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We study quantum field theories with sextic interactions in 3 − ϵ dimensions, where the scalar fields ϕab

form irreducible representations under the OðNÞ2 or OðNÞ global symmetry group. We calculate the beta
functions up to four-loop order and find the renormalization group (RG) fixed points. In an example of
large N equivalence, the parent OðNÞ2 theory and its antisymmetric projection exhibit identical large N
beta functions that possess real fixed points. However, for projection to the symmetric traceless
representation of OðNÞ, the large N equivalence is violated by the appearance of an additional
double-trace operator not inherited from the parent theory. Among the large N fixed points of this
daughter theory we find complex conformal field theories. The symmetric traceless OðNÞ model also
exhibits very interesting phenomena when it is analytically continued to small noninteger values ofN. Here
we find unconventional fixed points, which we call “spooky.” They are located at real values of the
coupling constants gi, but two eigenvalues of the Jacobian matrix ∂βi=∂gj are complex. When these
complex conjugate eigenvalues cross the imaginary axis, a Hopf bifurcation occurs, giving rise to RG limit
cycles. This crossing occurs for Ncrit ≈ 4.475, and for a small range of N above this value we find RG flows
that lead to limit cycles.
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I. INTRODUCTION AND SUMMARY

The renormalization group (RG) is among the deepest
ideas in modern theoretical physics. There is a variety of
possible RG behaviors, and limit cycles are among the most
exotic andmysterious. Their possibilitywasmentioned in the
classic review [1] in the context of connections between RG
and dynamical systems (for a recent discussion of these
connections, see [2]).However, there has been relatively little
research on RG limit cycles. They have appeared in quantum
mechanical systems [3–6], in particular, in a description of
the Efimov bound states [7] (for a review, see [8]). The status
of RG limit cycles in quantum field theories (QFT) is less
clear. They have been searched for in unitary four-dimen-
sional QFT [9], but turned out to be impossible [10,11],
essentially due to the constraints imposed by the a theorem
[12–14].1
In this paper we report some progress on RG limit cycles

in the context of perturbative QFT. We demonstrate their

existence in a simple OðNÞ symmetric model of scalar
fields with sextic interactions in 3 − ϵ dimensions. As
expected, the limit cycles appear when the theory is
continued to a range of parameters where it is nonunitary.
The scalar fields form a symmetric traceless N × N matrix,
and imposition of the OðNÞ symmetry restricts the number
of sextic operators to four. When we consider an analytic
continuation of this model to noninteger real values of
N (a mathematical framework for such a continuation
was presented in [17]), we find a surprise. In the range
4.465 < N < 4.534, as well as in three other small ranges
of N, there are special RG fixed points which we call
“spooky.” These fixed points are located at real values of
the sextic couplings gi, but only two of the eigenvalues of
the Jacobian matrix ∂βi=∂gj are real; the other two are
complex conjugates of each other. This means that a pair
of nearly marginal operators at the spooky fixed points
has complex scaling dimensions.2 At the critical value
Ncrit ≈ 4.475, the two complex eigenvalues of the Jacobian
become purely imaginary. As a result, for N slightly bigger
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1See, however, Refs. [15,16], where it is argued that QFTs may
exhibit multivalued c or a functions that do not rule out limit
cycles.

2These special complex dimensions appear in addition to the
complex dimensions of certain evanescent operators that are
typically present in ϵ expansions [18]. The latter dimensions have
large real parts and are easily distinguished from our nearly
marginal operators. Some of the operators with complex dimen-
sions we observe resemble evanescent operators in that they
interpolate to vanishing operators at integer values of N; this is
discussed in Sec. IV.
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than Ncrit, where the real part of the complex eigenvalues
becomes negative, there are RG flows that lead to limit
cycles. In the theory of dynamical systems this phenomenon
is called a Hopf (or Poincarè-Andronov-Hopf) bifurcation
[19]. The possibility of RG limit cycles appearing via a Hopf
bifurcation was generally raised in [2], but no specific
examples were provided. As we demonstrate in Sec. IV,
the symmetric traceless OðNÞ model in 3 − ϵ dimensions
provides a simple perturbative example of this phenomenon.
We show that there is no conflict between the limit cycles

we have found and the F theorem [20–27]. This is because
the analytic continuation to noninteger values of N below 5
violates the unitarity of the symmetric traceless OðNÞ
model, so that the F function is not monotonic. We feel
that the simple perturbative realization of limit cycles we
have found is interesting, and we hope that there are
analogous phenomena in other models and dimensions.
Our paper also sheds new light on the large N behavior

of the matrix models in 3 − ϵ dimensions. Among the
fascinating features of various large N limits (for a recent
brief overview, see [28]) are the “large N equivalences,”
which relate models that are certainly different at finite N.
An incomplete list of the conjectured large N equivalences
includes [29–36]. Some of them appear to be valid, even
nonperturbatively, while others are known to break down
dynamically. For example, in the nonsupersymmetric
orbifolds of the N ¼ 4 supersymmetric Yang-Mills theory
[30–33,37], there are perturbative instabilities in the large
N limit due to the beta functions for certain double-trace
couplings having no real zeros [38–41].
In Sec. III we study the RG flows of three scalar theories

in 3 − ϵ dimensions with sextic interactions: the parent
OðNÞ2 symmetric model of N × N matrices ϕab, and its
two daughter theories which have OðNÞ symmetry. For
each model, we list all sextic operators marginal in three
dimensions, compute the associated beta functions up to
four loops, and determine the fixed points. One of our
motivations for this study is to investigate the large N
orbifold equivalence and its violation in the simple context
of purely scalar theories. We observe evidence of large N
equivalence between the parent OðNÞ2 theory and the
daughter OðNÞ theory of antisymmetric matrices: both
theories have three invariant operators, and the large N
beta functions are identical. However, the large N equiv-
alence of the parent theory with the daughter OðNÞ
theory of symmetric traceless matrices is violated by the

appearance of an additional invariant operator in the latter.
The large N fixed points in this theory occur at a complex
value of the coefficient of this operator. As a result, instead
of the convention conformal field theory (CFT) in the
parent theory, we find a “complex CFT” [42,43] (see also
[44]) in the daughter theory. As discussed above, analytical
continuation of this model to small noninteger N leads to
the appearance of the spooky fixed points and limit cycles.

II. THE BETA FUNCTION MASTER FORMULA

In a general sextic scalar theory with potential

VðϕÞ ¼ λiklmnp

6!
ϕiϕkϕlϕmϕnϕp ð1Þ

the beta function receives a two-loop contribution from the
Feynman diagram

In [26,27,45] one can find explicit formulas for the
corresponding two-loop beta function in d ¼ 3 − ϵ dimen-
sions. Equation (6.1) of the latter reference reads

βVðϕÞ ¼ −2ϵVðϕÞ þ 1

3ð8πÞ2 VijkðϕÞVijkðϕÞ; ð2Þ

where Vi���jðϕÞ≡ ∂
∂ϕi � � � ∂

∂ϕj VðϕÞ. By taking the indices to
stand for doublets of subindices, this formula can be used to
compute the beta functions of matrix tensor models. In order
to apply the formula to models of symmetric or antisym-
metric matrices, however, we need to slightly modify it.
Letting i and j stand for doublets of indices, we define the
object Cij via the momentum space propagator:

hϕ̃iðkÞϕ̃jð−kÞi0 ¼
Cij

k2
: ð3Þ

With this definition in hand, Eq. (2) straightforwardly
generalizes to

βVðϕÞ ¼ −2ϵVðϕÞ þ Cii0Cjj0Ckk0

3ð8πÞ2 VijkðϕÞVi0j0k0 ðϕÞ: ð4Þ

At four-loops the following four kinds of Feynman diagrams
contribute to the beta function:
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The resulting four-loop beta function can be read off from
Eq. (6.2) of [45],

βð4ÞV ¼ 1

ð8πÞ4
�
1

6
VijViklmnVjklmn −

4

3
VijkVilmnVjklmn

−
π2

12
VijklVklmnþ

�
þ ϕiγ

ϕ
ijVj; ð5Þ

where the anomalous dimension γϕij is given by

γϕij ¼
1

90ð8πÞ4 λiklmnpλjklmnp: ð6Þ

The above two equations also admit of straightforward
generalizations by contracting indices through the Cij

matrix.
Before proceeding to matrix models, we can review the

beta function obtained by the above formulas in the case of
a sextic OðMÞ vector model described by the action

S ¼
Z

d3−ϵx

�
1

2
ð∂μϕ

jÞ2 þ g
6!
ðϕiϕiÞ3

�
; ð7Þ

where the field ϕi is anM-component vector. The four-loop
beta function of this vector model is given by [45,46]

βg ¼ −2ϵgþ 192ð3M þ 22Þ
6!ð8πÞ2 g2

−
1

ð6!Þ2ð8πÞ4 ð9216ð53M
2 þ 858M þ 3304Þ

þ 1152π2ðM3 þ 34M2 þ 620M þ 2720ÞÞg3: ð8Þ

This equation provides a means of checking the beta
functions of the matrix models, which reduce to the vector
model when all couplings are set to zero except for the
coupling, denoted g3 below, associated with the triple trace
operator.

III. SEXTIC MATRIX MODELS

We now turn to matrix models in d ¼ 3 − ϵ dimensions.
The parent theory we consider has the Lagrangian given by

S ¼
Z

d3−ϵx

�
1

2
ð∂μϕ

abÞ2 þ 1

6!
ðg1O1ðxÞ

þ g2O2ðxÞ þ g3O3ðxÞÞ
�
; ð9Þ

where the dynamical degrees of freedom are scalar matrices
ϕab which transform under the action of a global OðNÞ ×
OðNÞ symmetry. The three operators in the potential are

O1 ¼ ϕa1b1ϕa2b1ϕa2b2ϕa3b2ϕa3b3ϕa1b3 ¼ tr½ϕϕT �3;
O2 ¼ ϕabϕabϕa1b1ϕa2b1ϕa2b2ϕa1b2 ¼ tr½ϕϕT �tr½ϕϕT �2;
O3 ¼ ðϕabϕabÞ3 ¼ ðtr½ϕϕT �Þ3: ð10Þ

They make up all sextic operators that are invariant under
the global symmetry. Later we will also study projections
of the parent theory that have only a globalOðNÞ symmetry
that rotates first and second indices at the same time. In
such models it becomes possible to construct singlets via
contractions between first and second indices, and therefore
there is an additional sextic scalar:

O4 ¼ ðϕa1a2ϕa2a3ϕa3a1Þ2 ¼ ðtr½ϕ3�Þ2: ð11Þ

The sextic operators are depicted diagrammatically in
Fig. 1. We could also introduce an operator containing
tr½ϕ�, but since the orbifolds we will study are models of
symmetric traceless and antisymmetric matrices, the trace
is identically zero. In the antisymmetric model, the operator
O4 vanishes, but it is nonvanishing in the symmetric
orbifold, and so in this case we will introduce this addi-
tional marginal operator to the Lagrangian and take the
potential to be given by

VðxÞ ¼ 1

6!
ðg1O1ðxÞ þ g2O2ðxÞ þ g3O3ðxÞ þ g4O4ðxÞÞ:

ð12Þ

To study the largeN behavior of these matrix models, we
introduce rescaled coupling constants λ1, λ2, λ3, λ4. To
simplify expressions, it will be convenient to also rescale
the coupling constants by a numerical prefactor. We
therefore define the rescaled couplings by

FIG. 1. The sextic operators in matrix models. The double trace operator O4 exists only in the theory of symmetric matrices.
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g1 ¼ 6!ð8πÞ2 λ1
N2

; g2 ¼ 6!ð8πÞ2 λ2
N3

;

g3 ¼ 6!ð8πÞ2 λ3
N4

; g4 ¼ 6!ð8πÞ2 λ4
N3

: ð13Þ

To justify these powers of N, let us perform a scaling
ϕab →

ffiffiffiffi
N

p
ϕab. Then the coefficient of each q-trace term in

the action scales as N2−q. This is the standard scaling in the
’t Hooft limit, which ensures that each term in the action is
of order N2.

