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Abstract

We present an analytic study of conformal field theories on the real projec-
tive space RIPY, focusing on the two-point functions of scalar operators. Due to
the partially broken conformal symmetry, these are non-trivial functions of a
conformal cross ratio and are constrained to obey a crossing equation. After
reviewing basic facts about the structure of correlators on RPY, we study a
simple holographic setup which captures the essential features of boundary cor-
relators on RIP?. The analysis is based on calculations of Witten diagrams on the
quotient space AdS,1/Z,, and leads to an analytic approach to two-point func-
tions. In particular, we argue that the structure of the conformal block decom-
position of the exchange Witten diagrams suggests a natural basis of analytic
functionals, whose action on the conformal blocks turns the crossing equation
into certain sum rules. We test this approach in the canonical example of ¢* the-
ory in dimension d = 4 — ¢, extracting the CFT data to order ¢2. We also check
our results by standard field theory methods, both in the large N and e expan-
sions. Finally, we briefly discuss the relation of our analysis to the problem of
construction of local bulk operators in AdS/CFT.

Keywords: conformal field theory, conformal bootstrap, AdS/CFT correspon-
dence

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum field theories on non-orientable spacetime have several physical applications, and
have been studied from many different perspectives. They are an integral part of string the-
ory in the description of unoriented worldsheets [1-3]. Studying theories on non-orientable
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manifolds also probes the realization of time reversal symmetry [4—6] (see, e.g., [7] for dis-
cussions on a refinement of electric—magnetic duality in abelian gauge theories, and [§—11]
on Yang—Mills theory and CPY~!-sigma models), which plays important roles in condensed
matter physics. They also make appearances in formal studies of quantum field theory. For
example, partition functions of two dimensional CFTs on non-orientable surfaces were stud-
ied in [12], where holographic connections with three dimensional geometries were explored.
Their role in supersymmetric quantum field theories was discussed, e.g., in [13, 14]. Recently,
there has been considerable interest in studying CFTs on real projective space—one of the
simplest examples of non-orientable manifolds®. This is partly in light of the modern nonper-
turbative conformal bootstrap (see [15, 16] for reviews) [17-20], where CFTs on real projective
space provide attractive playgrounds for developing and testing new techniques. Moreover, the
study of such theories is also fueled by the program of constructing bulk local operators in AdS
[21-26], where crosscap states are proposed to be dual to fields inserted at a bulk point. In this
paper, we continue the analytic study of conformal field theories on real projective space, and
revisit the problem from multiple angles.
The real projective space RP? can be defined by a Z, quotient of a sphere S*

X? =1, X € R withX ~ —X. (1.1)

Equivalently, since our focus is on CFT, we can perform a Weyl transformation and map it to
the flat space

X
M=o p=1,...,d  dsy

1 252
1 — xd+1° I Ch v ds?

i 2. (1.2)

The real projective space is then represented as RY under the identification

oot (1.3)
X
where x* are the Cartesian coordinates on R?. Unless otherwise stated, in this paper we denote
by RP? the quotient of flat space by the inversion (1.3).
Putting CFTs on RIP? partially breaks the conformal symmetry and introduces new observ-
ables. Scalar operators can have non-vanishing one-point functions

ao
OA) = ———+. 1.4
(Os) = G0 (14)
The coefficients ap are new data that defines the CFT on real projective space, along with the
standard operator spectrum and OPE coefficients, which remain the same as on RY. Moreover,
two-point functions are no longer fixed by symmetry, but instead become functions of a cross
ratio 7 invariant under the residual conformal symmetry

_ g(n)
(O1(x1)Oa(x)) = TE ST LR (1.5)

where

(x1 — x2)?

EERTE (Y 1)

3 More precisely, RP? is unorientable for d even, and orientable for d odd.
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The reader might notice the breaking of conformal symmetry and the structure of correlators
are very reminiscent of those of boundary CFTs [27, 28]. We will point out more similarities
later in the paper. Analogous to four-point functions on R¢, two-point functions of RP? CFTs
obey a crossing equation because of the identification (1.3)

G = £6(1 —n), (1.7

where + corresponds to the two choices O, » — £ O, » under the inversion. The operator prod-
uct expansion in the direct channel (17 — 0), and in the mirror channel (n — 1) allows them to
be expanded in terms of conformal blocks in the respective channels. The crossing equation
together with the conformal block decomposition then impose nontrivial constraints on the
structure of correlators. Two-point functions are therefore the prime target for developing an
analytic understanding of CFTs on real projective space.

In this paper, we develop an analytic approach to two-point functions, which is universal
for RPY CFTs. However, to develop this method we will take a holographic detour. We first lift
the quotient (1.3) into the bulk as a Z, quotient of AdS,, and study a toy model for hologra-
phy in this setup. We define the tree-level Witten diagrams in this background, and study their
various properties. In particular, we consider in detail the two-point conformal block decom-
positions of exchange Witten diagrams in the two channels. The structure of the conformal
block decompositions suggests a natural basis for the function space of two-point correlators,
which consists of special conformal blocks with discrete ‘double-trace’ dimensions in both
the direct and the mirror channel. The dual of this basis is a basis of analytic functionals,
whose actions on a generic conformal block can be read off from the conformal block decom-
position coefficients of the exchange Witten diagrams. Acting on the crossing equation (1.7)
with the functionals allows us to extract the complete set of constraints in the form of sum rules.
These sum rules are valid non-perturbatively. But they become especially simple around the
mean field theory spectrum, and essentially trivialize the study of perturbations around mean
field theory. We demonstrate the use of the analytic functionals on the model of ¢* theory in
4 — e dimensions. By solving the functional sum rules, we obtain the one-point function coef-
ficients to the order €>. Setting € = 1, we find good agreement with the numerical bootstrap
estimation for the 3D Ising model [17].

We also develop perturbative field theory approaches to study CFTs on RP?, with the O(N)
vector model being our main example. We study the two-point function of the fundamental
scalar ¢ of the O(N) model both in the large N expansion in arbitrary dimension, and in the €
expansion in d = 4 — e dimensions. In d = 4 — ¢, instead of using the usual loop expansions,
we exploit the fact that ¢ satisfies an equation of motion. The equation of motion implies a
differential equation obeyed by the two-point function, which can be solved in perturbation
theory to order ¢>. The essential idea of using equations of motion to obtain CFT data was
described in [29] and here we extend it to CFTs on RPP?. The field theory calculations provide
an independent test of the results obtained from analytic functionals.

We also discuss other interesting features of RP? CFT. We point out a two-term
‘dimensional reduction’ formula for conformal blocks, which expresses a conformal block
ind — 2 dimensions as the sum of two d dimensional conformal blocks with shifted conformal
dimensions. An analogous five-term relation was found in [30] for CFT four-point functions
in RY, and was shown to be a consequence of the Parisi—Sourlas supersymmetry [31]. The
appearance of the dimensional reduction relation therefore suggests a possible extension of the
Parisi—Sourlas supersymmetry to real projective space. Moreover, following [32], we show that
the dimensional reduction formula for conformal blocks can be extended to exchange Witten
diagrams as well.
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The setup of our toy model for holography is also closely related to the Hamilton—Kabat—
Lifschytz—Lowe (HKLL) approach for constructing local bulk operators [33—35]. The two
problems have the same partially broken conformal symmetry. We will make a few comments
on how our results are relevant in the bulk reconstruction problem. In particular, we point
out that the bulk reconstruction of the bulk—boundary—boundary three-point function can be
reformulated as a conformal bootstrap problem, which can be solved using our functionals.

The rest of the paper is organized as follows. In section 2, we review the kinematics of RPP
CFT using the embedding formalism. We set up the holography toy model on the Z, quotient
of AdS in section 3, and define various Witten diagrams. In section 4 we perform a detailed
analysis of the tree-level two-point exchange Witten diagrams: we evaluate them in a closed
form and study their conformal block decompositions. In section 5 we study the dimensional
reduction of conformal blocks and exchange Witten diagrams. We develop a functional method
to RP? CFTs in section 6, and use the method in a few perturbative applications. We also
present a complementary field theory approach using the equation of motion method. The
relation to bulk reconstruction is discussed in section 7. We conclude in section 8 with a brief
discussion of future directions. In appendix A, we compute the free energy on RPY = $¢ /7,
for O(N) models; the calculation has some connection to the content of section 6.4, but is
mostly independent from the main text of the paper and can be read separately.

2. Kinematics of CFT on RP?

2.1. Embedding space

It is convenient to introduce the embedding space which linearizes the action of the conformal
group. Let us first review the case where the space is just R?~"!. For any point x* € R?~ 11,
we can represent it as a null ray P* (A = 1,2,...,d + 2) in R%?

P-P=0, P~M\P. Q2.1

Operators are defined on the space of null rays*, with the scaling property

OANP) = A2 0A(P). (2.2)
For definiteness, let us choose the signature of R%? to be (—,+, —, +,...,+).> We can
explicitly parameterize P* with the RY~""! coordinates as
1+x2 1—x2
P = , XM 2.3
5 5 X (2.3)

after fixing a gauge for the rescaling freedom
1
Pl = E(1 + x2). 2.4)
The conformal group SO(d, 2) acts on P* as linear rotations in R%?

P = Q4 PE. (2.5)

The conformal transformation on the x** coordinates is obtained after restoring the gauge fixing
condition (2.4) by an appropriate rescaling.

“For simplicity we focus here on scalar operators.
5 For Euclidean spacetime R? the embedding space is R*"! and we choose the signature to be (—, 4+, +, +, ..., +).
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The inversion (1.3) can be conveniently represented in terms the embedding coordinates,
where it flips the sign of the last d + 1 components of the embedding vector

Z:P' P, P'——P a=273,....,d+2. (2.6)

To go back to (2.4) we must multiply the null vector with a factor x 2, and one can easily check
that this reproduces the transformation (1.3). Under inversion operators are identified by

T:05(x) = X205, =" 2.7
The insertion of a crosscap introduces a fixed time-like embedding vector

N. = (1,0,0,...,0). 2.8)

The residual conformal symmetry after inserting the crosscap is all the SO(d, 1) rotations that
leaves N, invariant. It is useful to compare the situation with the closely related case of CFTs
with a conformal boundary. The presence of a spherical boundary centered at x = 0 with unit
radius, is represented in the embedding space by introducing a space-like constant vector

N =(0,1,0,0,...,0). (2.9)

The conformal boundary breaks the SO(d,2) conformal group down to the subgroup
SO(d — 1,2), which consists of all the rotations in the embedding space preserving the vector
Ng.

2.2. Correlators and conformal blocks

The embedding space formalism introduced in the last section makes it straightforward to dis-
cuss the kinematics of CFT correlators on RP?. Correlators are constructed using the SO(d, 1)
invariants of the embedding vectors, and must scale properly according to (2.2).
Let us start with one-point functions. The only invariant one can write down is (—2N, - P),
and scaling requires the one-point function must be of the form®
ao ao

(Os) = A = (s (2.10)

Using the Weyl transformation (1.2), this implies that on the Z, quotient of the sphere, the
one-point functions are constant

(Oa@)si/z, = ;—2 @.11)

Note that under the inversion (2.7), the operator O must transform with the + sign in order
for the one-point function to be nonvanishing. This can be clearly seen from the fact that the
one-point function is a constant on the sphere S?/Z,, and we note that antipodal points on
the sphere are identified by inversion. The choice of the — sign leads to a zero value for ap.
More generally, it follows from the fact that the total Z, charge under inversion must be zero
in a correlator. Therefore, one-point functions are completely determined by symmetry up to a
constant ap. The constant ap is a new CFT data, and encodes dynamical information of CFTs

6 Throughout this paper, we normalize the correlation functions by the RP? partition function so that the one-point
function of the identity operator is 1. In addition, we also normalize the operators such that in the short distance limit,
the two-point function goes as (O (x1)Oa (x2)) ~ m

5



J. Phys. A: Math. Theor. 54 (2021) 024003 S Giombi et al

on real projective space. We should also point out that only scalar operators can obtain nonzero
one-point function. Operators with spin must have vanishing one-point functions, because a
nonzero one-point function is inconsistent with the residual symmetry (a completely analogous
result holds in BCFT).

