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Numerical spectral synthesis of breather gas for the focusing nonlinear Schrödinger equation
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We numerically realize a breather gas for the focusing nonlinear Schrödinger equation. This is done by
building a random ensemble of N ∼ 50 breathers via the Darboux transform recursive scheme in high-precision
arithmetics. Three types of breather gases are synthesized according to the three prototypical spectral configu-
rations corresponding the Akhmediev, Kuznetsov-Ma, and Peregrine breathers as elementary quasiparticles of
the respective gases. The interaction properties of the constructed breather gases are investigated by propagating
through them a “trial” generic (Tajiri-Watanabe) breather and comparing the mean propagation velocity with the
predictions of the recently developed spectral kinetic theory [El and Tovbis, Phys. Rev. E 101, 052207 (2020)].
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I. INTRODUCTION

The study of nonlinear random waves in physical systems
well described at leading order by the so-called integrable
equations, such as the Korteweg–de Vries (KdV) or nonlin-
ear Schrödinger (NLS) equations, has recently become the
topic of intense research in several areas of nonlinear physics,
notably in oceanography and nonlinear optics. This interest
is motivated by the complexity of many natural or experi-
mentally observed nonlinear wave phenomena often requiring
a statistical description even though the underlying physi-
cal model is in principle amenable to the well-established
mathematical techniques of integrable system theory such as
the inverse scattering transform (IST) or finite-gap theory
[1]. An intriguing interplay between integrability and ran-
domness in such systems is nowadays associated with the
concept of integrable turbulence introduced by Zakharov in
[2]. The integrable turbulence framework is particularly per-
tinent to the description of modulationally unstable systems
whose solutions, under the effect of random noise, can exhibit
highly complex spatiotemporal dynamics that is adequately
described in terms of turbulence theory concepts, such as the
distribution functions, ensemble averages, and correlations.

Solitons and breathers are the elementary quasiparticles of
nonlinear wave fields in integrable systems which can form
ordered coherent structures such as modulated soliton trains
and dispersive shock waves [3,4], superregular breathers [5,6],
or breather molecules [7]. Furthermore, solitons and breathers
can form irregular structures or statistical ensembles that
can be viewed as soliton and breather gases. The nonlinear
wave field in such integrable gases represents a particu-
lar case of integrable turbulence [2,8–13]. The observations
of soliton and breather gases in the ocean have been re-
ported in Refs. [14–17]. Recent laboratory experiments on
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the generation of shallow-water and deep-water soliton gases
were reported in Refs. [18,19], respectively. It has also been
demonstrated that the soliton gas dynamics in the focusing
NLS equation provides a remarkably good description of the
statistical properties of the nonlinear stage of spontaneous
modulational instability [20].

An analytical description of soliton gases was initiated by
Zakharov in Ref. [21], where a spectral kinetic equation for
KdV solitons was derived using an IST-based phenomeno-
logical procedure of computing an effective adjustment to
a soliton’s velocity in a rarefied gas due to its collisions
with other solitons, accompanied by appropriate phase shifts.
Zakharov’s kinetic equation for KdV soliton has been gen-
eralized to the case of a dense gas in Ref. [22] using the
spectral finite-gap theory. Within this theory, a uniform (equi-
librium) soliton gas is modeled by a special infinite-phase
thermodynamic-type limit of finite-gap KdV solutions. The
kinetic description of the nonequilibrium soliton gas is then
enabled by considering the same thermodynamic limit for
the associated modulation (Whitham) equations. The resulting
kinetic equation describes the evolution of the density of states
defined as the density function in the spectral (IST) phase
plane of soliton gas. The spectral construction of the KdV
soliton gas in Ref. [22] was generalized to the soliton gas of
the focusing NLS equation (NLSE) in Refs. [23,24]. The latter
work [24] provides also the spectral kinetic description of a
breather gas (BG), which is the main subject of the present
work.

An isolated generic breather can be broadly viewed as a
soliton on the plane-wave (or finite) background. The one-
dimensional (1D) NLSE supports a large family of breather
solutions that have attracted particular interest due to their
explicit analytic nature and the potential for modeling the
rogue wave events in the ocean and in nonlinear optical
fibers [25–29]. Three types of breathers, namely, the Akhme-
diev breather (AB), the Kuznetsov-Ma (KM) breather, and
the Peregrine soliton (PS) have aroused significant research
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interest (see [30–35] and references therein). The AB, KM
breather, and PS represent special cases of a generic breather
called the Tajiri-Watanabe (TW) breather [36]. The simplest
example of a breather gas can be viewed as an infinite ran-
dom ensemble of TW breathers [24]. By manipulating the
spectral parameters, the TW breather gas can be reduced to
the AB, KM, and PS gases as well as to the fundamental
soliton gas. The latter is achieved by vanishing the plane-wave
background of the TW breather gas [24].

The present paper has two goals: (i) numerical realiza-
tion of a breather gas and (ii) verification of the spectral
theory of a breather gas developed in Ref. [24]. Numerical
realization of a breather gas as a large ensemble of TW
breathers with prescribed parameters represents a challenging
problem. Numerical methods for the construction of breather
solutions of the 1D NLSE suffer from accuracy problems that
prevent the numerical synthesis of breathers of order N � 5
[37,38]. In the context of soliton gases, this latter difficulty
has been resolved recently by Gelash and Agafontsev [39]
via the application of the so-called dressing method com-
bined with high-precision numerical computations. In this
paper we extend the algorithm of [39] to numerically realize
various breather gases and verify some predictions of the
spectral kinetic theory of [24]. In particular, we demonstrate
that random ensembles of N ∼ 50 breathers can be built via
the Darboux transform recursive scheme in high-precision
arithmetics. This represents an improvement of an order of
magnitude compared to the results reported in previous nu-
merical works. In addition, we show that the construction
method can be used to provide evidence of the space-time
evolution of the generated breather gases. This feature cannot
be achieved by using direct numerical simulations of the 1D
NLSE due to the inevitable presence of modulational instabil-
ity that quickly disintegrates the plane-wave background.