A. The OðNÞ2 parent theory

For the matrix model parent theory, the momentum space
propagator is given by

hϕ̃abðkÞϕ̃a0b0 ð−kÞi0 ¼
δaa

0
δbb

0

k2
: ð14Þ

Computing the four-loop beta functions and taking the
large N limit with scalings (13), we find that, up to Oð1NÞ
corrections,

βλ1 ¼ − 2λ1ϵþ 72λ21 − 288ð17þ π2Þλ31;
βλ2 ¼ − 2λ2ϵþ 432λ21 þ 96λ1λ2 − 864ð90þ 7π2Þλ31

− 864ð10þ π2Þλ21λ2;
βλ3 ¼ − 2λ3ϵþ 168λ21 þ 192λ1λ2 þ 32λ22

− 432ð210þ 23π2Þλ31 − 1152ð39þ 4π2Þλ21λ2
þ 4608λ21λ3 − 768ð6þ π2Þλ1λ22 −

128

3
π2λ32: ð15Þ

These beta functions have two nontrivial fixed points, which
are both real.But one of these fixedpoints,which comes from
balancing the two-loop and four-loop contributions, is not
perturbatively reliable in an ϵ expansion around ϵ ¼ 0
because all the couplings at this fixed point contain terms
of order Oðϵ0Þ. The other fixed point is given by

λ1 ¼
ϵ

36
þ 17þ π2

324
ϵ2; λ2 ¼ −

ϵ

2
−
22þ 7π2

36
ϵ2;

λ3 ¼
295

108
ϵþ 4714þ 6301π2

1944
ϵ2: ð16Þ

At this fixed point the matrix
∂βλi∂λj has eigenvalues

�
−2ϵþ 32

9
ϵ2;

2ϵ

3
−
44þ 10π2

27
ϵ2; 2ϵ −

34þ 2π2

9
ϵ2
�
:

ð17Þ

Each eigenvalue mi corresponds to a nearly marginal
operator with scaling dimension

Δi ¼ dþmi ¼ 3 − ϵþmi: ð18Þ

Thus, negative eigenvalues correspond to slightly relevant
operators, which cause an instability of the fixed point.
The only unstable direction, corresponding to eigenvalue
−2ϵþ 32

9
ϵ2, is

�
245

3
þ 4225π2 − 4188

36
ϵ

�
λ1 þ

�
10þ 67π2 − 28

6

�
λ2 þ λ3:

ð19Þ

The above comments relate to the OðNÞ2 matrix
model at N ¼ ∞. We can also study the model at finite
N. One interesting quantity is Nmin, the smallest value
of N at which the fixed point that interpolates to the
large N solution (16) appears as a solution to the beta
functions. This fixed point emerges along with another
fixed point, and right at Nmin these solutions to the beta
functions are identical, so that the matrix ð∂βi∂gjÞ is

degenerate. So we arrive at the following system of
equations:

βiðλi; NÞ ¼ 0; det

�∂βi
∂λj

�
ðλi; NÞ ¼ 0: ð20Þ

This system of equations can easily be solved numeri-
cally to zeroth order in ϵ, and with a zeroth order
solution in hand the first order solution can be obtained
by linearizing the system of equations. We find that
Nmin ¼ 23.2541 − 577.350ϵ, which nicely fits the results
of a numerical study where we compute Nmin at
different values of ϵ:

ϵ 0 0.001 0.002 0.003 0.004 0.005

Nmin 23.255 22.682 22.124 21.576 21.039 20.511

These values result in a numerical fit NminðϵÞ ¼
23.255 − 553.7ϵ, which coincides with the result stated
above.
If we take N to be finite and ϵ ≪ 1

N2, we can provide
some more details about the number and stability of fixed
points for different values of N. For N > 23.2541 −
577.350ϵ there are three nontrivial, real, perturbatively
accessible fixed points, which in the large N limit, to
leading order in ϵ, scale with N as
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g1 ¼ g2 ¼ 0; g3 ¼
6!ð8πÞ2
288

ϵ

N2
;

g1 ¼
6!ð8πÞ2

36

ϵ

N2
; g2 ¼ −

10

36
· 6!ð8πÞ2 ϵ

N3
; g3 ¼

6!ð8πÞ2
288

ϵ

N2
;

g1 ¼
6!ð8πÞ2

36

ϵ

N2
; g2 ¼ −

1

2
· 6!ð8πÞ2 ϵ

N3
; g3 ¼

295

108
· 6!ð8πÞ2 ϵ

N4
: ð21Þ

The first of these three fixed points is identical to the vector
model fixed point; that is to say, the symmetry is enhanced
from OðNÞ2 to OðN2Þ. This fixed point extends to all N in
the small ϵ regime we are considering:

g1 ¼ g2 ¼ 0; g3 ¼
6!ð8πÞ2

96ð22þ 3N2Þ ϵ: ð22Þ

The third fixed point in (21) extends to the regime where
N2 > 1

ϵ and becomes the large N solution discussed above.
This fixed point merges with the second fixed point in (21)
at a critical point situated at NðϵÞ ¼ 23.2541 − 577.350ϵ
And so at intermediate values of N, only the vector
model fixed point exists. But as we keep decreasing N
we encounter another critical point at NðϵÞ ¼ 5.01072þ
14.4537ϵ, from which two new solutions to the vanishing
beta functions emerge. As N further decreases past the
value NðϵÞ ¼ 2.75605 − 0.0161858ϵ, another pair of fixed

points appears, but then at NðϵÞ ¼ 2.72717 − 0.757475ϵ
two of the fixed points merge and become complex. Then at
NðϵÞ ¼ 2.33265 − 0.316279ϵ two new fixed points appear,
but these disappear again at NðϵÞ ¼ 0.827007þ 8.10374ϵ,
so that for N below this value there are a total of three real
nontrivial fixed points. The behavior of the various fixed
points as a function of N is summarized in more detail in
Figs. 2 and 3.

B. The OðNÞ model of antisymmetric matrices

For the theory of antisymmetric matrices ϕT ¼ −ϕ the
momentum space propagator is given by

hϕ̃abðkÞϕ̃a0b0 ð−kÞi0 ¼
1

2k2
ðδaa0δbb0 − δab

0
δba

0 Þ: ð23Þ

Performing the large N expansion using the scalings (13)
we get the large N beta functions

βλ1 ¼ − 2λ1ϵþ 18λ21 − 18ð17þ π2Þλ31;
βλ2 ¼ − 2λ2ϵþ 108λ21 þ 24λ1λ2 − 54ð90þ 7π2Þλ31 − 54ð10þ π2Þλ21λ2;
βλ3 ¼ − 2λ3ϵþ 42λ21 þ 48λ1λ2 þ 8λ22 − 27ð210þ 23π2Þλ31 − 72ð39þ 4π2Þλ21λ2

þ 288λ21λ3 − 48ð6þ π2Þλ1λ22 −
8

3
π2λ32: ð24Þ

These beta functions are equivalent to (15) up to a redefinition of the rescaled couplings by a factor of 4, which is
compatible with this daughter theory being equivalent in the large N limit to the parent theory studied in the previous
section.
We can also study the behavior of this model for finite N and ϵ ≪ 1. For N > 35.3546 − 673.428ϵ there are three (real,

perturbatively accessible) fixed points, which in the large N limit (keeping ϵ ≪ 1
N2) to leading order in the ϵ scale with N as

g1 ¼ g2 ¼ 0; g3 ¼
6!ð8πÞ2
144

ϵ

N2
;

g1 ¼
6!ð8πÞ2

9

ϵ

N2
; g2 ¼ −

10

9
· 6!ð8πÞ2 ϵ

N3
; g3 ¼

6!ð8πÞ2
144

ϵ

N2
;

g1 ¼
6!ð8πÞ2

9

ϵ

N2
; g2 ¼ −2 · 6!ð8πÞ2 ϵ

N3
; g3 ¼

295

27
· 6!ð8πÞ2 ϵ

N4
: ð25Þ

The first of these three fixed points is the vector model fixed point, and it is present more generally in the small ϵ regime we
are considering:
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g1 ¼ g2 ¼ 0; g3 ¼
6!ð8πÞ2

48ð44 − 3N þ 3N2Þ ϵ: ð26Þ

The third fixed point in (25) extends to the regime where
N2 > 1

ϵ and becomes the large N solution discussed above.
This fixed point merges with the second fixed point in (25) at

a critical point situated atNðϵÞ ¼ 35.3546 − 673.428ϵ. And
so at intermediate values of N, only the vector model fixed
point exists. But as we keep decreasing N we encounter
another critical point at NðϵÞ ¼ 6.02669þ 7.37013ϵ,
from which two new solutions to the vanishing beta func-
tions emerge. As N further decreases past the value

FIG. 2. The real perturbative fixed points of the OðNÞ2 matrix model parent theory, the intersection point (marked in brown), and the
critical points at which they merge and disappear (marked in black) as a function of N for small ϵ. Fixed points that are IR unstable in all
three directions are drawn in red, those unstable in two directions are drawn in violet, those unstable in one direction are drawn in blue,
and those that are stable in all three directions are drawn in green. The four-loop corrections to the third point on the list, where two fixed
lines intersect, are undetermined for any Oðϵ2Þ value of λ2.
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NðϵÞ ¼ 5.70601þ 0.540694ϵ, another pair of fixed points
appears, andpastNðϵÞ ¼ 5.075310− 0.0278896ϵ yet another
pair of fixed points appears (in this range of N, all seven
nontrivial solutions to the vanishing beta functions are real).
But already below NðϵÞ ¼ 5.03275 − 0.586724ϵ, two of the
fixed points become complex, and below NðϵÞ ¼ 3.08122þ
8.26176ϵ twomore fixedpointsbecomecomplex, so that forN
below this value there are a total of three real nontrivial fixed
points. The behavior of thevarious fixedpoints as a functionof
N is summarized in more detail in Figs. 4 and 5.

C. Symmetric traceless matrices and violation
of large N equivalence

There is a projection of the parent theory of general real
matrices ϕab which restricts them to symmetric matrices
ϕ ¼ ϕT . In order to have an irreducible representation of
OðNÞ we should also require them to be traceless tr ϕ ¼ 0.
Then the propagator is given by

hϕ̃abðkÞϕ̃a0b0 ð−kÞi0¼
1

2k2

�
δaa

0
δbb

0 þδab
0
δba

0 −
2

N
δabδa

0b0
�
:

ð27Þ

The operators O1;2;3;4 are actually independent for N > 5,
while forN ¼ 2, 3, 4, 5 there are linear relationsbetween them:

(i) N ¼ 2∶O4 ¼ 0, O3 ¼ 2O2 ¼ 4O1,
(ii) N ¼ 3∶O3 ¼ 2O2, 2O4 ¼ 3O3 þ 6O1,
(iii) N ¼ 4; 5∶18O2 þ 8O4 ¼ 24O1 þ 3O3.