We now discuss two-point functions, which are the main focus of this paper. With the
embedding vectors P, P, and N, we can construct a cross ratio

_ (=2P1 - Py) __a- x2)?
(=2N. - P))(=2N.-Py) (1 +xDH(1+x3)’

n (2.12)

which is also invariant under the independent rescaling of each operator. In Euclidean space-
time, the cross ratio takes values in 7 € [0, 1]. After extracting a kinematic factor which takes
care of the scaling property, we can write the two-point function as a function of the cross ratio

_ G(n) _ G(n)
C(Z2Ne - PO)AI(=2N, - PR (1 a1 4 xg)Ae

(2.13)

(Oa,(x1)04,(x2))

Here we have suppressed the parity of the operators under Z,. The correlator is only nonzero
when Oa, and O, have the same parity, in order for the correlator to have a zero overall Z,
charge. Moreover, because of the operator identification (2.7) the correlator G(7) must satisfy
the following crossing equation [17]

G = £6(1 —n), (2.14)

where + denotes the common parity of Oa, and Oa,. Here and elsewhere, the upper sign
refers to the + parity and the lower sign to — parity. Also note again that under the Weyl
transform (1.2), the two-point function on S¢/7Z; just becomes G(1) /22152,

There are several points of interests for the two-point function on the 7-plane. The first is
the limit 7 = 0. Physically, it means that the two operators coincide in Euclidean spacetime
(or light-like separated in Lorentzian spacetime). In the limit of coinciding operators, we can
use the standard OPE

5A1A2
(x) — x)?A

O, (x1)On,(x2) = +) CiuDlxy — x2.0,104,(x2),  (2.15)
k

where k labels the conformal primaries, and C|y is the OPE coefficient. The differential opera-
tor D[x; — x», Oy, ] is completely determined by the conformal symmetry. The OPE reduces the
two-point function to one-point functions which are completely determined by kinematics up
to an overall constant. The contribution of each primary operator in the OPE to the two-point
function can be resummed into a conformal block [24]

A-A-A A+A1—A) A+A,— A d
galn)y=n—2 2F1< 21 2 22 I;A_§+l;77>'

(2.16)

The conformal block can also be obtained more conveniently from solving the conformal
Casimir equation

L*(Op, (PO, (P) = —A(A — d) (O, (P))Oa, (P2)), (2.17)

6



J. Phys. A: Math. Theor. 54 (2021) 024003 S Giombi et al

with the boundary condition

A—A]—AZ
gatm~n—2 ", n—0. (2.18)
The Casimir operator
1
12 = 3 (LYP + L5%) (Lyap + Loap) (2.19)

is constructed from the SO(d, 2) generators

0 0
Lyp = Py—— — Pp——. 2.20
AB ASpB BopA ( )
In terms of these conformal blocks, the two-point function can be written as
GO = ponga, (), 2.21)
k
where
piok = apCo. (2.22)

Similarly, 7 = 1 is also an interesting point where one operator approaches the image of
the other operator (or the lightcone of the image). We can again apply the OPE for an operator
with an image operator, which is equivalent to the original OPE thanks to (2.7). We will refer to
this channel as the image channel. The two-point function can be decomposed into the image
conformal blocks

B A-A—A,
eatm =0 —-n)" 2 ,F

<A+A1—A2 A+ Ay — A d >
X : n).

A—Z41;1—

5 , 5 ; > (2.23)

These image conformal blocks are eigenfunctions of the image conformal Casimir equation

L*(Op, (PO, (P) = —A(A — d) (O, (P1)Oa, (P2)), (2.24)

with the boundary condition

A=A,

gatm~UA -2, n—1 (2.25)

Here the image conformal Casimir operator
_ 1 _ -
L2 = E(L?B + LQB)(LLAB —+ L2,AB) (226)

involves the generators at the image position

- 0 -0
Luap = Pa—=7 — Pp—+, 2.27
AB A 5pB B 5pA (2.27)
where P is the embedding vector for the image point
- l+x2 1—x2 x*
P = , == ). 2.28
2 2 x? (2.28)

7
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Table 1. A comparison of kinematics for RPY CFTs and boundary CFTs.

RP¢ CFT BCFT,

One-point function (Oa(x)) = ﬁ‘%& (Oa(x))p = “2%20‘5
Two-point cross ratio = m) = o)

wo-pol ! n (A+xDH(1+x3) ¢ (A=x3)(1-x3)

e ; _ 1 _ 1
Two-point function RS Gg(n) Gs RS Gs(6)
OPE limits 1 — 0 (bulk channel) & — 0 (bulk channel)
n — 1 (image channel) & — oo (boundary channel)

Regge limit N — 00 &E——1

In terms of the conformal blocks, the crossing equation (2.14) now reads

D (@ () F ga,(m) = 0. (2.29)
k

Finally, there is another interesting point 77 = oo, which can only be reached in Lorentzian
signature. It turns out, as we will see in section 3, that this limit plays a similar role as the ‘Regge
limit” in BCFT two-point functions. In fact, the kinematics of boundary CFTs are intimately
related to RPY CFTs. We now give a detailed comparison with the closely related BCFT case’,
and the result is summarized in table 1.

Intermezzo: comparing with boundary CFTs

As we mentioned in the last section, a boundary CFT preserves the conformal symmetry
that leaves Ny invariant. Up to a Wick rotation, the two systems preserve the same symmetry
group. The inversion sphere x> = 1 now becomes a fixed locus in the BCFT case, and is the
location of the conformal boundary. The one-point function of an operator inserted away from
the boundary is determined by kinematics®
as,o as,o

_ _ 2.30
2P Ng[& ~ |1-x2A (2.30)

(Oa(x)B
up to a constant ag o. The one-point coefficients ap o are part of the new data defining a BCFT.

For two operators inserted away from the boundary®, we can construct a cross ratio

_ (=2P; - Py) _ (x1 — x2)°
(2Ng - PN - Py) (1 —x)(1 —x3)’

3 (2.31)

which is invariant under the residual conformal symmetry and the independent rescaling of the
operators. In a Euclidean spacetime, the range of the cross ratio is £ € [0, c0). The two-point
function can be written as a function of the cross ratio

Gs(©) _ Gs(&)

B 2Ng - Pi|[A12Ng - Po|A1 |1 — x3|A1|1 — x3] 22
(2.32)

(Oa,(x)OA,(x2))B

7 In the table and discussion below, we take the conformal boundary of the BCFT to be a unit sphere. It can be mapped
to the infinite plane boundary by a conformal transformation.

8 In order to distinguish from the real projective space case, we use the subscript B to denote objects in boundary CFTs.
9 We will assume that the operators are inserted on the same side of the boundary.

8
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There are three interesting points on the £-plane. The point £ = 0 is known as the bulk
channel OPE limit, and should be identified with the = 0 case where operators coincide (or
light-like separated in Lorentzian signature). We can apply the OPE (2.15), and reduce the
two-point function into one-point functions. The two-point function can be written as a sum of
bulk channel conformal blocks [27, 28]

Gu(©) = > _imiugh'A, (), (2.33)
k
where pip 5, = Ciarapx and
u A-A -8y A+A—Ay A+A—A d
sl

(2.34)

Note that g3k (€) can be identified with g 5 (17) with the replacement £ <+ —1,'® up to an over-
all normalization. The limit £ = oo is known as the boundary channel limit, where operators
inserted in the bulk are taken close to the boundary. A different OPE is involved in this limit

as,o

OA(X) = |1 _xz‘A

+ > peClx10A,(x) (2.35)
1

which expresses a bulk operator as a sum of operators 19) A,(x) on the boundary. Here C[x] is a
differential operator determined by symmetry. The boundary operator spectrum A; and OPE
coefficient p; are new CFT data. Applying the boundary OPE for each operator reduces the
two-point function to a sum of two-point functions of operators living on the boundary, and
the latter is fully fixed by the residual conformal symmetry. The contribution of exchanging a
boundary operator is summarized by a boundary channel conformal block

g () = EAF, (A, A— ; +1;2A+2—d, —%) , (2.36)

and the correlator can be decomposed in the boundary channel as

GB(&) = agpdin + Y _priprigpar (). (2.37)
!

The boundary channel of BCFT two-point functions has no analogue in the real projective
space case, because the identification (1.3) does not have any fixed point. The two channels of
OPE should lead to the same answer, and gives to a ‘crossing equation’

> upiughR, (©) = ab b+ > _priprighar (). (2.38)
k 1
Finally, the limit of £ = —1 is known as the ‘Regge limit’ [36]. In this limit, one operator is at

the lightcone created by the image of the other operator with respect to the boundary. The Regge

10 There is some formal connection between boundary CFTs and RIPY CFTs by analytic continuation. For example,
in two dimensions the boundary states are defined by (L, — L_,)|B) = 0 while the crosscap states are defined by
(L, — (—1)"L_,)|C) = 0. Here we can relate them formally by making the analytic continuation x> — —x2. This not
only gives & — —n, but also fixes the one-point function and the kinematic factors we extracted from the two-point
functions.



J. Phys. A: Math. Theor. 54 (2021) 024003 S Giombi et al

limit can only be reached in the Lorentzian signature, and requires analytic continuation from
the Euclidean signature. It was proven in [36] that for any unitary boundary CFT, the two-point
function has a bounded behavior at the Regge limit, which is controlled by the bulk channel
exchange of operators with the lowest dimension.

We can think of the = oo limit of RP? CFTs as the & = —1 limit of BCFTs, as both cases
requires analytic continuation from the Euclidean regime.!! This intuition will also be sup-
ported in the next section when we study Witten diagrams, which arise in the weakly coupled
duals of RPY CFTs.

3. Holography on quotient AdS and Witten diagrams

3.1 AdSy.1/Z»

In this section, we study a simple toy model of holography for RPY CFTs. We extend the
quotient of the boundary spacetime into the bulk to define a Z, quotient of AdS space, and
consider perturbative physics on this background. This over-simplified setup is effective in
nature, and does not correspond to top-down models. However, it captures all the essential
kinematics which are relevant to various applications later in the paper. This setup of quotient
of AdS appeared previously, e.g., in [12, 22-24, 26]. Here we give a detailed account using
the embedding space formalism introduced in section 2.1.

For the calculations in this section, it will be most convenient to consider the Euclidean AdS
space'?

_(Z1)2+ (22)2++ (Zd+2)2: _1’ Zl >O, (31)

and analytic continue the results to the Lorentzian signature in the end. In terms of the Poincaré
coordinates z = (2o, 7), the embedding space vector Z* is parameterized as

1 <1+Z(2)+ZQ 1-7-72 Z)

7A = — , 3.2
> > (3.2)

20
We extend the boundary inversion (2.6) into the bulk by requiring that Z should act in the same
way on the AdS embedding vector. This leads to

-

o Z

A 170 — 5 — — 5 3'3
T2y 3+ 7 (33)
and defines a quotient space ¢gAdS,+1 = AdS,+1/7Z, by the identification
z S 4
W6 o, T (3.4)

B+ 3+ 2

Note that the identification (3.4) is geometrically represented in Poincaré coordinates by an
inversion with respect to the hemisphere H defined by

2+72=1, z>0, (3.5)

Tt might also be tempting to identify 7 = 1 with the BCFT Regge limit, since in both cases one operator approaches
the lightcone of (or coincides with) the image of the other operator. However, the crossing equation (2.14) tells us that
7 = 1 limit is physically not any different from the = 0 limit.

12 We have set the curvature of AdS to 1.

10
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o~

Figure 1. Illustration of AdS,/Z, in Poinca{é coordinates. A point Z inside the hemi-
sphere H is identified with its inversion image Z out side of the hemisphere. The quotient
has a fixed point N., which is the north pole of the hemisphere.

This is illustrated by figure 1. The map (3.4) has a fixed point

20 =1 7=0, (3.6)

which sits at the north pole of the inversion hemisphere . In terms of embedding coordinates,
the fixed point corresponds to the fixed vector N, introduced in (2.8).

Now we consider a scalar field ¢ living on the quotient space gAdS, ;. To describe the
scalar field, it is convenient to extend the definition of the scalar field to the full AdS,4; and
impose the condition that

p+(2) =t ps(Zo2). (3.7)

We can define the propagators of ¢, on gAdS,;; (and extended to AdS,. ) as follows. The
bulk-to-bulk propagator Hﬁg’i (Z, W) satisfies the following equation of motion

Oz + AA — &) Hy5 ™ (2, W) = 841z, W) + 64+ (Z, W), (3.8)

where W denotes the image point of W under the inversion (3.3). The propagator Hlﬁgi z,w)
can be expressed in terms of the usual AdS propagators before taking the quotient, as

Hgy™ (Z,W) = Giy(Z, W) % Gip(Z, W), (3.9)
where G5y (Z, W) satisfies
Oz + AA — D) Gy (2, W) = 5T (Z, W), (3.10)

and is given explicitly by

d 1
GE(Z, W) = C5 (—u) ™2, F, (A,A -5+ E;2A —d+ 1;u_1> . (31D
with
Z-W+1 AT (A-—2 41
__ZWl as TAT(A-g+5) (3.12)
2 Gm) T TQRA—d+1)
Note that

ZW=2Z-W, ZW=2Z-W, (3.13)
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we have the following identities for the bulk-to-bulk propagator
Hgy (Z.W) = Hgi*(W.2) = Hg“(Z. W) .
A - A (3.14)
HE;5(Z, W) = +HE5 (2, W).