The paper is organized as follows. In Sec. II we present
the algorithm of the spectral synthesis of a breather gas us-
ing the Darboux transform. This algorithm is then realized
numerically using the high-precision arithmetics. In Sec. III
we numerically study the interactions in breather gases and
compare the results of the numerical simulations with the
theoretical predictions of the breather gas kinetic theory of
Ref. [24]. Specifically, we consider the propagation of the
“trial” breather through a homogeneous breather gas for three
prototypical configurations: Akhmediev, Kuznetsov-Ma, and
Peregrine gases. The study of interaction in the gas of Akhme-
diev breathers has revealed some special features that have
required further development of the theory of Ref. [24]. The
Appendix provides the identification of the interaction kernel
in the breather gas with the position shift formula in two-
breather collisions, obtained in earlier works.

II. NONLINEAR SPECTRAL SYNTHESIS
OF BREATHER GASES

A. Overview of soliton and breather ensembles in the 1D NLSE

We consider the integrable 1D NLSE in the form

iψt + ψxx + 2|ψ |2ψ = 0, (1)

where ψ (x, t ) represents the complex envelope of the wave
field that evolves in space x and time t . In the IST method,

the 1D NLSE (1) is represented as a compatibility condition
of two linear equations [1,40]

�x =
( −iλ ψ

−ψ∗ iλ

)
�, (2)

�t =
(−2iλ2 + i|ψ |2 iψx + 2λψ

iψ∗
x − 2λψ∗ 2iλ2 − i|ψ |2

)
�, (3)

where λ is a (time-independent) complex spectral parameter
and �(x, t, λ) = [r(x, t, λ), s(x, t, λ)]T is a column vector.
The spatial linear operator (2) and the temporal linear oper-
ator (3) form the Lax pair of Eq. (1). For a given potential
ψ (x, t ) the problem of finding the scattering data σ [ψ] (also
sometimes called the IST spectrum) and the corresponding
scattering solution � specified by the spatial equation (2) is
called the Zakharov-Shabat (ZS) scattering problem [41]. The
ZS scattering problem is formally analogous to calculating the
Fourier coefficients in the Fourier theory of linear systems;
hence the term nonlinear Fourier transform is often used in the
context of telecommunication system research, particularly in
the context of periodic boundary conditions [42–44].

For spatially localized potentials ψ such that ψ (x, t ) → 0
as |x| → ∞, the complex eigenvalues λ are generally pre-
sented by a finite number of discrete points with Im(λ) �= 0
(discrete spectrum) and the real line λ ∈ R (continuous spec-
trum). The scattering data σ (ψ ) consist of a set of N discrete
eigenvalues λn (n = 1, . . . , N), a set of N norming constants
Cn for each λn, and the so-called reflection coefficient ρ(ξ ),

σ (ψ ) = {ρ(ξ ); λn,Cn}, (4)

where ξ ∈ R denotes the continuous spectrum component. In
this setting where the wave field ψ exists on a zero back-
ground, the discrete part of the IST spectrum is related to
the soliton content of the wave field whereas the continuous
part of the IST spectrum is related to the nonlinear dispersive
radiation [41].

A special class of (reflectionless) solutions of Eq. (1), the
N-soliton solutions (NSSs), exhibits only a discrete spec-
trum [ρ(ξ ) = 0] consisting of N complex-valued eigenvalues
λn, n = 1, . . . , N , and N associated complex-valued norming
constants. The IST formalism has been extensively applied
to examine the processes of interaction, collision, and syn-
chronization in NSSs (see, e.g., Refs. [41,45]). The numerical
synthesis of NSSs can be achieved in standard computer
simulations (double precision, 16 digits) up to N ∼ 10 [39].
On the other hand, the numerical synthesis of NSSs with N
large represents a challenging problem that has been resolved
only recently [39]. Combining the so-called dressing method
and numerical calculations made using high numerical pre-
cision (a 100-digit precision is typically necessary for the
synthesis of NSSs with N ∼ 100), the numerical synthesis of
soliton gases (SGs), i.e., large ensembles of NSSs character-
ized by a given spectral distribution, has been demonstrated
in Ref. [39]. The opportunity to synthesize numerically large
soliton ensembles has opened the way to the experimental
generation of strongly nonlinear wave fields with a pure soli-
tonic content. In particular, recent experiments made in a
one-dimensional water tank with deep-water surface gravity
waves have revealed that the controlled synthesis of dense
SGs can be achieved in hydrodynamics [19]. Moreover, it also
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has been recently shown that the so-called bound-state SGs
provide a model that describes well the nonlinear stage of the
noise-induced modulation instability [20].

