or a person to iden-
tify spiral features largely depends on the ability of the
optics to provide a detailed image. Therefore, the iden-
tification of a galaxy as elliptical does not necessarily
guarantee that the galaxy indeed does not have spiral
features, but that the optics cannot identify such fea-
tures (Dojesak and Shamir 2014). For instance, Table 2
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Figure 7. Number of spiral and elliptical galaxies remain-
ing when keeping only those at or above a certain model
confidence.

shows examples of galaxies imaged by Pan-STARRS and
SDSS, and the same galaxies imaged by Hubble Space
Telescope (HST). As the table shows, these galaxies do
not have clear visible spiral arms in the Earth-based
telescopes, while the arms are seen clearly in the HST
images.

4.1. Comparison to an existing SDSS catalog

In the absence of a large manually annotated galaxy
morphology catalog of Pan-STARRS galaxies, the evalu-
ation of the consistency of the annotations was done us-
ing annotations of SDSS galaxies that were also imaged
by Pan-STARRS. The largest catalog of broad morphol-
ogy of SDSS galaxies is (Kuminski and Shamir 2016),
with annotation of ~ 3 -10° galaxies. Although SDSS
is a different sky survey, the footprint of SDSS overlaps
with the footprint of Pan-STARRS. Since the (Kumin-
ski and Shamir 2016) catalog is large, it is expected that
some galaxies in (Kuminski and Shamir 2016) will also
be included in the catalog of Pan-STARRS galaxies de-
scribed in this paper.

To evaluate the catalog, the annotations were com-
pared to the annotations of SDSS galaxies in (Kumin-
ski and Shamir 2016) with high degree of confidence of
the annotations. Since the images of (Kuminski and
Shamir 2016) are collected and processed by the SDSS
pipeline, their object identifiers naturally do not match
the identifiers of Pan-STARRS objects. Therefore, the
objects were matched by their coordinates, with toler-
ance of 0.0001° to account for subtle differences in mea-
surements between the two telescopes. This produced
13,186 total matches with 1,961 having 90% or higher
confidence in the (Kuminski and Shamir 2016) catalog.
Figure 8 shows the degree of agreement between the
annotations of the galaxies in the catalog and the anno-
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Figure 8. The proportion of predicted labels that, when
restricted to a minimum confidence threshold, agree with
the annotations in (Kuminski and Shamir 2016). For ex-
ample, restricting the catalog to labels with 90% confidence
or higher will have approximately 98% agreement with the
annotations in (Kuminski and Shamir 2016)

tations of the galaxies in (Kuminski and Shamir 2016)
with high confidence level.

When comparing the accuracy of the catalog to the
accuracy of (Kuminski and Shamir 2016), the algorithm
was more accurate in identifying spiral galaxies, while
the algorithm used in this catalog was more accurate
in the identification of elliptical galaxies. The algorithm
used in (Kuminski and Shamir 2016) is a “shallow learn-
ing” algorithm (Shamir et al. 2008), which is a different
paradigm of machine learning compared to the deep con-
volutional neural network used here. Shallow learning
features such as textures and fractals might better reflect
spiral arms, and therefore increase the ability of the al-
gorithm to detect spiral galaxies. Elliptical galaxies are
more consistent in shape than spiral galaxies, which can
increase the performance of deep convolutional neural
networks that their accuracy depend on the consistency
of the images.

Figure 9 shows galaxies that were classified as ellipti-
cal galaxies by the (Kuminski and Shamir 2016) catalog,
but as spiral in this catalog, and by visual inspection
seem spiral galaxies. Figure 10 shows galaxies classified
in (Kuminski and Shamir 2016) as spiral but in this cata-
log as elliptical. Careful manual inspection of the images
show that the galaxies in Figure 9 are spiral galaxies,
but in many of the cases the arms are dim. It is there-
fore possible that the shallow learning algorithm used in
(Kuminski and Shamir 2016) failed to detect these spiral
galaxies due to the weak presence of the spiral arms.

Figure 10 shows that the galaxies classified as elliptical
do not have clear spiral arms. However, given that the
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Table 2. Galaxies imaged by Pan-STARRS, SDSS, and HST. While the Pan-STARRS and SDSS images do not show clear
spiral arms of the galaxies, HST shows that these galaxies are clearly spiral, and the arms can be identified.

Coordinates

(150.165°,1.588°)

(150.329°,1.603°)

(149.951°,1.966°)

Pan-STARRS

SDSS HST

resolution of Pan-STARRS is limited, it is possible that
these galaxies are spiral, as shown in Figure 2, where
spiral arms not visible in Pan-STARRS become clearly
visible using a space-based instrument with higher res-
olution.

Figures 11 and 12 show the same galaxies in Figures 9
and 10 imaged by SDSS, and classified as elliptical in
(Kuminski and Shamir 2016). Figure 11 shows that
some of the galaxies are ring galaxies or interacting sys-
tems, while some of them are clear spiral galaxies that
were misclassified by the algorithm. Figure 12 shows
galaxies classified as spiral in the (Kuminski and Shamir
2016) catalog.

The comparison between the shallow learning and
deep neural network shows that while the deep neu-
ral network leans towards elliptical galaxies, the shal-
low learning algorithm is more sensitive to spiral galax-
ies. The shallow learning algorithm used in (Kuminski
and Shamir 2016) is described in detail in (Orlov et al.
2008; Shamir et al. 2008, 2010). In summary, it com-
puted 2883 numerical image content descriptors from
each galaxy image. These image features include edges,
textures, fractals, polynomial decomposition, statistical
distribution of pixel intensities, and more to provide a
comprehensive numerical representation of the image.
These features are filtered for the most informative fea-
tures, weighted for their informativeness, and then clas-
sified using an instance-based classifier. Instance-based

- . - L]

108973547262790600 B 111621492397972976 @ 113521440796347839 § 115072104542917058

L] - . .