The bulk-to-boundary propagator HBAa‘i(Z, P) can be obtained from the limit of A, ﬁ_;i (Z,W) as
we move the bulk point W close to the boundary. It is easy to prove that

Z-P=(*"'Z-P, Z-P=x*"'z-P. (3.15)

This implies that the usual AdS,; bulk-to-boundary propagator

ehap=( L ) - “ : 3.16
Bo(Z, P) = 7. p = m (3.16)

transforms as

GEy(Z,P) = () GEy(Z. P). (3.17)
On the other hand, we recall that boundary operator receives an extra (¥2)~“ under inver-
sion from (2.7), which cancels the (¥?)* in (3.17). Therefore the gAdS,.; bulk-to-boundary

propagator should be defined similarly to (3.9), as
Hy5™(Z,P) = Ggy(Z, P) = Ggy(Z, P), (3.18)
or equivalently,

HE5(Z, P) = GEy(Z, P) + () 2GEy(Z, P). (3.19)

3.2. Tree-level Witten diagrams on quotient AdS space

Having obtained bulk-to-bulk and bulk-to-boundary propagators on gAdS,;;, we are now
ready to define Witten diagrams.
One-point diagram

Let us start from the one-point function. It is given by a single bulk-to-boundary propagator
which ends on the conformal boundary where the operator is inserted. Note that the Witten
diagram must preserve the fixed vector N, defined in (2.8). Therefore, the other end of the
propagator has to end at the inversion fixed point N, (figure 2). It corresponds to a vertex
((N.) localized at the fixed point. We have

2
— for + parit
(Oa) = Hgy" (N, P) = { (1 + 392 party (3.20)

0 for — parity

which has the correct structure (2.10) determined by symmetry. Note that the information of
the vertex ¢(N.) was not contained in the original theory before the quotient, but was inputted
into this toy model by hand.
Two-point contact Witten diagrams

For two-point functions, we can define the following tree-level contact Witten diagram
(figure 3)

COn. 1
VATA, (P1.P2) = S Hyl ™ (Ne, POHgs ™ (Ne. Po), (3.21)

12
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Figure 2. The one-point function is given by a bulk-to-boundary propagator with no
integration.

Figure 3. The two-point contact Witten diagram is given by a product of bulk-to-
boundary propagators with no integration.

which factorizes into the product of two one-point functions. It comes from the vertex
i(pupz(Nc) which localizes at the fixed point N.. Note that it is important that both opera-
tors are parity even since HBA({ (N, Py) vanishes. In terms of the cross ratio, the contact Witten
diagram reads

yeon0 Z’“g ()

VA, (P1, Py) = s %)Al] (i el (3.22)
where

VAL, ) = (3.23)

To define two-point contact diagram for operators with odd parity, we can add two deriva-
tives to the vertex. The vertex now becomes f(vwlvwz)w ), and leads to the following
diagram

VAT, (P1, P) = —v“ (2. PV, Hy (Z.Py)

b}

Z=N,

= VIGEN(Z. PV, G (Z, P2)’ (3.24)
Using the identity
A(Z POVIGEA(Z, Py) = A A (GBa (Z. P)GE2(Z, Py)
— 23,65z, PG T, Pz)) . (3.25)

13
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we get
con2
con,2 _ Al A2(77)
VA],A2(P1aP2) - (1 + 2)A1(1 + x%)AZ s (326)
where
VM, () = A1 (1 — 2n). (3.27)

It is clear that Vg’“i (n) is antisymmetric under n <> 1 — 7.

Itis stralghtforward to generalize these contact Witten diagrams to include more derivatives
in the vertex. In general, for a vertex with 2L derivatives the two-point contact Witten diagram
VAra 2L - () is a polynomial in 7 of degree L. Moreover, the contact Witten diagrams have the
followmg behavior at  — oo

VMLm=t = oo (3.28)

This is consistent with the intuition that the 17 — oo limit can be thought of as a ‘Regge limit’
for the two-point correlator—increasing the number of derivatives in the vertex leads to a more
divergent behavior in the correlator at large cross ratio.
Two-point exchange Witten diagrams

Let us now define the two-point exchange Witten diagram (figure 4)

exchange. 1
ye hang ’i(P1,P2) _ 7/ ditiz H]%+(NC,Z)HBA81¢
AdSgy

X (Z, PHE2 " (Z, Py) (3.29)

which requires the presence of the localized vertex ¢(N,) for the scalar field with dual confor-
mal dimension A, and a bulk cubic vertex ¢y ¢,(Z) where ¢, , have dual dimensions A ».
Letus use (3.9), (3.18) and (3.19) to express the gAdS ;4 propagators in terms of the propaga-
tors in the full Ade+1 Note that N, is its own image, therefore H; ™ (N, Z) = 2G55(Z, N.).
On the other hand, HBB+(NC,Z) =2G B(Z N,) thanks to (3.14). Using this and (3.17), we can
expand the product and massage the expressions such that the AdS,;; propagators join into
connected diagrams. It becomes obvious that the integrals in VXChange’i(Pl,Pz) can be orga-
nized into the linear combinations of exchange diagrams defined in the full AdS,+; space (in
particular, integrals inside the sphere and their images outside combine, and extend to the full
space)

VRSP Py) = WRTE (P Py) £ (a3) R WRTEN(PL Py, (3.30)

where

WPy P,y = / A7 GE(N., 2)G 5 (Z, P)GRE(Z, Py),  (3.31)
Adsd+1

and

WeAxchange(Pl’Pz) _ WZ(Change(Pl,Pz). (332)

14
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Figure 4. Illustration of an exchange Witten diagram. One end of the bulk-to-bulk prop-
agator is fixed at N, while the other end is connected to the cubic vertex and integrated
over.

When written in terms of the cross ratio

Wexchange (77)
Wexchange P ,P — A y
N (P1,P2) 1+ xD)A(1 + 1A
2 exchange (333)
2 —Ay Wexchange P, P, = WA (77)
(x3) N (P1,P2) (14 x2)21(1 + xH)A2
WEE and W are related by
WeAXChange(’I]) _ WZ(change(l _ ,]7) (334)

Equation of motion relations
The exchange Witten diagrams W38 and WS introduced above are related to the
zero-derivative contact Witten diagram VX’T’OAz by the equation of motion operators. More

precisely, let us define

EOM =L* + A(A — d),
o (3.35)
EOM =L°> + A(A — d),

where L? and L? are the conformal Casimir operators defined in (2.19) and (2.26). The exchange
diagrams are then related to the contact diagram via

xch 0
EOM[WL™"] =VTA,»

N o (3.36)
oy 7€Xchange n
EOM[W "] :VX:Az'
To prove these relations, let us notice that the integral (3.31) is conformal invariant
(L3P + 13 + LA YWD (Py, Py; N,) = 0. (3.37)

Here we are viewing W5 *"*° as a function of the bulk point N, and £8 are the AdSyy,
isometry generators at the point .. Using (3.37) twice, we get

L2WS™ (P, Py N,) = L2WS™™(Py, Py N,), (3.38)
where £? = %EAB[iAB. Notice that £? acts on the bulk coordinates as [J, and collapses the

bulk-to-bulk propagator in (3.31) to a delta function by (3.10). Integrating over Z gives us the

contact diagram (3.21). The proof for WX is analogous.

15
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Figure 5. Illustration of a geodesic Witten diagram. The integration of the cubic vertex
is restricted to the geodesic line 7, connecting the two boundary insertions.

We will also explicitly evaluate these exchange Witten diagrams, and study their decompo-
sitions into conformal blocks. We will delay the discussion until section 4.

3.3. Geodesic Witten diagrams

We can also define a variation of the exchange Witten diagrams, which is holographically dual
to the conformal blocks (2.16), (2.23). These modified exchange Witten diagrams are known
as the geodesic Witten diagrams [37]. These objects were also considered in [38] in a different
context. We define the dual of g () similarly as in (3.31) by

WE(Py, Py) = / dy Gis(Ne, )G (v, PDGRE(Y, P), (3.39)

712

where v, is the geodesic connecting the x; and X, on the conformal boundary. In Poincaré
coordinates, the geodesic v, is just a semicircle. Instead of integrating over the whole AdS 4,
the integration is now restricted to the geodesic only. The geodesic Witten diagram is illustrated
in figure 5. After extracting a kinematic factor

WR(n)

W& (P, Py) = ,
A (Py, P2) (1+x%)A1(1 +x%)A2

(3.40)
the function WX* (1) is proportional to g () up to some constant factor. Similarly, we define

WE*(Py, P,) = / dy GEa(N,1Ga (v, PNG52 (v, Po), (3.41)
Y12

and

WX ()
(1 + xHA1(1 + x3)A2°

(3) 2 WR(P, Py) = (3.42)

where 7,5 is the geodesic connecting X} and the image of X, (see figure 6). The geodesic Witten
diagram W” is dual to the image conformal block ga (7).

To prove their equivalence, we can use the equation of motion operators introduced in the
last subsection. Let us act on the geodesic Witten diagrams with EOM and EOM, and use
the definitions of WX* and W°. The integrations along the geodesics preserve the conformal
invariance, and allows us to apply the analysis and use the equation of motion for the bulk-
to-bulk propagator. Note however that since the geodesic lines do not pass through the fixed

16
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Figure 6. Illustration of a geodesic Witten diagram in the mirror channel. The geodesic
713 now connects point 1 and the image of point 2.

point N, for generic end points X|, X,, the delta function is not integrated. Therefore, instead
of generating contact diagrams we get

EOM[WX°] =0, EOM[W}°] = 0, (3.43)

On the boundary side, these two equations are just the quadratic conformal Casimir equations.
Itis also clear from the definitions (3.39), (3.41) that WX (1)) and WX () satisfy the boundary
conditions (2.18), (2.25). This concludes the proof that the geodesic Witten diagrams are the
bulk dual of the conformal blocks.

3.4. Comparison with interface CFT from the probe-brane setup

To conclude this section, we give a quick comparison of the above discussion with the closely
related interface/boundary CFT from the probe-brane setup [36, 39—41] (which is the simplest
Karch—Randall set up [42, 43]). As we have seen in section 2, the kinematics of the RP? CFT
and BCFT share a lot of similarities. We now show how these kinematical similarities are
extended into the bulk, and also point out a number of differences.

In the probe-brane setup, we choose a special slice of AdS, space inside AdS,;. There
are local degrees of freedom living on the AdS; slice, and they are coupled to the bulk fields
in AdS,+;. However, the AdS,; brane is treated as a probe and does not back-reacts to the
geometry. In [36, 41], ‘straight’ probe branes are considered in great detail where the AdS,
slice is embedded in AdS,4; as the restriction to z; = 0. The setup corresponds to CFTs with
a straight co-dimension 1 interface at x; = 0. One can then use method of images to take only
half of the AdS,;, space with z; > 0, and consider boundary CFTs defined on x, > 0 with
Dirichlet or Neumann boundary conditions, as was done in [36]. Here we consider a slightly
modified setup where the probe brane is a hemisphere in the Poincaré coordinates of AdS,.
It is related to the ‘straight’ case by a conformal mapping. The method of images is similar in
the spherical case (one can also first apply the method in the ‘straight’ case and then perform
the conformal mapping), and will not be elaborated here. We will therefore focus only on the
probe brane case where the space continues beyond the interface.

As we pointed out in section 2.1, the spherical boundary of a BCFT preserves the fixed
embedding vector Ng (2.9). In the bulk, the boundary of the BCFT is extended into the
hemisphere

1-73-72

Ng -Z =
i 220

=0, (3.44)

which is the probe AdS, brane. This hemisphere coincides with the inversion hemisphere H
defined in (3.5). Note that in the RPY CFT case the fixed vector N, corresponds to a point

17
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in the bulk, while in the BCFT case the fixed vector N is a normal vector defining a fixed
co-dimension 1 surface.

We can modify the Witten diagrams defined in section 3.2 to define their BCFT counterparts,
by simply integrating over the whole hemisphere H instead of localizing on the north pole. For
example, the BCFT one-point function is defined as

1
(OAP))s = /H 423G T P) ~ [ s (3.45)

which reproduces the correct structure (2.30). The two-point contact and exchange Witten
diagrams are respectively defined as

WEn0 | (Py,Py) = /H A2 G (Zo, POG (Z P). (3.46)

stk (p, po) / Az / AW G, (Zos W) GEL (W, PG (W, Py).
H Ads(l+l

(3.47)

Itis easy to verify that a similar equation of motion identity relates the exchange Witten diagram
to the contact Witten diagram

EOM[W ™) = Wik . (3.48)

by using similar arguments. The integrals (3.46), (3.47) can be mapped to the straight probe
brane integrals studied in [41], by parameterizing the hemisphere H with the following
Poincaré coordinates'?

