
Fill in the B l a n k s: Empirical Analysis of the Privacy Threats of
Browser Form Autofill

Xu Lin
University of Illinois at Chicago, USA

xlin48@uic.edu

Panagiotis Ilia
University of Illinois at Chicago, USA

pilia@uic.edu

Jason Polakis
University of Illinois at Chicago, USA

polakis@uic.edu

ABSTRACT

Providing functionality that streamlines the more tedious aspects

of website interaction is of paramount importance to browsers as

it can significantly improve the overall user experience. Browsers’

autofill functionality exemplifies this goal, as it alleviates the burden

of repetitively typing the same information across websites. At the

same time, however, it also presents a significant privacy risk due

to the inherent disparity between the browser’s interpretation of a

given web page and what users can visually perceive.

In this paper we present the first, to our knowledge, comprehen-

sive exploration of the privacy threats of autofill functionality. We

first develop a series of new techniques for concealing the presence

of form elements that allow us to obtain sensitive user information

while bypassing existing browser defenses. Alarmingly, our large-

scale study in the Alexa top 100K reveals the widespread use of

such deceptive techniques for stealthily obtaining user-identifying

information, as they are present in at least 5.8% of the forms that are

autofilled by Chrome. Subsequently, our in-depth investigation of

browsers’ autofill functionality reveals a series of flaws and idiosyn-

crasies, which we exploit through a series of novel attack vectors

that target specific aspects of browsers’ behavior. By chaining these

together we are able to demonstrate a novel invasive side-channel

attack that exploits browser’s autofill preview functionality for in-

ferring sensitive information even when users choose to not utilize

autofill. This attack affects all major Chromium-based browsers and

allows attackers to probe users’ autofill profiles for over a hundred

thousand candidate values (e.g., credit card and phone numbers).

Overall, while the previewmode is intended as a protective measure

for enabling more informed decisions, ultimately it creates a new

avenue of exposure that circumvents a user’s choice to not divulge

their information. In light of our findings, we have disclosed our

techniques to the affected vendors, and have also created a Chrome

extension that can prevent our attacks and mitigate this threat until

our countermeasures are incorporated into browsers.

CCS CONCEPTS

• Security and privacy→ Browser security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’20, November 9ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417271

KEYWORDS

Web Browsers; Autocomplete; Form Autofill; Data Exfiltration

ACM Reference Format:

Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the B l a n k s: Empirical

Analysis of the Privacy Threats of Browser Form Autofill. In Proceedings of

the 2020 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’20), November 9ś13, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3372297.3417271

1 INTRODUCTION

Browsers lie at the heart of the web ecosystem, as they are the

de-facto platform that mediates users’ access to most online ser-

vices. As websites continue to provide novel (and often complex)

functionality to attract and engage users, browsers provide the

necessary foundation by deploying new APIs and features that

enable these functionalities and minimize friction during user in-

teraction. A considerable pain point for users, which often leads

to frustration and higher drop-off rates, is the completion of web

forms [2]. This arduous task is particularly burdensome for users

on mobile devices, who are inhibited by the devices’ limited screen

real estate. To minimize the hassle of completing and submitting

web forms, major browsers have deployed form autofill capabilities.

These features provide tangible benefits to users as browsers can

automatically fill out the form input fields on behalf of the user and

significantly reduce the amount of effort required.

Even though the autofill functionality is undoubtedly useful for

users, it can be easily misused by malicious or invasive websites.

For instance, a shady website can have a form with only one visible

input field (e.g., email address for a newsletter subscription) while

also including input fields for other information that are visually

hidden from the user (e.g., their home address and phone number).

As browsers generally populate all input fields for which there is

a corresponding value in the user’s autofill profile, even if those

input fields are not visible, attackers can misuse autofill to exfiltrate

private and sensitive information without the user’s knowledge or

consent. While a series of blog posts have mentioned the exfiltration

of credentials and credit card numbers [24, 40], and news articles

have reported the risks of autofill [5], the flaws of browsers’ autofill

capabilities have not been investigated in depth, nor has the global

prevalence of such invasive practices been measured.

In this paper we present the first comprehensive analysis of major

browsers’ autofill functionality across multiple dimensions. Initially,

we devise numerous previously-unreported approaches for hid-

ing input fields in a page and łconcealingž the actual information

that is obtained by the form. Our evaluation of major browsers

reveals a worrisome state of affairs, as most browsers do not have

any preventative countermeasures in place to prevent this form

of privacy-invasive deceptive practices, or are severely lacking as

they are ineffective against the majority of techniques that we de-

vise. Subsequently, we conduct a large-scale measurement study on

the Alexa top 100K websites for identifying pages exhibiting such

behavior through hidden form fields. As the heuristics employed

for detecting and parsing forms differ across browsers, we conduct

our study for both Firefox and Chrome. Alarmingly, we find that

5,295 (24.5%) and 1,843 (5.8%) of the websites with forms that are

autofilled by Firefox and Chrome, respectively, also include hidden

input elements. Moreover, fields that collect personally identifiable

information (PII), such as the user’s name, phone number and email

address, are among those that are commonly hidden.

However, one could argue that more privacy-cautious users may

avoid using autofill on less trusted sites. To that end, we demon-

strate an even more severe novel attack that infers the user’s infor-

mation without requiring the autofill functionality to actually be

triggered. This attack exploits autofill’s preview mode and works

against all Chromium-based browsers that we tested. In essence,

this inference attack is achieved by chaining together a series of

novel techniques that misuse flaws that we identified in multiple

aspects of Chromium’s autocomplete functionality and behavior.

First, we demonstrate that these browsers are susceptible to what

we refer to as a field-type mismatch attack; we find that they do not

match the type of a form field that is going to be autofilled to the

expected field type of that value in the user’s autocomplete profile.

For instance, while phone numbers are typically <input> tag ele-

ments (i.e., a textbox), the browser will actually match that value to

a <select> element (i.e., a drop-down menu) that has a matching

option. We also found that we can include multiple drop-down

menus of the same type (e.g., email) in a single form. Second, we

have identified a side-channel leak in the autofill preview feature,

which allows users to see what values will be autofilled if they

decide to do so. These preview values are in an overlay that is not

accessible by the page’s DOM. However, we found that numerous

style attributes of the drop-down menu change if the user’s profile

value matches a value included in that menu. Thus, we can identify

that a specific drop-down menu includes the user’s value, but can-

not directly infer which value it is. However, by combining these

two attacks and strategically replicating values across a unique

combination of elements, we can infer the user’s exact value. Last,

our attacks bypass specific type-based and size-limit safeguards, by

dynamically changing the type and characteristics of elements. This

allows us to probe a user’s autofill profile for sensitive information

(e.g., email, phone, credit card number) without any limits on the

number of candidate values that we can test. Our proof-of-concept

implementation can probe the user’s profile for 100K candidate

values in 4-5 seconds on desktops and 8-9 seconds on laptops.