In addition to the soliton solutions existing on a zero back-
ground, the focusing NLS equation (1) admits a large variety
of solutions existing on a nonzero (plane-wave) background.
The IST theory for the focusing nonlinear Schrödinger equa-
tion with nonzero boundary conditions (NZBCs) at infinity
has been reported in Refs. [46–48]. As in the IST with zero
boundary conditions, the scattering data σ [ψ] in the IST with
NZBCs consist of a set of N discrete complex-valued eigen-
values λn, a set of N associated norming constants Cn, and
the reflection coefficient ρ(λ). In the IST with NZBCs, the
continuous spectrum does not exist on the real axis R but on
R ∪ [−iq0, iq0], where q0 > 0 represents the amplitude of the
plane-wave background [46,47].

The focusing NLS equation with NZBCs possesses a rich
family of purely solitonic solutions [reflectionless potentials,
ρ(λ) = 0] named breathers or sometimes solitons on a finite
background. The generic “elementary” breather parametrized
by one single complex-valued eigenvalue (N = 1) in the
framework of the IST with NZBCs is the so-called Tajiri-
Watanabe breather [36]. This elementary solution reduces
under certain limits to the solutions found over the years
by Kuznetsov [30], Ma [48], Peregrine [31], and Akhme-
diev [32]. Using the dressing method, Zakharov and Gelash
constructed a class of two-soliton solutions on a finite back-
ground, termed superregular breathers and corresponding to
small initial perturbations of a constant background [49]. This
was generalized to several pairs of breathers in Refs. [5,50].
Note that most of these breather solutions of Eq. (1) have
been experimentally realized in hydrodynamics and in optics
[6,7,33,34,51–56] but also recently with matter waves [57].

B. Darboux transform-based synthesis of breather gases

The recent interest in studying the breather solutions of var-
ious kinds has been fueled by rogue-wave research (see, e.g.,
[58] and references therein). The prototypical rogue-wave
solutions represent coherent structures of large amplitude,
strongly localized in both space and time, on an otherwise
quiescent background [25,27,38,59–65]. In this context the
Darboux transform has been extensively used as a reliable
method to generate higher-order breather solutions of Eq. (1),
i.e., reflectionless solutions of the focusing 1D NLSE with
NZBCs [37,66–69]. Note that the Darboux transform is now
also used in the context of nonlinear eigenvalue communi-
cation to build ordered soliton ensembles used to carry out
the transmission of information in fiber optic communication
links [43,44,70].

The Darboux method is a recursive transformation scheme
where a “seeding solution” of the focusing 1D NLSE is used
as a building block for the construction of a higher-order
solution through the addition of one discrete eigenvalue. Here
we give a brief review of the Darboux transform method
used for the generation of higher-order breathers. We largely
follow the exposition given in Refs. [38,71], but other impor-
tant references where this method is described and used are
Refs. [37,66–69].

In the IST for the 1D NLSE with NZBCs, the seeding
solution commonly used at the first step of the recursive
process of constructing a higher-order breather solution is
the plane-wave solution of Eq. (1) with unit amplitude,
i.e., ψ0(x, t ) = e2it . The first-order (Tajiri-Watanabe) breather
ψ1(x, t ) parametrized by the complex eigenvalue λ1 is ob-
tained by

ψ1(x, t ) = ψ0(x, t ) + 2(λ∗
1 − λ1)s1,1r∗

11

|r1,1|2 + |s1,1|2 . (5)

The functions r1,1(x, t ) and s1,1(x, t ) in Eq. (5) are obtained
by setting j = 1 in the expressions

r1, j (x, t ) = 2ie−it sin(Aj ),

s1, j (x, t ) = 2eit cos(Bj ), (6)

where Aj and Bj are given by

Aj = 1

2

[
arccos

(
κ j

2

)
+ (x − x j )κ j − π

2

]
+ (t − t j )κ jλ j,

Bj = 1

2

[
− arccos

(
κ j

2

)
+ (x − x j )κ j − π

2

]
+ (t − t j )κ jλ j,

(7)

with κ j = 2
√

1 + λ2
j . The parameters (x j, t j ) are connected

with the complex norming constants Cj in the IST with
NZBCs [37]. The first-order breather ψ1(x, t ) is parametrized
by the complex eigenvalue λ1 and by the two real parameters
x1 and t1. Once the first-order breather ψ1 is constructed
using Eqs. (5)–(7), breather solutions of order n � 2 can be
recursively generated by using

ψn(x, t ) = ψn−1(x, t ) + 2(λ∗
n − λn)sn,1r∗

n,1

|rn,1|2 + |sn,1|2 , (8)

with

rn,p = [(λ∗
n−1 − λn−1)s∗

n−1,1rn−1,1sn−1,p+1

+ (λp+n−1 − λn−1)|rn−1,1|2rn−1,p+1

+ (λp+n−1 − λ∗
n−1)|sn−1,1|2rn−1,p+1]

× (|rn−1,1|2 + |sn−1,1|2)−1, (9)

sn,p = [(λ∗
n−1 − λn−1)sn−1,1r∗

n−1,1rn−1,p+1

+ (λp+n−1 − λn−1)|sn−1,1|2sn−1,p+1

+ (λp+n−1 − λ∗
n−1)|rn−1,1|2sn−1,p+1]

× (|rn−1,1|2 + |sn−1,1|2)−1. (10)