1 1 2 _ 2 2 1 — 2_ 2 2 )
ZH:—<zd,0, T —wty) 17 Zd“’),z’), i=1,....d—1.
20 2 2

(3.49)
It then follows that these Witten diagrams are functions of the BCFT cross ratio £ defined in

(2.31), rather than the RP? CFT cross ratio 1) defined in (2.12).
We can also define the geodesic Witten diagram similar to (3.39)

WESPI(p, py) = / az / &y Gy (Zo. )G (. PNGES (1, Py, (3.50)
H 72

as was first discussed in [41]. A similar argument using the equation of motion operator shows
that the geodesic Witten diagram is holographically dual to the bulk channel conformal block
g'g‘fk(ﬁ) defined in (2.34).

Finally, in the probe brane setup we can define the boundary exchange Witten diagram

Winesbondiny(py p,) = /H dZ1 3 A2y G (2130, Zo )

X Gy (Zyy, PG3 (Zoyus P), 3.51)

13 Here we switched to the (—+,—+, ..., +) signature for R%2. We also need to perform the Wick rotation z; — izy
to make the probe AdS, brane Euclidean in order to compare with [41].
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where an interface field localized on H with dimension A is exchanged via the AdS, propagator
Gﬁéﬂ (Zy.3, Z>3)- These diagrams have no analogue in the RPY CFT case, since the inversion
hemisphere is not a boundary and there is no extra degrees of freedom living on it.

4. Two-point exchange Witten diagrams

In this section, we study in detail the properties of the two-point exchange Witten dia-
grams defined in the previous section. In section 4.1 we explicitly evaluate these diagrams.
In section 4.2 we study the conformal block decomposition of Witten diagrams in different
channels.

4.1. Evaluating two-point exchange Witten diagrams

We will focus on the evaluation of the two-point exchange Witten diagram W5 "*°. The image
diagram WX can be obtained from W™ via the crossing relation (3.34). The full
qAdS,4 exchange Witten diagram can then be assembled using (3.30). We first
discuss the special case where Wi " can be expressed as a finite sum of contact Witten
diagrams. We then give the formula for the exchange diagram when the quantum numbers A,
A,, A are generic. Note that the calculation is exactly the same as doing only one of the two
integrals in a scalar four-point exchange Witten diagram in AdS,4 1, since once we strip away
the other two bulk-to-boundary propagators the integral becomes identical.
The truncated case

Let us first consider a special case when A; + A, — A € 2Z,. We can use the vertex iden-
tity for scalar exchange [44] (see also appendix A of [45]) to write the integrated vertex as a
finite sum of products of two bulk-to-boundary propagators with shifted conformal dimensions.
The exchange diagram W3 "™ then becomes

hange, £+
Vexc R
A

kmax
WML Py = D a3 A G (N, PGl (Ne, Pa)
k=kmin
kmax
= > @)V s (P1LPy). (4.1)
k=kmin
where
A—A +A
kmin - #, kmax - AZ - 1,
2
k—A L Afoyp _d AL AN
PR et e s s e A s 4.2)
(k—Dk—1—-A1 +Ay)
1
apn, -1 =

4A1 = DA = 1)

Written in terms of the cross ratio, the exchange Witten diagram is a polynomial of !

kmax
W) = Y a2, (4.3)
k=kmin
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The general case

In the general case, we can still express the exchange Witten diagram as an infinite sum of
contact Witten diagrams. The integral has already been computed in appendix C of [46]. Here
we review the derivation and the result in the language of RP¢ CFT.

The main idea for evaluating the integral is to use the equation of motion relation (3.36) to
write down a differential equation for the exchange Witten diagram. Written in terms of the
cross ratio, the equation of motion identity becomes

EOM[WX"™ ()] = 1, (4.4)

where the differential operator acts as

EOM[G()] = 4n*(n — DG" () + n(4(n — DA + Ay + 1) + 2d)G (1)
+ (A= A1 = A))(=d+ A+ Ay + Ay) +4A1AmG ().
4.5)

The differential equation should be supplemented by two boundary conditions:

exchange

AA-A,
(a) From the OPE limit 7 — 0, we know WY (n) should behave as p— 2 .14

(b) From the definition of the integral (3.31), WCXChange(n) has to be smooth at n = 1
(see [47)).

The physical solution is a linear combination of the special solution

A+ A, —A A +M+A—-d
f(n) =3F, (1,A1,Az; 1 22 +1,= 22 + 1;?7) , (4.6)
and a homogeneous solution, the conformal block g (1),
WATE @) = C1f () + Caga(). 47
The coefficients C|, C, are given by
Cr — 1
e (A + Ay — A)A + Ay + A —d)
F( A+A1 Ay )F( A— A] +4, )F( *A+A1+A2 )F( 7d+A+A1 +A, ) (48)
G =

4F(A1)F(A2)F(—— —|— A+1)

The ratio & o is precisely fixed by the condition that the solution is regular at n = 1. We can
also write (4 7) as two infinite series in 7). Using the definition (3.22), (3.23) for the contact
Witten diagram, we can then write Wi ™" as two infinite sums of contact Witten diagrams

00
xchange =2 i con,0
WZ - E ('XIZ)PVAI—HAz—H

A2

+ Z(xlz

+
0
QVAYA A, Aa A 4.9
i + 21 24 21+ 247

14 Here we are assuming that A < A; + A, such that the single-trace contribution is leading.
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where the coefficients P; and Q; are given by

(ADi(Ar);

P =
(A = Ay = Do)(—d + A+ A + Ag) (48 A2)

s

(7d+A+A1+A2+2)
. 2 .
l l

(4.10)

and

2
0i= 470G + DT(ADT(A,)

r (AfAzl +A2) r (A+A21 fAQ) T <7A+%1+Az) T (7A+A12—A2+2) r <7A—A12+A2+2)

F 7A+A17A272i+2 F 7A7A1+A272i+2
2 2

- (—1)T (d—Zi—ZA) sin (n(de)) r <7d+A+2A1+A2)

X

@.11)

When Ay + A, — A = 27, the infinite sum truncates and reduces to (4.1).

Finally, let us examine the behavior of the exchange Witten diagrams at 7 — co. By using
the equation of motion identities (3.36) and the behavior of the contact Witten diagram (3.28),
we find

Wz(change(n) N 77_1’ WZ&Change(n) N 77_1, for n — oo. (4.12)

4.2. Conformal block decomposition of Witten diagrams

The contact Witten diagram
We now study the conformal block decomposition of two-point Witten diagrams. We start
with a warmup case, namely the zero-derivative contact Witten diagram (3.23). It is straight-

forward to show that VX):],’OAZ(W) can be written as an infinite sum over double-trace conformal

blocks
VCAOF:Z2 (77) = Za"gAﬂ-‘- (77) = ZangAﬂ.t. (’17), (4.13)

where At = A + A, + 2n, and

DT+ AL+ AT (=4 +n+ Ay + Ay)
- LADT(ANI'(n+ DI (_% n Aﬂ"') .

(4.14)

n

The exchanged operators in each channel correspond to double-trace operators of the schematic
form: O0"O,: withn = 0,1, ...

Exchange Witten diagram in the direct channel

Let us now consider the conformal block decomposition of the exchange Witten diagram
(3.31) in the same channel. The Witten diagram can be written as a sum of a single-
trace conformal block with dimension A, dual to the exchanged field, and infinitely many
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double-trace conformal blocks
WRHE () = Aga(m) + Y _Angage (). (4.15)

The single-trace OPE coefficient can be extracted from the small  expansion of (4.7), and is
A-Aj-A
associated to the term with the behavior n T

r <A+A21—A2) r (A—A21+A2) r (—A-‘r%l-‘rﬁz) r (—d+A+2A1+A2)

A= TANTANT (2 + A+ 1)

(4.16)

To extract the double-trace OPE coefficients, we use the equation of motion identity (3.36).
Note that the EOM operator annihilates the single-trace conformal block ga (), while
multiplies the double-trace conformal blocks with constants

EOM(ga(m] =0, 1)
EOMIg yo: (1] = (AA — d) — Ay (AY — d))g pge (). '

Using the conformal block decomposition (4.13) of the contact Witten diagram, we find

Ay

A, = :
AA —d) — AYH (A —d)

(4.18)

Using these OPE coefficients, we can further expand the conformal blocks to obtain a small 7
expansion for the exchange Witten diagram. This expansion can be compared with the expan-
sion of (4.7), which provides a consistency check of our results. By crossing symmetry, we
also have

WeAxchange(’I]) =Aga(n) + ZA,,gAg,[_ ). (4.19)

Exchange Witten diagram in the crossed channel

Finally we consider the conformal block decomposition of the exchange Witten diagram in
the crossed channel. The decomposition consists of crossed channel double-trace conformal
blocks only

wEhanee )y — > B.g INRC) (4.20)

To work out the decomposition coefficients, we will generalize the recursive techniques devel-
oped in [46]. We apply the equation of motion relation (3.36) to turn the exchange Witten
diagram into a contact Witten diagram, which has already been decomposed into the crossed
channel in (4.13). On the other hand, the action of the EOM operator on g Adt admits a simple
three-term recursion relation

EOMIZ g | = fngase, + ViBage + prBas @.21)

where
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tn = (A1 + Ay — AYYd — Ay — Ay + AE - 2),
C(d=2A01 =20y 4+2)(Bd — 281 =20, — 2)(d + 20 — 285 — 2)(d — 2A; + 27, - 2)

o 8(d — 2A% _2)(d — 2A™ 1 2)
d\’ d\* 1 d\’ 1
(A =4) (A=) 4 2(a0eE S S A AA—
(1 2) (22>+2<n 2>+d 2+( d),
((Al — AP — Aj‘,"'z) (d— Ay — Dy — AM)2d — Ay — Ay — Al
Pn =

(d —2(A%" 4 1))2

d+ Ay — Dy — ALY — A+ Ay — AL
X .
(d —2A5")d — 2A%%)

(4.22)

Note that for n = 0, the coefficient j, vanishes. Therefore the action of the EOM operator
preserves the double-trace spectrum. Using (4.21), (4.7) and (4.13), we obtain the following
inhomogeneous recursion relation for the decomposition coefficients

pn—an—l + v,B, + Mn+an+l = dy- (423)

For n = 0, the equation remains the same just without the p, piece. The coefficients B, with
n > 0 can be recursively solved, after specifying the boundary condition By, which is extracted
from the 17 — 1 limit of the exchange diagram (4.7)

By = WX = 1)

_ r (AlJr?z*A) r (A|+A§7d+A> r (1 _ %) r (A+%r§z )AF <A7A2|+Ai -
4T(As) FADT (A0 1 (85000
S (24N A —A 2+A Ay —d+A d. d d )
_32< . , X 1-%2-51 2+A1,1>},
(4.24)
where 3F , is the regularized hypergeometric function defined by
= Fy(ai,az,a3;b1,b2;2)
Fy(a1,az,a3: by, by;z) = -2 4.25
sF,(ay, az,a3; b1, b2;52) T (bs) (4.25)
By crossing symmetry, the conformal block decomposition for W also gives
WeAxchangE(n) = ZB"gAﬁ'" (77) (426)

5. Dimensional reduction

In [32]it was pointed out that a large class of Witten diagram recursion relations can be obtained
from conformal block recursion relations, essentially by just replacing conformal blocks with
the corresponding exchange Witten diagrams. This idea was demonstrated for four-point
functions in generic CFTs, and two-point functions in CFTs with boundaries. Here we gen-
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eralize similar statements to two-point functions in CFTs on RP?, and we will focus on the
dimensional reduction relations.
5.1. Reduction for conformal blocks

Let us recall the relation between RPPY CFT conformal blocks and BCFT conformal blocks in
the bulk channel (see (2.16) and (2.34))

—;2 bulk

galn) = (=1) 8p.A (=) 5.1

The dimensional reduction formulae derived in [32] for gB'X (¢) therefore can be straightfor-
wardly transformed into those for g (7). We have the followmg relation between conformal
blocks in d and d — 1 dimensions

gl = oA ). (5.2)
j=0
where we have used the superscript to emphasize the dimensional dependence, and

L(j+1) GAa+a - Az)) (a—-n4 +A2))
Vil (- d+2A+2)) (]+2( d+2A—1)+1)

oA = (5.3)

Moreover, a conformal block in d — 2 dimensions can be expressed in terms of only two
conformal blocks in d dimensions

g = g + BA)Y,,(), (5.4)
where

A+ A - ANA-A + Ay
P = A —had—2a-2) (53)

Using g(d)(n) =g A)(l — 1), we also obtain similar dimensional reduction formulae for the
image channel conformal blocks g(d)(n).