Wewill see that theexistenceof these relations for small integer
values of N has interesting implications for the analytic
continuation of the theory from N > 5 to N < 5.
Let us first discuss the large N theory. For the rescaled

couplings λ1, λ2, and λ3, the large N beta functions are the
same as (24) for the antisymmetric model. But now there is
an additional coupling constant, whose large N beta
function is given by

βλ4 ¼ −2ϵλ4 þ 72λ21 þ 36λ1λ4 þ 6λ24 − 738λ21λ4

− 18ð180þ 11π2Þλ31: ð28Þ

Consequently, the RG flow now has five nontrivial fixed
points, two of which are real fixed points but with coupling
constants containing Oðϵ0Þ terms. Another pair of fixed
points is given by

λ1 ¼
ϵ

9
þ 17þ π2

81
ϵ2; λ2 ¼ −2ϵ −

22þ 7π2

9
ϵ2; λ3 ¼

295

27
ϵþ 4714þ 6301π2

486
ϵ2;

λ4 ¼
−3� i

ffiffiffiffiffi
39

p

18
ϵþ 273 − 78π2 � i

ffiffiffiffiffi
39

p ð67þ 12π2Þ
2106

ϵ2: ð29Þ

200 400 600 800
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−−4
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− 1000 − 500
g2

4

2

2

NN

N

100 200 300 400 500
g3

−4

−2

0

2

4

−

−

FIG. 3. The locations of the real perturbative fixed points of theOðNÞ2 matrix model in the space of coupling constants as a function of
N for small ϵ. The colors indicate the number of stable directions associated with a given fixed point as in Fig. 2.
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The first three coupling constants assume the same value as for the antisymmetric model, a rescaled version of (16) of the
parent theory, but the additional coupling constant assumes a complex value, thus breaking large N equivalence and
suggesting that the fixed point is unstable and described by a complex CFT [42,43].

We find that the eigenvalues of
∂βλi∂λj at this complex fixed point are

�
−2ϵþ 32

9
ϵ2;∓ 2i

ffiffiffiffiffi
13

3

r
ϵ� 2i

67þ 12π2

9
ffiffiffiffiffi
39

p ϵ2;
2

3
ϵ − 2

22þ 5π2

27
ϵ2; 2ϵ − 2

17þ π2

9
ϵ2
�
; ð30Þ

FIG. 4. The real perturbative fixed points of the antisymmetric matrix model, their intersection point (marked in brown), and the
critical points at which they merge and disappear (marked in black) as a function of N for small ϵ. Fixed points that are IR unstable in all
three directions are drawn in red, those unstable in two directions are drawn in violet, those unstable in one direction are drawn in blue,
and those that are stable in all three directions are drawn in green.
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where the imaginary eigenvalue is associated with a
complex linear combination of λ1 and λ4. Thus, there is
actually a pair of complex large N fixed points: at one of
them there is an operator of complex dimension
dþ iA ¼ 3 − ϵþ iA, while at the other it has dimension

d − iA,3 where A ¼ 2
ffiffiffiffi
13
3

q
ϵ − 2 67þ12π2

9
ffiffiffiffi
39

p ϵ2. Thus, this pair of

complex fixed points satisfies the criteria to be identified as
complex CFTs [42,43]. In our large N theory, the scaling
dimensions d� iA correspond to the double-trace operator
O4, so that the single-trace operator trϕ3 should have
scaling dimension 1

2
ðd� iAÞ. Indeed, we find that its two-

loop anomalous dimension is, for large N,

γtrϕ3 ¼ 6ð3λ1 þ λ2Þ ¼ ϵ� i

ffiffiffiffiffi
13

3

r
ϵ: ð31Þ

Therefore,

Δtrϕ3 ¼ 3

�
d
2
− 1

�
þ γtrϕ3 ¼ 3 − ϵ

2
� i

ffiffiffiffiffi
13

3

r
ϵ ¼ d� iA

2
:

ð32Þ
Scaling dimensions of this form are ubiquitous in large N
complex CFTs [41,44,47,48]. In the dual anti–de Sitter

(AdS) description they correspond to fields violating the
Breitenlohner-Freedman stability bound.
Let us also note that the symmetric orbifold has a fixed

pointwhere only the twisted sector coupling is nonvanishing:

λ1;2;3 ¼ 0; λ4 ¼
ϵ

3
: ð33Þ

It could be connected to the fact that in the largeN limit of the
parent theory the O4 could not contribute to the beta
functions of the other operators and therefore we can safely
set λ1;2;3 ¼ 0 without setting λ4 ≠ 0.
We can also study the behavior of this model for finite N

and ϵ ≪ 1. For N > 13.1802 − 57.5808ϵ there are three
(real, perturbatively accessible) fixed points, which in the
largeN limit (keeping ϵ ≪ 1

N2) to leading order in ϵ scalewith
N as

0 ¼ g1 ¼ g2 ¼ g4; g3 ¼
6!ð8πÞ2
144N2

ϵ;

g1 ¼ 144
6!ð8πÞ2
N6

ϵ; g2 ¼ 66
6!ð8πÞ2
N5

ϵ;

g3 ¼
6!ð8πÞ2
144N2

ϵ g4 ¼
6!ð8πÞ2
3N3

ϵ;

g1 ¼ −144
6!ð8πÞ2
N6

ϵ; g2 ¼ 18
6!ð8πÞ2
N5

ϵ;

g3 ¼ −18
6!ð8πÞ2
N6

ϵ; g4 ¼
6!ð8πÞ2
3N3

ϵ: ð34Þ
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FIG. 5. The locations of the real perturbative fixed points of the antisymmetric matrix model in the space of coupling constants as a
function of N for small ϵ. The colors indicate the number of stable directions associated with a given fixed point as in Fig. 4.

3As N is reduced, the two complex conjugate fixed points
persist down to arbitrarily small N. For finite N, however, the
complex scaling dimensions are no longer of the form d� iA: the
real part deviates from d, which is consistent with the behavior of
general complex CFTs [42,43].
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FIG. 6. The perturbative real fixed points of the symmetric matrix model, the intersection points (marked in brown), and the critical
points at which they merge and disappear (marked in black) as a function of N for small ϵ. Fixed points that are IR unstable in all four
directions are drawn in red, those unstable in three directions are drawn in violet, those unstable in two directions are drawn in blue,
those unstable in one direction are drawn in cyan, and those that are stable in all four directions are drawn in green. The orange dotted
lines denote the segments of spooky fixed points, where two eigenvalues of ∂βi∂gj are complex, and at the orange vertex those eigenvalues

are purely imaginary.
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The first of these three fixed points is the vector model fixed
point, which is present generally N in the small ϵ regime:

0 ¼ g1 ¼ g2 ¼ g4; g3 ¼
6!ð8πÞ2

48ð38þ 3N þ 3N2Þ ϵ: ð35Þ

The third fixed point in (34) connects to the largeN solution
discussed above. This fixed point merges with the second
fixed point in (34) at a critical point situated at NðϵÞ ¼
13.1802 − 57.5808ϵ And so at intermediate values of N,
only the vector model fixed point exists. But as we keep
decreasing N we encounter another critical point at NðϵÞ ¼
5.41410þ 13.7204ϵ whence two new fixed points emerge.
As we continue to lower N, new fixed points appear and
disappear as summarized in detail in Figs. 6 and 7.

IV. SPOOKY FIXED POINTS
AND LIMIT CYCLES

As indicated in Fig. 6, in the OðNÞ symmetric traceless
model there exist four segments of real, but spooky, fixed
points as a function of N.4 For these fixed points the
Jacobian matrix ð∂βi∂gjÞ has, in addition to one negative and

one positive eigenvalue, a pair of complex conjugate
eigenvalues. Therefore, there are two complex scaling
dimensions (18) at these spooky fixed points, so that they
correspond to nonunitary CFTs. The eigenvectors

500 1000
g1

−10

−5

N

−2000 −1000 1000
g2

−10
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N

200 400 600 800 1000
g3

−10
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−1000 1000
g4

−10
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N

FIG. 7. The locations of the real perturbative fixed points of the symmetric matrix model in the space of coupling constants as a
function of N for small ϵ. The colors indicate the number of stable directions associated with a given fixed point as in Fig. 6, with orange
signifying that ∂βi∂gj has complex eigenvalues.

4If we allow negative N, there is a fifth segment of spooky
fixed points at N ∈ ð−3.148;−3.183Þ.
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corresponding to the complex eigenvalues have zero norm
(a derivation of this fact is given later in this section). Let us
note that, in the OðNÞ2 model and the OðNÞ model with an
antisymmetric matrix, there are no real fixed points with
complex eigenvalues. The symmetric traceless model
provides a simple setting where they occur. In this section
we take a close look at the spooky fixed points and show
that they lead to a Hopf bifurcation and RG limit cycles.
Of the four segments of spooky fixed points with

positive N, three, namely those that fall within the ranges
given by N ∈ ð1.094; 2.441Þ, N ∈ ð1.041; 1.175Þ, and
N ∈ ð0.160; 0.253Þ, share the property that the complex
eigenvalues never become purely imaginary. The number
of stable and unstable directions therefore remain the same
within these intervals. Something special happens, how-
ever, at the integer value N ¼ 2 that lies within the first
interval. Here the two operators with complex dimensions
are given by linear combinations of operatorsOi that vanish
by virtue of the linear relations between these operators at
N ¼ 2.5 As a result, for N ¼ 2 there are no nearly marginal
operators with complex dimensions, as expected.
The fourth segment of spooky fixed points stands out in

that it includes a fixed point with imaginary eigenvalues.
This fourth segment lies in the range N ∈ ðNlower; NupperÞ,
where, at the four-loop level,

Nupper ≈ 4.5339959143þ 1.54247ϵ;

Nlower ≈ 4.4654144982þ 0.693698ϵ: ð36Þ

As N approaches Nupper from above, ð∂βi∂gjÞ has one positive
and three negative eigenvalues, and two of the negative
eigenvalues converge on the same value. As N dips below
Nupper, the two erstwhile identical eigenvalues become
complex and form a pair of complex conjugate values.
As we continue to decrease N, the complex conjugate
eigenvalues traverse mirrored trajectories in the complex
plane until they meet at the same positive value for N equal
to Nlower. These trajectories are depicted in Fig. 8. For a
critical value N ¼ Ncrit with Nlower < N < Nupper, the
trajectories intersect the imaginary axis such that the two
eigenvalues are purely imaginary. At the two-loop order we
find that

Ncrit ≈ 4.47507431683; ð37Þ

and the fixed point is located at

g�1 ¼ 158.684ϵ; g�2 ¼ −211.383ϵ;

g�3 ¼ 138.686ϵ; g�4 ¼ −49.4564ϵ: ð38Þ

The Jacobian matrix evaluated at this fixed point is

�∂βi
∂gj

�

¼

0
BBB@

−1.65273 −1.58311 1.33984 −1.19641
1.0242 0.358518 −3.24194 1.21102

0.128059 0.749009 2.9199 −0.210872
−0.0618889 0.428409 −0.417582 −1.20064

1
CCCAϵ

ð39Þ

with eigenvalues f2;−1.57495;−0.153965i; 0.153965igϵ.
These quantities are subject to further perturbative correc-
tions in powers of ϵ, for example, after including the four-
loop corrections Ncrit ≈ 4.47507431683þ 3.12476ϵ. The
existence of a special spooky fixed point with imaginary
eigenvalues is robust under loop corrections that are sup-
pressed by a small expansion parameter, since small
perturbations of the trajectories still result in curves that
intersect the imaginary axis. In light of the negative value of
g�4, one may worry that the potential is unbounded from
below at the spooky fixed points. It is not clear how to
resolve this question for noninteger N, but at the fixed
points at N ¼ 4 and N ¼ 5 that this spooky fixed point
interpolates between, one can explicitly check that the
potential is bounded from below.
The appearance of complex eigenvalues changes the

behavior of the RG flow around the spooky fixed point.
Since the fixed point has one negative eigenvalue for all
N ∈ ðNlower; NupperÞ, there is an unstable direction in the
space of coupling constants that renders the fixed point IR
unstable. But we can ask the following question: How do
the coupling constants flow in the two-dimensional mani-
fold that is invariant under the RG flow and that is tangent
to the plane spanned by the eigenvectors of the Jacobian
matrix with complex eigenvalues?
If the real parts of these eigenvalues are nonzero, the

spooky fixed point is a focus and the flow around it is

−0.25 −0.20 −0.15 −0.10 −0.05 0.05 0.10
Re( )

−0.15

−0.10

−0.05

0.05

0.10

0.15

Im( )

FIG. 8. The trajectories of the complex eigenvalues of the
Jacobian matrix ð∂βi∂gjÞ as N is varied from Nlower to Nupper.