Due to the severity of our attacks, we develop an appropriate

countermeasure in the form of a Chrome extension. Our extension

leverages the heuristics that we have devised for inferring whether

a page’s autofillable elements are hidden or masqueraded, to detect

and prevent the use of such deceptive techniques. We have also

disclosed our findings to the affected browser vendors, in hope that

they will incorporate our proposed techniques for better protecting

their users. Overall, we find that the inherent disconnect between

what is rendered by a browser and what is actually visible to the

user leaves ample room for misuse and deception. We believe that

our analysis of how users can be harmed and how to remediate

these attacks will facilitate tackling this significant yet understudied

privacy threat. In summary, our research contributions are:

• We explore how major browsers handle web forms and

present methods that allow adversaries to hide form ele-

ments and stealthily exfiltrate highly-sensitive user infor-

mation. We demonstrate techniques that bypass technical

countermeasures and also highlight the limitations of exist-

ing user-centric mitigation strategies.

• We conduct an in-depth analysis and present a series of new

attacks that exploit flaws and idiosyncrasies in browsers’

behavior. We combine all our techniques to demonstrate a

novel and severe side-channel attack that infers users’ PII

even when they are cautious and avoid using autofill.

• We develop a tool that detects the deployment of hidden

elements and conduct a large-scale study in the Alexa top

100K, revealing the prevalence of such practices in the wild.

Accordingly, we develop a browser extension that detects

deceptive forms and prevents the exfiltration of user data.

• To further facilitate research on this topic, we make our code

and data publicly available.

2 BACKGROUND AND THREAT MODEL

Browsers have long provided autocomplete suggestions to users,

where a website can specify the expected value type for each input

field (e.g., last name, address, email) and the browser will assist the

user typing by providing suggestions based on values previously en-

tered by the user in fields of this type. Nowadays, all major browsers

provide form autofill functionality that automatically populates the

input fields of a web form with values from the user’s autofill profile.

According to estimations by Google, this functionality can speedup

form completion times by 30% [3].

2.1 Browser Autofill

Here we present an overview of various aspects of browsers’ autofill

functionality and provide additional pertinent details.

Creating autofill profile. A profile is automatically created

when a user completes and submits a form for the first time.Multiple

autofill profiles can be stored in the user’s browser (e.g., a łpersonalž

one with values for home address and mobile phone number, and a

łprofessionalž one with the respective work-based values). While

a second profile is typically created by the user manually, some

browsers (e.g., Chrome) generate it automatically when a submitted

form contains values that do not match those of an existing profile.

Triggering autofill. When the user clicks on a form’s input field

the browser dynamically generates an overlay window that shows

the stored autofill profiles, to facilitate selection when multiple

profiles exist. This autofill window appears whenever a user clicks

on a form field with an autofillable type and at least three fields

exist in that form (even if two of those are hidden). In Chrome,

in certain cases (e.g., autocomplete=‘‘first-name’’) the overlay

will appear even if the form only has one field. As the user moves

the mouse, if it passes (or hovers) over a profile entry in the overlay

window, the values that are stored in the profile will appear in the

corresponding input fields (we refer to this functionality as autofill

preview). At that point, the user can select (i.e., click on) an entry

from the overlay window to trigger the autofill functionality and

Table 1: Browsers that autofill form fields that are hidden

from the user, based on various concealment techniques.

Techniques Firefox Chrome Brave Edge Safari Opera

CSS Display ✓ ✗ ✗ ✗ ✗ ✗

CSS Visibility ✓ ✗ ✗ ✗ ✗ ✗

CSS Opacity ✓ ✓ ✓ ✓ ✓ ✓

Covered by overlay ✓ ✓ ✓ ✓ ✓ ✓

Non-effective size ✓ ✓ ✓ ✓ ✓ ✓

Off-screen placement ✓ ✓ ✓ ✓ ✓ ✓

Ancestor’s overflow ✓ ✓ ✓ ✓ ✓ ✓

Furthermore, we do not focus on how that exfiltrated information

is actually used by the website or how the collected/inferred values

are sent to their backend server or third parties. Finally, while such

controversial practices may also be used for legitimate purposes

(e.g., detecting bots in registration forms), or may be the result of

developer implementation bugs, we still consider them indicative

of suspicious (if not outright malicious) activities, as sensitive user

information is acquired without the user’s knowledge or consent.

3 STEALTHY DATA EXFILTRATION

Attackers can use hidden form elements to stealthily exfiltrate sen-

sitive user information when the autofill functionality is triggered.

While it is fairly easy for attackers to deploy such an attack, it is

also inherently challenging for browsers to detect hidden input

fields as there are various techniques for concealing their presence.

Some of those techniques are straightforward as they change the

style attributes of the elements, while others are more elaborate

and non-trivial to detect. Furthermore, autofill functionality can be

triggered by visible input elements of any type. To avoid raising sus-

picion, attackers can use visible input elements that require data of

a non-sensitive, non-PII type and hide the input fields that require

sensitive data. For instance, a form could have a visible element for

a user’s country, which is not invasive from the user’s perspective,

while using hidden input fields to obtain the user’s home address.

Next we describe various properties and techniques that can be

used for hiding HTML elements. Table 1 presents a summary of

these techniques and their respective support acrossmajor browsers.

Specifically, we test whether a browser will autofill a form element

whose presence has been concealed using each technique respec-

tively. While one of these techniques has been mentioned in public

before, we identify several previously-unknown methods that are

effective against all the major browsers we test.

CSS display property. The simplest approach for hiding an

element is to set its CSS display property to none. This property

completely removes the element and the space it occupies, as if it

never existed in the page. Also, this property can be inherited from

a parent element. In our experiments Firefox is the only browser

that fills elements that have been hidden using this technique.

CSS visibility property. The visibility property specifies

whether an element should be visible or not. When this property is

set to hidden the element becomes invisible, but its original space

and position in the page layout are reserved. It can be also set to

collapse, which is treated in the same way as hidden for <input>

and <select> elements. Similarly to the display property, the

visibility property can be inherited from a parent element.

CSS opacity property. The opacity property specifies the trans-

parency level of the element. When the opacity value is set to 0, the

element becomes fully transparent and, thus, invisible to the user.

However, this concealment technique does not work for <select>

tag elements (i.e., drop-down menus), which are visible to the user

even when they are transparent. This property is not inherited, but

an element cannot be less transparent than its parent. As shown in

Table 1 this, and all subsequent methods, work in all the browsers.

Covered by overlay. This trick overlays a non-transparent ele-

ment on top of the element of reference to completely cover it.

Non-effective size. The element is invisible due to its non-effective

size (i.e., width or height equal to zero).

Off-screen placement. We can hide an element that has a fixed

or absolute position in the page by moving it out of the device’s

screen area, using the top, bottom, left, and right properties. This

technique has been previously demonstrated by a researcher [5].

Ancestor’s overflow. This approach places the element out of

the bounds of its ancestor’s overflow to make it invisible to the user.

This can be implemented in various ways; for example the attacker

can set the parent element’s height or width equal to zero. Another

way, when the ancestor element has an effective size, is to position

the element in reference out of the actual ancestor’s bounds and set

the ancestor’s overflow property to hidden, to disable scrolling

functionality for the ancestor element.

