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We study quantum field theories with sextic interactions in 3 — e dimensions, where the scalar fields ¢
form irreducible representations under the O(N)? or O(N) global symmetry group. We calculate the beta
functions up to four-loop order and find the renormalization group (RG) fixed points. In an example of
large N equivalence, the parent O(N)? theory and its antisymmetric projection exhibit identical large N
beta functions that possess real fixed points. However, for projection to the symmetric traceless
representation of O(N), the large N equivalence is violated by the appearance of an additional
double-trace operator not inherited from the parent theory. Among the large N fixed points of this
daughter theory we find complex conformal field theories. The symmetric traceless O(N) model also
exhibits very interesting phenomena when it is analytically continued to small noninteger values of N. Here
we find unconventional fixed points, which we call “spooky.” They are located at real values of the
coupling constants g’, but two eigenvalues of the Jacobian matrix 9f'/d¢/ are complex. When these
complex conjugate eigenvalues cross the imaginary axis, a Hopf bifurcation occurs, giving rise to RG limit
cycles. This crossing occurs for N, = 4.475, and for a small range of N above this value we find RG flows

that lead to limit cycles.
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I. INTRODUCTION AND SUMMARY

The renormalization group (RG) is among the deepest
ideas in modern theoretical physics. There is a variety of
possible RG behaviors, and limit cycles are among the most
exotic and mysterious. Their possibility was mentioned in the
classic review [1] in the context of connections between RG
and dynamical systems (for a recent discussion of these
connections, see [2]). However, there has been relatively little
research on RG limit cycles. They have appeared in quantum
mechanical systems [3—6], in particular, in a description of
the Efimov bound states [7] (for a review, see [8]). The status
of RG limit cycles in quantum field theories (QFT) is less
clear. They have been searched for in unitary four-dimen-
sional QFT [9], but turned out to be impossible [10,11],
essentially due to the constraints imposed by the a theorem
[12-14].!

In this paper we report some progress on RG limit cycles
in the context of perturbative QFT. We demonstrate their
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ISee, however, Refs. [15,16], where it is argued that QFTs may
exhibit multivalued ¢ or a functions that do not rule out limit
cycles.
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existence in a simple O(N) symmetric model of scalar
fields with sextic interactions in 3 —e¢ dimensions. As
expected, the limit cycles appear when the theory is
continued to a range of parameters where it isS nonunitary.
The scalar fields form a symmetric traceless N x N matrix,
and imposition of the O(N) symmetry restricts the number
of sextic operators to four. When we consider an analytic
continuation of this model to noninteger real values of
N (a mathematical framework for such a continuation
was presented in [17]), we find a surprise. In the range
4.465 < N < 4.534, as well as in three other small ranges
of N, there are special RG fixed points which we call
“spooky.” These fixed points are located at real values of
the sextic couplings ¢’, but only two of the eigenvalues of
the Jacobian matrix Jp;/0g; are real; the other two are
complex conjugates of each other. This means that a pair
of nearly marginal operators at the spooky fixed points
has complex scaling dimensions.” At the critical value
N = 4.475, the two complex eigenvalues of the Jacobian
become purely imaginary. As a result, for N slightly bigger

These special complex dimensions appear in addition to the
complex dimensions of certain evanescent operators that are
typically present in € expansions [18]. The latter dimensions have
large real parts and are easily distinguished from our nearly
marginal operators. Some of the operators with complex dimen-
sions we observe resemble evanescent operators in that they
interpolate to vanishing operators at integer values of N; this is
discussed in Sec. IV.
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than N, where the real part of the complex eigenvalues
becomes negative, there are RG flows that lead to limit
cycles. In the theory of dynamical systems this phenomenon
is called a Hopf (or Poincare-Andronov-Hopf) bifurcation
[19]. The possibility of RG limit cycles appearing via a Hopf
bifurcation was generally raised in [2], but no specific
examples were provided. As we demonstrate in Sec. IV,
the symmetric traceless O(N) model in 3 — ¢ dimensions
provides a simple perturbative example of this phenomenon.

We show that there is no conflict between the limit cycles
we have found and the F theorem [20-27]. This is because
the analytic continuation to noninteger values of N below 5
violates the unitarity of the symmetric traceless O(N)
model, so that the F function is not monotonic. We feel
that the simple perturbative realization of limit cycles we
have found is interesting, and we hope that there are
analogous phenomena in other models and dimensions.

Our paper also sheds new light on the large N behavior
of the matrix models in 3 — e dimensions. Among the
fascinating features of various large N limits (for a recent
brief overview, see [28]) are the “large N equivalences,”
which relate models that are certainly different at finite N.
An incomplete list of the conjectured large N equivalences
includes [29-36]. Some of them appear to be valid, even
nonperturbatively, while others are known to break down
dynamically. For example, in the nonsupersymmetric
orbifolds of the N = 4 supersymmetric Yang-Mills theory
[30-33,37], there are perturbative instabilities in the large
N limit due to the beta functions for certain double-trace
couplings having no real zeros [38—41].

In Sec. III we study the RG flows of three scalar theories
in 3 —¢ dimensions with sextic interactions: the parent
O(N)? symmetric model of N x N matrices ¢**, and its
two daughter theories which have O(N) symmetry. For
each model, we list all sextic operators marginal in three
dimensions, compute the associated beta functions up to
four loops, and determine the fixed points. One of our
motivations for this study is to investigate the large N
orbifold equivalence and its violation in the simple context
of purely scalar theories. We observe evidence of large N
equivalence between the parent O(N)? theory and the
daughter O(N) theory of antisymmetric matrices: both
theories have three invariant operators, and the large N
beta functions are identical. However, the large N equiv-
alence of the parent theory with the daughter O(N)
theory of symmetric traceless matrices is violated by the
|

appearance of an additional invariant operator in the latter.
The large N fixed points in this theory occur at a complex
value of the coefficient of this operator. As a result, instead
of the convention conformal field theory (CFT) in the
parent theory, we find a “complex CFT” [42,43] (see also
[44]) in the daughter theory. As discussed above, analytical
continuation of this model to small noninteger N leads to
the appearance of the spooky fixed points and limit cycles.

II. THE BETA FUNCTION MASTER FORMULA

In a general sextic scalar theory with potential

A
V(g) =G bbb i, (1)

the beta function receives a two-loop contribution from the
Feynman diagram

In [26,27,45] one can find explicit formulas for the
corresponding two-loop beta function in d = 3 — ¢ dimen-
sions. Equation (6.1) of the latter reference reads

12Vijk<¢>vijk(¢)7 (2)

Bv(d) = —2eV($) + 3(87)

where V;_(¢) = % . oa%jV(qb). By taking the indices to
stand for doublets of subindices, this formula can be used to
compute the beta functions of matrix tensor models. In order
to apply the formula to models of symmetric or antisym-
metric matrices, however, we need to slightly modify it.
Letting i and j stand for doublets of indices, we define the

object C¥ via the momentum space propagator:

@R RN =5 o)

With this definition in hand, Eq. (2) straightforwardly
generalizes to

Cii’ ij’ Ckk’

B9 = 2V () + g

Vi ik (¢) Vi’j’k’ (¢) . (4)

At four-loops the following four kinds of Feynman diagrams
contribute to the beta function:
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The resulting four-loop beta function can be read off from
Eq. (6.2) of [45],

@ 1 1 4
ﬂV - (871')4 8 Vijviklmnvjklmn - 5 Vijkvilmnvjklmn
71'2 s
T VijkIVklmn+> +diriiVie (5)

where the anomalous dimension y‘i’; is given by

1
(L NN DO 6
7/1] 90(877)4 iklmnp?jklmnp ( )

The above two equations also admit of straightforward
generalizations by contracting indices through the CV
matrix.

Before proceeding to matrix models, we can review the
beta function obtained by the above formulas in the case of
a sextic O(M) vector model described by the action

S = / d3<x (;(8,,4)")2 +6g!(¢i¢")3>, (7)

where the field ¢’ is an M-component vector. The four-loop
beta function of this vector model is given by [45,46]

192(3M +22) ,

~ 2
by =260 T 15

- G E (9216(53M? + 858M + 3304)

+ 11522% (M3 + 34M* + 620M + 2720))g°. (8)

This equation provides a means of checking the beta
functions of the matrix models, which reduce to the vector
model when all couplings are set to zero except for the
coupling, denoted g3 below, associated with the triple trace
operator.

III. SEXTIC MATRIX MODELS

We now turn to matrix models in d = 3 — ¢ dimensions.
The parent theory we consider has the Lagrangian given by

| s—

N/

Ol 02

FIG. 1.

5= [ @ J @ + g @010
#0:0,00) + 910405 )

where the dynamical degrees of freedom are scalar matrices
¢** which transform under the action of a global O(N) x
O(N) symmetry. The three operators in the potential are

01 — ¢a1b1¢a2b1¢a2b2¢a3b2¢a3b3¢alb3 — tr[¢¢T]3,
0y = g b st gt it  telppT el 2,
03 = (¢p*¢*")* = (ulgpg’])’. (10)

They make up all sextic operators that are invariant under
the global symmetry. Later we will also study projections
of the parent theory that have only a global O(N) symmetry
that rotates first and second indices at the same time. In
such models it becomes possible to construct singlets via
contractions between first and second indices, and therefore
there is an additional sextic scalar:

0y = (pH12hpngm)? = (r[¢?])%. (11)

The sextic operators are depicted diagrammatically in
Fig. 1. We could also introduce an operator containing
tr[¢], but since the orbifolds we will study are models of
symmetric traceless and antisymmetric matrices, the trace
is identically zero. In the antisymmetric model, the operator
O, vanishes, but it is nonvanishing in the symmetric
orbifold, and so in this case we will introduce this addi-
tional marginal operator to the Lagrangian and take the
potential to be given by

V() = 410101 (3) + 202(6) + 9:05(2) + :04(x).
(12)

To study the large N behavior of these matrix models, we
introduce rescaled coupling constants Ay, 4,, 43, 44. To
simplify expressions, it will be convenient to also rescale
the coupling constants by a numerical prefactor. We
therefore define the rescaled couplings by

N/ N

03 04

The sextic operators in matrix models. The double trace operator O, exists only in the theory of symmetric matrices.
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A A
a1 = 6!(8”)2W’ 9 = 6!(8”)2ﬁ,

A A
g5 =618z 5. g5 =6!(8n)° 5. (13)

To justify these powers of N, let us perform a scaling
¢ — \/N¢®. Then the coefficient of each g-trace term in
the action scales as N2~9. This is the standard scaling in the
’t Hooft limit, which ensures that each term in the action is
of order N2.