Let us comment that the recursion relation (5.4) is quite special, as it involves only finitely
many terms. In fact, the inverse relation which expresses a d dimensional conformal block
in terms of d — 2 dimensional blocks, contains infinitely many conformal blocks. A similar
relation of (5.4) was first derived in [30] for conformal blocks for four-point functions in CFT's
without boundaries. The identity expresses ad — 2 dimensional conformal block in terms of the
linear combination of five conformal blocks in d dimensions. The existence of such a recursion
was explained in terms of a OSp(d + 1, 1|2) Parisi—Sourlas supersymmetry [31] in a d dimen-
sional SCFT, which upon dimensional reduction gives rise to a non-supersymmetric CFT in
d — 2 dimensions. The relation (5.4) we wrote down here parallels the five-term relation in [30],
and therefore suggests that a similar story of Parisi—Sourlas supersymmetry and dimensional
reduction can also be extended to CFTs on real projective space.

5.2. Reduction for exchange Witten diagrams

Similar to the observations in [32], the recursion relations (5.2) and (5.4) can also be extended
to imply relations for exchange Witten diagrams. Let us rescale the exchange Witten diagrams
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such that the single-trace conformal blocks appear with unit coefficients

1 exchange D, 1 A j€xchange
Pal) = (WM, Paln) =  WR™ ), (5.6)

where A is the coefficient of the single-trace conformal block (4.16). We claim that we have
the following dimensional reduction formulae

PL) = Za@(A)PEﬁ’;ii(n), 5.7)
j=0
PEP ) = PR + BAYPR, (). (5.8)

Similar relations also hold for the mirror channel exchange Witten diagram upon replacing

(d)(n) with P(d)(n) In [32], similar Witten diagram identities were proven by using simple
Mellin space arguments. Unfortunately, the same arguments cannot be used here. We note that
although a Mellin representation formalism can be developed for RP“ correlators similar to the
BCFT case [41], it is not suitable for holographic correlators. To see this, we recall that contact
Witten diagrams are polynomials of the cross ratio, and their Mellin transform are ill-defined.
Nevertheless, we can still prove (5.7) and (5.8) in position space by using the conformal block
decomposition in the direct channel.

Let us denote the decomposition of the exchange Witten diagrams as

PLM =gl + Z w")(A)gZ; ), (5.9)

where £ (A) = 22 in relation to (4.15). Substituting this decomposition into (5.8), we find
that the single- trace conformal blocks on both sides cancel thanks to (5.4). The double-trace
conformal blocks must also match, provided

Zu(d KOSROE Zu(‘”(A)g(‘” )

Adt Adt

(d) (d)
- B(A)Z (A 42 (). (5.10)

n=0

We can use (5.4) again to turn g Ad )(77) into 8\ ) (77) and arrive at the following condition

P9PA) + B, DDA = g DA + BAED(A +2). (5.11)

This identity can be straightforwardly verified, using the explicit expressions for p(A) and
B(A).

We can proceed similarly for the relation (5.7). The single-trace operators again drop out
because of the conformal block recursion relation. The double-trace coefficients need to be
constrained, and the condition reads

D P (A) =) (Al IA + 2k). (5.12)
m+j=n k=0

The infinite sum on the rhs makes it difficult to check analytically, we can nevertheless
numerically check this identity.
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Another nontrivial crosscheck is to use (5.7) twice to reproduce (5.8). It is not difficult to
find

PR = iAo (A +2)PLT i)

Jik
o [A+A-Ay A-A 44,

-3 ( (2_ ; +)"A(+ 1)2 )"PX;§L<n). (5.13)
n=0 2n

Using this identity in (5.8), one can straightforwardly verify that the relation is valid.

6. An analytic bootstrap approach for RPY CFTs

In this section, we present an analytic bootstrap approach for studying CFTs on RP¢. Part of our
discussions forms a close analogy of the analysis for BCFT two-point functions in [36] (see also
the related works [48—51]). In section 6.1 we argue that the double-trace conformal blocks in
both the bulk channel and the mirror channels form a complete basis for two-point correlators.
Their duals give a basis for analytic functionals, and we will explicitly construct their actions
using exchange Witten diagrams. In section 6.2 we give another construction of the functionals
from the dispersion relation. We apply these analytic functionals in section 6.3, where we obtain
the e-expansion result of RPY* theory to > order. We also perform an independent field theory
check of our results in section 6.4.

6.1. Space of functions, double-trace basis, and dual basis

The study of Witten diagrams in section 4 motivates us to propose a natural basis for two-point
functions. As we have seen, the exchange Witten diagrams admit the following decompositions
in two channels

WRHE () = Aga(m) + > _Angaac () = > Bugaac (), (6.1)
WA () = AZa() + Y _Augagi () = Y _Bugas (). (6.2)

These identities show that any conformal blocks g A (17), g§a (1) with generic conformal dimen-
sion A can be expressed as linear combinations of double-trace conformal blocks g Adt ),
g aac () in both channels. This fact, loosly speaking, implies that {g ya..(1), g xa. (1))} form a
new basis. ’ '

To phrase our statement more precisely, we need to define the space of functions I/ for the
correlators G(n) which we are considering. We define U/ to be the space with the following
‘Regge’ behavior

G el, if|G] <|nl"° whenn— oo, (6.3)

where € is an infinitesimal positive number. For example, the mean field theory two-point
function

1

-4y -4y
(1 —|—X%)A‘f"(1 +X%)A"“" (77 ' i(l _77) °)’ (64)

(P+(xDP+(x2)) =

belongs to this space when A, > 0. The conformal blocks g (1), ga(n) are also in this
space if the external dimensions min{A, A;} > 0. On the other hand, the contact Witten
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diagrams are not in this space (see (3.28)). This avoids having relations among the basis vectors
{g At (1), gpar (1)}, as a contact Witten diagram can be decomposed into only double-trace
conformal blocks in either channel. Note that in the BCFT case, it was proven that two-point
correlators in any unitary theory have a bounded Regge behavior when ¢ — —1 [36]. The proof
exploits the positivity of the decomposition coefficients in the boundary channel. By contrast,
in the case at hand here of RIP? CFTs, positivity is not a priori guaranteed in either channel
even when the theory is unitary. The Regge behavior requirement (6.3) is therefore imposed
by hand.

We claim that the double-trace conformal blocks {g ye«., g xa+ } form a basis for the space .
A basis for the dual space U/* is given by the set of functionals {w,,, @,, }, defined by dualizing
the double-trace basis

UJm(gAﬂ-l-) = O wm(gAg-L) =0,
6.5)
a)m(gAgl) =0, a)m(gAg&) = 5mn~

Although we do not have a general proof for this proposal (except for the d = 2 case where
we prove in section 6.2 from the dispersion relation), we will provide ample evidence which
supports this conjecture.

The action of the basis functionals can be read off from the conformal block decompositions
of exchange Witten diagrams. Acting on (6.1) with w,, and use the orthonormal relation (6.5),
we get

Ap
wm(gA) = _X (66)

Acting with w,,, we find

By,
Wm(ga) = —=. (6.7)

The action of the functionals on the image channel conformal block ga(7n) can be obtained
from (6.2), and is related to the action on g (1) by crossing symmetry

wn(8a) = Wm(8a):  Wm(8a) = wi(ga). (6.8)

Let us consider the action of the functionals on a two-point function G € U with the following
conformal block decomposition

G =D imugao, () = £ _pngaq, (). (6.9)
k k

Applying the basis functionals allow us to extract the complete set of constraints in terms of
the sum rules

D tnwn(@ag) F Y thwn(@ag,) =0, (6.10)
k k
D n@n(@ag) F Y _h@n(@a,) = 0. (6.11)
k k
The exchange Witten diagrams can also be viewed as the Polyakov—Regge blocks in the

Polyakov-style bootstrap [36, 48—60], and can be used as a new decomposition basis. In terms
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of the rescaled exchanged Witten diagrams (5.6), two-point function in (6.9) can be rewritten
as

GO = > (P, () £ Pag, (). (6.12)
k

To prove this relation, we can express (6.1), (6.2) in terms of functional actions, and substitute
in (6.12) with

Paln) = gat) — Y _walga)gpue (), (6.13)

Pam) =Y wi(@8n)gpse(n). (6.14)

We now have

GO =Y g, (m)
k

=) (an(g%ggw(n) T _wnl@ag, )gAg.wn)) . (6.15)
k n n

Interchanging the action of the functionals and the sums, the second term becomes

> wn (Zuuk(gAOk () F &2, <n))> gase (), (6.16)

k

n

and vanishes because of the crossing equation (6.9). We have therefore proven the equivalence
between (6.12) and the first identity in (6.9). To prove the second identity, we just need to
decompose the Polyakov—Regge blocks in the image channel

Pa() =D _@n(ga)gas (), (6.17)

ENOEFNOEDPHINTINNG! (6.18)

The alternative decomposition (6.12) can also be taken as the starting point for analytic
bootstrap. In a generic interacting CFT, we do not expect operators with precise double-trace
dimensions. However, if we use the conformal block decompositions (6.13), (6.14), (6.17),
(6.18) of the Polyakov—Regge blocks, we would encounter spurious double-trace operators in
(6.12). The requirement that these spurious operators should cancel gives sum rules for the
OPE coefficients, which are identical to the conditions (6.10), (6.11).

6.2. Functionals from dispersion relation

As was pointed in [50], analytic functionals and the dispersion relation for correlators [61] (see
also [62]) are closely related. In particular, the kernel of the dispersion relation can be viewed as
the generating function for the kernels of the analytic functional in their integral representation.
Here we will demonstrate that a similar relation holds for RPY CFTs by re-deriving the basis
identified in section 6.1 and constructing the dual functionals. For simplicity, we will only
focusond =2 and set A} = A, = Ag.
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We start with the Cauchy’s integral formula

[ dC GO
g _%ZWiC—n’ (6.19)

with a contour encircling the point ( = 7. We can deform the contour, and wrap it around the
two branch cuts [1, 00), (—oo, 0]. We will denote these two deformed contours respectively as
C) and C, as is illustrated in figure 7. Since we have assumed that the correlator has the Regge
behavior (6.3), we can safely drop the arc at infinity. We therefore obtain

G = Gi() + Go(n), (6.20)
where
_ [ d¢ GO [ d¢ Disci[G(Q)]
gmn)—/cl il Mt 621)
B d¢ G(© (% d¢ Disey[G(Q)]
0=~ gy~ [ o (622
and
Disci[G(O)] = G(¢ +i0T) — G(¢ —i07), for ¢ € (1,00), (6.23)
Disco[G(O)] = G(¢ +i07) — G(¢ —i07), for ¢ € (—00,0). (6.24)
Let us define
kn(n) = 0", F (h, b 2h, 7). (6.25)

These functions satisfy the following orthonormality condition

dn
f ) "7. n 2kx+n(77)kl—x—nz(77) = Omn- (6.26)
In|=e <71

Note that ford =2 and A} = A, = A, the double-trace conformal blocks are just
gage () =12k (). (6.27)

We expect that the Cauchy kernel can be expanded in terms of the double-trace conformal
blocks

1 o0
=) H(Ogage () (6.28)
C -n n=0 !

The coefficients H,(() can then be extracted using the orthonormality relation (6.26)

- d’l7 nAo—Z
H(Q) = 7{]4% ko (6.29)

The integral is simple to perform and gives

_4_nA5n2Aﬁ‘)_1n_ —
( ) ( Q) ( I - ) C 13F2(1, —n, ZAQ‘, +n— I;AdnAdJ’C 1). (630)

H,(¢) =
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4
@
0 1
G €

Figure 7. An illustration of the integral contours in the dispersion relation.

Therefore we have shown that G, (1) can be expanded in terms of the bulk channel double-trace
conformal blocks

Gi) =D 11 gase (), (6.31)
n=0
where
d
Tpl = Z—C.Hn«)g(o. (6.32)
Ci Tl

We can perform a similar analysis for G,. However, by crossing symmetry

Ga(n) = £G,(1 — ), (6.33)

where + is common parity of the two operators. It follows that G,(77) admits an expansion into
mirror channel double-trace conformal blocks

G =D 1a2 8psn (), (6.34)
n=0
where
Fa = — / %Hna — OG0 6.35)
G 71

In fact the above decomposition is even valid when we do not assume crossing symmetry. To
see this, we simply need to notice

o 1
(-n  A=-0-010-n

= =D Hi(l = O8age (). (6.36)
n=0

We have now established that the double-trace conformal blocks g x4« and g 4« form a basis
for functions satisfying the Regge behavior (6.3), which is captured by the decomposition

o0

GOD = a1 &as (D + D rap 8ase (). (6.37)

n=0 n=0
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The coefficients can then be interpreted as the actions of the dual functionals
rug = wal G, a2 = wulG(M]. (6.38)

Using their definitions (6.32), (6.35), we see that the functional kernels indeed follow from the
dispersion relation kernel as we claimed earlier.