Summary. In general, the detection of concealed autofillable

input fields is not a trivial challenge for browsers, due to the va-

riety and heterogeneity of methods and properties available for

interacting with elements. The list of deceptive techniques that we

present above is most likely not exhaustive, and other techniques

for hiding the presence of input fields may be feasible.

4 DATA INFERENCE ATTACKS

We present a number of design flaws and idiosyncrasies in the aut-

ofill functionality of Chromium-based browsers, and detail a series

of attacks that exploit these flaws to bypass existing safeguards.

We then demonstrate how these individual attacks can be used as

building blocks and chained together to construct a more powerful

attack that can be used to infer highly sensitive information (e.g.,

credit card number) from a user’s autocomplete profile. More im-

portantly, this attack completely removes the requirement for users

to trigger the autofill functionality, rendering it a severe threat even

for more privacy-cautious users that may avoid using autofill.

4.1 Field-Type Mismatch Attack

The majority of user information stored by browsers in autofill

profiles is typically populated in <input> tag elements. Notable

exceptions are the values for the user’s country and state, which

are often encountered in websites as <select> tag elements. This

is due to the limited size of their value space, compared to other

types of information that have significantly more potential values.

Despite the fact that most types of information are intended for

use with form input elements, browsers do not restrict the use of

these types of information from being used in drop-down menus.

Furthermore, apart from allowing their use as drop-down menu

types, browsers will also automatically select the option matching

the value stored in the user’s autofill profile (if there is a match),

when the autofill functionality is triggered. The only type of input

information that browsers will not automatically select from a drop-

down menu is the credit card number. In other words, credit card

numbers are not autofillable when a <select> tag element is used.

This lack of checks and restrictions for types other than that of a

credit cardmeans that an attacker can use, for instance, a drop-down

menu populated with various email addresses and the browser will

select the entry that matches the user’s email if it matches one of the

options. Moreover, attackers can include up to 200 different drop-

down menus of the same type within a given page, thus, increasing

the overall number of candidate values matched against the user’s

profile. If a value that matches the user’s original value is found in

any of the drop-down menus, it will be automatically selected. If a

value is found in multiple menus, it will be selected in all of them.

Finally, Chromium-based browsers do not autofill <input> ele-

ments that have their visibility property set to hidden/collapse or

their display property to none. When, however, the attacker uses

drop-down menus instead of input elements, all these browsers

select the correct values in the menus when autofill is triggered.

4.2 Autofill Preview Attack

As described in Section 2, browsers provide an autocomplete pre-

view functionality, allowing users to see what values will be auto-

completed if the autofill functionality is triggered. In more detail,

whenever a user clicks on any autofillable element, an overlay win-

dow appears showing the various user autofill profiles. The preview

functionality is activated if the mouse’s cursor passes over any part

of the autocomplete overlay window associated with one of the

profiles. The preview values that are shown in the form will only be

entered into the form if the user clicks on the window choosing a

profile to be used. Next, we present a side-channel attack against the

autocomplete preview, that works in Chromium-based browsers,

and allows an attacker to infer a user’s information even though

this information is never actually written into the form.

Side-channel leakage. While the preview window and dis-

played values are part of an overlay that is not part of the page’s

DOM, nor are they accessible through JavaScript, we can detect

if a value is previewed in any of the elements by observing their

style properties. Through experimentation we identified 22 style

properties (such as background-color, border-bottom-color, border-

bottom-left-radius etc.) that change when a value is previewed in

an element. These properties are accessible by the page’s JavaScript.

In its simplest form this side-channel allows the attacker to detect

that a value from the user’s profile is previewed, but it does not

reveal the actual value. A critical idiosyncrasy, however, is that

these style property changes occur in drop-down menus only if one

of the options in the menu matches the value in the user’s profile.

Value inference. Next, we leverage this behavior to infer the

exact value in the user’s profile through the strategic placement and

replication of probing values across multiple drop-down menus in

the page. The intuition here is to replicate each candidate value

across a unique set of drop-down menus, such that each combina-

tion of menus is łactivatedž by exactly one candidate value. This

way, when the autocomplete preview functionality is activated, if

the browser matches the user’s actual value with a value that exists

in some specific drop-down menus, the attacker can detect those

menus’ style changes (even if they are hidden from the user) and

infer the user’s actual value. It is also important to note that in

cases where a user has multiple profiles (e.g., a personal and a work

profile) this attack can harvest the information from all profiles if

the mouse cursor passes over them in the preview window.

Probing size constraints. As this attack requires the replica-

tion of candidate values across multiple drop-down menus, we now

explore a strategy for maximizing the number of values that can

be probed. Through experimentation we found that Chromium

allows at most 200 form elements in a page. We also found that

<select> elements are limited to 512 entries per drop-down menu.

Considering that one element is needed for the user to activate the

autocomplete preview functionality, we are left with 199 drop-down

menus that can have up to 199 × 512 = 101,888 values in total.

For the replication of values across drop-down menus, we find

that an effective strategy that does not suffer from false positives, is

to progressively increase the number of entries per candidate value

when there are no other unique combinations left for that number.

More specifically, this strategy places
(

199

1

)

= 199 unique values

without replication (i.e., one in each drop-down menu),
(

199

2

)

=

19,701 values in two drop-down menus each (i.e., 39,402 entries

out of the total of 101,888 options), and for the remaining available

positions each value will appear in exactly 3 different menus (i.e.,

(101,888 - (2×19,701) - (1×199))/3 = 20,762 values). With this repli-

cation strategy an attacker can probe up to 40,659 unique values in

the page that can potentially match the user’s value (we present a

technique for overcoming this limit in Section 4.3).

Type constraints. The basic version of this attack works for all

types of autofillable information except for phone and credit card

numbers. For those two types, Chromium has additional safeguards

in place that we need to overcome. Specifically, for phone numbers

it only autofills the first element of that type that it finds in the page.

For credit card numbers, as discussed in Section 2, the browser only

autofills form input elements, but not drop-down menus.

4.3 Dynamic Element Replacement Attack

To bypass the restrictions imposed on credit card and phone num-

bers we design two techniques for extending our attack that rely

on dynamically changing the form elements in the page.

Phone numbers. When targeting phone numbers, our attack

initially places multiple identical input elements in the page, includ-

ing the one that is used to trigger the autofill functionality. All these

elements need to be the same, to trick the browser into filling them

all at once. When the user clicks on the visible input element we

dynamically replace all the remaining identical form elements with

drop-down menus, and replicate the candidate values across them

as described previously. This allows us to infer the user’s exact

phone number from the preview functionality. More importantly,

this extension to the autocomplete preview attack removes the

constraints imposed by the browser on the number of entries that

each drop-down menu can have. As a result, our attack can now

probe the user’s profile for as many phone numbers as we want.

Credit cards. We follow a similar approach for bypassing the

restrictions imposed for credit card numbers. We use form input

fields of a credit card type; when the user clicks on the form element

that will trigger the preview functionality, we dynamically replace

Table 2: Sites and pages where autofill is triggered, and cases

where our system detected hidden elements.