A. The O(N)?* parent theory

For the matrix model parent theory, the momentum space
propagator is given by

b oy 5aa’5bb’
(@ (k)p*” (=k))o = 2 (14)
Computing the four-loop beta functions and taking the
large N limit with scalings (13), we find that, up to O(3)
corrections,

By, = — 226 + 7213 — 288(17 + %) A3,
Bi, = — 24p€ + 43203 + 96411, — 864(90 + Tn%) 23
— 864(10 + %) 13 1,,
B, = — 243€ + 16847 + 1924, 4, + 3243
—432(210 + 237%)43 — 1152(39 + 472) 124,
128

+ 46084345 ~768(6 + w)iB3 — -4 (1)

These beta functions have two nontrivial fixed points, which
are both real. But one of these fixed points, which comes from
balancing the two-loop and four-loop contributions, is not
perturbatively reliable in an e expansion around ¢ =0
because all the couplings at this fixed point contain terms
of order O(e®). The other fixed point is given by

e 17+, e 2477 ,
| ==+ ——¢, A =—F——F¢€,
36 324 2 36
295 4714 + 630172 ,
=—e+—— €. 1
T R TR (16)
At this fixed point the matrix (gjﬁ’ has eigenvalues
32 , 2¢ 4441077 34 + 272
{—26 +3€2’?€ —%(—32,26 —#62}.

Each eigenvalue m; corresponds to a nearly marginal
operator with scaling dimension

Ai:d+mi:3—€—|—mi. (18)

Thus, negative eigenvalues correspond to slightly relevant
operators, which cause an instability of the fixed point.
The only unstable direction, corresponding to eigenvalue
—2e¢ + % €%, is

245  42257% — 4188 677% —28
(21, 298 88 ), (1, T

(19)

The above comments relate to the O(N)?> matrix
model at N = 0. We can also study the model at finite
N. One interesting quantity is N,;,, the smallest value
of N at which the fixed point that interpolates to the
large N solution (16) appears as a solution to the beta
functions. This fixed point emerges along with another
fixed point, and right at N,;, these solutions to the beta
opi

functions are identical, so that the matrix (E) is
J

degenerate. So we arrive at the following system of
equations:

Bi(A:.N) =0, det<%>(/li,1v)=o. (20)

J

This system of equations can easily be solved numeri-
cally to zeroth order in ¢, and with a zeroth order
solution in hand the first order solution can be obtained
by linearizing the system of equations. We find that
Npin = 23.2541 — 577.350¢, which nicely fits the results
of a numerical study where we compute N, at
different values of e:

€ 0
Npin  23.255

0.001 0.002  0.003  0.004  0.005
22.682 22.124 21.576 21.039 20.511

These values result in a numerical fit N, (¢) =
23.255 — 553.7¢, which coincides with the result stated
above.

If we take N to be finite and ¢ < # we can provide
some more details about the number and stability of fixed
points for different values of N. For N > 23.2541 —
577.350¢ there are three nontrivial, real, perturbatively
accessible fixed points, which in the large N limit, to
leading order in €, scale with N as
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6!(87)% ¢
= :O = —_—
9 =9 ) g3 288 N2’
6!(87)% € 10 € 6!(87)% €
- ) - __.6! 8 2_7 - s
D=3 w0 9T 3000 s
6!(87)% € 1 € 295 €
= < = 2. 61(87)2—, =2 61(87)° = . 21
9 6 N2 9= =7 687)" =5 9 =105 0'87)° 13 (21)

The first of these three fixed points is identical to the vector
model fixed point; that is to say, the symmetry is enhanced
from O(N)? to O(N?). This fixed point extends to all N in
the small € regime we are considering:

6!(87)>

=0 (2
5 =gmins (P

91 =9 =0,
The third fixed point in (21) extends to the regime where
N? > % and becomes the large N solution discussed above.

This fixed point merges with the second fixed point in (21)
at a critical point situated at N(e) = 23.2541 — 577.350¢

|
points appears, but then at N(¢) = 2.72717 — 0.757475¢
two of the fixed points merge and become complex. Then at
N(e) = 2.33265 — 0.316279¢ two new fixed points appear,
but these disappear again at N(¢) = 0.827007 + 8.10374e,
so that for N below this value there are a total of three real
nontrivial fixed points. The behavior of the various fixed
points as a function of N is summarized in more detail in
Figs. 2 and 3.

B. The O(N) model of antisymmetric matrices

For the theory of antisymmetric matrices ¢/ = —¢ the
momentum space propagator is given by

And so at intermediate values of N, only the vector
model fixed point exists. But as we keep decreasing N
we encounter another critical point at N(e) = 5.01072 +
14.4537¢, from which two new solutions to the vanishing
beta functions emerge. As N further decreases past the
value N(e) = 2.75605 — 0.0161858¢, another pair of fixed
|

1

— 2k2 (5au 51717 _ éuh éha )

(@ (k)" (=k))o (23)
Performing the large N expansion using the scalings (13)
we get the large N beta functions

By, = —2he + 1822 = 18(17 + 7243,
B, = = 2ye + 10823 + 244, — 54(90 + 77223 — 54(10 + 72)434,,
By, = — e + 422 + 481, 4, + 83 — 27(210 + 2372)13 — 72(39 + 4n2) 24,

8
+ 2884245 — 48(6 + 72 A3 — - 2243,

- (24

These beta functions are equivalent to (15) up to a redefinition of the rescaled couplings by a factor of 4, which is
compatible with this daughter theory being equivalent in the large N limit to the parent theory studied in the previous
section.

We can also study the behavior of this model for finite N and ¢ <« 1. For N > 35.3546 — 673.428¢ there are three (real,
perturbatively accessible) fixed points, which in the large N limit (keeping ¢ <« #) to leading order in the € scale with N as

6!(87)% €
91 =9 =0, 9= a1 N2
6!1(87) e 10 e 6!(87) e
= ) - __'6! 8 2_7 - 300
9 N 92 == 01(87) <3 B= N
6!(87)% ¢ € 295 €
9 ="9 N =2 6!(8”)2ﬁ, 93 :7'6!(8”)2m- (25)

The first of these three fixed points is the vector model fixed point, and it is present more generally in the small € regime we
are considering:
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N

23.25 —

5.01 —

trivial fixed point

3.714 —

2.76 —

2.73 —

233 —

0.83 —

large N fixed point

vector model fixed point

~

N gl/E

g2/€ gs/€

23.2541 — 577.350€

20.3055 + 1085.34¢

—10.2467 — 671.121¢

2.64544 + 226.967¢

5.01072 + 14.4537¢

18.4283 + 56.2132¢

37.3192 + 141.611¢

22.5095 + 65.4233¢

V14 + O(e)

O(e?)

undetermined O(e)

1572 /2 4+ O(e)

2.75605 — 0.0161858¢

477.273 + 5099.17€

—829.732 — 8328.37¢

382.831 + 3255.35¢

2.72717 — 0.757475¢

210.819 + 1081.1€

—428.594 — 2397.37¢

270.026 + 1676.65¢

2.33265 — 0.316279¢

755.558 + 5809.01¢

—1059.23 — 8206.69¢

438.184 + 3265.96¢

0.827007 + 8.10374¢

237.478 + 3365.73¢

—261.049 — 4508.85¢

220.926 + 2109.71e

FIG. 2. The real perturbative fixed points of the O(N)? matrix model parent theory, the intersection point (marked in brown), and the
critical points at which they merge and disappear (marked in black) as a function of N for small e. Fixed points that are IR unstable in all
three directions are drawn in red, those unstable in two directions are drawn in violet, those unstable in one direction are drawn in blue,
and those that are stable in all three directions are drawn in green. The four-loop corrections to the third point on the list, where two fixed

lines intersect, are undetermined for any O(e?) value of 4,.

6!(87)?
= €.
48(44 — 3N + 3N?)

n=6=0 g (26)
The third fixed point in (25) extends to the regime where
N? > % and becomes the large N solution discussed above.
This fixed point merges with the second fixed point in (25) at

a critical point situated at N (¢) = 35.3546 — 673.428¢. And
so at intermediate values of N, only the vector model fixed
point exists. But as we keep decreasing N we encounter
another critical point at N(e) = 6.02669 + 7.37013¢,
from which two new solutions to the vanishing beta func-
tions emerge. As N further decreases past the value
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N N
4 _/
2 7 2l
0 200 400 500 800 9 21000 ~500 92
2 o
4 \ _
N
4
2
B 1 2 300 400 500 > 93
-2
_a

FIG. 3.

The locations of the real perturbative fixed points of the O(N)? matrix model in the space of coupling constants as a function of

N for small e. The colors indicate the number of stable directions associated with a given fixed point as in Fig. 2.

N(e) = 5.70601 + 0.540694¢, another pair of fixed points
appears, and past N (¢) = 5.075310 — 0.0278896¢ yet another
pair of fixed points appears (in this range of N, all seven
nontrivial solutions to the vanishing beta functions are real).
But already below N(e) = 5.03275 — 0.586724¢, two of the
fixed points become complex, and below N(e) = 3.08122 +
8.26176¢ two more fixed points become complex, so that for N
below this value there are a total of three real nontrivial fixed
points. The behavior of the various fixed points as a function of
N is summarized in more detail in Figs. 4 and 5.