Despite the efficiency of the Darboux method for the
construction of high-order breather solutions of Eq. (1),
its practical implementation in numerics suffers from the
same type of issues as those previously mentioned for the
numerical construction of NSSs. As noted in Refs. [37,38],
problems of numerical accuracy may prevent the numerical
synthesis of breathers of order N � 5. In this paper we show
that this limit can be overcome by the implementation of
the same strategy as the one used to build NSSs with N
large [39]. Implementing the Darboux recursive scheme in
high-precision arithmetics using the BOOST C++ multiple
precision library, we show that breather solutions of Eq. (1)
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FIG. 1. Numerical synthesis of (a), (e), and (i) a generic BG (column 1) and of three single-component BGs (columns 2–4): (b), (f), and
(j) a KMBG; (c), (g), and (k) an ABG; and (d), (h), and (i) a PS BG. The four BGs are parametrized by N = 50 complex eigenvalues λn [see
(i)–(l)]. (a)–(d) Space-time evolution of the BGs. (e)–(h) Enlarged view of some restricted region of the (x, t ) plane. (i)–(l) Spectral portraits
of each BG with the vertical line between 0 and +i being the branch cut associated with the plane-wave background. Each point in the upper
complex plane in (i)–(l) represents a discrete eigenvalue in the IST problem with NZBCs. The eigenvalues parametrizing the single-component
BGs are densely placed in a small square region which is centered around a point λ0 of the imaginary vertical axis and which is greatly enlarged
in the insets shown in (j)–(l). The x j are uniformly distributed in the range [−1, 1] for (a) the generic gas and (d) the Peregrine gas, while they
are uniformly distributed in the range [−32, 32] for (b) the KM gas and (c) the AB gas.

can be synthesized up to order N ∼ 50. As will be shown in
detail in Sec. III, this provides a numerical tool that enables
one to verify the results of the spectral theory of breather
gases recently developed in Ref. [24].

Figure 1(a) shows the space-time evolution of a generic
BG, i.e., a breather solution of Eq. (1) of order N = 50
with random spectral characteristics. The amplitude of the
plane-wave background is unity (q0 = |ψ0| = 1) and the 50
complex-valued eigenvalues λ j ( j = 1–50) parametrizing the
BG are randomly distributed within some rectangular region
of the upper complex plane [see Fig. 1(i)]. The parameters
t j are set equal to zero (t j = 0 ∀ j) and the randomness of
the gas is achieved by uniformly distributing the x j in some
interval centered around x0 = 0. Note that the vertical line
between 0 and +i in Fig. 1(i) represents the so-called branch
cut associated with the plane-wave background in the IST for-
malism of the 1D NLSE with a nonzero background (see, e.g.,
[24,35,46,47]). Figure 1(a) reveals that the space-time dynam-
ics of the generic BG synthesized in numerical simulations
is highly complicated. In particular, breathers cannot be in-
dividualized due to their strong overlap and interaction. Note
also that the maximum amplitude reached locally in space and
time by the incoherent breather ensemble of Fig. 1(a) does not
exceed ∼5.5, which demonstrates that the multiple breathers
are far from a synchronization state that would eventually
produce isolated rogue waves of large amplitude [72,73].

We emphasize that BGs shown in the space-time plots
of Fig. 1 are not obtained from a numerical simulation of
Eq. (1). Taking a BG generated at a given time t0 using
the Darboux method and using this wave field as the initial
condition in a numerical simulation of Eq. (1), we observe that
modulation instability quickly disintegrates the plane-wave
background by amplifying the numerical noise inherent to any
pseudospectral (split-step-like) method commonly used for
the numerical integration of the 1D NLSE. On the other hand,
space-time plots reported in Fig. 1 are obtained from a pure
spectral (IST) construction based on the Darboux recursive
method which has been implemented in computer simula-
tions made with high numerical precision. Starting from an
ensemble of N complex eigenvalues λ j and N coordinates
(x j, t j ), the BG is synthesized at time t using the Darboux
machinery [Eqs. (5)–(10)]. A 100-digit precision is typically
necessary to synthesize a BG parametrized by an ensem-
ble of N ∼ 50 eigenvalues. The space-time plots shown in
Fig. 1 are obtained by reiterating the same synthesis at dif-
ferent values of time t . Our numerically synthesized solutions
can be validated by computing the discrete Zakharov-
Shabat spectrum (using, for instance, the Fourier collocation
method [35,41]) at different moments of time to verify that
the obtained discrete eigenvalues are indeed the same as
the ones specified for the construction of the BG under
consideration.
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The central concept in the theory of SGs and BGs is the
density of states (DOS) [74] which represents the distribution
function u(λ, x, t ) in the spectral phase space. In the context
of the 1D NLSE (1), the DOS u(λ, x, t ), where λ = β + iγ ,
is defined such that udβdγ dx is the number of breather states
with complex spectral parameter λ ∈ [β, β + dβ] × [γ , γ +
dγ ] contained in a portion of the BG within a spatial interval
[x, x + dx] at time t .

One-component BGs have been defined in Ref. [24] as
being characterized by a DOS in the form of the Dirac δ

distribution, i.e., u(λ) = wδ(λ − λ0), where w > 0 represents
the mass of the δ distribution which is centered around one
specific point λ0 in the complex spectral plane. Figures 1(b)–
1(d) and 1(f)–1(h) display the space-time evolutions together
with the spectral portraits [Figs. 1(j)–1(l)] typifying some
one-component BGs of particular interest.

For the Kuznetsov-Ma BG (KMBG), the spectral portrait
consists of the branch cut (associated with the plane-wave
background of unity amplitude) and a dense set of N = 50
spectral points randomly placed in a small square region
of width δ = 10−3 centered around λ0 = 1.3i, as shown in
Fig. 1(j). Figure 1(b) shows that the KMBG is a dense en-
semble of individual KM breathers, all having a zero velocity
in the (x, t ) plane. In contrast to Fig. 1(a), each KM breather
inside the BG can be individualized and the BG follows the
same periodic time evolution where the time period is fully
determined by Im(λ0). The randomness in the one-component
KMBG can be seen from the random distance between in-
dividual KM breathers and their random initial phase [see
Fig. 1(f)].