Sites w/ Sites w/ Pages w/ Pages w/

Autofill Hidden Field Autofill Forms Hidden Autofill

Firefox 21,589 5,295 92,063 8,760

Chrome 31,621 1,843 83,054 2,776

of the corresponding properties. For properties like display and vis-

ibility that are inheritable from ancestors, and the element’s opacity

which can be also affected by the parent’s opacity, our system also

evaluates those properties for the input fields’ ancestors.

To detect fields that are covered by other elements, our heuristics

first estimate the position and effective size of every element in the

page, and then determine whether any of those elements are placed

on top of others. Additionally, we also check the opacity value of the

overlay elements, as they need to be non-transparent to effectively

cover the elements that lie beneath them. In a similar fashion, by

estimating the position and size of the input elements, our heuris-

tics determine whether those are positioned outside of the screen

boundaries, or outside of their ancestors’ overflow boundaries.

Additional visual obstacles. In practice, additional aspects

of modern websites can lead to mislabeling. As such, our system

faces additional challenges for accurately assessing the presence

of deceptive techniques, as common web development practices

can misleadingly make it appear as though an element is being

concealed. Next we provide more details on our approach and

heuristics for handling such cases.

Popup overlays. These are typically a window, lightbox, or full-

screen takeover, typically layered on top of the page’s content; we

need to remove these popups as they render the pages’ content

inaccessible. We detect them and remove them by setting their style

attribute to "display:none !important".

Website navigation and header. For every <input> and <select>

element in the page, that are returned by the getElementsByTag-

Name() method, we scroll the page using the scrollIntoView()

method to make the visible ones appear on the screen. We have

observed that some elements might still be temporarily covered

by the website’s navigation bar, banner, or ads. For this reason, if

an element is still not in view after the initial scrolling, we scroll

further upwards and downwards and check if it comes in view.

Cookie consent overlays. During our experiments we observed

that when such overlays are removed, some form elements may also

be removed. For this reason we do not remove them but scroll the

page to make all visible elements appear. It is noted that the cookie

consent overlay is different from the popup overlay. Popup overlays

render the page content inaccessible and, thus, need to be removed.

In contrast, the cookie consent overlay is typically a small banner at

the top or bottom of the page [45] and does not affect accessibility

to the page. While our initial plan was to programmatically interact

with the consent overlays and accept the use of cookies, we found

that the diversity of web pages, the differences in overlay behaviors

(e.g., some may induce navigation to a different page) and the

variance in text language lead to complications that prevent us

from adequately covering all cases. Instead, we found that simply

scrolling was sufficient, as visible elements are brought into view.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

Firefox

D
o

m
a

in
s

w/ Autofill Forms Hide Element(s)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

0-1
0k

10k-
20k

20k-
30k

30k-
40k

40k-
50k

50k-
60k

60k-
70k

70k-
80k

80k-
90k

90k-
100k

Chrome

Domain Rank

Figure 4: Domains w/ autofillable forms and hidden fields

for Firefox and Chrome, grouped based on Alexa rank.

6.1 Measurements

Our crawling lasted from 11/19/2019 to 12/3/2019, where we visited

the landing pages of the Alexa Top 100K websites (using the list

from 11/13/2019), from where we followed all links to other pages

on the same domain. We chose to follow this approach as forms

(e.g., sign up, subscription, etc) are typically accessible from the

landing page. This resulted in more than 214K pages that have

forms with autofillable fields. We also note that the numbers that

we present only take into account hidden elements that are actually

autofilled by each browser; if the form contains hidden elements

that are, for any reason, not filled by the browser we do not include

them in our analysis as they do not affect users.

We break down the results from this process in Table 2. In general,

we see a considerable difference in the overall numbers across

browsers; this is because Chrome and Firefox use different heuristics

for parsing forms, detecting field types, and deciding whether to

autofill a given field. As a result, Chrome is far more aggressive in

autofilling forms (e.g., by ignoring the autocomplete attribute as

discussed in Section 2) resulting in 46.5% more sites where a form

is autofilled compared to Firefox, and 63.1% more forms overall. On

the other hand, Firefox does not have any checks for preventing

hidden elements from being filled, resulting in an almost 3x increase

in the number of autofilled forms that contain hidden elements.

While this lack of checks is likely due to the adoption of the autofill

notification shown to users (Section 5), their current approach does

not adequately protect users as we detail below.

Domain popularity. Figure 4 provides more details on the num-

ber of websites with forms that are autocompleted and their use of

hidden elements, based on their Alexa rank. While we see higher

numbers for both browsers in the most popular bracket (the top

10K), there is no consistent pattern for the remaining groups. Fur-

thermore, in Firefox we detect between 414-631 domains in all bins,

while Chrome fluctuates between 152-250. We also break down

these sites based on their top-level domain and find that around

56.5% of them in both browsers belong to ".com". Somewhat sur-

prisingly we find that ".edu" and ".org" are among the top 4 for

both browsers. We also identified 73 and 24 ".gov.*" domains in

Firefox and Chrome, respectively, that included hidden fields.

Table 3: Number of domains and hidden autofillable form

fields for each deceptive technique seen in the wild.

Firefox Chrome

Technique Domains Fields Domains Fields

display_none_ancestor 9,177 12,675 692 1,111

display_none 1,271 2,134 468* 758*

covered 1,129 1,554 769 1,119

visibility_hidden 109 211 117* 143*

off_screen 94 131 249 497

off_ancestors_overflow 88 131 91 144

non_effective_size 61 74 53 75

transparent_ancestor 23 42 75 123

transparent 11 11 27 43

visibility_hidden_ancestor 1 1 - -

*Chrome only autofills <select> fields hidden with these techniques.

Concealment techniques. In Table 3 we provide detailed sta-

tistics about the techniques that we detected being used in the wild.

Leveraging the display attribute (either directly or though the ele-

ment ancestors’) is the most prevalent approach, while the use of

overlays to cover fields is also widespread. Placing fields off-screen

is also fairly common in Chrome, but seen less widely in Firefox.

Interestingly, while leveraging the display property of ancestors

is the most common technique, we do not see the same approach

used often with the visibility attribute; in fact, we only identify

one such case in Firefox. While Chrome does not autofill input

fields hidden through display:none and visibility:hidden, it

does autofill drop-down menus hidden that way. Finally, we ana-

lyzed the hidden drop-down menus detected by our system and

found that all of them were collecting types commonly associated

with drop-down menus ś in other words, we did not identify any

domains using our field-type mismatch technique.

Hidden Elements. Figure 5 shows how many hidden elements

were autofilled across domains. This is the aggregate number from

all the forms detected on each domain. Again, we see that Firefox

autofills more hidden elements due to the lack of any invisibility

checks, while the vast majority of websites have less than 10 hid-

den elements. The largest number of hidden fields within a single

domain was 45 and 256 for Chrome and Firefox respectively.