5This is similar to what happens to evanescent operators when
they are continued to an integer dimension.
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described by spirals steadily moving inwards or outwards
from the fixed point. For N > Ncrit, the real parts are
negative and the fixed point is IR unstable, while for N <
Ncrit the real parts are positive and the fixed point is stable.
By the Hartman-Grobman theorem [49,50], one can locally
change coordinates (redefine the coupling constants) such
that the beta functions near the fixed points are linear.
Furthermore, one can get rid of the imaginary part of the
eigenvalues in this subspace by a suitable field redefini-
tion.6 An analogous statement was given in [10].
When N ¼ Ncrit, the real parts of the complex eigen-

values are equal to zero. In this case the equilibrium point is
a center, the Hartman-Grobman theorem is not applicable,
and the behavior near the fixed point is controlled by the
higher nonlinear terms in the autonomous equations. If we
consider N as a parameter of the RG flow, N ¼ Ncrit
corresponds to a bifurcation point, as first introduced by
Poincarè. A standard method of analyzing bifurcations is to
reduce the full system to a set of lower dimensional systems
by the use of the center manifold theorem [51]. Denoting by
λ the eigenvalues of the Jacobian matrix at a given fixed
point, this theorem guarantees the existence of invariant
manifolds tangent to the eigenspaces with Re λ > 0,
Re λ < 0, and Re λ ¼ 0, respectively. The latter manifold
is known as the center manifold, and in general it need be
neither unique nor smooth. But when, as in our case, the
center at g� is part of a line of fixed points in the space
ðg; NÞ that vary smoothly with a parameter N, and the
complex eigenvalues satisfy

κ ¼ d
dN

Re½λðNcritÞ� ≠ 0; ð40Þ

then there exists a unique three-dimensional center mani-
fold in ðg⃗; NÞ passing through ðg�; NcritÞ. On planes of
constant N in this manifold, there exist coordinates ðx; yÞ
such that the third order Taylor expansion can be written in
the form

dx
dt

¼ ðκN þ aðx2 þ y2ÞÞx − ðωþ cN þ bðx2 þ y2ÞÞy;
dy
dt

¼ ðωþ cN þ bðx2 þ y2ÞÞxþ ðκN þ aðx2 þ y2ÞÞy;
ð41Þ

where t ¼ ln μ. The constanta in these equations is knownas
theHopfconstant.Bya theoremdue toHopf [19], thereexists
an IR-attractive limit cycle in the center manifold if a > 0,
while if a < 0 there exists an IR-repulsive limit cycle. In the
Appendix C, we present an explicit calculation of a for the
critical point in the symmetricmatrixmodel, andwe find that
a is positive. Hence, we conclude that on analytically
continuing inN, the RG flow of this QFT contains a periodic
orbit in the space of coupling constants, an orbit that is
unstable but which in the center manifold constitutes an
attractive limit cycle. This conclusion holds true at all orders
in perturbation theory, since the criteria of Hopf’s theorem,
being topological in nature, are not invalidated by small
perturbative corrections. Figure 9 depicts a numerical plot of
RG trajectories approaching the limit cycle.
Now that we have demonstrated the existence of

limit cycles, we should ask about their consistency with
the known RG monotonicity theorems. In particular, in
three dimensions the F theorem has been conjectured and
established [20,21,23]. Furthermore, in perturbative three-
dimensional QFT, one can make a stronger statement that
the RG flow is a gradient flow, i.e.,

Gijβ
j ¼ ∂F

∂gi ; ð42Þ

where F and the metric Gij are functions of the coupling
constants that can be calculated perturbatively [22,24–27].7
At leading order, Gij may be read off from the two-point
functions of the nearly marginal operators [24,25]:

hOiðxÞOjðyÞi ¼
Gij

jx − yj6 : ð43Þ

The F function satisfies the RG equation

μ
∂
∂μF ¼ ∂

∂t F ¼ βiβjGij: ð44Þ

This shows that, if the metric is positive definite, then F
decreases monotonically as the theory flows toward the IR.
These perturbative statements continue to be applicable in
3 − ϵ dimensions.
At leading order, the metric Gij is exhibited in

Appendix B. Its determinant is given by

ðN − 5ÞðN − 4ÞðN − 3Þ2ðN − 2Þ3N2ðN þ 1Þ3ðN þ 3ÞðN þ 4Þ3ðN þ 6Þ2ðN þ 8ÞðN þ 10Þ
2654208

: ð45Þ

6For instance, in two dimensions with z ¼ xþ iy, the equation _z ¼ ð−αþ iωÞz can via a change of variable z → zei
ω
α log jzj be reduced

to _z ¼ −αz.
7In [26,27] the terminology a function was used, but we prefer to call it F function instead, since a typically refers to a Weyl anomaly

coefficient in d ¼ 4.
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This shows that the metric has three zero eigenvalues for
N ¼ 2, two zero eigenvalues for N ¼ 3, and one zero
eigenvalue for N ¼ 4 and 5. This is due to the linear
relations between operators Oi at these integer values of N.
For example, for N ¼ 2 there is only one independent
operator. In the range 4 < N < 5, detGij < 0, the metric
has one negative and three positive eigenvalues. This is
what explains the possibility of RG limit cycles in the range
Nlower < N < Nupper. For N > 5, Gij is positive definite,
and for N < −10,Gij is negative definite. This is consistent
with our observing spooky fixed points only outside of
these regimes.8

In general, the norms of vectors computed with this
metric are not positive definite for N < 5. In particular, we
can show that the eigenvectors corresponding to complex
eigenvalues of the Jacobian matrix evaluated at real fixed

points have zero norm. Indeed, let us assume that we have a
complex eigenvalue m ∈ C with eigenvector ui,

∂βi
∂gj u

j ¼ mui: ð46Þ

Now let us differentiate the relation (42) with respect to gK:

∂KGIJβ
J þ GIJ∂Kβ

J ¼ ∂I∂KF: ð47Þ

At a spooky fixed point we have βJðgÞ ¼ 0 for real
couplings g. Contracting the relation (47) with uK and
ūI at a spooky fixed point we get

ūIGIJ∂Kβ
JuK ¼ uKūI∂I∂KF: ð48Þ

Using (46) we arrive at the following relations:

mūIuJGIJ ¼ ūIuJ∂I∂JF: ð49Þ

SinceGIJ and ∂I∂JF are real symmetric matrices, the norm
u2 ¼ GIJuIūJ and f ¼ ūIuJ∂I∂JF are real numbers. If they
are not equal to zero, then we must have m ∈ R, which
contradicts our assumption. Therefore, the norm u2 ¼ 0.
Another consequence of the negative eigenvalues of Gij

is that dF=dt can have either sign, as follows from (44). In
Fig. 10 we plot FðtÞ for the limit cycle of Fig. 9, showing
that it oscillates. This can also be shown analytically for a
small limit cycle surrounding a fixed point. We may expand
around it to find

βiðtÞ ¼ aðtÞvi þ āðtÞv̄i; ð50Þ

where vi and v̄i are the eigenvectors corresponding to
the complex eigenvalues of the Jacobian matrix at the
spooky fixed point. While Gijviv̄j vanishes, Gijvivj ≠ 0.
Therefore, Eq. (44) implies that dF=dt ≠ 0 for a small
limit cycle.

−0.0004 −0.0003 −0.0002 −0.0001 0.0001
t 3

−0.0002

−0.0001

0.0001

0.0002

0.0003
t4

FIG. 9. The RG flow in the invariant manifold tangent to the
plane spanned by the eigenvectors with complex eigenvalues in
the space of coupling constants for N ¼ 4.476. In the IR, the blue
curve whirls inwards toward a limit cycle marked in black, while
the orange curve whirls outwards toward the limit cycle. The
coordinates t3 and t4 are given by linear combinations of
the couplings g1, g2, g3, and g4 and are defined in Appendix C.
The RG flow on the invariant manifold admits of a description in
an infinite expansion in powers of t3 and t4. This plot is drawn
retaining terms up to cubic order.

50 100 150 200
t

−10
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5

FIG. 10. The plot of 1012ðFðtÞ − F0Þ=ϵ3, where F0 is the value
at the spooky fixed point, for the cyclic solution found in Sec. IV
for N ¼ 4.476.

8We have also found the metric for the parent OðNÞ2 theory.
In this case it is positive definite for all N except N ∈ f−4;−2;
1; 2g, where there are zero eigenvalues. We further found the
metric for the antisymmetric matrix model. In certain intervals
within the range N ∈ ð−4; 5Þ it has both positive and negative
eigenvalues, but numerical searches reveal no spooky fixed points
in these intervals.
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APPENDIX A: THE BETA FUNCTIONS UP
TO FOUR LOOPS

In the main text we presented the large N beta functions
for the matrix models we have studied. In this Appendix we
list the full beta functions for any N up to four-loops.

Letting μ denote the renormalization scale, we take the beta
function associated with a coupling gi to be given by

βgi ¼ μ
dgi
dμ

¼ −2ϵgi þ
1

6!ð8πÞ2 β̃
ð2Þ
gi þ 1

ð6!Þ2ð8πÞ4 β̃
ð4Þ
gi

þOðg6Þ; ðA1Þ

where we have separated out the two-loop contribution βð2Þgi

and the four-loop contribution βð4Þgi . The beta functions have
been computed by the use of the formulas for sextic
theories in d ¼ 3 − ϵ dimension listed in Sec. II.