C. Symmetric traceless matrices and violation
of large N equivalence

There is a projection of the parent theory of general real
matrices ¢“? which restricts them to symmetric matrices
¢ = ¢". In order to have an irreducible representation of
O(N) we should also require them to be traceless tr¢p = 0.
Then the propagator is given by

~ ~ I 1 ! U / ! 2 N
<¢ab(k)¢ab (—k)>0 _(5au 517}1 +5ab 5hu _N(Sahéuh)‘

The operators O, 34 are actually independent for N > 5,
while for N = 2, 3,4, 5 there are linear relations between them:

i) N= 2:04 =0, 03 = 202 = 401,

(i) N =3:05,=20,,20, =305+ 60,

(iii)) N =4,5:180, + 80, =240, + 30;.
We will see that the existence of these relations for small integer
values of N has interesting implications for the analytic
continuation of the theory from N > 5to N < 5.

Let us first discuss the large N theory. For the rescaled
couplings 4;, 4,, and A, the large N beta functions are the
same as (24) for the antisymmetric model. But now there is
an additional coupling constant, whose large N beta
function is given by

ﬁ/h = —26‘/14 —+ 72@% + 36/11/14 + 6/1‘2‘ - 7382%/14

— 18(180 + 1172)43. (28)

Consequently, the RG flow now has five nontrivial fixed
points, two of which are real fixed points but with coupling

Y constants containing O(e) terms. Another pair of fixed
(27) points is given by
|

e 17+ 72 22 + 7% 295 4714 + 630172

A=< 2 m—pe-2T Mo G 2R HRTOIE o
AR T I T 486 ¢

-3 +iv39 273 — 782% 4+ i\/39(67 + 1222

Ay = ! €+ £ 67+ 127) e, (29)

18 2106
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N

large N fixed point

35.35 —

vector model fixed point

trivial fixed point

5.82 — /‘

N Al/ﬁ )\2/6 )\3/6

35.3546 — 673.428¢ | 49.5253 + 2344.67¢ | —14.7886 — 819.812¢ | 2.27483 + 172.497¢

6.02669 4 7.37013¢ | 13.2186 4 135.952¢ | 46.5606 + 358.588¢ | 52.3442 + 184.725¢
(1++/113)/2 + O(e) O(e?) undetermined O(e) 1572 /2 4+ O(e)
5.70601 + 0.540694€ | 1835.96 + 12199.7¢ | —1514.42 — 9969.85¢ | 315.529 + 1975.47¢
5.07531 — 0.0278896¢ | 1742.93 4+ 14681.9¢ | —1228.95 — 10464.7¢ | 275.926 + 2170.35¢
5.03275 — 0.586724¢ | 350.124 + 3001.15¢ | —404.283 — 3356.64¢ | 180.867 + 1310.49¢

3.08122 4- 8.26176¢ | 666.939 + 7903.77e¢ | —373.592 — 5369.46¢ | 170.179 + 1403.34¢

FIG. 4. The real perturbative fixed points of the antisymmetric matrix model, their intersection point (marked in brown), and the
critical points at which they merge and disappear (marked in black) as a function of N for small e. Fixed points that are IR unstable in all
three directions are drawn in red, those unstable in two directions are drawn in violet, those unstable in one direction are drawn in blue,
and those that are stable in all three directions are drawn in green.

The first three coupling constants assume the same value as for the antisymmetric model, a rescaled version of (16) of the
parent theory, but the additional coupling constant assumes a complex value, thus breaking large N equivalence and
suggesting that the fixed point is unstable and described by a complex CFT [42,43].

. . s, . ) .
We find that the eigenvalues of ()/}TA at this complex fixed point are
]

32 13 67+ 122 ,2 224572 17 + 72
{—2€+3€2,:F2i1/?€i2i9+7\/3_9”€2,§€—2%62,2€—2 ;” 62}, (30)
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FIG. 5.

g3

The locations of the real perturbative fixed points of the antisymmetric matrix model in the space of coupling constants as a

function of N for small e. The colors indicate the number of stable directions associated with a given fixed point as in Fig. 4.

where the imaginary eigenvalue is associated with a
complex linear combination of A; and 4. Thus, there is
actually a pair of complex large N fixed points: at one of
them there is an operator of complex dimension
d+ 1A =3 — e+ iA, while at the other it has dimension

d —iA, where A = 2\/7 267“2” €2. Thus, this pair of

complex fixed points satisfies the cr1ter1a to be identified as
complex CFTs [42,43]. In our large N theory, the scaling
dimensions d & iA correspond to the double-trace operator
Oy, so that the single -trace operator tr¢p> should have
scaling dimension § (d + iA). Indeed, we find that its two-
loop anomalous d1mens10n is, for large N,

13
Vi g :6(3/11+/12):€ii\/?€. (31)

Therefore,

d 3—¢ . /13 d=+iA
Atr¢3 —3<§— 1) +Ytr¢3 = 2 Zl:l ?6‘: 2 .

(32)

Scaling dimensions of this form are ubiquitous in large N
complex CFTs [41,44,47,48]. In the dual anti—de Sitter

’As N is reduced, the two complex conjugate fixed points
persist down to arbitrarily small N. For finite N, however, the
complex scaling dimensions are no longer of the form d + iA: the
real part deviates from d, which is consistent with the behavior of
general complex CFTs [42,43].

(AdS) description they correspond to fields violating the
Breitenlohner-Freedman stability bound.

Let us also note that the symmetric orbifold has a fixed
point where only the twisted sector coupling is nonvanishing:

Aip3 =0, Ay = (33)

€
3
It could be connected to the fact that in the large N limit of the
parent theory the O, could not contribute to the beta
functions of the other operators and therefore we can safely
set A 5.3 = 0 without setting 44 # 0.

We can also study the behavior of this model for finite N
and e < 1. For N > 13.1802 — 57.5808¢ there are three
(real, perturbatively accessible) fixed points, which in the
large N limit (keeping € <« #) to leading order in € scale with

N as
6!(87)?
0 g g g s = ——F5 €,
91 =92 = 94 g3 144N2 €
6! 87r 6!(87)2
gy = 144 ( ) €, g, = 66 (Ns)e,
6!(87)? 6!(87)?
= ——€ = €
BTNz BTN
6!(87)? 6!(87)?
g1 = —144 NS €, =18 N €,
6!(87)? 6!(87)?
g3 =—18 NO > 94 = 3IN? € (34)
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13.180 —

5.501 —

5.414 —

5.023 —

5.000 —

4.534 —

4475 —

4.465 —

3.400 —

2.441 —

1.186 —

1.175 —

1.140 —

1.094 —

1.041 —

0.934 —

0.702 —

0.521 —

0.466 —

0.457 —

0.253 —

0.160 —

large N fixed point

vector model fixed point

trivial fixed point

N

gi/e

g2/

ga/e

ga/e

13.1802 — 57.5808¢

37.9805 + 498.738¢

13.7692 + 157.614¢

0.774624 + 9.43200e

21.5178 + 155.312¢

5.50104 — 0.966432¢

1424.22 + 11076.8¢

—1176.03 — 9116.73¢

247.515 4 1873.61¢

—454.872 — 3511.98¢

5.41410 + 13.7204

24.4748 + 360.178¢

57.2276 + 450.992¢

39.8006 — 29.6552¢

—2.62055 — 19.2614¢

5.02251 4 0.314146¢

1132.14 + 13268.0¢

—T775.767 — 9368.16¢

185.009 + 1864.18¢

—372.446 — 4364.10¢

5+0()

O(e?)

undetermined O(e)

1572/2 + O(e)

O(e?)

5

868.525 4 8195.57¢

—651.394 — 6497.79¢

182.588 + 1618.14¢

—289.508 — 2731.86¢

3.39974 + 5.04412¢

308.575 + 3818.19¢

—149.500 — 2394.44¢

113.071 + 818.926¢

—100.935 — 1242.36¢

1.18613 — 1.96911e

113.631 + 136.626¢

—445.062 — 3310.43¢

475.932 + 3758.3¢

573.101 4 3747.7¢

1.139999 — 0.0564804¢

7.14941 + 103.455¢

—121.617 — 1749.67¢

281.382 + 2487.82¢

113.505 + 1635.81¢

0.931072 — 0.0890231¢

0.0911386 + 344.846¢

—2777.40 — 9338.97¢

1172.45 + 4559.95¢

2333.01 + 8376.93¢

0.701527 + 10.3604¢

12.8934 + 848.994¢

—57.8652 — 4059.74¢

279.112 + 3827.54e

67.4704 + 4336.08¢

0.521281 — 14.4794€

3.96346 — 441.552¢

—16.5232 4 1957.63¢

257.847 4 606.789¢

22.3424 — 2270.44¢

0.465602 — 6.81219¢

1.79072 — 162.063¢

24.3958 — 1503.26¢

228.454 + 2430.09¢

—15.2518 + 919.203¢

(V33 -3)/6+ O(e)

undetermined O(e)

undetermined O(e)

2472 + O(e)

09

FIG. 6. The perturbative real fixed points of the symmetric matrix model, the intersection points (marked in brown), and the critical
points at which they merge and disappear (marked in black) as a function of N for small e. Fixed points that are IR unstable in all four
directions are drawn in red, those unstable in three directions are drawn in violet, those unstable in two directions are drawn in blue,
those unstable in one direction are drawn in cyan, and those that are stable in all four directions are drawn in green. The orange dotted

lines denote the segments of spooky fixed points, where two eigenvalues of g—{j are complex, and at the orange vertex those eigenvalues
g
are purely imaginary.
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The locations of the real perturbative fixed points of the symmetric matrix model in the space of coupling constants as a

function of N for small €. The colors indicate the number of stable directions associated with a given fixed point as in Fig. 6, with orange

b

f)gj

signifying that =t has complex eigenvalues.