Next we focus on what type of user information websites are

obtaining from hidden autofilled form fields. As shown in Figure 6,

we see a variety of types being targeted. While more generic fields

like country and state are commonly collected, we also see a large

number of sites collecting more sensitive and user-identifying infor-

mation. For instance, the user’s first and last name are the second

and third most often collected values in Firefox, while the user’s

email address, phone number and address-line1 are popular targets

in both browsers. In more detail, we find that 11.2% and 10.9% of

the domains collect the user’s first and last name in Firefox, while

in Chrome that drops to 3.2% and 2.8%. This significant skew in the

relative percentages in Chrome is due to the large number of do-

mains with state and country information that were autofilled. As

aforementioned, Chrome does not enforce its visibility constraints

to drop-down menus, resulting in this deviation. Finally, we find

that 15 domains obtain the user’s credit card expiration date in

Chrome. In Firefox, we detected 2 domains with hidden fields for

the credit card expiration date and the cardholder’s name. Based on

our findings we believe that attackers have not yet discovered our

techniques for bypassing the constraints for credit card numbers.

Anti-bot detection. Certain sites may use hidden fields as a

way of detecting bots, assuming that users cannot fill in fields that

they do not see. However, this assumption is incorrect, due to the

autofill functionality of browsers. While we cannot definitively

infer the motivation behind the inclusion of hidden fields, we iden-

tify websites where all hidden fields have visible counterparts as

potential instances of this strategy. We find 272 (14.75%) such sites

for Chrome and 305 (5.76%) for Firefox. This difference is due to

the fact that Firefox will only fill out one field for a given type; as

such, in all these cases only the hidden element gets filled but the

visible one does not (due to the hidden one being first or the visible

one having the autocomplete attribute set to łoffž). Overall, even

if the motivation in these cases is not malicious, it still reflects a

privacy-invasive practice where users unknowingly leak private

data. For instance, a Chrome user may decide to delete certain visi-

ble fields that were autofilled but still end up disclosing that data.

Similarly, a Firefox user would see an empty visible field of a given

type but still have their information exposed in the hidden field.

Firefox label-granularity deception. Next, we analyze all the

data collected from our Firefox crawl, and explore whether domains

are potentially misusing the coarse granularity of the notification

labels. In more detail, we identify domains where the most specific

visible element of a given category (see Figure 3) is coarser than

any hidden elements of the same category. An example of such

a case would be a domain where the user is shown a łcountryž

element (part of the Address category) while an element for łstreet-

addressž (also part of the Address category) is hidden. Overall, we

find that 874 domains (16.5%) exhibit this behavior. If we filter out

cases where the combination of visible fields equals the granularity

of information obtained from hidden fields (e.g., first-name and

last-name are visible, and name is hidden) we are still left with

650 domains where the Firefox warning message is inadequate at

informing users about the true extent of the PII information they

are divulging to the website. Figure 7 shows the percentage of

domains, out of all the domains that hide elements, exhibiting this

behavior. In aggregate, 12.3% of all autofillable forms with hidden

fields deceive users into divulging more specific (i.e., identifying)

information than what they intend, or expect, based on the fields

that are visible to them and Firefox’s notification. While we cannot

infer if these domains are purposefully or inadvertently exploiting

the label-granularity mismatch, the inherent limitations of this

approach are currently exposing users to considerable risk.

Detection accuracy. To assess the effectiveness of our heuris-

tics we randomly selected 20 pages per concealment technique,

where we had detected hidden elements, and manually inspected

their code to establish whether these elements are actually hidden

or not. As such, we have manually inspected a total of 140 pages

(70 pages with hidden elements autofilled in Chrome, and 70 in

Firefox). Since our heuristics are the same for all pages, irrespective

of the browser, our results are reported in aggregate.

These 140 pages have 828 autofillable input elements in total,

where 282 of them are detected by our heuristics as hidden. Through

manual inspection we have verified that all of these 282 elements

0

0.2

0.4

0.6

0.8

1

 1 10 100 256

D
o

m
a

in
s
 (

C
D

F
)

Hidden Fields (log)

Firefox

Chrome

Figure 5: Hidden elements across all

forms detected within each domain.

 1

 10

 100

 1000

addre
ss

-le
ve

l1

fir
st

-n
am

e

la
st

-n
am

e

co
untry

addre
ss

-le
ve

l2 te
l

org
aniza

tio
n

zip
-c

ode

addre
ss

-li
ne1

em
ail

nam
e

addre
ss

-li
ne2

m
id

dle
-n

am
e

st
re

et-a
ddre

ss

D
o

m
a

in
s
 (

lo
g

)

Firefox Chrome

Figure 6: Most common types of hidden

autofilled fields.

 0

 10

 20

 30

 40

 50

0-1
0k

10k-
20k

20k-
30k

30k-
40k

40k-
50k

50k-
60k

60k-
70k

70k-
80k

80k-
90k

90k-
100k

D
o
m

a
in

s
 (

%
)

Domain Rank

Figure 7: Fraction of domains with hid-

den, autofillable elements for which

Firefox’s coarse labels are insufficient.

are indeed not visible to the user (TP rate: 100%) and that there are

no other hidden elements in any page that our heuristics failed to

detect (FN rate: 0%). From the 546 input elements that are visible,

our heuristics incorrectly labeled 6 elements as hidden (FP rate:

1.09%), in 3 of the 140 pages. In the first case, the 4 elements that

we detect as hidden are fully transparent, but the developer used

the CSS ::before selector to include visible pseudo-elements on top

of them, to make them noticeable to the user. In the second case, a

popup appears after the user scrolls the page, and covers one of the

input elements, which we detect as hidden. Last, in the third case,

the developer used a list inside of an input element to implement a

custom drop-down menu, which our heuristics considered as being

covered by another element.

7 CASE STUDIES

In this section we present some interesting examples of hidden

form field use cases that we identified during our large-scale study.

E-commerce. We identified a Brazilian e-commerce retail store

that has a visible zip-code input field on every product page, offering

to calculate the shipping and delivery time. However, the form also

includes hidden autofillable elements that obtain the user’s full

name, email address, and phone number.

Marketing.We identified 27 domains that used code from a łre-

tail digital marketing automation platformž that specializes in email

marketing and mobile messaging. While this marketer’s code cre-

ates a visible email input field, so users can subscribe to newsletters,

their code also creates two autofillable hidden fields that obtain the

user’s first and last name. While the autocomplete attribute is set

to off, this is ignored by Chromium-based browsers. Furthermore,

this part of the form has an explicit comment urging developers to

not delete these fields as they are intended for use by the marketing

system. Finally, the form is submitted directly to the marketer’s

servers and not to the first-party origin.

Anti-bot detection. During our experiments we found that cer-

tain sites employ MailChimp, a popular email marketing company

that uses hidden form elements as a method of detecting bot-driven

signups. While such automated actions are typically prevented

through CAPTCHAs, recent studies have demonstrated effective

attacks even against the most prevalent CAPTCHA services [36, 47].

This may be the motivation behind the deployment of additional

form-related defenses. However, apart from the obvious privacy

implications of this practice, where users may unintentionally dis-

close information that they are not willing to share with a given

domain, this also introduces additional usability issues that affect

users and vendors alike. As Chrome ignores the autocomplete

attribute, Chrome users’ autofill functionality is resulting in false

positives that trigger the anti-bot detection, thus, preventing users

from registering [8]. As this can easily drive users away, there is a

direct negative impact for the users as well as the web sites.