The discussion in this section is quite similar to the CFT| case discussed in section 2 of [50].
But we should notice that the basis in section 2 of [S0] does not coincide with the expected basis
from holography. Holography suggests a basis containing all conformal blocks with dimen-
sions 2A 4 + 2n and their derivatives with respect to the conformal dimension, while the basis
from the Cauchy dispersion kernel consists of all conformal blocks with dimensions 2A; + n
and no derivatives. This is different in the RP? CFT case. We find that the Cauchy dispersion
kernel gives exactly the same double-trace basis which we expect from holography.
Nonperturbative checks
Let us now perform some quick checks of the equivalence between functional actions obtained
from the dispersion relation, and the ones obtained from Witten diagrams. Consider the
following crossing symmetric toy example of a correlation function

1
Ggn) = —F——. (6.39)
LRV =)
We will set the external dimensions to be A} = A, = 2. The ‘correlator’ can be decomposed
into the d = 2 conformal blocks with a spectrum A =1+ 2n,n € Z4

G =Y anga=112.(n)

n=l (6.40)
D2 (- Dy (<L L+ L) )
; Vi — 1) ’

where ® here is the Lerch transcendent function. Note that the mean field theory double-trace
operators have conformal dimensions A = 4 4 2n, n € N. The OPE spectrum of the above
correlator is therefore ‘maximally’ different from the mean field spectrum, and is in this sense
a ‘nonperturbative’ check. We can act with the functionals on both sides using (6.6) and (6.38),
and it leads to the following constraints

Ay

< d
walG()] =/ 7 C.Discl[g(C)Hn(C)]
1 1

%) A,
_ —Zam<—> . (6.41)
A A=142mA|=Ar=2

m=1

We checked numerically that this constraint is true for n = 0, 1 and 2.

A more physical example is given by the 2D Ising model. The exact solution is known
for this model. The o operator, which has conformal dimension A, = 1/8, has a two point
function on RP? given by (we assume that o has positive parity) [17]

VI—VI—n+/T— 1

(n(1 —m)!/3

Go(n) =

= Piagaza( + Y pragazian(). (6.42)

n=0 n=1

31



J. Phys. A: Math. Theor. 54 (2021) 024003 S Giombi et al

The coefficients p; , and p,, can be found recursively using the expansion of the correlator.
Note that G, (7)) approaches a constant as 77 — 0o, and therefore does not belong to the space of
functions we defined. In fact, a direct application of the functionals leads to a divergent sum. So
instead we perform check on G,(7)/n which has an improved Regge behavior. We would like
the new correlator to have the same operator spectrum in the conformal block decomposition.
Therefore, we will take the external dimensions to be A; = A, = 9/8 instead of 1/8. The
action of the functionals then requires

. {gam)] _ /“ 9 e {g"(oHn(C)}
n o 2mi ¢

- - Plm\ —
—0 A A=dm A =0r=3

o0 An
=D P (ﬂ : (6:43)
A=dm+1,A1=0r=3

m=0

We checked this relation numerically for n = 0, 1 and 2 and it holds true.

6.3. Perturbative applications of analytic functionals

In this subsection, we apply our functionals to some perturbative examples. We start by check-
ing the sum rules (6.10), (6.11) on the mean field theory. We then consider small perturbations
around the mean field theory and show how we can obtain the data for Wilson—Fisher model on
RP? using these sum rules. Note that the mean field theory two-point function has the following
conformal block decomposition

1 (o]
5, = 8a=0(D) + Y Homga—ag (). (6.44)

1
o (I=mn) =

G = A

where A% = 2A, + 2n and the OPE coefficients are given by

o :t(A¢)" (284 — ¢ +2n)_

= i 6.45
Heon (Ap—§+n+1) nl (6.49)

These OPE coefficients are just a simple modification of the BCFT case, which can be found
for instance in [28]. We use the superscript 0 to indicate that we will soon perturb the mean
field theory solution. The sum rules then tells us that the following must be true for all values

of n
o)== (%)
(2 SRR e (6.46)
(A Ao 7 A ) A=

Now recall the expression of the coefficients A, and A from (4.16) and (4.18). For A| = A, =
A, they take a simpler form

(—I)H(Aq‘))ﬁ (ZAd) - % + Zn) o
(AA —d) = @A, + 2024, + 21— d) n!

2 _
_ F(%) r (A@ - %) r (Ac’ﬁ - (dzA))

AT(A)T (A+1-9)

A, =
(6.47)
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It is then clear that as we take A — 0 the expression for the coefficient A diverges, while A,,
remains finite. So the first term in the constraint equation (6.46), A,,/A does not contribute.
The constraint then becomes

B,
(K) = £pl), (6.48)
A=0

This constraint can be explicitly checked for n = 0 and n = 1 using the results for B, in (4.24)
and (4.23). For all other values of n, note that the recursion relation (4.23) implies

n— an an n Bn n
(M) N (V_> N (M) (%) =0
A A=0 A /) a=o A A=0 A/ a=0

0 0 0
- (pn*l /”Libd)m—l + U /”Libd)m + Vn /”Li’)d)m)A:O =0, (649)

which can be easily checked to be true for all values of n. This completes our check of analytic
functionals for mean field theory.

Wilson-Fisher model

We now consider perturbations around the mean field solution such that the above OPE
coefficients fi,,, and dimensions receive small corrections. One such perturbation is the
Wilson—Fisher fixed point in d =4 — ¢ which is a perturbation of free field theory with
Ag)) = % — 1. It has a Lagrangian description, which in our normalization can be written as

d _
s=LG-1) [t (;@m’f " j(qs’qs’)z) . (6.50)

47d/2

But we will not need this Lagrangian description, and we will treat it as a perturbation of a
mean field theory of N free fields. We parametrize deviations from the mean field values as
follows

d
0 1 2 2 2 (2

A=A 4 eyD 4+ 9P =274+ 2n+ ey + 42,

(6.51)

where we used the well known fact that in this model, the first order correction to the anomalous
dimension of ¢ vanishes. From (6.45), we see that for this free field value of A, 1)) = 4,0,
which truncates the functional equations. This leaves us with a finite number of terms on both
sides. Using (6.5) the sum rule (6.10) at order € just becomes

A O(e) B O(e) B O(e)
) n n n
pon A A=A 4D A ) Az A A=ALt 4D

and the superscript indicates that we pick out the order e contribution. Expanding in €, we can
check that (4, /A) term does not contribute at order e. Also using (6.48) and (6.45), we can
check that (B, /A) does not contribute for A = 0. As for the other term on the right-hand side,
it only contributes at this order for » = 0 and 1 and using the recursion relation (4.23), we can
check that all the other values of n start contributing at order €2. This gives the following results
for the CFT data

(1) (D
o _ o m _ Yo M 0. (6.53)

Hogo = =57 Hoor = =4 Hognz2 =
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This agrees with what was found in [20]. The fact that only two of the OPE coefficients are
non-zero at this order implies that the functional equations also truncate to finite terms at next
order. At next order in €, we obtain using the sum rule

0(e?) 0(e) O(e)
g (An> o (An> o (An>
P¢ ol @
pon A A=At (D122 PP\ A A=Adt 4o 29T\ A A=At oD

o> o> 0 0
— (Bn> « + (Bn> « 4 ‘u(l) (Bn> © +pu (1) (Bn> ©
- D0 Ool .
A ) Ao A ) A_ At e 2 A A=Al eV A A=At eV

(6.54)
For the identity block, using (6.48) and (6.45), it is easy to check that
B, 0(é?) 52) ()2 B O(e?)
() _ e TOF oy <°> —0. 6.55)
A ) ac I'(2n) A ) ac

For other values of A, expanding the A,-functionals is straightforward. To expand the B,-
functionals, which involve hypergeometric functions, we use the package HypExp [63]. We
collect below the needed expansions for a few low-lying values of n
6 - b
A )A_A(li.t._i_m/gl) 6

( ) A=At 4D 2@ 2 4

(1) (1) ()
R R S
_ =—€+ e | — S
A A:Ag.t.+67(()1)+62,y(()2) 4 16 A A:A‘lh'Jre’ygl) 2

My, (1 1
) _ e =, (@) _n,
At 4D 2y ® 24 A ) A_ At (D 12

w0 =D, (193) 7
e = =——"—¢.
A=A perD ey @ 480 A A=At ey 90

=&

Q) (2
I )62. (& _ @ =6

D>|S°

| &=

Going to higher values of n is also straightforward by using the recursion relation (4.23). Using

these expansions of coefficients, we can obtain the results of ME, 3,1 withn =0,1,2,3

(6.56)

o _ WA -1 752) I YOS =AY

900 — 4 2 4

o _ ( )(2,7(1) 37(1) 1) N 7(()2) ”(3'7(1) (l) 2) :t,y(z)

¢¢l 16 4 8 ¢

1) ) 0 (M, (1) (1, (1) @) 6.57)

PR o =1+m) % o =D %’ Y%

¢¢2 48 24 36 6

(2)
o _ %00 =1 % w08 =1+
¢¢3 480 320 360 30
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The bulk data of the O(N) vector model at Wilson—Fisher fixed point can be found in
[29, 64, 65]

o N+2 M _ 7(2)_6(N-|-2)(N-|-3) o N+2

_N+2 _ , o NS 6sg
T Nyg N 0 (N +8)3 W = aw s Y
This then gives us the following RP? OPE coefficients to the ¢? order
L N+2 NN H6EWN+8)
Hoo = 2N+8)° 2(N + 8)3
N 42 (N+2) (764NN + 10) )
= — +(N -2
Hool = an+8)"  av + 8y ( 2N+ 8) (N=2))e
N2 4 (6.59)
b =—"-—|FWN+4)—=(N—-1 2
Moot = 18N 1 8)2 ( (N+4) 3( )) €
N+2 8 8\
O3 = SAn AT T ov N+ 4 —(N+2)+£ =
Hogs 320(N+8)2<( FAF SN +2) 3)6

We can obtain numerical estimations for OPE coefficients in the d = 3 Ising model by plugging
ine = 1 and N = 1 in the above expressions. This gives in particular M;r@o = 0.728 and /’[’jf)_qbl =
0.0478, which can be compared with the results obtained by the bootstrap analysis [17]. The
bootstrap result gives ,u;rm ~ 0.70 and ,u;rm ~ 0.047, and is in good agreement with our result.
We can keep going and it is completely straightforward to obtain all the OPE coefficients at
order €? using (6.54). On the other hand, since all the OPE coefficients are non-zero at this
order, the sum rules at the next order will contain infinite number of terms. The sum rules still
put nontrivial constraints on the OPE coefficients, but it is not clear how the constraints can be
solved analytically.
Large N checks
‘We now provide an independent consistency check of some of these results by considering the
large N O(N) vector model and compare the results in that with the large N limit of (6.59).
Let us first note that to the leading order in €, we can use the results from (6.59) to write the
two-point function as

)

1 J
(¢ (x1)¢"(x2)) = (1 + x3)(1 + x3))20

(6.60)

with

G(n) = ga—o(n) + Hoo08 A=Adt () + pos18 A=Al (n

1 n 51 e(N +2) n
_n%(li(l—n) jEz<zv+8><1—n>

e(N+2)
x log n+ 2N+3) log(1 — 77)) . (6.61)

To develop a large N expansion, we introduce the usual Hubbard—Stratonovich auxiliary
field o and write down the action as

s fa v(3@07+ ”M), (662)

47d/2
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where we omitted a o2 /4 term, which can be dropped at the fixed point. At leading order in
large N, we get the following equation of motion for the ¢ correlator

4mdl?
(V2 = ()¢ (21" (x2)) = —mé”&’m —x2). (6.63)
2
At large N the scaling dimension of o is 2 + 1/N, while the scaling dimension of ¢ is d/2 —
1 4+ 1/N. We can again express these correlators as

(o(x1)) = (lfﬁ’
(@' (1) (x2)) = (i”g(n) AT = "G . oo
(T+xDA +x3))% (1 — x2))70
Plugging in this general form into the equation of motion, we get
4n(1 — n)dgg) + @1 —-n) - Zd)%;n) —a,G(n) =0. (6.65)

This equation can be solved and the general solution is

)“2" . <1+\/1—ag - T—a, . d )
241 s
2

Uyl
G =C| —— ,2—=,1—
(=G (1 o > > n
l+v1l—a, 1—+/1—a, d
+CyF, (Y e G Ly n). (6.66)
2 2 2
Recall that the crossing equation (2.14) requires
G G(1 —
m _ , Gd=mn) (6.67)

(1—ms!
which implies that the coefficients must satisfy
d-1+VT—ay d-1-VT—ay
o r(EEE)r(eeEE)re-y
C. d

. drm 1 —a,
X (— sin (2> F cos <2>> . (6.68)

The overall constant can then be fixed by demanding that the leading term in small 1 expansion
of G is just 1. We can expand this solution in small 7 as

d
n:!