The first of these three fixed points is the vector model fixed
point, which is present generally N in the small e regime:

B 6!(87)?
P T 48(38 + 3N + 3N?)

The third fixed point in (34) connects to the large N solution
discussed above. This fixed point merges with the second
fixed point in (34) at a critical point situated at N(e) =
13.1802 — 57.5808¢ And so at intermediate values of N,
only the vector model fixed point exists. But as we keep
decreasing N we encounter another critical point at N(e) =
5.41410 + 13.7204¢ whence two new fixed points emerge.
As we continue to lower N, new fixed points appear and
disappear as summarized in detail in Figs. 6 and 7.

IV. SPOOKY FIXED POINTS
AND LIMIT CYCLES

As indicated in Fig. 6, in the O(N) symmetric traceless
model there exist four segments of real, but spooky, fixed
points as a function of N.* For these fixed points the
Jacobian matrix (g%) has, in addition to one negative and
one positive eigenvalue, a pair of complex conjugate
eigenvalues. Therefore, there are two complex scaling
dimensions (18) at these spooky fixed points, so that they
correspond to nonunitary CFTs. The eigenvectors

“If we allow negative N, there is a fifth segment of spooky
fixed points at N € (—3.148, —3.183).
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corresponding to the complex eigenvalues have zero norm
(a derivation of this fact is given later in this section). Let us
note that, in the O(N)? model and the O(N) model with an
antisymmetric matrix, there are no real fixed points with
complex eigenvalues. The symmetric traceless model
provides a simple setting where they occur. In this section
we take a close look at the spooky fixed points and show
that they lead to a Hopf bifurcation and RG limit cycles.

Of the four segments of spooky fixed points with
positive N, three, namely those that fall within the ranges
given by N € (1.094,2.441), N € (1.041,1.175), and
N € (0.160,0.253), share the property that the complex
eigenvalues never become purely imaginary. The number
of stable and unstable directions therefore remain the same
within these intervals. Something special happens, how-
ever, at the integer value N = 2 that lies within the first
interval. Here the two operators with complex dimensions
are given by linear combinations of operators O; that vanish
by virtue of the linear relations between these operators at
N = 2. As aresult, for N = 2 there are no nearly marginal
operators with complex dimensions, as expected.

The fourth segment of spooky fixed points stands out in
that it includes a fixed point with imaginary eigenvalues.
This fourth segment lies in the range N € (Njowers Nupper)»
where, at the four-loop level,

N ypper & 4.5339959143 + 1.54247¢,

Niower ~ 4.4654144982 + 0.693698¢. (36)
As N approaches N, from above, (2%) has one positive

and three negative eigenvalues, and two of the negative
eigenvalues converge on the same value. As N dips below
Nypper» the two erstwhile identical eigenvalues become
complex and form a pair of complex conjugate values.
As we continue to decrease N, the complex conjugate
eigenvalues traverse mirrored trajectories in the complex
plane until they meet at the same positive value for N equal
to Njower- These trajectories are depicted in Fig. 8. For a
critical value N = N4 with Nygyer <N < Nypper, the
trajectories intersect the imaginary axis such that the two
eigenvalues are purely imaginary. At the two-loop order we
find that

N & 447507431683, (37)
and the fixed point is located at

gt = 158.684¢,

g5 = —211.383e,
gi = 138.686¢. ;

g = —49.4564¢. (38)

>This is similar to what happens to evanescent operators when
they are continued to an integer dimension.

Im(A)

Re(A)
0.05  0.10

FIG. 8. The trag')f;ctories of the complex eigenvalues of the
p

Jacobian matrix (W) as N is varied from Nigyer t0 Nypper-
9j

The Jacobian matrix evaluated at this fixed point is

(5s)

—1.65273 —1.58311 1.33984 —1.19641
1.0242 0.358518 —3.24194 1.21102
- 0.128059  0.749009 29199  —-0.210872
—0.0618889 0.428409 —-0.417582 —1.20064
(39)

with eigenvalues {2, —1.57495, —0.153965i,0.153965i }¢.
These quantities are subject to further perturbative correc-
tions in powers of €, for example, after including the four-
loop corrections N ~ 4.47507431683 + 3.12476¢. The
existence of a special spooky fixed point with imaginary
eigenvalues is robust under loop corrections that are sup-
pressed by a small expansion parameter, since small
perturbations of the trajectories still result in curves that
intersect the imaginary axis. In light of the negative value of
gs, one may worry that the potential is unbounded from
below at the spooky fixed points. It is not clear how to
resolve this question for noninteger N, but at the fixed
points at N =4 and N =5 that this spooky fixed point
interpolates between, one can explicitly check that the
potential is bounded from below.

The appearance of complex eigenvalues changes the
behavior of the RG flow around the spooky fixed point.
Since the fixed point has one negative eigenvalue for all
N € (Niower» Nypper)» there is an unstable direction in the
space of coupling constants that renders the fixed point IR
unstable. But we can ask the following question: How do
the coupling constants flow in the two-dimensional mani-
fold that is invariant under the RG flow and that is tangent
to the plane spanned by the eigenvectors of the Jacobian
matrix with complex eigenvalues?

If the real parts of these eigenvalues are nonzero, the
spooky fixed point is a focus and the flow around it is
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described by spirals steadily moving inwards or outwards
from the fixed point. For N > N, the real parts are
negative and the fixed point is IR unstable, while for N <
N the real parts are positive and the fixed point is stable.
By the Hartman-Grobman theorem [49,50], one can locally
change coordinates (redefine the coupling constants) such
that the beta functions near the fixed points are linear.
Furthermore, one can get rid of the imaginary part of the
eigenvalues in this subspace by a suitable field redefini-
tion.® An analogous statement was given in [10].

When N = N, the real parts of the complex eigen-
values are equal to zero. In this case the equilibrium point is
a center, the Hartman-Grobman theorem is not applicable,
and the behavior near the fixed point is controlled by the
higher nonlinear terms in the autonomous equations. If we
consider N as a parameter of the RG flow, N = N
corresponds to a bifurcation point, as first introduced by
Poincare. A standard method of analyzing bifurcations is to
reduce the full system to a set of lower dimensional systems
by the use of the center manifold theorem [51]. Denoting by
A the eigenvalues of the Jacobian matrix at a given fixed
point, this theorem guarantees the existence of invariant
manifolds tangent to the eigenspaces with Rel > 0,
Rel < 0, and Re 4 = 0, respectively. The latter manifold
is known as the center manifold, and in general it need be
neither unique nor smooth. But when, as in our case, the
center at g* is part of a line of fixed points in the space
(9,N) that vary smoothly with a parameter N, and the
complex eigenvalues satisfy

d
K = R (Nei)] 0. (40)

then there exists a unique three-dimensional center mani-
fold in (g, N) passing through (g*, N ). On planes of
constant N in this manifold, there exist coordinates (x,y)
such that the third order Taylor expansion can be written in
the form

d +
d)zc = (kN + a(x* +y?))x = (@ + cN + b(x* + %))y,
d + +
di = (@ + N +b(x* +y*))x + (kN + a(x* + %))y,

(41)
|

(N=5)(N—4)(N—=3)2(N=2)3N*(N +1)*(N + 3)(N +4)3(N + 6)>(N + 8)(N + 10)

where ¢ = In u. The constant a in these equations is known as
the Hopf constant. By atheorem due to Hopf [ 19], there exists
an [R-attractive limit cycle in the center manifold if a > 0,
while if a < 0 there exists an IR-repulsive limit cycle. In the
Appendix C, we present an explicit calculation of a for the
critical point in the symmetric matrix model, and we find that
a is positive. Hence, we conclude that on analytically
continuing in N, the RG flow of this QFT contains a periodic
orbit in the space of coupling constants, an orbit that is
unstable but which in the center manifold constitutes an
attractive limit cycle. This conclusion holds true at all orders
in perturbation theory, since the criteria of Hopf’s theorem,
being topological in nature, are not invalidated by small
perturbative corrections. Figure 9 depicts a numerical plot of
RG trajectories approaching the limit cycle.

Now that we have demonstrated the existence of
limit cycles, we should ask about their consistency with
the known RG monotonicity theorems. In particular, in
three dimensions the F' theorem has been conjectured and
established [20,21,23]. Furthermore, in perturbative three-
dimensional QFT, one can make a stronger statement that
the RG flow is a gradient flow, i.e.,

OF
g’
where F and the metric G;; are functions of the coupling
constants that can be calculated perturbatively [22,24-27].
At leading order, G;; may be read off from the two-point
functions of the nearly marginal operators [24,25]:

Gl = (42)

Gij (43)

(0i(x)0;(y)) = 7—5-
lx =

The F function satisfies the RG equation

a_ 90 '
This shows that, if the metric is positive definite, then F
decreases monotonically as the theory flows toward the IR.
These perturbative statements continue to be applicable in
3 — ¢ dimensions.

At leading order, the metric G;; is exhibited in
Appendix B. Its determinant is given by

2654208

. (45)

®For instance, in two dimensions with z = x -+ iy, the equation 7 = (—a + iw)z can via a change of variable z — ze's'°¢| be reduced

to z = —az.

"In [26,27] the terminology a function was used, but we prefer to call it F' function instead, since a typically refers to a Weyl anomaly

coefficient in d = 4.
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LES

0.0003

—0.0004

FIG. 9. The RG flow in the invariant manifold tangent to the
plane spanned by the eigenvectors with complex eigenvalues in
the space of coupling constants for N = 4.476. In the IR, the blue
curve whirls inwards toward a limit cycle marked in black, while
the orange curve whirls outwards toward the limit cycle. The
coordinates 73 and #, are given by linear combinations of
the couplings gi, 9>, g3, and g, and are defined in Appendix C.
The RG flow on the invariant manifold admits of a description in
an infinite expansion in powers of 73 and #4. This plot is drawn
retaining terms up to cubic order.