1. Beta functions for the OðNÞ2 matrix model

β̃ð2Þg1 ¼ 24ð100þ 24N þ 3N2Þg21 þ 384ð9þ 4NÞg1g2 þ 3840g1g3 þ 64ð32þ N2Þg22; ðA2Þ

β̃ð2Þg2 ¼ 144ð8þ 3NÞg21 þ 96ð38þ 4N þ N2Þg1g2 þ 2304ð1þ NÞg1g3 þ 128ð8þ 7NÞg22 þ 384ð18þ N2Þg2g3; ðA3Þ

β̃ð2Þg3 ¼ 168g21 þ 96ð3þ 2NÞg1g2 þ 1152g1g3 þ 32ð21þ 2N þ N2Þg22 þ 768ð1þ 2NÞg2g3 þ 192ð22þ 3N2Þg23; ðA4Þ

β̃ð4Þg1 ¼ −288ð47952þ 4780π2 þ N4ð17þ π2Þ þ N3ð372þ 25π2Þ þ 8Nð3102þ 277π2Þ þ N2ð5248þ 412π2ÞÞg31
− 576ð64992þ 6860π2 þ 6N3ð104þ 7π2Þ þ 8Nð4728þ 415π2Þ þ N2ð5928þ 465π2ÞÞg21g2
− 1152ð48Nð274þ 27π2Þ þ N2ð2824þ 225π2Þ þ 4ð7640þ 891π2ÞÞg21g3
− 384ð3N4ð10þ π2Þ þ 18N3ð12þ π2Þ þ 48Nð884þ 83π2Þ þ 112ð867þ 94π2Þ þ N2ð10836þ 773π2ÞÞg1g22
− 13824ð3984þ 448π2 þ 2N3ð20þ π2Þ þ N2ð92þ 7π2Þ þ 8Nð292þ 31π2ÞÞg1g2g3
− 4608ð5936 − 8N4 þ 720π2 þ N2ð372þ 45π2ÞÞg1g23 −

512

3
ðN3ð960þ 46π2Þ þ 64ð900þ 97π2Þ

þ N2ð1704þ 137π2Þ þ 16Nð2124þ 203π2ÞÞg32 − 9216ð4N4 þ 384ð9þ π2Þ þ N2ð248þ 21π2ÞÞg22g3; ðA5Þ

β̃ð4Þg2 ¼ −432ð20400þ 2260π2 þ 2N3ð90þ 7π2Þ þ 12Nð940þ 91π2Þ þ N2ð1740þ 151π2ÞÞg31
− 288ð3N4ð10þ π2Þ þ 6N3ð56þ 5π2Þ þ 16ð6408þ 683π2Þ þ N2ð11184þ 995π2Þ þ Nð46896þ 4516π2ÞÞg21g2
− 1728ðN3ð248þ 22π2Þ þ N2ð1380þ 109π2Þ þ 8Nð1510þ 127π2Þ þ 4ð4132þ 401π2ÞÞg21g3
− 384ð2N3ð534þ 49π2Þ þ N2ð5148þ 443π2Þ þ 8ð8922þ 923π2Þ þ Nð48384þ 4444π2ÞÞg1g22
− 4608ð2N4ð6þ π2Þ þ 6N3ð8þ π2Þ þ 6Nð948þ 77π2Þ þ N2ð2748þ 197π2Þ þ 2ð8112þ 841π2ÞÞg1g2g3
− 27648ð1þ NÞðN2ð62þ 3π2Þ þ 2ð532þ 51π2ÞÞg1g23
− 128ð95152þ 10024π2 þ 36N3ð6þ π2Þ þ 2N4ð36þ 7π2Þ þ 24Nð1264þ 113π2Þ þ N2ð14804þ 1179π2ÞÞg32
− 768ð2N4π2 þ N5π2 þ 134N2ð12þ π2Þ þ 16N3ð102þ 7π2Þ þ 8ð4308þ 433π2Þ þ 8Nð4584þ 437π2ÞÞg22g3
− 13824ð4816þ 512π2 þ N4ð18þ π2Þ þ N2ð644þ 57π2ÞÞg2g23; ðA6Þ
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β̃ð4Þg3 ¼ −432ð2760þ 380π2 þ N2ð210þ 23π2Þ þ 4Nð270þ 31π2ÞÞg31
− 576ð7308þ 776π2 þ N3ð78þ 8π2Þ þ N2ð483þ 45π2Þ þ 6Nð766þ 83π2ÞÞg21g2
− 576ð−48N3 − 8N4 þ 6Nð836þ 81π2Þ þ 6ð1984þ 189π2Þ þ N2ð1676þ 207π2ÞÞg21g3
− 768ð8772þ 894π2 þ N4ð6þ π2Þ þ N3ð36þ 5π2Þ þ 10Nð336þ 31π2Þ þ N2ð1269þ 140π2ÞÞg1g22
− 2304ð6096þ 550π2 þ 2N3ð84þ 17π2Þ þ N2ð432þ 59π2Þ þ Nð6312þ 554π2ÞÞg1g2g3
− 1152ð18N3π2 þ 15N4π2 þ 96Nð35þ 3π2Þ þ 8N2ð443þ 36π2Þ þ 8ð1876þ 177π2ÞÞg1g23
− 384ð41328þ 4192π2 þ 2N4ð54þ 19π2Þ þ N3ð216þ 38π2Þ þ 8Nð1536þ 125π2Þ þ 3N2ð3932þ 323π2ÞÞg22g3
−
128

3
ð49104þ 4784π2 þ 4N4π2 þ N5π2 þ 12N2ð487þ 42π2Þ þ N3ð2136þ 281π2Þ þ 12Nð4552þ 425π2ÞÞg32

− 3456ð1þ 2NÞðN4π2 þ 112ð32þ 3π2Þ þ 4N2ð88þ 7π2ÞÞg2g23
− 1152ðN6π2 þ N4ð424þ 34π2Þ þ 32ð826þ 85π2Þ þ N2ð6864þ 620π2ÞÞg33: ðA7Þ

2. Beta functions for the antisymmetric matrix model

β̃ð2Þg1 ¼ 6ð112 − 3N þ 3N2Þg21 þ 384ð−1þ 2NÞg1g2 þ 3840g1g3 þ 32ð64 − N þ N2Þg22; ðA8Þ

β̃ð2Þg2 ¼ 54ð−1þ 2NÞg21 þ 24ð68 − N þ N2Þg1g2 þ 576ð−1þ 2NÞg1g3 þ 224ð−1þ 2NÞg22 þ 192ð36 − N þ N2Þg2g3;
β̃ð2Þg3 ¼ 42g21 þ ð−24þ 48NÞg1g2 þ 576g1g3 þ 8ð40 − N þ N2Þg22 þ 384ð−1þ 2NÞg2g3 þ 96ð44 − 3N þ 3N2Þg23;
β̃ð4Þg1 ¼ −9ð−4N3ð17þ π2Þ þ 2N4ð17þ π2Þ þ 32ð3209þ 293π2Þ − Nð10928þ 861π2Þ þ N2ð10962þ 863π2ÞÞg31

− 72ð−1þ 2NÞð−3Nð104þ 7π2Þ þ 3N2ð104þ 7π2Þ þ 4ð4896þ 413π2ÞÞg21g2 − 288ð−Nð2824þ 225π2Þ
þ N2ð2824þ 225π2Þ þ 4ð7804þ 945π2ÞÞg21g3 − 48ð198048þ 21616π2 − 6N3ð10þ π2Þ þ 3N4ð10þ π2Þ
þ 2N2ð10479þ 746π2Þ − Nð20928þ 1489π2ÞÞg1g22 − 3456ð−1þ 2NÞð−Nð20þ π2Þ þ N2ð20þ π2Þ
þ 8ð292þ 31π2ÞÞg1g2g3 − 2304ð8N3 − 4N4 − 3Nð124þ 15π2Þ þ N2ð368þ 45π2Þ þ 32ð371þ 45π2ÞÞg1g23
−
128

3
ð−1þ 2NÞð33984þ 3248π2 − Nð480þ 23π2Þ þ N2ð480þ 23π2ÞÞg32

− 4608ð−4N3 þ 2N4 þ 768ð9þ π2Þ − Nð248þ 21π2Þ þ N2ð250þ 21π2ÞÞg22g3; ðA9Þ

β̃ð4Þg2 ¼ −27ð−1þ 2NÞð5760þ 557π2 − Nð90þ 7π2Þ þ N2ð90þ 7π2ÞÞg31 − 18ð−6N3ð10þ π2Þ
þ 3N4ð10þ π2Þ þ 34N2ð579þ 52π2Þ − Nð19656þ 1765π2Þ þ 4ð49956þ 5437π2ÞÞg21g2
− 216ð−1þ 2NÞð9536þ 830π2 − Nð124þ 11π2Þ þ N2ð124þ 11π2ÞÞg21g3 − 48ð−1þ 2NÞð39744þ 3739π2

− Nð534þ 49π2Þ þ N2ð534þ 49π2ÞÞg1g22 − 288ð−8N3ð6þ π2Þ þ 4N4ð6þ π2Þ þ 3N2ð3608þ 259π2Þ
− Nð10800þ 773π2Þ þ 4ð25284þ 2719π2ÞÞg1g2g3 − 3456ð−1þ 2NÞð−Nð62þ 3π2Þ þ N2ð62þ 3π2Þ
þ 4ð532þ 51π2ÞÞg1g32 − 32ð−2N3ð36þ 7π2Þ þ N4ð36þ 7π2Þ − 4Nð3656þ 291π2Þ þ N2ð14660þ 1171π2Þ
þ 4ð38180þ 4109π2ÞÞg32 − 48ð−1þ 2NÞð−2N3π2 þ N4π2 − 32Nð102þ 7π2Þ þ 3N2ð1088þ 75π2Þ
þ 32ð4584þ 437π2ÞÞg22g3 − 3456ð−2N3ð18þ π2Þ þ N4ð18þ π2Þ þ 64ð301þ 32π2Þ − 2Nð644þ 57π2Þ
þ N2ð1306þ 115π2ÞÞg2g23; ðA10Þ
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β̃ð4Þg3 ¼ −27ð2760þ 422π2 − Nð210þ 23π2Þ þ N2ð210þ 23π2ÞÞg31 − 18ð−1þ 2NÞð−2Nð39þ 4π2Þ
þ N2ð78þ 8π2Þ þ 75ð96þ 11π2ÞÞg21g2 − 72ð16724þ 8N3 − 4N4 þ 1647π2 þ 3N2ð592þ 69π2Þ ðA11Þ

− Nð1780þ 207π2ÞÞg21g3 − 12ð−8N3ð6þ π2Þ þ 4N4ð6þ π2Þ þ 256ð402þ 43π2Þ þ 3N2ð3184þ 351π2Þ
− Nð9528þ 1049π2ÞÞg1g22 − 288ð−1þ 2NÞð5952þ 518π2 − Nð84þ 17π2Þ þ N2ð84þ 17π2ÞÞg1g2g3
− 144ð−30N3π2 þ 15N4π2 þ 224ð253þ 24π2Þ − Nð7088þ 567π2Þ þ N2ð7088þ 582π2ÞÞg1g23
−
4

3
ð−1þ 2NÞð−2N3π2 þ N4π2 − 24Nð178þ 23π2Þ þ N2ð4272þ 553π2Þ þ 8ð24672þ 2359π2ÞÞg32

− 96ð75984þ 7828π2 − 2N3ð54þ 19π2Þ þ N4ð54þ 19π2Þ þ 3N2ð3914þ 327π2Þ − 2Nð5844þ 481π2ÞÞg22g3
− 432ð−1þ 2NÞð−2N3π2 þ N4π2 þ 448ð32þ 3π2Þ − 8Nð88þ 7π2Þ þ N2ð704þ 57π2ÞÞg2g23
− 144ð−3N5π2 þ N6π2 þ N4ð848þ 71π2Þ þ 256ð826þ 85π2Þ − N3ð1696þ 137π2Þ − 16Nð1716þ 155π2Þ
þ 4N2ð7076þ 637π2ÞÞg33: ðA12Þ