The Akhmediev BG (ABG) is characterized by the same
distribution of the spectrum λ as the KMBG except that the
point λ0 around which the multiple discrete eigenvalues are
accumulated is now placed inside the branch cut associated
with the plane-wave background [see Fig. 1(k)], where λ0 =
+0.8i. As a result, the ABG is more naturally characterized
by the spectral flux density, the temporal counterpart of the
DOS. As shown in Fig. 1(c), the ABG consists of a random
series of individual ABs having identical spatial period, which
is fully determined by Im(λ0). Similarly to the KMBG, the
randomness in the one-component ABG can be seen from
the random time separation between individual Akhmediev
breathers and their random relative phases [see Fig. 1(g)].

It must be mentioned that the density (spatial or temporal)
of the AB or KM breather gases cannot be made arbitrarily
large: There is a configuration termed breather condensate
[24] corresponding to a critically dense breather gas, similar
to a soliton condensate numerically realized in Ref. [20].

It is well known that the Peregrine breather can be obtained
as the spatial and temporal infinite-period limits of Akhme-
diev and Kuznetsov-Ma breathers, respectively [68,71]. In
the spectral (IST) domain, the Peregrine breather is obtained
by placing the eigenvalue parametrizing a first-order breather
solution of Eq. (1) exactly at the end point +i of the branch cut
associated with the plane-wave background of unit amplitude
[35]. Following the same approach, the one-component Pere-
grine BG (PBG) is obtained by accumulating a large number
of discrete eigenvalues in a small area surrounding the end
point of the branch cut [see Fig. 1(l)]. As shown in Figs. 1(d)
and 1(h), the PBG represents a collection of individual and

identical Peregrine breathers that are randomly positioned in
space and time.

While the PG synthesized in our work represents a high-
order breather solution of Eq. (1), this solution contrasts with
the high-order breather solutions considered previously be-
cause it is intrinsically of a random nature. The localized
breather solutions of high order that have been considered
in previous works (see, e.g., Refs. [38,62,64,71]) have been
arranged in regular patterns with well-organized geometrical
shapes because they represented synchronized states having
no degree of randomness. In contrast, in the construction
plotted in Figs. 1(d) and 1(h), the parameters x j are randomly
and uniformly distributed over [−1,+1], which implies that
each individual Peregrine breather in the PG has a random
position in the (x, t ) plane. We also mention that the solitonic
eigenvalues in our numerical construction are clustered (also
randomly) in close proximity to the end points of the spectral
branch cut, so the individual Peregrine solitons in the PG are
realized in our synthesis approximately, with the accuracy
determined by the closeness of the solitonic eigenvalues to
the end points of the branch cut.

III. INTERACTIONS IN BREATHER GASES:
COMPARISON BETWEEN NUMERICAL EXPERIMENTS

AND SPECTRAL THEORY

The analytical theory of BGs was introduced and devel-
oped in Ref. [24]. It was shown that spatially nonhomoge-
neous BGs are described by a kinetic equation formed by a
transport equation for the slowly varying DOS u(λ, x, t ) and
the integral equation of state relating the gas velocity to the
DOS. In this section we show that some predictions of the
spectral theory of BGs can be verified in simulations involv-
ing BGs that have been numerically synthesized using the
methodology described in Sec. II B. In Sec. III A we provide
the key elements of spectral theory of BGs that are relevant for
the comparison between theoretical and numerical results. In
Sec. III B we examine the collision between one trial soliton
and various single-component BGs.

A. Analytical results from the spectral theory of breather gases

The nonlinear spectral theory of SGs and BGs for the fo-
cusing 1D NLSE developed in Ref. [24] provides a full set of
equations characterizing the macroscopic spectral dynamics
in a spatially nonhomogeneous BG. An important result of
the theory is the so-called equation of state which provides
the mathematical expression of the modification of the mean
velocity of a “tracer” breather due to its interaction with other
breathers in the gas.

The group velocity [in the (x, t ) plane] of a first-order (TW)
breather parametrized by the complex eigenvalue λ ≡ η (we
will use in this section the latter notation for the spectral
parameter to be consistent with notation of Ref. [24] and
previous works on the spectral kinetic theory) is given by

s0(η) = −2
Im[ηR0(η)]

Im[R0(η)]
, (11)

where R0(z) =
√

z2 − δ2
0 , with δ0 the end point of the branch

cut corresponding to the plane wave (δ0 = i for the plane
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wave of unit amplitude considered in all the numerical sim-
ulations reported in this paper). It is not difficult to see that,
if η ∈ iR \ [−i, i] (KM breather), then s0(η) = 0, while if
η ∈ (−i, i) (AB), then s0(η) = ±∞ depending on the way the
limit Re(η) → 0 in Eq. (11) is taken (either from the left or
right side of the branch cut).