This shows that the metric has three zero eigenvalues for
N =2, two zero eigenvalues for N =3, and one zero
eigenvalue for N =4 and 5. This is due to the linear
relations between operators O; at these integer values of N.
For example, for N =2 there is only one independent
operator. In the range 4 < N <5, detG;; < 0, the metric
has one negative and three positive eigenvalues. This is
what explains the possibility of RG limit cycles in the range
Nigwer <N < Nypper- For N > 5, G;; is positive definite,
and for N < —10, G;; is negative definite. This is consistent
with our observing spooky fixed points only outside of
these regimes.

In general, the norms of vectors computed with this
metric are not positive definite for N < 5. In particular, we
can show that the eigenvectors corresponding to complex
eigenvalues of the Jacobian matrix evaluated at real fixed

*We have also found the metric for the parent O(N)? theory.
In this case it is positive definite for all N except N € {—4, -2,
1,2}, where there are zero eigenvalues. We further found the
metric for the antisymmetric matrix model. In certain intervals
within the range N € (—4,5) it has both positive and negative
eigenvalues, but numerical searches reveal no spooky fixed points
in these intervals.

(F(t)-Fp)*€3x10"2

FIG. 10. The plot of 10'2(F(z) — Fyy)/€’, where F is the value
at the spooky fixed point, for the cyclic solution found in Sec. IV
for N = 4.476.

points have zero norm. Indeed, let us assume that we have a
complex eigenvalue m € C with eigenvector u',

op'
og’

w = mu'. (46)

Now let us differentiate the relation (42) with respect to gX:
OkGp’ + G 0x P’ = 0,0kF. (47)

At a spooky fixed point we have p’(g) =0 for real
couplings g. Contracting the relation (47) with uX and
! at a spooky fixed point we get

L_iIG[JaKﬂJMK = MKﬁIa[aKF. (48)
Using (46) we arrive at the following relations:
mﬁluJG” = ﬁlujalajF. (49)

Since G;; and 0,0, F are real symmetric matrices, the norm
u?> = Gyu'i! and f = ! u’ 9,0, F are real numbers. If they
are not equal to zero, then we must have m € R, which
contradicts our assumption. Therefore, the norm u? =0.

Another consequence of the negative eigenvalues of G;;
is that dF'/dt can have either sign, as follows from (44). In
Fig. 10 we plot F(z) for the limit cycle of Fig. 9, showing
that it oscillates. This can also be shown analytically for a
small limit cycle surrounding a fixed point. We may expand
around it to find

p(1) = a(v' +a()v', (50)

where v’ and 7' are the eigenvectors corresponding to
the complex eigenvalues of the Jacobian matrix at the
spooky fixed point. While G;;v'7/ vanishes, G;;v'v/ # 0.
Therefore, Eq. (44) implies that dF/dt # 0 for a small
limit cycle.
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APPENDIX A: THE BETA FUNCTIONS UP
TO FOUR LOOPS

In the main text we presented the large N beta functions
for the matrix models we have studied. In this Appendix we
list the full beta functions for any N up to four-loops.

Letting ¢ denote the renormalization scale, we take the beta
function associated with a coupling g; to be given by

dgi e [0
= y— = =2eq: ) )
ﬁg,- H dﬂ egl + 6'(871')2 ﬁg[ + (6')2(877.')4 lB!/;

+ O(¢°), (A1)

where we have separated out the two-loop contribution ﬂg)

and the four-loop contribution ,B_E,?. The beta functions have
been computed by the use of the formulas for sextic
theories in d = 3 — e dimension listed in Sec. II.

1. Beta functions for the O(N)? matrix model

Bl = 24(100 + 24N + 3N2)g3 + 384(9 + 4N)g19, + 38409, 5 + 64(32 + N?)g3,

B = 144(8 + 3N)g? + 96(38 + 4N + N2)g g + 2304(1 + N)g,g5 + 128(8 + TN)g2 + 384(18 + N?)grg5.

(A3)

BY = 168¢7 4+ 96(3 + 2N)g1 9> + 11529195 + 32(21 + 2N + N2) 2 + 768(1 4+ 2N)gags + 192(22 + 3N?)g2,  (A4)

BSY = —288(47952 + 478072 + N*(17 + 72) + N3(372 + 2572) + 8N(3102 + 2777%) + N2(5248 + 4127%)) &>
— 576(64992 + 68607> + 6N (104 4 77%) + 8N (4728 + 41572) + N2(5928 + 46572)) 2 g
— 1152(48N(274 + 277%) + N?(2824 + 2257%) + 4(7640 + 89172)) g2 g5
—384(3N*(10 + #*) + 18N3(12 + %) + 48N (884 + 8372) + 112(867 + 94x2) + N*(10836 + 7737°)) g, 93
— 13824(3984 + 4487% + 2N(20 + %) + N?(92 + 7x%) + 8N (292 + 3172)) 19295

512

— 4608(5936 — 8N* + 720%> + N?(372 + 457°)) 9,93 — =5 (N3(960 + 467%) + 64(900 + 977%)

+ N2(1704 + 1372%) + 16N (2124 + 2037%)) g3 — 9216(4N* + 384(9 + #%) + N*(248 + 2172)) g3 g3,

(AS)

ALY = —432(20400 + 22602 4+ 2N3(90 + 7x%) + 12N(940 + 9172) + N2(1740 + 15122)) g3
—288(3N*(10 + 7%) + 6N3(56 + 57%) + 16(6408 + 6837%) + N*(11184 + 9957%) + N (46896 + 451672))g? g,
— 1728(N3(248 + 227%) + N?(1380 + 1097%) + 8N (1510 + 127x%) + 4(4132 + 40172)) g3 g3
— 384(2N3(534 4 497%) + N?(5148 + 4437%) + 8(8922 4 92372) + N (48384 + 44447%))g, g3
—4608(2N*(6 + %) + 6N>(8 + %) + 6N (948 + 777%) + N?(2748 + 197x%) + 2(8112 + 8417?)) g1 9,93

—27648(1 + N)(N*(62 + 37%) + 2(532 + 5122))g,

—128(95152 + 1002472 + 36N3(6 + 7%) 4+ 2N*(36 + T2%) 4+ 24N (1264 + 11372) + N*(14804 + 117972)) g3
—768(2N*7? + N°z? 4+ 134N?(12 + z%) + 16N3(102 + 72%) 4 8(4308 + 4337%) + 8N (4584 + 4377%)) g3 95

— 13824(4816 + 5127% + N*(18 + %) + N?(644 + 577%)) g, 43,

(A6)
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B = —432(2760 + 38072 + N2(210 + 2372) + 4N (270 + 312%)) g

P
By
pol

H(4
B

—576(7308 + 7767 + N*(78 + 87%) + N2(483 + 457) + 6N (766 + 8372)) g3 g,

— 576(—48N3 — 8N* + 6N (836 + 817°) + 6(1984 + 1897%) + N2(1676 + 2077%)) g7 g3

— 768(8772 + 8947> + N*(6 + n?) + N*(36 + 57%) + 10N (336 + 31x°) + N?(1269 + 1407?)) g, 65
—2304(6096 + 55072 + 2N3(84 + 177%) + N?(432 + 597%) + N (6312 + 55472)) 919293

— 1152(18N37? + 15N*2? + 96N (35 + 37°) + 8N*(443 + 362%) + 8(1876 + 1777%)) 9,93

— 384(41328 + 41927 + 2N*(54 + 197%) + N3(216 + 3872) + 8N (1536 + 12572) + 3N?(3932 + 32372))g3g3

128
-5 (49104 + 478472 + AN*7% + N°z? + 12N?(487 + 427%) + N3(2136 + 2817%) + 12N(4552 + 4257%)) g3

—3456(1 + 2N)(N*z? + 112(32 + 372) + 4N?(88 + 77%)) 9293
— 1152(N%7% + N*(424 + 347%) + 32(826 + 8572) + N*(6864 + 62072))g3. (A7)

2. Beta functions for the antisymmetric matrix model

B = 6(112 = 3N + 3N?)g? + 384(=1 + 2N)g,g> + 3840g, g5 + 32(64 — N + N?)g2, (A8)

54(=142N)g} +24(68 = N + N?)g,gs + 576(=1 + 2N)g, g3 + 224(—1 + 2N) g3 + 192(36 — N + N?)g, g3,

=42¢3 + (=24 + 48N)g, 9> + 5769193 + 8(40 — N + N?)g3 + 384(—1 + 2N)grg3 + 96(44 — 3N + 3N?)g3,

—9(=4N3(17 + 72) + 2N*(17 + 72) + 32(3209 + 2937) — N(10928 + 86172) + N?(10962 + 86372))g3
—72(=1 4 2N)(=3N(104 + 772) 4 3N2(104 + 7x2) + 4(4896 + 41372)) g, — 288(—N (2824 + 22572)
+ N2(2824 + 2257%) + 4(7804 + 94572)) g2 g5 — 48(198048 + 2161672 — 6N3(10 + 72) + 3N*(10 + 72)
+ 2N2(10479 + 7467%) — N (20928 + 148922))g, g2 — 3456(—1 + 2N)(=N(20 + 72) + N2(20 + 72

+8(292 + 3172))g1 g>95 — 2304(8N3 — 4N* — 3N (124 + 157%) + N2(368 + 457%) + 32(371 + 4572)) g,

128
-3 (=1 +2N)(33984 + 32487% — N(480 + 237°) + N*(480 + 237?))g3

— 4608(—4N3 + 2N* + 768(9 + %) — N(248 + 212%) + N?(250 + 2172)) 4393, (A9)

—27(=1+ 2N)(5760 + 557> — N(90 + 7z%) + N?(90 + 77?))g; — 18(—6N>(10 + =?)