3. Beta functions for the symmetric traceless matrix model

β̃ð2Þg1 ¼ 6
2400 − 1200N þ 250N2 þ 51N3 þ 3N4

N2
g21 þ 384

2N2 þ 10N − 35

N
g1g2 þ 3840g1g3

þ 864
−20þ 5N þ N2

N
g1g4 þ 32ð62þ N þ N2Þg22 þ 4608g2g4 þ 2592g24; ðA13Þ

β̃ð2Þg2 ¼ 18
−150þ 35N þ 6N2

N
g21 þ 24

480 − 120N þ 66N2 þ 9N3 þ N4

N2
g1g2 þ 576

−10þ 5N þ 2N2

N
g1g3

þ 216
80 − 20N þ N2

N2
g1g4 þ 32

−132þ 39N þ 14N2

N
g22 þ 192ð34þ N þ N2Þg2g3 þ 288

−40þ 3N þ N2

N
g2g4

þ 3456g3g4 þ 324
−24þ 2N þ N2

N
g24; ðA14Þ

β̃ð2Þg3 ¼ 42g21 þ 576g1g3 þ 24
−30þ 7N þ 2N2

N
g1g2 −

1080

N
g1g4 þ 384

−6þ 3N þ 2N2

N
g2g3

− 288
−24þ 3N þ N2

N2
g2g4 þ 96ð38þ 3N þ 3N2Þg23 þ 8

288 − 36N þ 30N2 þ 5N3 þ N4

N2
g22 −

3456

N
g3g4

− 324
−16þ 2N þ N2

N2
g24; ðA15Þ

β̃ð2Þg4 ¼ 24
−200 − 75N2 þ 15N3 þ 3N4

N3
g21 þ 192

10 − 5N þ N2

N2
g1g2 þ 12

160 − 120N þ 34N2 þ 15N3 þ 3N4

N2
g1g4

− 32
62þ N þ N2

N
g22 þ 384

−15þ 3N þ N2

N
g2g4 þ 3840g3g4 þ 6

−704þ 60N þ 28N2 þ 3N3 þ N4

N
g24; ðA16Þ

β̃ð4Þg1 ¼ −
9

N4
ð2N8ð17þ π2Þ þ 4N7ð389þ 26π2Þ þ 38400ð1252þ 135π2Þ − 19200Nð2159þ 225π2Þ

− 60N4ð7338þ 455π2Þ − 1200N3ð4896þ 587π2Þ þ N6ð38822þ 3167π2Þ þ 800N2ð30564þ 3215π2Þ

þ N5ð279004þ 28019π2ÞÞg31 −
216

N3
ð2N6ð104þ 7π2Þ þ 4320Nð522þ 55π2Þ þ 10N3ð−1416þ 131π2Þ

þ N5ð4264þ 331π2Þ − 960ð3344þ 375π2Þ þ 5N4ð7096þ 681π2Þ − 40N2ð16616þ 1977π2ÞÞg21g2
−
288

N2
ð1920ð388þ 45π2Þ þ 30N2ð1184þ 171π2Þ þ N4ð2824þ 225π2Þ − 120Nð3628þ 405π2Þ

RG LIMIT CYCLES AND UNCONVENTIONAL FIXED POINTS … PHYS. REV. D 103, 046015 (2021)

046015-17



þ N3ð29128þ 2817π2ÞÞg21g3 −
54

N3
ð12N6ð95þ 7π2Þ − 20N3ð9940þ 471π2Þ þ 3N5ð6608þ 561π2Þ

− 320N2ð9175þ 1104π2Þ − 1280ð13166þ 1485π2Þ þ 640Nð17947þ 1890π2Þ þ N4ð137468þ 13785π2ÞÞg21g4
−
48

N2
ð3N6ð10þ π2Þ þ 6N5ð82þ 7π2Þ þ 9504ð756þ 85π2Þ − 2160Nð1581þ 172π2Þ þ 2N4ð10971þ 763π2Þ

þ 2N2ð37896þ 6847π2Þ þ N3ð177600þ 16271π2ÞÞg1g22 −
3456

N
ð2N4ð20þ π2Þ þ N3ð244þ 17π2Þ − 24ð2372

þ 275π2Þ þ N2ð4108þ 447π2Þ þ 2Nð8588þ 975π2ÞÞg1g2g3 −
1728

N2
ð518304þ 58320π2 þ N2ð−3072þ 41π2Þ

þ 2N4ð555þ 49π2Þ − 48Nð4834þ 525π2Þ þ N3ð10782þ 1037π2ÞÞg1g2g4 − 2304ð−8N3 − 4N4

þ N2ð384þ 45π2Þ þ Nð388þ 45π2Þ þ 6ð1852þ 225π2ÞÞg1g23 −
13824

N
ð−47ð388þ 45π2Þ þ N2ð1120þ 117π2Þ

þ Nð4844þ 540π2ÞÞg1g3g4 −
108

N2
ð301N5 þ 41N6 þ N4ð10882þ 1053π2Þ − 4N2ð26366þ 1755π2Þ

þ 128ð41992þ 4725π2Þ þ N3ð98224þ 9801π2Þ − 16Nð140912þ 15255π2ÞÞg1g24
−
128

3N
ðN4ð960þ 46π2Þ þ 108Nð2220þ 241π2Þ þ N3ð4848þ 343π2Þ − 324ð3352þ 375π2Þ

þ 7N2ð7584þ 749π2ÞÞg32 − 4608ð6424þ 4N3 þ 2N4 þ 726π2 þ 3Nð80þ 7π2Þ þ N2ð242þ 21π2ÞÞg22g3
−
288

N
ðN4ð120þ 7π2Þ þ N3ð660þ 43π2Þ þ 6N2ð4426þ 437π2Þ þ 24Nð4957þ 534π2Þ − 48ð12638þ 1413π2ÞÞg22g4

− 20736ð3368þ 378π2 þ Nð44þ 3π2Þ þ N2ð44þ 3π2ÞÞg2g3g4 −
1296

N
ðN4ð32þ 3π2Þ þ N3ð96þ 9π2Þ

− 896ð188þ 21π2Þ þ 12Nð2440þ 261π2Þ þ N2ð7184þ 716π2ÞÞg2g24 − 4478976ð9þ π2Þg3g24
−
1944

N
ð36N3 þ 12N4 þ 96Nð75þ 8π2Þ − 192ð242þ 27π2Þ þ N2ð2028þ 203π2ÞÞg34; ðA17Þ

β̃ð4Þg2 ¼ −
27

N5
ð2N8ð90þ 7π2Þ þ 24000Nð20þ 9π2Þ − 96000ð28þ 9π2Þ − 3200N2ð1443þ 170π2Þ

− 5N5ð8372þ 209π2Þ þ N7ð3750þ 323π2Þ − 100N4ð6542þ 785π2Þ þ 400N3ð7120þ 797π2Þ

þ N6ð28350þ 3133π2ÞÞg31 −
18

N4
ð3N8ð10þ π2Þ − 309600Nð32þ 3π2Þ þ 86400ð212þ 23π2Þ þ N7ð732þ 66π2Þ

− 8N4ð13443þ 482π2Þ þ N6ð25770þ 2294π2Þ − 120N3ð29800þ 3209π2Þ þ 240N2ð46680þ 4993π2Þ

þ N5ð200436þ 19313π2ÞÞg21g2 −
216

N3
ð−7200ð88þ 7π2Þ þ N6ð248þ 22π2Þ þ 600Nð832þ 63π2Þ

þ N5ð3132þ 251π2Þ þ 10N3ð2672þ 359π2Þ − 40N2ð6504þ 677π2Þ þ 3N4ð8852þ 717π2ÞÞg21g3
−
162

N4
ð32000ð92þ 9π2Þ − 16000Nð104þ 9π2Þ þ N6ð1418þ 155π2Þ þ 320N2ð4644þ 521π2Þ þ N5ð12998

þ 1497π2Þ − 20N3ð19900þ 2381π2Þ − N4ð42584þ 3431π2ÞÞg12g4 −
48

N3
ð2N6ð534þ 49π2Þ þ 1620Nð2044

þ 193π2Þ − 2160ð3060þ 319π2Þ þ N5ð11898þ 1033π2Þ − 72N2ð14522þ 1613π2Þ þ 3N3ð32656þ 4997π2Þ

þ N4ð91914þ 8441π2ÞÞg1g22 −
288

N2
ð4N6ð6þ π2Þ þ 16N5ð15þ 2π2Þ þ 720ð1400þ 139π2Þ þ 5N4ð2184þ 149π2Þ

− 180Nð2568þ 229π2Þ þ N3ð52944þ 4095π2Þ þ N2ð47952þ 6716π2ÞÞg1g2g3 −
216

N3
ð−36N3ð626þ 7π2Þ

þ 2N6ð69þ 8π2Þ þ 9N5ð194þ 19π2Þ − 11520ð358þ 37π2Þ þ 480Nð4018þ 381π2Þ þ N4ð15348þ 1549π2Þ
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− 8N2ð53892þ 6641π2ÞÞg1g2g4 −
3456

N
ð−10þ 5N þ 2N2ÞðNð62þ 3π2Þ þN2ð62þ 3π2Þ þ 6ð334þ 33π2ÞÞg1g23

−
2592

N2
ðN4ð492þ 35π2Þ þ 160ð988þ 99π2Þ− 2N2ð2248þ 179π2Þ þN3ð3084þ 227π2Þ

− 20Nð3176þ 291π2ÞÞg1g3g4 −
162

N3
ð36N4ð163þ 17π2Þ þN6ð172þ 21π2Þ þ 7N5ð182þ 27π2Þ þ 1600Nð1028

þ 99π2Þ− 640ð6016þ 621π2Þ− 24N2ð9098þ 1363π2Þ− 2N3ð17432þ 1635π2ÞÞg1g24 −
32

N2
ðN6ð36þ 7π2Þ

þN5ð288þ 50π2Þ þ 2N4ð7186þ 545π2Þ þ 8N3ð8863þ 756π2Þ þ 216ð11996þ 1265π2Þ− 54Nð13992þ 1337π2Þ

þN2ð30720þ 5671π2ÞÞg32 −
48

N
ð13N5π2 þ 2N6π2 þ 8N4ð816þ 53π2Þ− 720ð2872þ 295π2Þ þ 16N2ð15324

þ 1499π2Þ þN3ð22656þ 1637π2Þ þ 36Nð17072þ 1737π2ÞÞg22g3 −
288

N2
ð2N4ð771þ 59π2Þ− 144Nð2041þ 200π2Þ

− 4N2ð9261þ 824π2Þ þN3ð9918þ 829π2Þ þ 144ð7988þ 839π2ÞÞg22g4 − 3456ð2N3ð18þ π2Þ þN4ð18þ π2Þ

þ 2Nð608þ 55π2Þ þN2ð1234þ 111π2Þ þ 8ð2095þ 228π2ÞÞg2g23 −
1728

N
ð2N4ð24þ π2Þ þN3ð192þ 11π2Þ

þ 6Nð3168þ 281π2Þ− 48ð3112þ 319π2Þ þN2ð5952þ 481π2ÞÞg2g3g4 −
324

N2
ðN6ð2þ π2Þ þ 2N5ð5þ 3π2Þ

þN4ð1628þ 171π2Þ− 16N2ð3517þ 339π2Þ þ 192ð7024þ 735π2Þ− 32Nð9160þ 933π2Þ
þN3ð9376þ 974π2ÞÞg2g24 − 20736ðNð62þ 3π2Þ þN2ð62þ 3π2Þ þ 6ð334þ 33π2ÞÞg23g4
−
2592

N
ðN4ð28þ 3π2Þ þ 198Nð32þ 3π2Þ þN3ð84þ 9π2Þ þN2ð2572þ 249π2Þ− 8ð7960þ 813π2ÞÞg3g24