As shown in Ref. [24], the equation of state of a BG reads

s(η) = s0(η) +
∫

�+
�(η,μ)[s(η) − s(μ)]u(μ)|dμ|, (12)

where �+ is the two-dimensional compact support of the DOS
u(η) (defined earlier in Sec. II B) located in the upper half
plane C+ of the complex spectral plane

�(η,μ) = 1

Im[R0(η)]

[
ln

∣∣∣∣∣μ − η̄

μ − η

∣∣∣∣∣
+ ln

∣∣∣∣∣R0(η)R0(μ) + ημ − δ2
0

R0(η̄)R0(μ) + η̄μ − δ2
0

∣∣∣∣∣
]
. (13)

The integral term in Eq. (12) describes the modification of the
tracer breather mean velocity in a gas due to its interaction
with other breathers in the gas having a DOS specified by u.
The spectral value η in Eq. (12) can be taken outside �+;
in that case formula (12) describes the mean velocity of a
trial TW breather with the eigenvalue η propagating through
a breather gas with the DOS supported �+.

The interaction kernel �(η,μ) given by Eq. (13) describes
the position shift arising in a two-breather interaction. We
note that the two-breather interactions have been studied in
Refs. [50,75] using the IST, where different forms of the ex-
pressions for the position shift were obtained. In the Appendix
we demonstrate the equivalence of the kernel �(η,μ) given
by (13) to the position shift formula obtained for two-breather
collisions in previous works.

For a two-component breather gas, the DOS is a superposi-
tion of two Dirac δ functions centered at the complex spectral
points η[ j] ( j = 1, 2),

u(η) =
2∑

j=1

w[ j]δ(η − η[ j] ), (14)

where w[ j] are the weights of the components. For the DOS
specified by Eq. (14), Eq. (12) yields the linear system for the
gas component velocities s[ j] ≡ s(η[ j] ) ( j = 1, 2),

s[1] = s[1]
0 + �1,2w

[2]
(
s[1]

0 − s[2]
0

)
1 − (�1,2w[2] + �2,1w[1] )

,

s[2] = s[2]
0 − �2,1w

[1]
(
s[1]

0 − s[2]
0

)
1 − (�1,2w[2] + �2,1w[1] )

, (15)

where s[ j]
0 ≡ s0(η[ j] ) ( j = 1, 2) and � j,k = �(η[ j], η[k] ).

In the numerical simulations presented in Sec. III B, we
will consider an even simpler situation where a single trial
breather parametrized by the eigenvalue η[1] interacts with a
one-component breather gas having its spectral distribution
centered in η[2]. In such a limit w[1] → 0 and Eqs. (15) reduce

to

s[1] = s[1]
0 − �1,2w

[2]s[2]
0

1 − �1,2w[2]
,

s[2] = s[2]
0 . (16)

The validity of Eqs. (16) in the context of the 1D NLSE
dynamics (1) will be verified for the PBG, the KMBG, and
the ABG in numerical simulations presented in Sec. III B.
As a matter of fact, formula (16) can be obtained directly
from Eq. (12) by setting η = η[1] /∈ �+ (the trial breather
eigenvalue), and using u(μ) = w[2]δ(μ − η[2] ), s(η2) = s[2]

0 ,
where η[2] ∈ �+.

B. Interactions in one-component breather gases: Comparison
between spectral theory and numerical simulations

In the numerical simulations presented in this section, a
trial TW breather with the spectral parameter η = η[1] is
propagated through various single-component BGs having
their DOS defined by u(η) = w[2]δ(η − η[2] ). We define the
spectral parameter η[2] as η[2] = αi, with α = 1 for the PBG,
α > 1 for the KMBG, and α < 1 for the ABG. Similar to
Fig. 1, the spectral portrait of the considered BGs consists of
the branch cut (associated with the plane-wave background
of unity amplitude) and a cluster of N = 50 spectral points
randomly placed in a small square region of width δ = 10−4

centered around η[2]. The spectral parameter η[1] is chosen in
such a way that Re(η[1] ) > 0, which implies that the free trial
TW breather has a negative group velocity in the (x, t ) plane
[see Eq. (11)].

1. Interactions in the Peregrine breather gas

Figure 2 shows a trial Tajiri-Watanabe breather propagat-
ing through a PBG. We observe that the trial breather passes
through the PBG without change in its group velocity. This
confirms the theoretical result established in Ref. [24] that the
propagation of a trial TW breather through a PBG is ballistic.
This result can be understood at the qualitative level by the
fact that the interaction cross section between the trial breather
and the individual Peregrine breathers composing the gas is so
weak that the propagation of the trial breather is unaffected by
the PBG.

2. Interactions in the Kuznetsov-Ma breather gas

Figure 3 shows a trial TW breather propagating through
a KMBG. In contrast to Fig. 2, the multiple interactions be-
tween the trial breather and the KM breathers composing the
KMBG now significantly influence the propagation of the trial
breather; see Figs. 3(a) and 3(b) for a comparison between the
trajectory of the free Tajiri-Watanabe breather (white dashed
lines) and the trajectory followed by the trial breather in the
KMBG. As shown in Fig. 3(b), the trial breather acquires a
significant space shift each time its trajectory intersects the
trajectory of an individual KM breather composing the BG.
At the macroscopic scale, this produces a velocity change of
the trial breather inside the KMBG. This leads to a spatial
shift �X in the position of the trial breather which is mea-
surable when the trial breather emerges from the KMBG [see
Fig. 3(a)].
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FIG. 2. (a) and (b) Propagation of a Tajiri-Watanabe breather with the spectral parameter η[1] = 0.05 + 1.1i inside a Peregrine BG. The
space-time evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b) represents the
trajectory of the “free” Tajiri-Watanabe breather propagating on a plane-wave background with a group velocity given by Eq. (11). (c) Spectral
portrait associated with the numerical results shown in (a) and (b). The vertical line between 0 and +i represents the branch cut associated
with the plane-wave background and the blue point is the discrete eigenvalue η[1] associated with the Tajiri-Watanabe breather propagating in
the PBG. The 50 spectral points characterizing the PBG are densely placed around +i and they are shown in the inset plotted in (c).