+3N*(10 + 7%) + 34N?(579 + 527°) — N(19656 + 17657°) + 4(49956 + 54377%)) g3 g,

—216(=1+ 2N)(9536 + 8307 — N(124 + 11x%) + N?(124 + 117?)) g g3 — 48(—1 + 2N)(39744 + 37392

— N(534 +497%) + N?(534 + 497%)) g, g3 — 288(—8N3(6 + 7%) + 4N*(6 + 7%) + 3N?(3608 + 25977)

— N(10800 + 7737%) + 4(25284 4 27192%)) 919,95 — 3456(=1 + 2N)(=N(62 + 37%) + N?(62 + 37%)

+4(532 + 512%))glg3% — 32(=2N3(36 + 72%) + N*(36 + 7x%) — 4N(3656 + 2912%) + N*(14660 + 1171x?%)

+ 4(38180 + 410972)) g3 — 48(—1 + 2N)(=2N37% + N*z? — 32N (102 + 77%) + 3N?*(1088 + 757%)

+ 32(4584 + 4377%)) 9593 — 3456(—2N3(18 + 7%) + N*(18 + %) + 64(301 + 322%) — 2N (644 + 57x?)

+ N2(1306 + 11572)) 9293, (A10)
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BY = —27(2760 + 42222 — N(210 + 2372) + N*(210 + 237%)) g3 — 18(=1 + 2N)(=2N(39 + 472)
+ N2(78 + 87%) +75(96 + 112%))g2 g, — 72(16724 + 8N — 4N* + 1647x> + 3N?(592 + 6972) (A11)

— N(1780 + 20772))g3g3 — 12(=8N3(6 + 7%) + 4N*(6 + 7%) + 256(402 + 437%) + 3N?(3184 + 351x?)
— N(9528 + 10497%)) g, g5 — 288(—1 + 2N)(5952 + 5187 — N(84 + 177°) + N*(84 + 177°)) 919293
— 144(=30N37% + 15N*z? + 224(253 + 247%) — N(7088 + 5677%) + N?(7088 + 5827%))g, 3

4
-3 (=14 2N)(=2N3z? + N*z? — 24N (178 + 237%) + N?(4272 + 5537%) + 8(24672 + 23597%)) g3
—96(75984 + 78287% — 2N3(54 + 192%) + N*(54 + 1922) + 3N?(3914 + 327x%) — 2N (5844 + 4817°)) g3 93
—432(=1+2N)(-2N3z? + N*zn? + 448(32 + 37°) — 8N (88 + Tn%) + N*(704 + 577°)) 9,3

— 144(=3N°7* + Nz + N*(848 + 71x?) + 256(826 + 857%) — N*(1696 + 1372%) — 16N (1716 + 15572)
+ 4N?(7076 + 6377%))g3. (A12)

3. Beta functions for the symmetric traceless matrix model

- 2400 — 1200N + 250N?% + 51N3 + 3N* 2N? + 10N =35
ﬂé? =6 A2 g1+ 384#9192 + 38409, 93

—20 + 5N + N2
+ 864% 9194 + 32(62 + N + N?) g2 + 46089, + 259242, (A13)

—150 + 35N + 6N? , 5 480 — 120N + 66N? + 9N* + N* —10+ 5N + 2N?

~(2
ﬂé) =18 N g +24 2 919> + 576 N 9193

80 — 20N + N? —132 4 39N + 14N? —40 + 3N + N?
+216Tg1g4+32 i g +192(34 + N + N?)g,95 +288T

9294

—24 + 2N + N?
+ 345659, + 324%@%, (Al4)
—30 4+ 7N + 2N? 1080 —6 4 3N + 2N?

- 3g4 0TI
N 9192 == 9194 + N 9293

—24 +3N + N? 288 — 36N + 30N? + 5N3 + N4 3456
—288ngg4+96(38+3N+3N2)g§ +8 N2 B - N 9394

—16 4+ 2N + N?
_324%9421’ (A15)

BY = 4202 4 576,95 + 24

—200 — 75N? + 15N3 + 3N* 10 — 5N + N? 160 — 120N + 34N? + 15N3 + 3N*
4 3 g+ 192T9192 +12 N 9194
262+N+N2 5 —15+3N + N? —704 + 60N + 28N? +3N3 + N* |
—_— g

3g4 > TN T 3840 6 :
N 95 + N 9294 + 9394 + N rl

(A16)

9
=i (NS(17 4 2%) + 4N7(389 + 267°) + 38400(1252 + 1352%) — 19200N (2159 + 2257%)

— 60N*(7338 + 45572) — 1200N3 (4896 + 5877%) + N°(38822 + 31677%) + 800N2(30564 + 321572)

216
+ N (279004 +280192%))g} = - (2N°(104 + 7%) + 4320N(522 + 5522) + 10N (~1416 + 1312°)

(4
ﬁgl) =

+ N3(4264 + 3312%) — 960(3344 + 37572) + SN*(7096 + 6817%) — 40N?(16616 + 19777)) g2 g»

288

~ 7 (1920(388 + 457%) + 30N?(1184 + 171x%) + N*(2824 + 2252) — 120N (3628 + 40577
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54
+ N3(29128 + 28177%)) g2 g3 — e (12N5(95 + 77%) — 20N3(9940 + 471x%) + 3N3(6608 + 56172)

— 320N%(9175 + 110472) — 1280(13166 + 14857%) -+ 640N (17947 + 189072) + N*(137468 + 1378572)) 294

48

-7 (3N®(10 + 7%) + 6N>(82 + 77%) + 9504(756 + 857%) — 2160N (1581 + 1722%) + 2N*(10971 + 76372)
3456

+ 2N?(37896 + 68477%) + N3(177600 + 1627172))g,95 — ~ (2N*(20 + 7%) + N3(244 + 177%) — 24(2372

1728
+ 2757%) + N?(4108 + 4477%) 4+ 2N (8588 + 9752%)) 919295 — ~T (518304 + 583207 + N*(—3072 + 412?)

+ 2N*(555 + 497%) — 48N (4834 + 5257%) + N*(10782 + 103772))g1 9294 — 2304(—8N? — 4N*

13824
(—47(388 + 457%) + N?(1120 + 1172%)

+ N2(384 + 457%) + N(388 + 457%) + 6(1852 + 2257%))g, 9% —

108
+ N(4844 + 5407°)) 919301 =~ 7 (3OIN® + 41N + N*(10882 + 10537%) — 4N*(26366 + 17552°)

+ 128(41992 + 47257%) + N3(98224 + 98017) — 16N (140912 + 1525572)) g, g2
“3N (N*(960 + 467%) + 108N (2220 + 2417%) + N3(4848 + 3437%) — 324(3352 + 3757%)
+ TN?(7584 + 7497%)) g3 — 4608(6424 + 4N? + 2N* + 7262% + 3N (80 + 7x%) + N?(242 + 212?)) g5 93

288
- (N*(120 + 77%) 4+ N3(660 + 437%) + 6N2(4426 + 4377%) + 24N (4957 + 5347%) — 48(12638 + 141372)) g3 g,

1296
~20736(3368 + 3787 + N(44 + 3a%) + N>(44 + 37) ) 2034 = =~ (N*(32 + 32) + N*(96 + 97°)

— 896(188 + 217%) + 12N (2440 + 26172) + N*(7184 + 71672))g> g2 — 4478976(9 + 7)g363

1944
- (36N3 + 12N* + 96N (75 + 87°) — 192(242 + 27x%) + N?(2028 + 20372)) g3, (A17)

N 27
B = 5 (2N%(90 + 7) + 24000N(20 + 97°) — 96000(28 + 97°) — 3200N7 (1443 + 1707%)

— 5N5(8372 4+ 20972) 4+ N7 (3750 + 32372) — 100N*(6542 + 7857%) + 400N3(7120 + 79772)

18
SN
— 8N*(13443 + 48272) + N6(25770 + 229472) — 120N3(29800 -+ 320972) + 240N (46680 + 499372)

+ N%(28350 + 313372))g; (3N3(10 + %) — 309600N (32 + 37%) + 86400(212 + 2372) + N7(732 + 6672)

216
+ N5(200436 + 1931372)) g, — 7

+ N3(3132 + 2512%) + 10N3(2672 + 3597%) — 40N?(6504 + 677x%) + 3N*(8852 + 7177%)) g2 g3

162
- (32000(92 4 972) — 16000N (104 + 97%) + N°(1418 + 1557°) + 320N? (4644 4 5217%) + N° (12998

(=7200(88 + 77%) + N®(248 + 22z%) 4+ 600N (832 + 6372)

48
+ 14972%) = 20N° (19900 + 238 1) — N*(42584 + 34317%))g1°g, — 5 (2N°(534 + 497%) + 1620N (2044
+19372) — 2160(3060 + 31972) + N3(11898 + 103372) — 72N?(14522 + 161322) + 3N3(32656 + 499772)

288
+ N*(91914 + 84417%)) g, 93 — v (4N°(6 + 7%) 4+ 16N> (15 + 22%) + 720(1400 + 1397°) + SN*(2184 + 1497°)

216
~ 180N (2568 + 2297%) + N*(52944 + 40957°) + N> (47952 + 6716%°))1 9295 — 5 (~36N° (626 + 7

+2N8(69 + 87%) + 9N3(194 + 192%) — 11520(358 + 377%) + 480N (4018 + 38172%) + N*(15348 + 15497%)
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~(4
B

3456
— 8N?(53892 + 66417%)) g1 9294 — ~ (=104 5N +2N?)(N(62 + 37%) + N*(62 + 37%) + 6(334 + 3377)) 91 93

2592
~=r (N4(492 + 357%) + 160(988 +997%) — 2N?(2248 + 179%) + N*(3084 + 2271?)