−
972

N2
ð20N5 þ 4N6 þN4ð146þ 21π2Þ þ 4N3ð170þ 27π2Þ− 32Nð1082þ 117π2Þ þ 128ð1526þ 159π2Þ

− 2N2ð4736þ 513π2ÞÞg34; ðA18Þ

β̃ð4Þg3 ¼−
9

N6
ð432000π2þ72000N2ð8þ3π2Þþ2400N4ð214þ35π2Þ−600N5ð312þ41π2ÞþN8ð630þ69π2Þ

−2N6ð1200þ137π2ÞþN7ð7110þ813π2ÞÞg31−
18

N5
ð28800Nð2þ3π2Þþ4N8ð39þ4π2Þ−14400ð112þ27π2Þ

−7200N2ð292þ27π2Þþ6N7ð361þ34π2Þþ240N3ð4272þ427π2Þ−20N4ð11754þ869π2Þþ2N6ð8379þ883π2Þ

þN5ð516þ1189π2ÞÞg21g2þ
72

N4
ð56N7þ4N8þN4ð2220−519π2Þþ1200Nð−32þ9π2Þ−1200ð136þ27π2Þ

þ240N3ð614þ39π2Þ−300N2ð896þ75π2Þ−N6ð1576þ207π2Þ−N5ð12524þ1179π2ÞÞg21g3
þ162

N5
ðN6ð302þπ2Þ−4800Nð2þ3π2Þþ19200ð14þ3π2Þþ1600N2ð215þ18π2Þ−480N3ð321þ31π2Þ

þ20N4ð587þ74π2ÞþN5ð5174þ314π2ÞÞg21g4−
12

N4
ð4N8ð6þπ2Þþ48N7ð7þπ2Þ−8640Nð212þ19π2Þ

þ12960ð352þ35π2Þþ16N4ð−1119þ188π2Þ−192N3ð3093þ241π2Þþ3N6ð3440þ367π2Þ

þ144N2ð16952þ1693π2ÞþN5ð55992þ4967π2ÞÞg1g22−
288

N3
ð2880Nð35þ3π2Þþ2N6ð84þ17π2Þ

−360ð440þ39π2Þþ24N3ð770þ69π2ÞþN5ð1116þ169π2Þ−6N2ð10352þ953π2ÞþN4ð10956þ985π2ÞÞg1g2g3
−
216

N4
ð3N6ð40þπ2Þþ9N5ð78þπ2Þþ3840ð191þ18π2Þ−960Nð317þ27π2Þ−24N3ð2503þ192π2Þ
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þ 96N2ð3303þ 352π2Þ − N4ð15564þ 995π2ÞÞg1g2g4 −
144

N2
ð66N5π2 þ 15N6π2 þ 600ð112þ 9π2Þ

þ 16N4ð443þ 33π2Þ − 60Nð1120þ 87π2Þ þ 6N2ð5216þ 567π2Þ þ N3ð20528þ 1377π2ÞÞg1g23
þ 864

N3
ð84N5 þ 12N6 þ N4ð148 − 27π2Þ þ N3ð1628þ 57π2Þ þ 80ð956þ 81π2Þ − 20Nð2552þ 207π2Þ

þ 2N2ð9808þ 1017π2ÞÞg1g3g4 −
162

N4
ð3N5ð−208þ 7π2Þ þ N6ð−94þ 9π2Þ þ 1920ð368þ 33π2Þ

− 480Nð632þ 51π2Þ − 24N3ð1022þ 81π2Þ − 2N4ð5156þ 357π2Þ þ 16N2ð14228þ 1707π2ÞÞg1g24
−

4

3N3
ð21N7π2 þ 2N8π2 þ 17280Nð465þ 41π2Þ þ 576N3ð433þ 80π2Þ − 432N2ð1464þ 205π2Þ

þ 4N6ð2136þ 277π2Þ − 2592ð9552þ 971π2Þ þ 12N4ð28836þ 2929π2Þ þ N5ð59568þ 5281π2ÞÞg32
−
96

N2
ðN6ð54þ 19π2Þ þ 4N5ð81þ 19π2Þ − 108Nð1264þ 103π2Þ þ 540ð1112þ 109π2Þ þ 15N2ð2064þ 281π2Þ

þ 6N3ð5540þ 431π2Þ þ 2N4ð5655þ 454π2ÞÞg22g3 −
72

N3
ð2N6ð24þ π2Þ þ 24N2ð492þ π2Þ þ N5ð384þ 19π2Þ

− N4ð2952þ 35π2Þ − 1728ð1150þ 117π2Þ − 6N3ð4492þ 271π2Þ þ 144Nð3942þ 367π2ÞÞg22g4
−
432

N
ð−6þ 3N þ 2N2Þð2N3π2 þ N4π2 þ Nð704þ 52π2Þ þ N2ð704þ 53π2Þ þ 4ð3232þ 309π2ÞÞg2g23

−
1728

N2
ð27N3ð4þ π2Þ þ 4N4ð3þ 2π2Þ − 174Nð104þ 9π2Þ þ 168ð580þ 57π2Þ − 3N2ð1720þ 137π2ÞÞg2g3g4

−
324

N3
ð4N6 þ N5ð50þ π2Þ − N4ð1060þ 91π2Þ þ 16N2ð1289þ 133π2Þ − 2N3ð3704þ 339π2Þ

þ 16Nð9704þ 975π2Þ − 64ð9968þ 1017π2ÞÞg2g24 − 144ð3N5π2 þ N6π2 þ N4ð848þ 65π2Þ þ N3ð1696þ 125π2Þ

þ 4Nð6016þ 555π2Þ þ 24ð6664þ 711π2Þ þ N2ð24912þ 2282π2ÞÞg33 −
864

N
ð−57056þ 752N − 368N2

− 5472π2 þ 84Nπ2 þ 9N3π2 þ 3N4π2Þg23g4 þ
432

N2
ð20N5 þ 4N6 − N4ð52þ 9π2Þ − 2N3ð212þ 27π2Þ

þ 10N2ð1580þ 153π2Þ þ 4Nð10064þ 963π2Þ − 16ð17792þ 1755π2ÞÞg3g24 −
486

N3
ðN6ð−8þ π2Þ − 10N4ð34þ 3π2Þ

þ N5ð−40þ 6π2Þ − 16N3ð94þ 13π2Þ − 512ð400þ 41π2Þ þ 64Nð632þ 71π2Þ þ 8N2ð1354þ 163π2ÞÞg34; ðA19Þ

β̃ð4Þg4 ¼−
9

N5
ð−13824000þ 6912000NþN8ð360þ 22π2Þ− 2400N4ð448þ 43π2Þþ 9600N3ð395þ 49π2Þ

− 60N5ð1672þ 65π2Þ− 3200N2ð2352þ 275π2ÞþN7ð6660þ 489π2ÞþN6ð41220þ 4241π2ÞÞg31
−
72

N4
ð172800ð14þ π2Þ− 14400Nð68þ 3π2Þ− 2N4ð14844þ 131π2ÞþN6ð1848þ 191π2Þþ 480N2ð2120þ 243π2Þ

þ 5N5ð3504þ 415π2Þ− 120N3ð3640þ 423π2ÞÞg21g2−
10368

N3
ð800Nþ 20N3ð17þ 3π2Þ− 200ð28þ 3π2Þ

þ 3N4ð32þ 5π2Þ− 5N2ð392þ 51π2ÞÞg21g3−
18

N4
ð670N7þ 41N8þ 38400ð320þ 27π2Þ− 9600Nð467þ 27π2Þ

− 6N4ð32878þ 417π2ÞþN6ð14413þ 801π2Þ− 120N3ð17800þ 1731π2Þþ 240N2ð22264þ 2481π2Þ

þN5ð95816þ 8415π2ÞÞg21g4−
3456

N2
ð3N3ð−28þ π2ÞþN4ð−4þ 3π2Þþ 240ð52þ 5π2Þþ 2N2ð−148þ 9π2Þ
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− 40Nð152þ 15π2ÞÞg1g2g3 −
576

N2
ð960ð94þ 9π2Þ − 240Nð262þ 27π2Þ þ 6N2ð728þ 153π2Þ

þ N4ð1160þ 153π2Þ þ N3ð6392þ 801π2ÞÞg1g3g4 −
48

N3
ð51840Nð15þ π2Þ − 34560ð57þ 5π2Þ þ N6ð48þ 7π2Þ

þ N5ð228þ 43π2Þ þ 18N4ð346þ 101π2Þ þ 4N3ð2526þ 1579π2Þ − 8N2ð54528þ 6997π2ÞÞg1g22
−
432

N3
ð7N6ð16þ π2Þ þ 10N5ð102þ 7π2Þ − 1920ð296þ 27π2Þ þ 480Nð521þ 39π2Þ þ 8N3ð437þ 221π2Þ

þ N4ð5556þ 727π2Þ − 4N2ð28812þ 3317π2ÞÞg1g2g4 −
108

N3
ð2514N5 þ 318N6 þ 88N3ð−241þ 18π2Þ

− 5120ð289þ 27π2Þ þ 7N4ð1084þ 99π2Þ þ 320Nð2350þ 189π2Þ − 16N2ð16366þ 1557π2ÞÞg1g24 ðA20Þ

þ 128

3N2
ð−63504ð10þ π2Þ þ N4ð528þ π2Þ þ 324Nð532þ 53π2Þ þ N3ð3120þ 163π2Þ þ 8N2ð4314þ 337π2ÞÞg32

þ 4608

N
ð6424þ 4N3 þ 2N4 þ 726π2 þ 3Nð80þ 7π2Þ þ N2ð242þ 21π2ÞÞg22g3 −

144

N2
ðN6ð2þ π2Þ þ N5ð12þ 7π2Þ

þ 9408ð88þ 9π2Þ − 6N2ð3476þ 93π2Þ þ N4ð2134þ 239π2Þ − 48Nð4495þ 429π2Þ þ N3ð12708þ 1351π2ÞÞg22g4
−
6912

N
ðN4ð4þ π2Þ þ 4N3ð6þ π2Þ − 72ð184þ 21π2Þ þ 3N2ð308þ 39π2Þ þ Nð2488þ 306π2ÞÞg2g3g4

−
2592

N2
ð68224þ 12N5 þ 2N6 þ 7104π2 − 224N2ð15þ π2Þ þ N4ð126þ 11π2Þ þ N3ð644þ 57π2Þ

− 16Nð1043þ 93π2ÞÞg2g24 − 2304ð−8N3 − 4N4 þ N2ð384þ 45π2Þ þ Nð388þ 45π2Þ þ 6ð1852þ 225π2ÞÞg23g4
−
864

N
ð27N3ð8þ π2Þ þ 9N4ð8þ π2Þ þ 4N2ð808þ 99π2Þ − 32ð2584þ 297π2Þ þ Nð8096þ 972π2ÞÞg3g24

−
108

N2
ð13N5 þ 5N6 þ N4ð1198þ 45π2Þ þ 4N3ð1723þ 63π2Þ − 8N2ð6253þ 414π2Þ − 32Nð5692þ 459π2Þ

þ 128ð6388þ 675π2ÞÞg34: ðA21Þ

APPENDIX B: THE F FUNCTION AND METRIC FOR THE SYMMETRIC TRACELESS MODEL

Working up to the two-loop order, we find that the F function that enters the gradient flow expression (42) is given by
F ¼ Fð1Þ þ Fð2Þ, where