Gap = € (il F st 0(772)>

d_ 2
e ((sin(zd) oo (S0 ) () 1 (T 1 () “)‘")) |
(6.69)

The first term in the first line is the contribution from the identity operator, while the second
term of order 7 is from the o operator of dimension 2. The term in the second line represents the
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¢* operator of dimension d — 2. In the large N theory, we expect the ¢* operator of dimension
d — 2 in the free theory to be replaced by the o operator of dimension 2. This then requires us
to set the term in the second line of the above equation to zero, which implies the following
possible values of a,

al = —(d—2)d—4),—(d—6)d—28),....
a; = —(d—4)(d—6),—(d—8)d—10),....

(6.70)

Note that for these values of a,, the coefficient C; also vanishes. Now we expect the large N
theory to match with the free theory in d = 4. This means that we must choose the value of a,
such that a, = 0 as d — 4. This then picks out the solution for us for both + and — parity'?

al =—d—-2)d—4), = Gt(n) = %
(-2t
o (6.71)
a, =—=(d=4Hd-6) = G (N=-—.
(I —=mn2

It can be checked that these results in d = 4 — € agree with the large N limit of the € expan-
sion solution (6.61). These two point functions can be decomposed into conformal blocks of
dimension 2n + 2 as follows

1 o0
- - 7, - — + >\:_ =ln
G ) = T = sas) 2::0 ga=2n42(1)
(6.72)
o L(9) 2F) (—n—1,—n; 2(d — 4n — 2);1)
" L(n+2)r (§—n—1)
for the + case and
g -(m Lo ga=o(n) + i/\‘g (1)
= 7 = ZA=0 n 8A=2n+2
(1 —n)2~! =0 :
, (6.73)
- (D)@ = 4d(n+2) + 81+ 0 +HT (1 - §+n)T(2—§ +n)

! AT(2—4)°’T+2)T (2 — ¢ +2n)

for the — case. These coefficients can be found in a manner similar to the one used for BCFT
case which can be found in [28, 66]. We want to emphasize here that unlike the mean field
theory, the conformal blocks appearing here have dimensions 2n + 2. These OPE coefficients
can be expanded in € ind = 4 — ¢, and we find a precise match with the large N limit of (6.59).

6.4. Using CFT equations of motion

A complementary approach to using the analytic functionals, where a Lagrangian descrip-
tion for the CFT is available, is to use the CFT equations of motion'®. The essential idea was
described for the CFT in flat space in [29] and extended to the case of BCFT in [66]. Here we

15Tn appendix A, we provide another way to check this value of a,, where it occurs as a large N saddle point of the
free energy.
16Note that this is different from what we did in section 3, where we used the equations of motion in the bulk
AdSy11/Zs.
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will use this method to fix the two-point function of the field ¢ in the Wilson—Fisher model
on RP“. This case is very similar to the BCFT case. Since the two-point function is only a
function of cross-ratio 7 on the sphere quotient S¢/Z, and is proportional to G(1), in this sub-
section it will be more convenient to ‘undo’ the Weyl transformation (1.2) and work on the
sphere quotient.

The action for the ¢* Wilson—Fisher model, including the conformal coupling term, can be
written as

r4-1) 1 d(d —2) A
S= / d?x (5(8@')2 + =+ Z(qﬁ’qﬁ’)z) - (674

The two-point function on the sphere is

51]
(¢ (x1) (x2)) = i(n). (6.75)

Let us start with the free theory with A = 0. The the field ¢ satisfies (V> — d(d — 2)/4)¢' = 0,
which implies that

1 dd -2
L oe vz — M2 gy =0
NG 4
d2g 1 dG  dd—-?2) (670
_ e - -~ _ — _ n® _
n( n>dnz+d(2 n) a 4, 9=DYGm =0.

This equation can be solved, and the general solution is

1 1 1 1
Gn) = by <n51 + n)il) by <n31 o nﬁl) e

The constants are just fixed by the normalization, and we pick b; = 1, b, = 0 for + parity, and
vice versa for the — parity. When we include interactions, the equation of motion gets modified
to (V2 —d(d — 2)/4)¢' (x) = Ao’ ¢ #" (x). This implies

>\* (N + 2)a¢2

2 G(n) + O\ (6.78)

DPG(n) =
to leading order in \. We can solve this perturbatively in d = 4 — ¢, where this model has a
non-trivial fixed point. A, is the fixed point value of the coupling and is equal to 2¢/(N + 8) in
this normalization, while a, /4 is the one-point function of ¢* on the sphere. Since there is a
factor of A, on the right-hand side, we can plug in the correlators in d = 4, and it will give us
the two-point function on the left-hand side, correct to order e. We can expand the differential
operator and the correlator as follows

G(n) = Go() + €Gi(n) + G2 () + O(Y)

(6.79)
D® =Dy + DY + 0(),

where Gy(n) is just given by (6.77) with d = 4. The equation of motion at first order in € is

N+2
DYGi(n) = iw—ig)%(n) — DP'Go(n). (6.80)
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This equation can also be solved the give

1 log(1 — N+2 (logl—7) 1
Gy = & 4 ¢ logn | logdl —m) + <0g( m  log 77)_ 6.81)
nol=n 2np  2(1-m  2N+¥) U 1-

If we fix the normalization such that G(n) = 1! as n — 0, this fixes ¢; = 0. Also, the crossing
symmetry (2.14) requires G to be either symmetric or antisymmetric under 7 — 1 — 7, which
sets c¢; = 0. This order € correlator then agrees exactly with the result using functionals (6.61).
Now to go to the next order, note that in the two-point function ¢1 (x 1)¢J (x2), we can also
apply the equation of motion to the other ¢. This gives the following fourth-order differential
equation

AX(N +2)

DG = DVDIG) = =

(@a(N +2)G(m) +2G(n)).  (6.82)
We can again solve it perturbatively in € by expanding D® = D” + eD¥ + &DS" + O(é?).
The differential equation at O(€?) then becomes

(N+2)

Dé4)gz(77) = AN 1 82

(N +2)Go() + 2Go()*) — DSVGi(n) — DS Go(m).  (6.83)

This general solution of this equation is

d dz 1o dy log(1 —
2 & gn+4 (1 —n)

G(n) = —
’ L—n  1-=n n
_ N+2 <log U log(1 77)) N log® n L log*(1 — n)
4N+8)2\ 7 l—n 8n 8(1 —mn)
(N +2)? mgu—mﬁg%%m N N+2 (1, 1
8(N + 8)2 n 1—n 4(N +8) 1—7p
x log n log(1 —n). (6.84)

To fix the constants, we again use the normalization and demand symmetry/antisymmetry
under n — 1 — n. This sets di = d, = 0, and dy = +dj3. To fix d3, we recall that the in the
direct channel, n — 0, the correlator should behave as

Agt
G = 172 + pggon 2% + higher orders in1)

(1)
0
=7 %+ M(ogo +e (M(olfzo + 2 log 77)

. (4 + il + 8T 201

+ O(n). (6.85)
Comparing the log 1) terms at order > with (6.84) then tells us

M D, O @ _ N+2

HasoVo T Hes0o = 2d3 m
(6.86)

_ 3(N +2)(3N + 14) 3N+ 2)N-2)

= dy , —
3 2(N +8)3 3 2(N +8)3
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This gives us an explicit expression for the complete two-point function to order ¢ for the
Wilson—Fisher model on RPY. Expanding the two-point function in powers of 1 and extract-
ing the OPE coefficients, it is easy to check that this agrees with the results in (6.59) which
we found by using functionals. The large N limit of this solution also agrees with (6.71) in
d=4—e.

7. Comments on relation to bulk reconstruction

Our discussion of RPY CFTs can also be related to the bulk reconstruction program in the large
N limit. In this section we make a number of comments regarding the connection with previous
works.

Let us begin by noticing that inserting a local operator in Euclidean AdS,4; has the same
effect of breaking the isometry from SO(d + 1, 1) to SO(d, 1), as performing the Z, quotient
(3.3). This is because the Z, quotient selects a special fixed point N, just as inserting a local
bulk operator. However, the identification under the inversion does not further change the Lie
algebra of the residual symmetry group, and we will not impose such identifications in this
section. Notice that N. now is no longer a special point, because AdS space is homogenous.
Nevertheless, we will always use the AdS isometry generators to move the local bulk operator
to N. without loss of generality, so that it is easier to make a connection with the discussions
in section 3.

We will compare the holographic objects considered in section 3 with those arising from
the Hamilton—Kabat-Lifschytz—Lowe (HKLL) approach for constructing local bulk operators
[33-35], which is perturbative in nature in the 1/N expansion'’. In the HKLL approach, a bulk
field at a point in AdS can be defined by smearing the CFT operator with the bulk-to-boundary
propagator (we do not keep track of the overall normalizations in this section)

PV(N,) = / dP Gg(N,, PYOA(P). (7.1)

The bulk-boundary two-point function can be obtained by performing the above smearing in
the CFT two-point function, and we get

(DR (N)OA(P)) ¢ G5y(N., P). (7.2)

This reproduces the one-point function (3.20).

However, applying (7.1) to a CFT three-point function runs into the problem of non-
vanishing commutators for space-like separated operators, as the prescription is only good
for free particles. Doing the integral, we get [67]

(BV(N)OA, (PO, (P2))

A-A-A,
’r] 2
IRt

A— o

A+A =Dy A+A)— Ay d+1_
2 : 2 ST TR

(7.3)

17 There are also intrinsically non-perturbative and state-independent developments which exploit the identification of
twisted Ishibashi states with bulk operators [21-26], and are explored most extensively in two dimensions. In fact,
twisted Ishibashi states can be considered even when the boundary spacetime does not have crosscap insertions.
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_wlli“"'-—."‘

Figure 8. Illustration of the branch cut singularity in the conformal block from the
geodesic Witten diagram picture. In the limit 7 — 1, the point 2 approaches the image
of point 1. The geodesic line connecting these two points now goes through N, and the
geodesic Witten diagram integral divergence.

We recognize that this bulk-boundary three-point function is nothing but the conformal block
2 (1), which is not surprising from the symmetry point of view'8. The conformal block has
a branch cut starting at 7 = 1 where points are space-like separated. The existence of the sin-
gularity indicates a failure of the micro-causality. Meanwhile, we recall that in section 3.3 we
found an alternative geometric representation for the conformal blocks. This gives the above
three-point function an interpretation in terms of a geodesic Witten diagram. Using this pic-
ture, we can obtain an intuitive understanding of the singularity without computing the integral.
We note that the point 7 = 1 corresponds to the limit where one boundary point is approach-
ing the image of the other boundary point. In this limit, the geodesic line which connects the
two boundary points goes through the fixed bulk point N, (see figure 8). This creates a short
distance singularity in the integral, and makes the three-point function singular.

To resolve the singularity and restore micro-causality, [68] proposed that one should correct
(bg) with infinitely many double-trace operators

AN = RN + > a)? / AP Gl P2 N, P): Oa,On, - (P), (1.4)
n=0

where a!? contains a 1/N suppression so that both terms contribute at the same order. The
coefficients of the double-trace operators can be systematically determined by canceling the
branch point singularity at ) = 1 [68]. As a result, the three-point function (PAOa, Oa,) now
contains not only the single-trace conformal block g A (77), but also infinitely many double-trace
conformal blocks g, +A,+2.(1). One can imagine that all the contributions to (PAOa,Ona,)
have been resummed. Then, the end result of this prescription for the bulk reconstruction should
coincide with the exchange Witten diagram W‘Z‘Change defined in (3.31). To see it, we recall that
the conformal block decomposition of W‘Xcmnge has the same structure as (7.4), and WZ‘Change
is free of singularities at 7 = 1. Note that there is one detail we have glossed over: there are
also homogeneous solutions to a}> which do not have branch singularities. But these solutions
just correspond to contact Witten diagrams, which are polynomials of the cross ratio.