Firefox label granularity.As described in Section 5, the coarse-

grained nature of the warning message shown by Firefox creates an

avenue for misuse, as websites can reveal generic, non-identifying,

fields and then hide specific, user-identifying fields of the same cate-

gory. One such example is the US News website which has a manda-

tory visible field for the ZIP code, but has various more-specific

address-related hidden elements, including street-address.

8 COUNTERMEASURE

The attacks that we demonstrate pose a significant privacy threat

as they enable the stealthy exfiltration of sensitive user data. As

browser vendors may not adequately address this issue, we have

developed an extension for Chrome that can mitigate our attacks.

Operation. After a page is loaded, our extension parses the

DOM to identify all the form elements and leverages the heuristics

that we have devised (Section 3) for identifying whether any of

those are hidden from the user. Then, based on its mode of operation

it either shows a warning to the user about these elements (lax

mode) or automatically removes them from the page (strict mode).

We decided to remove these elements from the page instead of

setting their autocomplete attribute to łoffž, as Chrome ignores

this attribute and autofills those elements anyway.

Methodology.Our extension first identifies all the <input> and

<select> tag elements of each form in the page, and determines

which of those are autofillable. For this step our extension checks

whether a form has at least 3 such elements or whether it has only

2 elements which use the autocomplete attribute to specify the

expected value type (e.g., autocomplete=łnamež). It also checks if

there is at least one visible input field, which is needed for triggering

autofill. Moreover, our extension uses the same regular expressions

as Chromium for determining each element’s autofill type.

For the autofillable elements, our extension uses the method

getComputedStyle() to retrieve and check their display, visibility

and opacity attributes, as well as the attributes of their parent

nodes. To detect if an element is placed outside the boundaries of

the screen or whether it is covered by another element, we use

getBoundingClientRect() to get its size and position relative to

the viewport. To detect covered elements we calculate their center

points and use elementFromPoint() to get the top-most element

at that point, and check against those and their ancestors’ properties

and position. Similarly we check the position of their ancestors

and whether the elements are placed out of their overflow bounds.

Finally, we decided to preemptively detect and remove deceptive

elements when the page is loaded instead of when the user clicks on

a form element (i.e., strict mode), to avoid potential race conditions

that would allow a page to obtain the user’s data.

Performance. To measure the overhead imposed by our exten-

sion, we randomly chose 500 pages that have hidden autofillable

elements from our large-scale study and visit them with our ex-

tension in place. We observe that it takes only 13.09ms on average

(median: 12.78ms, 75th: 15.41ms, and 95th: 20.36 ms), to parse the

page and run our heuristics for detecting all the hidden form el-

ements. As such, while our countermeasure should optimally be

incorporated by the browser, the performance impact of our exten-

sion is negligible and will not affect the user’s experience.

Detectability. Browser extensions can be detected based on the

uniqueness of their behavior when interacting with a page. This en-

ables browser fingerprinting [39, 43] and the inference of sensitive

data [27]. Our extension is detectable, as malicious websites can

infer its presence by including hidden form elements and detecting

if they get modified. While our extension can be detected and used

as part of a browser fingerprint, we consider that the more spe-

cific and uniquely identifying user information that is obtainable

when our countermeasure is not in place far outweighs the risk of

installing our extension.

9 DISCUSSION AND FUTUREWORK

Here we further discuss additional aspects of our work, and also

highlight limitations and possible future research directions.

Attack likelihood.Ourwork demonstrates two types of attacks

with different prerequisites. The first type, which aims to obtain user

PII through hidden form fields, requires the victim to use autofill.

While research exists on how to improve the usability of forms to

reduce the likelihood of users leaving prior to completion [33], sites

do not actually need the user to submit the form since they can

read the autofilled data. Nonetheless, one could argue that more

cautious users will not even trigger autofill on less trustworthy sites.

In such cases we can deploy our preview attack ś users only need

to click on a form field and move their mouse downwards so as to

momentarily pass over the preview window. Furthermore, recent

work has demonstrated how click interception remains a threat [46];

such techniques can be combined with our second attack to infer

the user’s sensitive information once they are tricked into clicking

the form field. Similarly, recent studies have explored the use of

deception in a different context (e.g., shopping sites [31], mobile

apps [22]). While most dark patterns they explore are not relevant

to our work, techniques that involve the aesthetic manipulation of

the UI (e.g., disguising ads) could potentially be applicable.

Attack stealthiness. Common classes of deceptive attacks typ-

ically leave behind some form of visual clues that users can detect

(e.g., the URLs in phishing attacks). While attacks can leverage be-

haviors in certain browsers to further obscure these clues [30], the

clues are still present in parts of the page that average users have

been increasingly conditioned to check. Additionally, while more

sophisticated campaigns will trick the average user [37], typical

phishing attacks can be detected by average users [13]. On the other

hand, the attacks we demonstrate in this paper do not leave such

visual clues behind; unless users actually inspect the web page’s

source code there is no other way to identify the use of such decep-

tive techniques. This renders our techniques a particularly stealthy

and effective class of privacy-invasive attacks against users.

Root cause and mitigation. The underlying issue that enables

the attacks presented in this paper, is the inherent challenging

task for browsers to truly infer if something is visible to a user

or not. The disconnect between the browser’s view of a page and

the user’s visual perception, leaves ample room for misuse. While

we have identified several techniques for hiding elements, it is

likely that even more advanced techniques exist (e.g., color-based

deceptive techniques that make elements and text blend-in with the

background). As such, we will continue to augment our browser

extension as new techniques are identified. However, the root cause

from which these issues arise will render incomplete any defense

that is purely technical. More specifically, we believe that clearly

informing users what information will be provided to a form us-

ing precise fine-grained labels, can better equip users against this

privacy threat. Krol and Preibusch [32] showed that security or

privacy warnings lead to a reduced disclosure of sensitive data in

web forms, but the notification information shown by Safari and

Firefox is vastly different in nature (i.e., no alarming language and

not presented as an actual warning). As prior work on security

indicators and warnings has extensively demonstrated [12, 42], the

effectiveness of such practices can be affected by a multitude of

factors. A study that explores how users’ behavior is affected by

these notifications is out of the scope of our work, but we consider

it an important and interesting direction for future work.

Crawling coverage. Our large-scale study sheds light on the

prevalence of element-hiding techniques in the wild. As we fol-

lowed a depth-of-one approach, our measurements likely present a

lower bound on the use of deceptive techniques, as web sites may

include additional forms that are not directly accessible from the

landing page. Furthermore, websites may already be leveraging

other concealment techniques that are not detectable by our sys-

tem. Finally, we do not have access to post-login pages, which may

result in our crawler missing additional forms.

Browser monoculture. Microsoft’s recent decision to build

Edge off of Chromium attracted criticism as it exacerbates the mono-

culture issue. Our attacks highlight this risk, as all the flaws that

we exploit for our most invasive attack are present in several major

browsers (Chrome, Edge, Opera) including more privacy-oriented

ones (Brave) due to their reliance on the same underlying engine.