For the KMBG, Eq. (16) simplifies to

s[1] = s[1]
0

1 − �1,2w[2]
, (17)

given that s[2]
0 = 0. Equation (17) clearly shows that the group

velocity of the trial Tajiri-Watanabe breather is increased
by a factor 1/(1 − �1,2w

[2] ) due to the interaction with the
KMBG.

Note that the space shift �X acquired by the trial breather
as a result of propagation inside the KMBG simply represents
the product of the number N of iterations (equivalently the
number of breathers in the KMBG) and the elementary space
shift �1,2 induced by each interaction: �X = N�1,2. This
provides an alternative and straightforward way to check the

validity of Eq. (17) which gives the group velocity of the trial
breather inside the KMBG.

A set of numerical simulations with different values of the
spectral parameters η[1] and η[2] has been made to check the
validity of the spectral theory. Different realizations of the
KMBG have been made and the value of w[2] is determined
from numerical simulations as the ratio between the selected
number N of breathers in the gas over the spatial extension L
of the gas: w[2] = N/L. As shown in Fig. 4, we observe full
quantitative agreement between the numerical experiment and
the predictions of the spectral theory.

3. Interactions in the Akhmediev breather gas

The case of the ABG is special and requires separate con-
sideration, particularly because it was not considered in any

FIG. 3. (a) and (b) Propagation of a TW breather with the spectral parameter η[1] = 0.05 + 1.1i inside a Kuznetsov-Ma BG. The space-time
evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b) represents the trajectory of
the free TW breather propagating on a plane-wave background with a group velocity given by Eq. (11). (c) Spectral portrait associated with
the numerical results shown in (a) and (b). The vertical line between 0 and +i represents the branch cut associated with the plane-wave
background and the blue point is the discrete eigenvalue η[1] associated with the TW breather propagating in the KMBG. The 50 spectral
points characterizing the KMBG are densely placed around η[2] = 1.3i and they are shown in the inset plotted in (c).
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FIG. 4. Quantitative verification of the spectral theory of BGs
introduced in Ref. [24]. A comparison is shown between numerics
(red dots) and theory (dashed lines) for the effective velocity s[1] of a
trial breather η[1] propagating in a KMBG η[2].

detail in Ref. [24]. The AB is a static object, not localized in
space, so it is not immediately obvious how to identify the
key quantities u(η) and s(η) for the ABG. A single AB is a
limiting case of the TW breather where the soliton eigenvalue
η[2] is placed within the branch cut [0, i] in the upper half
plane. The ABG is generally characterized by some distribu-
tion of soliton eigenvalues along the branch cut. Similar to the
above consideration of the KMBG, we consider the ABG with
soliton eigenvalues clustered around a given spectral point η[2]

(and complex conjugate) to mimic a one-component gas.
As we have already mentioned in Sec. III A, the for-

mula (11) for the group velocity of the TW breather implies
|s(η)| → ∞ as η → η[2], which is consistent with the delo-
calized nature of the AB. On the other hand, it can be shown
using the results of Ref. [24] that in the ABG limit the DOS

FIG. 5. (a) and (b) Propagation of a TW breather with the spectral parameter η1 = 0.06 + 1.01i inside an Akhmediev BG. The space-time
evolution shown in (b) represents an enlarged view of the one shown in (a). The white dashed line in (a) and (b) represents the trajectory of the
free TW breather propagating on a plane-wave background with a group velocity given by Eq. (11). (c) Spectral portrait associated with the
numerical results shown in (a) and (b). The vertical line between 0 and +i represents the branch cut associated with the plane-wave background
and the blue point is the discrete eigenvalue η1 associated with the TW breather propagating in the ABG. The 50 spectral points characterizing
the KMBG are densely placed around η[2] = 0.8i and they are shown in the inset plotted in (c).

u(η) → 0 while the spectral flux density function v(η) =
s(η)u(η) = O(1). This leads to the alternative form of the
equation of state (12),

s(η) = s0(η) +
∫

�+
�(η,μ)

[
s(η)

s(μ)
− 1

]
v(μ)|dμ|, (18)

which is more suitable for the characterization of the ABG
interactions. Equation (18) was obtained from (12) by sub-
stituting u(η) = v(η)

s(η) . Assuming �+ to be a narrow region
surrounding the branch cut [0, i] and using |s(μ)| � 1 for
μ ∈ �+, Eq. (18) to leading order becomes

s(η) = s0(η) −
∫

�+
�(η,μ)v(μ)|dμ|. (19)

Equation (19) describes the modification of the velocity of the
TW breather with eigenvalue η propagating through the ABG
characterized by the spectral flux density v(μ).

An important property of �(η,μ) given by (13) is that

�(η,μ) + �(η,−μ̄) = 0 when μ ∈ [0, i], (20)

that is, when μ is on the branch cut [0, i]. The second variable
η can take any value in the upper half plane. Equation (20)
implies that �(η,μ) takes opposite values on the opposite
sides of the branch cut.