The above holographic reconstruction of the three-point function (PAOa,Op,) can be
alternatively phrased as a conformal bootstrap problem. We can ask the following question
in the spirit of the seminal work [69]: given the appearance of a single-trace operator with
dimension A, what is the total contribution to the field theory two-point function of Oa , Oa,

18 One can act on it with the two-particle conformal Casimir operator on the boundary, and use the equation of motion
identity for the bulk-to-boundary propagator, to show that it is an eigenfunction.
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atorder 1/N, dictated by the partially broken SO(d, 1) C SO(d + 1, 1) conformal symmetry?'°
This question is similar in flavor to the question asked in [70] about four-point functions in
CFTs with full conformal symmetry. Since we are in the large N limit, the conditions of our
question indicate that the conformal block decomposition should take the following form

Gooo() =pga(n) + Y baga, +ay+20(0)
n=0

= a8+ ay 120, (7.5)
n=0

where only double-trace conformal blocks are allowed to appear in addition to the single-
trace conformal block. We can view these expressions as the leading order deformation to the
mean field theory two-point function, by adding a single-trace operator. In order to get rid of
the anticipated ambiguities in the double-trace operators coming from contact diagrams, we
should also impose a bound on the Regge behavior?

|Gooo| S |nl~°,  whenn — oco. (7.6)

The extra homogeneous solutions with just double-trace conformal blocks can always be con-
veniently added back in the very end. This conformal bootstrap problem can then be easily
solved by using the analytic functionals which we introduced in section 6.1. Applying the
basis of functionals on (7.5), we find that

by = —pwa(ga), = pwa(8a). (1.7

Comparing with (6.13), this indicates that Gooo (1) is just proportional to the uniquely defined
Polyakov—Regge block Pa(n), i.e., an exchange Witten diagram with a local operator in the
bulk AdS.

8. Future directions

In this paper we performed an analytic study of CFTs on real projective space. We gave a
detailed account of a toy model of holography on a Z, quotient of AdS, and studied properties
of Witten diagrams on this background. The investigation led to a basis of analytic functionals
dual to double-trace conformal blocks. We explicitly constructed these functionals from the
conformal block decomposition coefficients of exchange Witten diagrams. Although the func-
tionals stem from a toy holography model, they apply universally to RPP? CFTs. In particular,
we applied these functionals to study O(N) vector model in 4 — ¢ expansion, and obtained
one-point functions to order 2. We also studied in detail the large N O(N) vector model on
RP? using independent field theory techniques, and obtained results that are consistent with
the e-expansion. Our work leads to a number of interesting future directions.

An interesting extension of our work is to include fermions, and study models on real pro-
jective space such as QCD and the Gross—Neveu model. Including fermions is also necessary

19 This requires the single-trace operator O to appear in the OPE of Oa, X Oa,,and also to have a nonzero one-
point function. The latter is possible because we assume the conformal symmetry to be partially broken. We emphasize
again that the breaking of conformal symmetry is not due to placing the theory on RP (the space is still R?), but due
to the presence of a bulk local operator (to be interpreted from the solution to the problem).

20 Similar issues with contact diagrams can also arise in the four-point function problem, and can be eliminated by
imposing conditions on the Regge growth.
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for considering theories with supersymmetry. The case of 4D A" = 4 SYM on RP* has been
recently considered in [14] using supersymmetric localization techniques. It will be nice to
study it using other analytic techniques, such as those developed in this paper.

Another related direction to explore is thermal CFTs obtained by compactification on
S x R4=1 [71], where two-point functions also nontrivially depend on the spacetime coordi-
nates. Similar to our setup, the new data of thermal CFTs enters as the one-point function coef-
ficients. But unlike our case, spinning operators are also allowed to have non-vanishing thermal
one-point functions. Furthermore, the conformal symmetry is fully broken to U(1) x O(d — 1)
in thermal CFTs, and two-point functions depend on two independent cross ratios instead of
one. Despite the differences, it would be interesting to see if some of our techniques can be
generalized to study that problem.

As we pointed out in section 5, the existence of the two-term dimensional reduction for-
mula for conformal blocks suggests an extension of the Parisi—Sourlas supersymmetry to real
projective space. It would be very interesting to study in detail the realization of the symmetry
in concrete models such as branched polymers, and test its equivalence with the Yang—Lee
critical theory on a real projective space with two dimensions less.

A noticeable omission in the literature of RPY CFTs is the top-down construction of their
holographic duals. On the other hand, theories such as N' =4 SYM are completely well-
defined on RPP* at weak coupling, and presumably will remain well-defined at strong coupling
as well. Finding a dual description in IIB supergravity for the strong coupling limit should
therefore be possible. It will be interesting to find such explicit backgrounds, which will provide
the starting point for doing holographic calculations. Similarly, it would be interesting to inves-
tigate the same question for the Vasiliev higher-spin theory and further check the conjectured
duality to O(N) vector model [72] by using the results obtained in this paper.

Related to studying the holographic duals, an interesting question to ask is whether there are
any universal results that can be derived for double-trace deformation of CFT on RP? similar in
spirit to [73—76]. We study the two-point function and free energy in the large N critical O(N')
vector model, which can be obtained as a double-trace deformation of the free O(N ) model. It
would be interesting to see if some of the results are model independent and hold true for more
general double-trace deformation.
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Appendix A. RPY free energy

In this appendix, we show how to compute the RP? free energy for the critical O(N) vector
model. To calculate the free energy, we need to go to a compact space, so we will do this on
the Z, quotient of sphere. The action on the sphere for the O(N) model is?!

S = % / dx\/g ((8,@’)2 + @qs’qsf + UqS’qS’) : (A.1)

21 We are using a different normalization of ¢ in this appendix A from the rest of the paper such that the two-point
function goes like (A.14).
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As we saw earlier (2.11), the one-point function of ¢ is just going to be a constant. At leading
order in large N the effect of o will only be through this one-point function, so it is just like N
free massive fields on the sphere and the action becomes quadratic. To calculate the free energy,
we need to calculate the determinant of this quadratic operator. For that purpose, we need to
study the behavior of eigenfunctions of the scalar Laplacian and calculate the degeneracies
of the eigenfunctions which are odd or even under the Z, quotient. The eigenfunctions of the
scalar Laplacian on a d dimensional sphere are spherical harmonics Y;(g) with [ = {I},...1,}
satisfying |/;| < l» < ...l;. The eigenvalues and degeneracy is given by

I'd+1;+1) B rad+1i;,—1
rd+nHrd,+1) T@+DTU—1)
(A.2)

DaYp(0) = —la(ly+d — 1), dim(ly) =

The eigenfunctions Y;(g) have explicit construction in terms of associated Legendre polyno-
mials [77]. Under parity, they behave as Y;(—6) = (—1)"Y;(d) [78]. So to compute the free
energy, we just need to sum over either even or odd values of /; depending upon whether we
choose to identify the scalar with itself or minus itself. So for instance, for + parity, we need
to perform the sum

(A.3)

N
Ft(a,) = 5 > dim(ly) log (ld(ld +d -+ =, h

1,€27.

d(d - 2) +a(,)

while for — parity, we have the exact same sum but over l; € 2Z + 1.
Let us first consider the case of free theory, when a, = 0. Then there is a more convenient
way of writing this sum as

L +d—-A)

T s+ A) S

N
FH(A) = 5 > dim(ly) log

ldEZZ

which goes back to the previous expression for A = d/2 — 1. Note that this sum vanishes for
A = d/2. To do this sum, we can take a derivative, perform the sum and then integrate it back
[79, 80]

OF*
0A

_ g {F(—d)(d _an) (”d -8 Tw ) T(AN(d — A)

ra—-A T'ad+A-4d) I'(d) } » (A5)

where we had to use the integral representation of polygamma function to perform the sum.
Similar method also works for — parity. So for any A, we get

A-4 d_ d
I*ﬂE(A):%V/0 zdu[_zn—d)u( L(g-w) _ _T(§+y) )
2

F(l—u— ) F(l—i—u—%)
L+ ({=u)

I'(d)
(A.6)
Here we are only interested in the case of A = d/2 — 1 which gives
N [! F(4—|—u)F(4—u) 2u sin Tu
Fr=——"1[ du—2 2 +1). A7
4/O ! T'(d) (d sin () ) A7
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As an explicit example, in d = 3 we find

1
—N / du— (1 — 4u?) (2u tan(u) T 3 sec(ru))
, 96

(g 33 K
_N< 16 32n2 27r>’ (A-8)

where K is Catalan’s constant.

As a consistency check, note that adding the results for both parities gives us back the
well-known sphere free energy of a free scalar on a sphere [81].

For the interacting case, the sum is hard to perform, but it can be performed if we take a
derivate with respect to a, of equation (A.3) first

3F+(a(,) N dim(ly)
Z Li(lg+d— . (A9)

Q dd=2) | ag '
8“" zezz D+ 57 +4

This sum can then be performed and after some manipulations involving Hypergeometric
identities, we get

+ —1-d —1 - —
OF (ag): N2 N\/Edl“(l—d){I‘<d 1—-+1 ag>

da, dd—2)+a, 64 4
P <l—d1 dd+3—y1—a, 3 —3d+7—\/—1—aﬂ_1>
349 s LT S 5
2

2 4 N 4
—1 1—a,
+I‘<d +4\/ a)
. 1—d dd+3+V1—a, 3 -3d+7++V1—a,
X 3F, 5 ,1_5, 1 ;5, 1 ;1)

(A.10)

Now we should impose % o) = 0 for the critical theory, because at large N' we expect the
o path integral to be dominated by the saddle point of free energy. It can be checked that this
happens for a, = —(d — 2)(d — 4), which precisely agrees with what we found in (6.71). For
the — parity, it is the same sum, but over odd integers, and it gives

OF (@) N27"@d+1)  Nymdd+ DI —d) r d+1-+v1—-a,
da,  (d—DAA+2)+x) 128 4
P 1_51 3-d d+5-1-4a, 5 —3d—|—9—\/1—aq.1
342 25 2 > 4 52, 4 s
F(d%—l—h/l—%)
4

- d 3—d d+5++1—-a, 5 -3d+9++1—a,
X 3F, 1_5, 5 7 ;5, 1 1.

(A.11)
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It can again be checked that this vanishes for a, = —(d — 4)(d — 6). There is another way to
arrive at this result for the free energy. The derivative of the free energy with a, is related to
the one point function of ¢'¢’ as

d+1

l)’

where we used the fact that the volume of $?/Z; is half the volume of S?. But this one-point
function can also be obtained from the coincident point limit of the two-point function of ¢.
Since at large N, ¢ is equivalent to a massive free field on a sphere, the two-point function is
just the Green’s function on a sphere for a massive scalar [82].2> We already encountered this
large N two-point function in (6.66) which gives

H

2w
I (4

M|

OF*(a,) _ Vol(s) (¢/¢)

Vol(§9) =
da, 2 g Yo

(A.12)

m|+

Gy C1 e (LEVT=a 1=VT=ay ) d
n —(1_77)%1 24" 3 > 3 > 7’ n
C, 1+VT=a, 1-T=a, d
— F , R . A.13
+77%712 1( > > > U] ( )

When we perform the Z, quotient of the sphere, we have to impose the crossing symmetry
requirement G(n) = +G(1 — i) which implies the relation (6.68) for the coefficients. Here
we are using a different normalization, so the overall constant can be fixed by requiring
that

r4-1) 1
(myd2 -1’

g = n—0. (A.14)

The one-point function of ¢'¢’ can then be read off from the constant piece in the small 7
expansion of G(7). That gives

OF*(a,) _ +r T (¢

9as  g(4m)IT (L) T (

[SIEN
SN—
=
—
I8
T
[\ )
W
2
3
~——
=
P |

(A.15)

Note that the large N saddle point requirement of vanishing of the derivative of the free energy
is then clearly equivalent to the requirement that the operator ¢ of dimension d — 2 is replaced
by operator ¢ of dimension 2, which is what we used in subsection 6.3. We were not able to
show analytically that these formulas for the derivative of free energy are the same as (A.10)
and (A.11), but we checked numerically over a range of values of d and a,, that they agree. We
can also see that they also have the same zeroes as a function of a,,.

We can then find the value of the free energy at the critical point by integrating these
expressions. In d = 3, we get

22 The result in [82] is given in terms of the geodesic distance y, which is related to 7 as 7 = sin®(11/2).
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—(d-2)(d—4) Ft B
F:r_it:FJr(aU:O)"‘/ dagm 4=3,
0 aa(r
N(167K — 21((3) — 272 log(2)) 3N
_ rt+ _ _ 2N
=F"(a, =0)+ 3972 =1 ¢(3)
—(d—4)(d—6) P B
Fo = F (a, = 0)+ / da, O @) =3, (A16)
0 aaa
N(—167K — 21((@3 1472 log(2
— F(a, = 0)+ V1o7 6O) + 14r” log@)
327
3N N log(2)

Note that both in the free and interacting theory, we get F~ > F ind = 3. We can also do a
similar computationind =4 — ¢

8F+(a(,) d=4—¢

2e
Ne
F:r_it = F+(a<7 =0+ /0 da, da, = Ff-:ee + % + 0(62)
—2¢ _
_ _ BF (aa) d=4—¢ _ N6
Fg=F (a, =0)+ /0 da, D, = Fpee + % + 0(62).

(A.17)

We can check this against a computation in € expansion. Using the action in (6.74), we get

A

Faio = Firee + 5 /S o dey BN SN w)) = Fie, + VN e

96(N + 8)
(A.18)

4

which agrees at large N with the large N expansion result.
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