Another issue is the seeming unwillingness of certain browsers to

independently tackle vulnerabilities that stem from (or also affect)

Chromium, waiting instead for these issues to be addressed by the

Chromium team. For instance, Edge explicitly considers flaws that

also affect Chrome out of scope of their bug bounty program.

Passwordmanagers.While browsers are our main focus in this

work, we also investigate how two popular password managers

(LastPass, 1Password) handle hidden elements when they autocom-

plete forms and find that they are similarly vulnerable to browsers.

Specifically, 1Password does not fill elements only if they are hidden

by setting the CSS display property to none. LastPass does not

fill elements hidden using display:none and visibility:hidden

(strangely, it fills them if visibility is set to collapse). As the

LastPass extension has over 10 million downloads in the Google

Chrome store, and the 1Password extensions account for over 1.6

million downloads, their autofill behavior is currently exposing

many users to considerable privacy threats.

Disclosure and ethics. Due to the severity of our attacks, we

disclosed our techniques and findings to the affected browser ven-

dors; Chromium is currently working towards patching their sys-

tem. We also note that the experiments were conducted on the

authors’ machines using test browser profiles; no external users

participated, or were targeted, during our experiments.

10 RELATED WORK

To the best of our knowledge, this paper presents the first systematic

and comprehensive analysis of the autofill functionality available in

all major browsers. Our research demonstrates new attack vectors

that exploit this widely-used functionality, and highlights the severe

privacy threat that it poses to users. In this section we present an

overview of prior works that are related to autocompletion.

Web Forms. A series of blog posts by researchers [24, 40] and

a recently published paper [11], highlighted how credentials and

credit card numbers can be obtained through the browser auto-

complete functionality. In [24] they show that third-party scripts

included in a page can inject a hidden login form and leverage the

browser password manager’s autocomplete functionality to obtain

the user’s credentials for that particular website. In [40] they show

that third-party session-replay scripts included in the page can ob-

tain the information of a form, regardless of that information being

entered manually or autofilled by the browser. Even though these

approaches leverage the autocomplete functionality, the outlined

issues stem from the inclusion of third-party scripts that are not

restricted by the Same-Origin-Policy (SOP), and thus can access

the information that a user provides willingly to the first party. Es-

pecially in the case of credit cards, the exfiltration that is described

in [11, 40] is possible when the user intentionally provides this in-

formation to the first party. Our work, however, demonstrates new

techniques that remove such constraints and also comprehensively

explores the exfiltration of all types of PII from the user’s profile.

In another direction Starov et al. [38] and Chatzimpyrros et

al. [20] showed, respectively, that contact and registration forms can

expose users’ PII to third parties. Kapravelos et al. [26] showed that

malicious extensions can steal sensitive data, such as passwords

and email addresses, from web forms. On the other hand, in our

work we consider that the first-party may also be malicious, and

focus on devising techniques that exploit flaws in the autofill and

preview functionality, for exfiltrating sensitive information that

the user never intended to disclose. To make matters worse, our

data inference attacks do not actually require the user to enter

information in the form or even use autofill.

Password managers. In a different line of work that focused

on password-autocompletion, Silver et al. [35] explored the autofill

policies employed by 10 different browser, mobile, and third-party

password managers and identified how they differ across them.

They also investigated how the autofill functionality can be lever-

aged by third-parties for stealing user passwords. Their scenario

focused on a rogue WiFi router that injects login forms in multiple

frames in a page, which are autofilled by password managers, and

then malicious scripts can read the forms. In similar work, Stock

et al. [41] investigated how the password managers of all major

browsers behave with regards to login form autocompletion, and

how they can be misused by a XSS attacker that can run malicious

code in the context of another site.

Compared to our work, these studies focus on how the autocom-

plete functionality of password managers can be used to steal the

user’s credentials. No prior work attempts to explore how form

autofill can be used for stealthily exfiltrating various types of PII

from the user’s profile. While browsers are the main focus of our

work, we found that two of the most popular password managers

are also susceptible to a plethora of our element-hiding techniques.

11 CONCLUSIONS

In this paper we presented the first comprehensive evaluation of the

privacy threat that browsers’ autofill functionality poses to users.

As a starting point, we identified various techniques for hiding

the presence of form fields that are automatically filled by major

browsers. These techniques can be misused for stealthily obtaining

sensitive information, unbeknownst to users that leverage autofill

for its convenience. Our subsequent large-scale study revealed that

such deceptive practices are commonplace in the wild, as we found

that 5.8% of all forms that are autofilled by Chrome contain at least

one hidden field. More importantly, filling out hidden elements is

only the first flaw in browsers’ autofill functionality. Our in-depth

analysis revealed a series of flaws and idiosyncrasies that allowed

us to bypass all existing safeguards that protect the information in

users’ autocomplete profiles. While all these new attacks constitute

important privacy risks individually, when combined they enable a

far more egregious attack that exploits the preview functionality

and can infer the personal information of cautious users that decide

against using autofill. This attack works against all Chromium-

based browsers, highlighting the implications of the monoculture

issue affecting the browser ecosystem. The severity of our findings

prompted us to create a countermeasure to better protect users

until browser vendors address all the issues that we have reported.

Overall, while autofill is a major convenience for users, we hope

that our work sheds light on the significant privacy-utility tradeoff

it introduces and allows users to better protect their data.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable

feedback. This work was supported by the DARPA ASED Program

and AFRL (FA8650-18-C-7880), and NSF (CNS-1934597). Any opin-

ions, findings, conclusions, or recommendations expressed herein

are those of the authors, and do not necessarily reflect those of the

US Government.

REFERENCES
[1] Google chrome privacy whitepaper. https://www.google.com/chrome/privacy/

whitepaper.html.
[2] Google developers - help users checkout faster with autofill. https://developers.

google.com/web/updates/2015/06/checkout-faster-with-autofill.
[3] Google developers - help users checkout faster with autofill. https://developers.

google.com/web/updates/2015/06/checkout-faster-with-autofill.
[4] Mozilla firefox features. https://wiki.mozilla.org/Firefox/Features/Form_Autofill#

Feature_Availability.
[5] The guardian - browser autofill used to steal personal details in new phishing

attack, 2017. https://www.theguardian.com/technology/2017/jan/10/browser-
autofill-used-to-steal-personal-details-in-new-phising-attack-chrome-safari.

[6] HTML Living Standard - Last Updated 26 February 2020. https://html.spec.
whatwg.org/multipage/form-control-infrastructure.html#attr-fe-autocomplete,
2020.

[7] Http archive - state of the web, 2020. https://httparchive.org/reports/state-of-
the-web.

[8] Mailchimp - troubleshooting the embedded signup form, 2020. https://mailchimp.
com/help/troubleshooting-the-embedded-signup-form/.

[9] Maxmind db, 2020. https://www.maxmind.com/en/geoip2-city.
[10] Nyc department of planning, 2020. https://www1.nyc.gov/site/planning/data-

maps/open-data.page#snd.
[11] Gunes Acar, Steven Englehardt, and Arvind Narayanan. No boundaries: data

exfiltration by third parties embedded on web pages. In Proceedings of the 20th
Privacy Enhancing Technologies Symposium (PETS). Sciendo, July 2020.