115801421993122524 § 116410115095899556 @ 119561256411213307 § 122942244403598245

L - .

7658088806 W 129290161837593835 J 130683423642889346

- - 3 .

134761192629282362 358503651485 § 139092225100215242 143102530617357273

143861317264691579 W 144861796066810948 § 148493592557269960 W 156481574004773021

Figure 9. Galaxies imaged by Pan-STARRS that were clas-
sified incorrectly as elliptical in (Kuminski and Shamir 2016)
and as spiral in this catalog.
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Figure 10. Galaxies imaged by Pan-STARRS that were
classified as spiral in (Kuminski and Shamir 2016) but as
elliptical in this catalog.

Figure 11. Galaxies imaged by SDSS and were classified
incorrectly as elliptical in (Kuminski and Shamir 2016).

Figure 12. Galaxies imaged by SDSS and were classified
as spiral in (Kuminski and Shamir 2016) but as elliptical in
this catalog.

classifiers have the advantage of handling effectively rare
instances, imbalanced classes, and variations inside the
classes (Zhang et al. 2017; Li and Zhang 2011; Mullick
et al. 2018). Since the variability in the class of spi-
ral galaxies is higher than the variability in the class
elliptical galaxies, it is possible that the instance-based
classifier used in (Kuminski and Shamir 2016) can be
more accurate in the identification of spiral galaxies.
Experiments done by Walmsley et al. (2019) compared
the accuracy of deep convolutional neural networks to
the shallow learning algorithm used in (Kuminski and
Shamir 2016) for the purpose of automatic morphologi-
cal classification of galaxies. The results showed that the
CNN provided better accuracy compared to the older
shallow learning algorithm, especially in cases of faint
tidal features. That can explain some of the missclassi-
fied galaxies shown in Figure 9, in which the arms are
visible, but are relatively dim. However, the experi-
ments also showed that the shallow learning algorithm
used in (Kuminski and Shamir 2016) was better able
to handle the more complex cases, in which the CNNs
struggled to make clear classification (Walmsley et al.
2019). Since a collection of spiral galaxies is more likely
to contain more rare objects, and since the variability
among spiral galaxies is higher, an instance-based classi-
fier such as the one used in (Kuminski and Shamir 2016)
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can be more effective in the identification of spiral galax-
ies compared to elliptical galaxies.

Table 3. Examples of images that were misclassified by the
model.

Table 4. Examples of images that were classified correctly
by the model.

Misclassified | Confidence Misclassified | Confidence
as spiral as Elliptical
0.5181 0.6017
0.5614 0.6093
0.5940 0.6455
0.7677 0.7493
0.9114 0.7647

Classified Confidence Classified Confidence
as spiral Elliptical
- 0.9999 0.9999
- 0.9988 0.8799
- 0.9718 0.7568
- 0.7446 0.6780
- 0.5163 0.5637

5. CONCLUSIONS

While digital sky surveys are capable of collecting
and generating extremely large databases, one of the
obstacles in fully utilizing these data is the automatic
analysis. Image data, and in particular images of ex-
tended objects, are more challenging to analyze due
to the complex nature of the image data. Here we
created a catalog of Pan-STARRS galaxies classified
by their broad morphology into elliptical and spiral
galaxies. The likelihood of the annotations provided
by the SoftMax layer allows the selection of the ob-
jects such that a more consistent catalog by sacrificing
some of the galaxies that their classification is less cer-
tain. The catalog is available in the form of a CSV
file at https://figshare.com/articles/PanSTARRS_DR1_

Broad_Morphology_Catalog/12081144. The classifica-
tion accuracy is favorably comparable to the ~89% clas-
sification accuracy achieved when using the photomet-
ric features provided by the Pan-STARRS photometric
pipeline (Baldeschi et al. 2020).

As space-based missions such as Euclid and ground-
based missions such as the Rubin Observatory are ex-
pected to generate high volumes of astronomical image
data, computational methods that can label and orga-
nize real-world astronomical images are expected to be-
come increasingly pivotal in astronomy research. Such
methods can provide usable data products, and are ex-
pected to become important for the purpose of fully
utilizing the power of these missions. While convolu-
tional neural networks have demonstrated their ability
to classify galaxies by their morphology, a practical solu-
tion needs to handle noise, bad data, and inconsistencies
that are typical to large real-world datasets. As shown
in this paper, the deep neural network is not sufficient
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to provide clean data products. Instead, a combination
of several algorithms that complete a full data analysis
pipeline was needed. With the increasing robustness of
such systems, it is also expected that protocols that com-
bine multiple neural networks and filtering algorithms
will be used to provide detailed morphological informa-
tion. That information will become part of future data
releases of digital sky survey.

The processing was done by first downloading the
galaxy images to another server, and the analysis of the
data was done on the remote server. The reason for us-
ing that practice is because the data analysis is based
on solutions designed specifically for the task of galaxy
annotation, and not on “standard” tasks provided by
common services such as CasJobs (Li and Thakar 2008).
Although the smaller JPG images were used, download-
ing all images still required a substantial amount of time.
Using the more informative FITS images would have in-
creased the required time to download the data by an
order of magnitude, and analyzing data of much larger
digital sky surveys such as the Rubin Observatory will
become impractical using this practice. Therefore, fu-
ture surveys might provide users not merely with cer-
tain specific pre-designed tasks, but might also allow
processing time for user-designed programs to access the
raw data without the need to download it to third-party
servers.
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