It can further be shown that in the case of a breather gas,
whose spectral support �+ is symmetric with respect to the
branch cut [0, i], the function v(η) also takes opposite values
on the opposite sides of [0, i]. Thus the speed of the ABG s(η)
from (18) does not depend on which side of the upper part of
the branch cut [0, i] the domain �+ or its parts are situated.

Let us now consider a one-component ABG with the spec-
tral flux density v(η) = wtδ(η − η[2] ), where η[2] ∈ [0, i] and
wt is a real constant weight. As a result, Eq. (19) assumes a
simple form

s(η) = s0(η) − wt�(η, η[2] ). (21)
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FIG. 6. Comparison between numerics (red dots) and theory
(dashed lines) for the effective velocity s[1] of a trial TW breather
η[1] propagating in an ABG η[2].

We note that the sign of wt , as was explained above, depends
on the side of [0, i] but the sign of the product wt� does
not. Hence we have the general result s(η) − s0(η) < 0 for
the propagation of a trial breather through an ABG.

We note that formula (21) can be obtained directly from the
basic result (16) by using w[2] → 0 and introducing w[2]s[2]

0 ≡
wt . This simple formal consideration, however, does not pro-
vide the important information about the sign of wt�.

Figure 5 shows a trial TW breather propagating through an
ABG. Similar to Fig. 3, the propagation of the trial breather
is significantly influenced by the the multiple interactions
with the ABs composing the ABG [see Figs. 5(a) and 5(b)].
One can see that, in contrast to the interaction of the trial
TW breather with the KMBG, the group velocity of the trial
TW breather is reduced in the interaction with the ABG, in
agreement with Eq. (21). Indeed, the space shifts observed in
Figs. 3(a) and 5(a) have opposite signs.

Similar to the KMBG interactions, a set of numerical sim-
ulations with different values of the spectral parameters η[1]

and η[2] has been made to check the validity of Eq. (21).
Different realizations of the ABG have been produced and the
value of wt was determined from numerical simulations as the
ratio between the selected number N of ABs in the gas over
the temporal extension T of the gas: wt = N/T . As shown
in Fig. 6, we observe full quantitative agreement between
the numerical experiment and the predictions of the spectral
theory.

IV. CONCLUSION

We have developed a numerical algorithm of the IST
spectral synthesis of breather gases for the focusing 1D
NLS equation. The algorithm is based on the recursive Dar-
boux transform scheme realized in high-precision arithmetics.
Using this algorithm, we have synthesized numerically
three types of prototypical breather gases: the Akhmediev,
Kuznetsov-Ma, and Peregrine gases.

Using the spectral algorithm developed, the interaction
properties of breather gases, predicted by the kinetic theory
of Ref. [24], have been tested by propagating through them a
trial generic TW breather whose effective velocity is strongly

affected by the interaction with the gas. In all cases the theo-
retically predicted effective mean velocity of the trial breather
propagating through a breather gas demonstrates excellent
agreement with the results of the numerical simulations. The
verification of the theory, despite the inevitable effects of
modulational instability present in the 1D NLSE dynamics,
has been made possible due to the whole numerical algorithm
being based on the spectral construction rather than direct
simulations of the 1D NLSE.

The quantitative verification of the kinetic theory of
breather gases undertaken in this paper is an important step
towards a better understanding of this type of turbulent mo-
tion in integrable systems. We also believe that the ability
to synthesize numerically BGs represents an important step
towards the controlled laboratory generation of BGs, possibly
following an approach similar to the one recently reported for
hydrodynamic SGs [19]. Finally, the possibility to generate
numerically breather solutions of order N � 10 paves the way
for further works devoted to the investigation of the properties
of localization in space and time of breather solutions of the
1D NLSE of very high order [38,50,73].
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APPENDIX: POSITION SHIFT IN TWO-BREATHER
INTERACTIONS

Two-breather interactions have been studied in
Refs. [50,75], where the expressions for the phase and
position shifts in the interaction of two Tajiri-Watanabe
breathers have been derived using the IST analysis. In
Sec. III A the interaction kernel in the equation of state (12)
for the breather gas was obtained in the form (13). The natural
interpretation of this interaction kernel, consistent with the
previously studied cases of KdV and NLS soliton gases,
is the position shift in a two-breather collision. However,
the equivalence between formula (13) and the expressions
from [50,75] is far from obvious. Here we establish this
equivalence, enabling one to extend the phenomenological
interpretation of soliton gas kinetics [23] to breather gases.

We consider the position shift expression from [75],

�ξ̄2 = − ln(ξ0)/c−,2 cos α2 = �(λ2, λ1), (A1)

where

ξ0 = d+ − 2[cos(α1 − α2) + c−,1c−,2] cos(α1 − α2)

d+ − 2[cos(α1 + α2) − c−,1c−,2] cos(α1 + α2)
, (A2)
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with

c±, j = z j ± q2
0/z j, λ j = (

ζ j − q2
0/ζ j

)
/2,

d±, j = z2
j ± q4

0/z2
j , q0 = −iδ0,

d+ = d+,1 + d+,2, R0(λ j ) = (
ζ j + q2

0/ζ j
)
/2,

ζ j = R0(λ j ) + λ j = iz je
iα j . (A3)

One can verify that substituting (A3) in Eq. (13) and invoking
the identities

|λi|2 = (
d+,i + 2q2

0 cos αi
)
/4,

d+ =
(

z1z2 + q4
0

z1z2

)(
z1

z2
+ z2

z1

)
, (A4)

(cos 2α1 + cos 2α2)/2 = cos α1 + α2 cos α1 − α2

yields the position shift expression (A1).
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