162

—20N (3176 +2912%))g19394 —F(36N4(163 +172%) + NO(172 +212%) + TN (182 +272%) + 1600N (1028
32

+9972%) — 640(6016 + 6217%) — 24N?(9098 + 13637%) — 2N3(17432 + 16357%)) g, 9% — N (N®(36 + 7x?%)

+ N°(288 4 507%) + 2N*(7186 + 54572%) + 8N3(8863 + 7567%) +216(11996 + 12657%) — 54N (13992 + 133722)

48
+ N?(30720 +56717%)) g3 — v (13N37% + 2N°7z% 4+ 8N*(816 + 537%) — 720(2872 + 29572) + 16N? (15324

288
+ 14997%) + N3(22656 + 16377%) + 36N (17072 + 17372%)) 395 — ~ (2N*(771 +597%) — 144N (2041 + 20072)
—4N?(9261 + 8247%) + N3(9918 + 82972) + 144(7988 + 83972)) g3 g4 — 3456(2N3 (18 + %) + N*(18 + z?)

1728
+2N(608 +557°) + N2(1234 + 1112%) + 8(2095 +2287%))gp67% — — ~ (2N*(24 + 2%) + N3 (192 + 112

324
+6N(3168 +2817%) —48(3112+3192%) + N*(5952 + 4817%)) 920304 =7 (N°(2 +2) + 2N° (5 + 37?)

+ N*(1628 + 1712%) — 16N?(3517 + 3397%) + 192(7024 + 7352%) — 32N (9160 + 93372)
+ N3(9376 4+ 9747%)) g, 9% — 20736(N (62 + 37°) + N*(62 + 37%) + 6(334 4 337%)) 4394

2592
—T(N4(28 +37%) + 198N (32 + 37%) + N3(84 + 97%) + N?(2572 + 2497%) — 8(7960 + 8137%)) 9393

972
—F(ZONS +4N® + N*(146 4 212%) + 4N3(170 4 272%) — 32N(1082 + 1172%) + 128(1526 + 15977%)

—2N*(4736 +51372)) g3, (A18)
9
=% (43200072 + 72000N? (8 + 372) +2400N*(214 + 357%) — 600N> (312 + 4172) + N¥(630 + 6972)
18
—2N%(1200+1372) + N'(7110+8137%)) g3 —F(28800N(2+3n2) +4N8(39+47%) —14400(112 +277?)
—7200N?(292 +277%) + 6N (361 + 347%) 4+ 240N3 (4272 + 427x%) — 20N* (11754 + 8697%) + 2N®(8379 + 8837%)
72
+N3(516+11897)) 39, +ﬁ(56N7 +4N® + N*(2220 - 5192%) + 1200N (=32 +97%) — 1200(136 + 277°)
+240N3(614 +397%) —300N%(896 + 757%) — N®(1576 +207x%) — N> (12524 + 11792%)) ¢ g3

162
+F(N6(302 + %) —4800N (2 + 37%) 4+ 19200(14 + 372) + 1600N> (215 + 187%) —480N3(321 + 317?)

12

+20N*(587 4 747°) + N> (5174 +31477)) gl g —m(4N8(6+n2)+48N7(7+ﬂ2)—8640N(212+ 1922)

+12960(352 +357%) + 16N*(—=1119 4 1887%) — 192N3(3093 + 2412%) + 3N®(3440 + 3677%)
144N?(16952 + 16937° 5(55092 4 496772) ) gy 7 — o0 (2880N (35 + 322) + 2NO(84 + 1722

+ 144N ( +16937%) + N( + ﬂ))glgz—ﬁ( N (35+37%) +2N°(84 + 177%)

—360(440 4 3972) + 24N3(770 4+ 6972) + N5 (1116 + 16972) — 6N (10352 +95372) + N*(10956 + 98572) )1 9205

216

—F(3N6(40+n2) +9N> (78 +7%) +3840(191 + 187%) — 960N (317 +27x%) — 24N3(2503 + 19272)
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144
+96N?(3303 + 3527%) — N*(15564 + 99572)) g1 994 — ~ (66N°7* + 15N®z% + 600(112 + 97?)

+ 16N*(443 + 337%) — 60N (1120 + 877%) + 6N%(5216 + 567x) + N3(20528 + 137772))g, 93

864

+7 (84N> + 12N® + N*(148 — 277%) + N3(1628 + 577°) + 80(956 + 81x2%) — 20N (2552 + 207x2)
162

+2N%(9808 + 10177%)) 919394 — ~ (3N3(=208 + 77%) + N6(=94 + 972) + 1920(368 + 337?)

— 480N (632 + 512%) — 24N3(1022 + 812%) — 2N*(5156 + 3577%) + 16N?(14228 + 170772))g,93
4

~3v (21N77* + 2N®7* 4 17280N (465 + 417%) + 576N>(433 + 807%) — 432N?(1464 + 20577)

+ 4N®(2136 + 277x%) — 2592(9552 + 9717°) + 12N*(28836 + 29297%) + N>(59568 + 528172)) g3

96
— 2 (N(54 + 192%) + AN3(81 + 192%) — 108N (1264 + 1032%) + 540(1112 + 109°) + 15N?(2064 + 281°)

72
+ 6N3(5540 + 4317%) + 2N*(5655 + 4547%)) g5 g3 — N (2N%(24 + %) + 24N*(492 + %) + N3(384 + 1972)

— N4(2952 + 35722) — 1728(1150 + 117722) — 6N3(4492 + 27172) + 144N (3942 + 36772)) 204

432
- (=6 + 3N + 2N?)(2N3z% + N*z? + N(704 + 52z2%) + N?(704 + 537°) + 4(3232 + 30972)) 9263

1728
2 (27N3(4 + 7%) + 4N*(3 + 22%) — 174N (104 + 97?) + 168(580 + 577%) — 3N*(1720 + 13772)) 929394

324
-V (4N® + N3(50 + z%) — N*(1060 + 917%) + 16N?(1289 + 13372) — 2N3(3704 + 33972)

+ 16N (9704 + 9757%) — 64(9968 + 101722))g,9% — 144(3N>7*> + N°z®> + N*(848 + 657%) + N3(1696 + 12572)

864
+4N(6016 + 5557%) + 24(6664 + 711x%) + N?(24912 + 22827%)) g5 — ~ (=57056 + 752N — 368N?

432
— 54727% + 84Nn? + IN37% + 3N*2?) g3 g4 + s (20N + 4N® — N*(52 + 97%) — 2N3(212 + 277?%)

486
+ 10N2(1580 + 1537°) + 4N(10064 + 9632%) = 16(17792 + 17557%) g3 = 3 (N°(=8 + 2%) = 10N*(34 + 37?)

+ N5(—=40 + 672) — 16N3(94 + 1372) — 512(400 + 4172) + 64N (632 + 7172) + 8N2(1354 + 16372))g3. (A19)

. 9
B =— 5 (~13824000 + 6912000N + N (360 +227%) ~ 2400N* (448 + 437%) + 9600N" (395 + 497°)
— 60N> (1672 4 657%) — 3200N2(2352 +2757%) + N7 (6660 4 48972) + N6(41220 + 424172) ) g3

72
—m(172800(14+7z2) — 14400N (68 + 37%) — 2N*(14844 + 1312%) + N(1848 + 19172) + 480N?(2120 + 24372)

10368
N3

+ 5N5(3504 4 41572) — 120N (3640 + 42372)) 2 g» — (800N +20N3(17 + 32%) — 200(28 + 372)

18
+3N*(32+52%) = SN?(392+ 517°) )95 = (6TON” + 41N® - 38400(320 + 277%) ~ 9600N (467 + 27x%)
— 6N*(32878 + 41772) + N®(14413 + 80172) — 120N3(17800 + 173122) + 240N?(22264 + 248172)

3456
+N°(95816 +84157%)) g3 g, - (3N3(—28 + %) + N*(—4 + 37%) +240(52 + 57°) + 2N?(—148 + 97?)

046015-20



RG LIMIT CYCLES AND UNCONVENTIONAL FIXED POINTS ... PHYS. REV. D 103, 046015 (2021)

576
— 40N(152 + 157[2))g19293 - F

48
+ N*(1160 + 1537°) + N3(6392 + 8017%)) 919394 — N (51840N (15 + %) — 34560(57 + 57%) + N®(48 + 77°)

(960(94 + 972) — 240N (262 + 2772) 4 6N*(728 + 15372)

+ N3(228 + 437%) + 18N*(346 + 101x?) + 4N3(2526 + 15797) — 8N?(54528 + 69977%)) g, 95

432

- (IN®(16 + z%) + 10N (102 4 77%) — 1920(296 + 277%) + 480N (521 + 3972) + 8N*(437 + 2217?)

108
+ N*(5556 + 7277%) — 4N*(28812 + 33172%))g19294 — ~ (2514N° 4 318N°® + 88N3(—241 + 187?)

—5120(289 + 277%) + 7N*(1084 + 997?) + 320N (2350 + 1897%) — 16N?(16366 + 15577%))g, 92 (A20)
128 2 4 2 2 3 2 2 2 3
3N (=63504(10 + z%) + N*(528 + #%) + 324N(532 + 5372) + N3(3120 + 1637%) + 8N?(4314 + 3372%))g3

4608 144

+— (6424 + 4N + 2N* + 7267% + 3N (80 + 72%) + N?(242 + 2172))g3 g5 — ~ (N(2 + %) + N°>(12 + 77?%)

+ 9408(88 + 977) — 6N?(3476 + 9372) + N*(2134 + 2397°) — 48N (4495 + 4297) + N3(12708 + 135122)) g3 94
6912

Y (N*(4 + %) + 4N3(6 + 7)) — 72(184 + 212%) + 3N?(308 + 397) + N(2488 + 30672)) 929394

2592
- % (68224 + 12N> + 2N°® + 71047% — 224N?(15 + %) + N*(126 + 112%) + N3(644 + 5722)
— 16N (1043 +937%))go g5 — 2304(—8N> — 4N* + N?(384 + 457%) + N(388 + 457%) + 6(1852 + 2257°)) G394

864
— = (QIN(8 4 ) + ON*(8 + ) + 4N (808 + 99x?) ~ 32(2584 + 297) + N(8096 + 9727%)) gz

108
=z (13N + 5N 4 N4(1198 + 452%) + 4N*(1723 + 637°) ~ 8N?(6253 + 4147%) — 32N(5692 + 4597°)

+ 128(6388 + 6757%)) 3. (A21)

APPENDIX B: THE F FUNCTION AND METRIC FOR THE SYMMETRIC TRACELESS MODEL
Working up to the two-loop order, we find that the F function that enters the gradient flow expression (42) is given by

F=FWY 4+ F?_ where

ny___°¢
576N3

X [(2N*(4895(4g3N° + (10g5 + 3g4)N* + 3(6g5 + 594)N° + 6(4g3 — 7g4)N?