Fð1Þ ¼ −
ϵ

576N3

× ½ð2N2ð48g2ð4g3N5 þ ð10g3 þ 3g4ÞN4 þ 3ð6g3 þ 5g4ÞN3 þ 6ð4g3 − 7g4ÞN2

−72ðg3 þ 2g4ÞN þ 288g4Þ þ 4g22ðN6 þ 6N5 þ 45N4 þ 124N3 − 168N2 − 720N þ 1296Þ
þ 3ðð16g23 þ 3g24ÞN6 þ ð32g23 þ 15g24ÞN5 þ 24ð6g23 þ g24ÞN4 þ 4ð32g23 þ 48g4g3 þ 15g24ÞN3

þ96ð2g23 þ 4g4g3 − 5g24ÞN2 − 192g4ð8g3 þ 7g4ÞN þ 3072g24ÞÞ
þ 12g1Nð9g4N6 þ ð80g3 þ 63g4ÞN5 þ ð272g3 − 42g4ÞN4 − 120ð2g3 þ 7g4ÞN3

− 240ð4g3 − g4ÞN2 þ 4g2ð2N6 þ 15N5 þ 11N4 − 140N3 þ 720N − 720Þ þ 960ðg3 þ 4g4ÞN − 3840g4Þ
þ 3g21ðN8 þ 14N7 þ 83N6 þ 46N5 − 960N4 þ 4800N2 − 9600N þ 9600ÞÞ� ðB1Þ

and Fð2Þ may be written in terms of the three-point functions in the free theory in d ¼ 3 [24,25]:

Fð2Þ ∼ Cijkgigjgk; hOiðxÞOjðyÞOkðzÞi ¼
Cijk

jx − yj3jx − zj3jy − zj3 : ðB2Þ

Explicitly, we find
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Fð2Þ ¼ 3

13271040N5π2

× ½ð3N12 þ 93N11 þ 1717N10 þ 13103N9 þ 15072N8 − 227572N7 − 326400N6

þ 2596800N5 − 758400N4 − 12288000N3 þ 29952000N2 − 40704000N þ 29184000Þg31
þ 16

3
Ng2ð27ð6N10 þ 109N9 þ 878N8 þ 1885N7 − 10882N6 − 28000N5 þ 122880N4 þ 28800N3

− 672000N2 þ 1411200N − 1094400Þg21 þ 9NðN10 þ 15N9 þ 405N8 þ 3493N7 þ 8634N6

− 30684N5 − 102504N4 þ 351168N3 þ 408960N2 − 2194560N þ 1969920Þg2g1
þ 8N2ð26N8 þ 219N7 þ 1446N6 þ 5399N5 − 714N4 − 57456N3 þ 30240N2 þ 343440N − 443232Þg22Þ
þ 192N2g3ð2ððN8 þ 7N7 þ 181N6 þ 757N5 þ 1990N4 þ 3832N3 − 7296N2 − 27504N þ 49248Þg22
þ 12Nð6N6 þ 21N5 þ 118N4 þ 253N3 þ 270N2 þ 348N − 1368Þg3g2 þ 4N2ð3N6 þ 9N5

þ 71N4 þ 127N3 þ 402N2 þ 340N þ 456Þg23ÞN2 þ 12g1ðð2N8 þ 17N7 þ 174N6 þ 773N5

þ 162N4 − 6176N3 þ 240N2 þ 28080N − 27360Þg2 þ 2Nð15N6 þ 66N5 þ 196N4 þ 421N3

− 570N2 − 2100N þ 2280Þg3ÞN þ 3ð29N8 þ 310N7 þ 997N6 − 1612N5 − 10020N4

þ 15600N3 þ 38400N2 − 112800N þ 91200Þg21Þ − 18Nð−N2 − 2N þ 8Þg4ððN8 þ 6N7 þ 47N6

þ 198N5 þ 1428N4 þ 7416N3 − 32512N2 − 121344N þ 311296Þg24N2 þ 32ððN6 þ 7N5 þ 113N4

þ 629N3 − 1470N2 − 7920N þ 16416Þg22 þ 24NðN4 þ 4N3 þ 41N2 þ 114N − 456Þg3g2
þ 48N2ð3N2 þ 3N þ 38Þg23ÞN2 þ 96ððN6 þ 6N5 þ 46N4 þ 225N3 − 728N2 − 3192N þ 7296Þg2
þ 2Nð5N4 þ 15N3 þ 86N2 þ 228N − 1216Þg3Þg4N2 þ 192g1ðð7N6 þ 65N5 þ 52N4 − 964N3 − 650N2

þ 7680N − 9120Þg2 þþ2Nð27N4 þ 141N3 − 190N2 − 1140N þ 1520Þg3ÞN þ 3ð3N8 þ 24N7

þ 325N6 þ 2364N5 − 100N4 − 41712N3 − 10240N2 þ 318720N − 389120Þg1g4N þ 3ð21N8 þ 294N7

þ 1599N6 þ 30N5 − 27920N4 þ 209600N2 − 499200N þ 486400Þg21�: ðB3Þ

The metric Gij is given by

G11 ¼
1

192N3
ðN8 þ 14N7 þ 83N6 þ 46N5 − 960N4 þ 4800N2 − 9600N þ 9600Þ;

G12 ¼ G21 ¼
1

24N2
ð2N6 þ 15N5 þ 11N4 − 140N3 þ 720N − 720Þ;

G13 ¼ G23 ¼
1

6N
ð5N4 þ 17N3 − 15N2 − 60N þ 60Þ;

G14 ¼ G41 ¼
1

32N2
ðN − 2ÞðN þ 4Þð3N4 þ 15N3 − 20N2 − 120N þ 160Þ;

G22 ¼
1

72N
ðN6 þ 6N5 þ 45N4 þ 124N3 − 168N2 − 720N þ 1296Þ;

G23 ¼ G32 ¼
1

6
ð2N4 þ 5N3 þ 9N2 þ 12N − 36Þ;

G24 ¼ G42 ¼
1

4N
ðN − 2ÞðN þ 4ÞðN2 þ 3N − 12Þ;

G33 ¼
1

6
N3ðN4 þ 2N3 þ 9N2 þ 8N þ 12Þ; G34 ¼ G43 ¼ ðN − 2ÞN3ðN þ 4Þ;

G44 ¼
1

32N
ðN − 2Þ2ðN þ 4Þ2ðN2 þ N þ 16Þ: ðB4Þ
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At this order it is independent of the couplings gi and is proportional to the matrix of two-point functions (43) in the free
theory in d ¼ 3.

APPENDIX C: CALCULATING THE HOPF CONSTANT

In this Appendix we compute the Hopf constant a at two loops. Introducing rescaled couplings gi ¼ 720ð8πÞ2ϵgi, the
beta functions at the critical value N ¼ Ncrit ¼ 4.475 in units of ϵ become

βg1
¼ −2g1 þ ð2339.99g1 þ 4273.55g2 þ 3840:g3 þ 4325.08g4Þg1 þ 2768.04g2

2 þ 2592:g2
4 þ 4608:g2g4;

βg2
¼ −2g2 þ ð509.966g1 þ 2962.93g2 þ 6748.16g3 þ 113.519g4Þg1 þ ð3456:g3 þ 360.299g4Þg4

þ ð2308.94g2 þ 11232.3g3 − 421.438g4Þg2;

βg3
¼ −2g3 þ ð42g1 þ 221.912g2 þ 576:g3 − 241.337g4Þg1 þ 10704.4g2

3 − 209.942g2
4 − 772.278g3g4

þ ð629.906g2 þ 4074.01g3 − 135.923g4Þg2;

βg4
¼ −2g4 þ ð226.417g1 þ 73.3524g2 þ 1708.55g4Þg1 − 618.547g2

2 þ ð1583.3g2 þ 3840:g3 þ 1066.11g4Þg4:

These beta functions have a fixed point at

g�ðNcritÞ ¼ 10−4 · ð3.48916;−4.64792; 3.04945;−1.08745Þ: ðC1Þ

Letting V ¼ ðv1; v2; v3; v̄3Þ be the matrix of eigenvectors vi of the stability matrix ð∂βgi∂gj
Þ evaluated at this fixed point,

V−1
�∂βgi

∂gj

�
V ¼ diagð2;−1.57495;−0.153965i; 0.153965iÞ: ðC2Þ

One can check that these eigenvalues change on varying N. In particular, the real parts of the complex eigenvalues change
linearly withN forN close toNcrit. Changing to variables t1 ¼ v1 · g, t2 ¼ v2 · g, t3 ¼ ℜ½v3 · g�, t4 ¼ ℑ½v3 · g�, we get the
equations

βt1 ¼ 2t1 − 3006.27t21 − 635.361t22 − 4.22379t23 þ 4.22379t24 þ 7.65924t3t4;

βt2 ¼ −1.57495t2 þ ð−638.903t1 þ 1471.36t2 − 96.8862t3 þ 72.0709t4Þt2
þ 1.0131t23 − 0.34628t24 − 1.37241t3t4;

βt3 ¼ −0.153965t4 þ ð231.430t4 − 3006.27t3Þt1 þ ð−31746.2t2 þ 1284.37t3 − 347.122t4Þt2
− 49.5972t23 þ 492.731t24 þ 178.686t3t4;

βt4 ¼ 0.153965t3 þ ð−231.43t3 − 3006.27t4Þt1 þ ð638.003t2 þ 730.144t4 − 82.7131t3Þt2
þ 8.73689t23 þ 823.772t24 þ 153.731t3t4: ðC3Þ

Wewish to study the RG flow in the manifold that is tangent
to the center eigenspace. We cannot simply set t1 and t2 to
zero, since this plane is not invariant under the RG flow: the
t23, t

2
4, and t3t3 terms in βt1 and βt2 generate a flow in t1 and t2.

But by introducing new variables with t1 and t2 suitably
shifted,

u1 ¼ t1 − 1.77501t23 þ 4.3762t4t3 þ 1.77501t24; ðC4Þ

u2 ¼ t2 − 0.709414t23 þ 0.676770t4t3 þ 0.286027t24;

ðC5Þ

the t23, t
2
4, and t3t3 terms in βu1 and βu2 cancel out. While βu1

and βu2 do couple to t3 and t4 at third order, one can introduce
new variables yet again and shift u1 and u2 by cubic terms in
t3 and t4 to remove this third order coupling. This procedure
may be iterated indefinitely to obtain a coordinate expansion
of the center manifold to arbitrary order, in accordance with
the center manifold theorem. We will content ourselves with
the cubic approximation of the center manifold, which
consists of the surfaceu1 ¼ u2 ¼ 0, since this approximation
suffices to determine theHopf constant. Eliminating t1 and t2
in favor ofu1 andu2 in the equations for βt3 andβt4 , settingu1
and u2 to zero, and discarding unreliable quartic terms gives
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βt3 ¼ −49.5972t23 þ 178.686t4t3 þ 492.731t24 − 0.153965t4

− 4425.01ð1:t33 − 2.81386t4t23 − 0.947101t24t3 þ 0.0703961t34Þ;
βt4 ¼ 8.73689t23 þ 153.731t4t3 þ 0.153965t3 þ 823.772t24

− 469.468ð1:t33 þ 7.98654t4t23 − 27.8962t24t3 − 10.9216t34Þ: ðC6Þ

From these equations the Hopf constant can be directly obtained by the use of equation (3.4.11)* in [51] or by the equivalent
formula in [52]. We find that

a ≈ 6204790 ðC7Þ

so thatHopf’s theoremguarantees the existence of a periodic orbit that is IR attractive in the centermanifold, implying that ifwe
fine-tune the couplings in the vicinity ofNcrit, there is a cyclic solution to the beta functions that comes back precisely to itself.
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