—~72(g3 + 294)N + 288¢4) + 4g5(N® + 6N + 45N* + 124N3 — 168N? — 720N + 1296)

+3((1663 + 3g2)N® + (3293 + 1562)N° + 24(643 + g3)N* + 4(324% + 489495 + 15¢3)N?

+96(293 + 49495 — 593)N* — 19294(8g5 + 7g4)N + 3072g3))

+ 129, N(9g4N°® + (8095 + 63g,)N> + (27295 — 42g,)N* — 120(2g5 + 7g4)N?

—240(4g3 — g4)N? + 49,(2N® + 15N3 + 11N* — 140N3 + 720N — 720) + 960(g5 + 4g4)N — 3840g,)

+ 363 (N® + 14N7 + 83N® + 46N> — 960N* 4- 4800N? — 9600N + 9600))] (B1)

and F®) may be written in terms of the three-point functions in the free theory in d = 3 [24,25]:

C..

FO~Cipggdd's  (0i(x)0;(y)0u(2)) = o=yl = 2Py — 2>

Explicitly, we find
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F2 —

3
13271040N> 7>
X [(3N'2 + 93N + 1717N'° + 13103N® + 15072N8 — 227572N7 — 326400N°®

+ 2596800N° — 758400N* — 12288000N> + 29952000N2 — 40704000N + 29184000)g;

16
+ ?Ngz(27(6N10 + 109N + 878N® + 1885N7 — 10882N°® — 28000N> + 122880N* + 28800N°

— 672000N? + 1411200N — 1094400)g7 + IN(N'® + 15N + 405N8 + 3493N7 + 8634N°®

—30684N> — 102504N* 4 351168N3 + 408960N? — 2194560N + 1969920) 9,4,

+ 8N2(26N® + 219N7 + 1446N° + 5399N> — T14N* — 57T456N> + 30240N> + 343440N — 443232)43)
+ 192N2g5(2((N® 4+ 7N7 + 181N® 4 757N + 1990N* + 3832N3 — 7296N? — 27504N + 49248) g3

+ 12N(6N® + 21N> + 118N* + 253N3 + 270N? + 348N — 1368) g3, + 4N*(3N® + 9N

+ TIN* + 127N3 + 402N? + 340N + 456)g3)N? + 129, ((2N® + 17N7 + 174N® + 773N

+ 162N* — 6176N? + 240N? + 28080N — 27360)g, + 2N(15N® + 66N> + 196N* + 421N?

— 570N? — 2100N + 2280)g3)N + 3(29N® + 310N7 4 997N® — 1612N° — 10020N*

+ 15600N3 + 38400N? — 112800N + 91200)g3) — 18N(—N? — 2N + 8)g,4((N® + 6N7 + 47N°®

+ 198N3 + 1428N* + 7416N* — 32512N? — 121344N + 311296)g3N? + 32((N® + 7N + 113N*

+ 629N — 1470N? — 7920N + 16416)g3 + 24N (N* + 4N3 + 41N? + 114N — 456)g39,

+ 48N?(3N? + 3N + 38)g3)N? + 96((N® + 6N + 46N* + 225N3 — 728N? — 3192N + 7296)g,
+2N(5N* + 15N? + 86N? + 228N — 1216)g3)gsN? + 1929, ((TN® + 65N> + 52N* — 964N3 — 650N?
+ 7680N —9120)g, + +2N(27N* + 141N — 190N? — 1140N + 1520)g5)N + 3(3N® + 24N’

+ 325N% + 2364N> — 100N* — 41712N? — 10240N? + 318720N — 389120)g,g4N + 3(21N® + 294N’
+ 1599N° + 30N> — 27920N* + 209600N? — 499200N + 486400)g?].

The metric G;; is given by

1

Gy = TooN3 (N® + 14N7 + 83N6 + 46N> — 960N* + 4800N? — 9600N + 9600),
1 6 5 4 3

1
G13 = G23 == @(51\’4 —|— 17N3 - 15N2 —6ON+60),

1
Gy = Gy = —— (N = 2)(N +4)(3N* + I5N3 — 20N? — 120N + 160),

32N?
1
Gy = PN (N® 4+ 6N> + 45N* + 124N3 — 168N? — 720N + 1296),
1
Gy =Gy = 6(2N4 + 5N3 +9N? + 12N — 36),
1
G24 == G42 = m(N— 2)(N+4)(N2 + 3N— 12),

1
Gy = 6N3(N4 +2N3 +9N? + 8N + 12), Gy = Gy = (N =2)N3(N + 4),

1

Gy = ——
M N

(N —2)2(N +4)2(N* + N + 16).
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At this order it is independent of the couplings ¢' and is proportional to the matrix of two-point functions (43) in the free

theory in d = 3.

APPENDIX C: CALCULATING THE HOPF CONSTANT

In this Appendix we compute the Hopf constant a at two loops. Introducing rescaled couplings g; = 720(87)%eg;, the
beta functions at the critical value N = N, = 4.475 in units of ¢ become

B, = —2g1 + (2339.99g, +4273.55¢, + 3840.¢; + 4325.08¢,) ¢, + 2768.0443 + 2592.4% + 4608.4, 4.,
B, = =2 + (509.966¢, +2962.93¢, + 6748.16¢5 + 113.519¢,) ¢, + (3456.¢5 + 360.299¢,) 7,

+ (2308.94¢, + 11232.3¢; — 421.4382,) 75.

B, = —2g3 + (42g, +221.912¢, + 576.g5 — 241.337¢4) g1 + 10704443 — 209.942¢3 — 772.278 g5 4

+ (629.906¢, + 4074.01 g5 — 135.923¢2,) 2.

B, = —2g4+ (226.417g, +73.3524¢, + 1708.55¢,) ¢, — 618.547¢3 + (15833, + 3840.¢3 + 1066.11¢,)g4.

These beta functions have a fixed point at

7" (Ney) = 107* - (3.48916, —4.64792, 3.04945, —1.08745).

. _ . . - . 0P
Letting V = (vy, v, v3, U3) be the matrix of eigenvectors v; of the stability matrix ( /

op,

vl (—) V = diag(2, —1.57495, —0.1539651, 0.153965i).

g

J

(C1)

52+) evaluated at this fixed point,
g

i
J

(€2)

One can check that these eigenvalues change on varying N. In particular, the real parts of the complex eigenvalues change
linearly with N for N close to N;;. Changing to variables t;, = v - g, 1, = v, - g, 3 = R[v3 - g], t4 = J[v; - g], we get the

equations

By, = 2t; —3006.277 — 63536112 — 4.223797 + 4.22379£ + 7.65924t31,,
B, = —1.574951, + (=638.9031, + 1471.361, — 96.886213 + 72.07091, )1,

+ 1.013173 — 0.3462812 — 1.3724 1131,

B, = —0.1539651, + (231.4301, — 3006.2713)1; + (—31746.21, + 1284.371; — 347.1221,)1,

—49.597212 4 492.73173 + 178.686131,,

B, = 0.1539651; + (—231.4313 — 3006.271,)1, + (638.0031, + 7301441, — 82.713113)1,

+ 8.7368973 + 823.77215 + 153.731131,.

We wish to study the RG flow in the manifold that is tangent
to the center eigenspace. We cannot simply set #; and ¢, to
zero, since this plane is not invariant under the RG flow: the
13,13, and f31; terms in §, and f3,, generate a flow in ¢; and 7,.
But by introducing new variables with #; and #, suitably
shifted,

uy = t; — L.775018 + 4.3762t413 + 1.77501#3,  (C4)

Uy = 1, — 07094147 + 0.6767701,13 + 028602772,
(C5)

(C3)

the 73, 3, and 1315 terms in 8, and §,, cancel out. While §,,
and f3,,, do couple to 73 and 7, at third order, one can introduce
new variables yet again and shift «; and u, by cubic terms in
t3 and t,4 to remove this third order coupling. This procedure
may be iterated indefinitely to obtain a coordinate expansion
of the center manifold to arbitrary order, in accordance with
the center manifold theorem. We will content ourselves with
the cubic approximation of the center manifold, which
consists of the surface u; = u, = 0, since this approximation
suffices to determine the Hopf constant. Eliminating ¢, and #,
in favor of u; and u, in the equations for ;. and f, , setting u,
and u, to zero, and discarding unreliable quartic terms gives
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B, = —49.597272 + 178.6861,15 + 492.73122 — 0.1539651,
— 4425.01(1.83 — 2.813861,12 — 0.947101 7313 + 0.070396123),
B, = 8736894 + 153.7311415 + 0.1539651; + 823.77273
— 469.468(1.13 + 7.986541,1% — 27.89621315 — 10.921643). (C6)

From these equations the Hopf constant can be directly obtained by the use of equation (3.4.11)* in [51] or by the equivalent

formula in [52]. We find that

a ~ 6204790 (C7)

so that Hopf’s theorem guarantees the existence of a periodic orbit that is IR attractive in the center manifold, implying that if we
fine-tune the couplings in the vicinity of N, there is a cyclic solution to the beta functions that comes back precisely to itself.
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