[12] Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland: A large-scale
field study of browser security warning effectiveness. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security 13), pages 257ś272, 2013.

[13] Mohamed Alsharnouby, Furkan Alaca, and Sonia Chiasson. Why phishing still
works: User strategies for combating phishing attacks. International Journal of
Human-Computer Studies, 82:69ś82, 2015.

[14] Anonymized. Preview demo: Desktop, 100k credit card values. https://vimeo.
com/412514626/fb485212ad.

[15] Anonymized. Preview demo: Laptop, 100k email address values. https://vimeo.
com/412447440/e753a2cf4c.

[16] Anonymized. Preview demo: Multiple autofill accounts. https://vimeo.com/
414161536/c3a9e00f1c.

[17] Reuben Binns, Jun Zhao, Max Van Kleek, and Nigel Shadbolt. Measuring third-
party tracker power across web and mobile. ACM Transactions on Internet Tech-
nology (TOIT), 18(4):1ś22, 2018.

[18] Tomasz Bujlow, Valentín Carela-Español, Josep Sole-Pareta, and Pere Barlet-Ros.
A survey on web tracking: Mechanisms, implications, and defenses. Proceedings
of the IEEE, 105(8):1476ś1510, 2017.

[19] Yinzhi Cao, Song Li, Erik Wijmans, et al. (cross-) browser fingerprinting via os
and hardware level features. In NDSS, 2017.

[20] Manolis Chatzimpyrros, Konstantinos Solomos, and Sotiris Ioannidis. You shall
not register! detecting privacy leaks across registration forms. In Computer
Security, pages 91ś104. Springer, 2019.

[21] Graham Cluley. Hackers’ malicious script skimmed credit card details off robert
dyas website, 2020. https://www.grahamcluley.com/hackers-robert-dyas/.

[22] Linda Di Geronimo, Larissa Braz, Enrico Fregnan, Fabio Palomba, and Alberto
Bacchelli. Ui dark patterns andwhere to find them: A study onmobile applications
and user perception. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, CHI ’20, 2020.

[23] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 1388ś1401, 2016.

[24] Gunes Acar. Freedom To Tinker - No boundaries for user identities:
Web trackers exploit browser login managers. https://freedom-to-
tinker.com/2017/12/27/no-boundaries-for-user-identities-web-trackers-
exploit-browser-login-managers/, 2017.

[25] Brendan Harkness. Anatomy of a credit card, 2020. https://www.creditcardinsider.
com/learn/anatomy-of-a-credit-card/.

[26] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. Hulk: Eliciting malicious behavior in browser
extensions. In 23rd USENIX Security Symposium (USENIX Security 14), pages
641ś654, 2014.

[27] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. Carnus:
Exploring the privacy threats of browser extension fingerprinting. In 27th Annual
Network and Distributed System Security Symposium. The Internet Society, 2020.

[28] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints. In 2016
IEEE Symposium on Security and Privacy (SP), pages 878ś894. IEEE, 2016.

[29] Lindsay Liedke. Wpforms blog - online form statistics & facts for 2020, 2020.
https://wpforms.com/online-form-statistics-facts/#form-conversions.

[30] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis. Hindsight:
Understanding the evolution of ui vulnerabilities in mobile browsers. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 149ś162, 2017.

[31] Arunesh Mathur, Gunes Acar, Michael J Friedman, Elena Lucherini, Jonathan
Mayer, Marshini Chetty, and Arvind Narayanan. Dark patterns at scale: Findings
from a crawl of 11k shopping websites. Proceedings of the ACM on Human-
Computer Interaction, 3(CSCW):1ś32, 2019.

[32] Sören Preibusch, Kat Krol, and Alastair R Beresford. The privacy economics of
voluntary over-disclosure in web forms. In The Economics of Information Security
and Privacy, pages 183ś209. Springer, 2013.

[33] Mirjam Seckler, Silvia Heinz, Javier A Bargas-Avila, Klaus Opwis, and Alexan-
dre N Tuch. Designing usable web forms: empirical evaluation of web form
improvement guidelines. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1275ś1284, 2014.

[34] Anisha Sekar. Stolen credit card numbers, 2015. https://www.nerdwallet.com/
blog/credit-cards/stolen-credit-card-numbers/.

[35] David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. Password
managers: Attacks and defenses. In Proceedings of the 23rd USENIX Confer-
ence on Security Symposium (USENIX Security 14), SEC’14, USA, 2014. USENIX
Association.

[36] Suphannee Sivakorn, Jason Polakis, and Angelos D. Keromytis. I am robot: (deep)
learning to break semantic image captchas. In Proceedings of the 1st IEEE European
Symposium on Security and Privacy, EuroSP ’16, 2016.

[37] Emily Stark. The urlephant in the room. 2019.
[38] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you sure you want to

contact us? quantifying the leakage of pii via website contact forms. Proceedings
on Privacy Enhancing Technologies, 2016(1):20ś33, 2016.

[39] Oleksii Starov and Nick Nikiforakis. Xhound: Quantifying the fingerprintability
of browser extensions. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 941ś956. IEEE, 2017.

[40] Steven Englehardt. Freedom To Tinker - No boundaries: Exfiltration of personal
data by session-replay scripts. https://freedom-to-tinker.com/2017/11/15/no-
boundaries-exfiltration-of-personal-data-by-session-replay-scripts/, 2017.

[41] Ben Stock and Martin Johns. Protecting users against xss-based password man-
ager abuse. In Proceedings of the 9th ACM symposium on Information, computer
and communications security, pages 183ś194, 2014.

[42] Christopher Thompson, Martin Shelton, Emily Stark, Maximilian Walker, Emily
Schechter, and Adrienne Porter Felt. The web’s identity crisis: understanding the
effectiveness of website identity indicators. In 28th USENIX Security Symposium
USENIX Security 19), pages 1715ś1732, 2019.

[43] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. Everyone is different: client-side diversification for defending against
extension fingerprinting. In 28th USENIX Security Symposium (USENIX Security
19), pages 1679ś1696, 2019.

[44] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. Beyond
the front page: Measuring third party dynamics in the field. In Proceedings of
The Web Conference 2020, pages 1275ś1286, 2020.

[45] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.
(un) informed consent: Studying gdpr consent notices in the field. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 973ś990, 2019.

[46] Mingxue Zhang, Wei Meng, Sangho Lee, Byoungyoung Lee, and Xinyu Xing. All
your clicks belong to me: investigating click interception on the web. In 28th
USENIX Security Symposium (USENIX Security 19), pages 941ś957, 2019.

[47] Binbin Zhao, Haiqin Weng, Shouling Ji, Jianhai Chen, Ting Wang, Qinming He,
and Reheem Beyah. Towards evaluating the security of real-world deployed
image captchas. In Proceedings of the 11th ACMWorkshop on Artificial Intelligence
and Security, pages 85ś96, 2018.

	Abstract
	1 Introduction
	2 Background And Threat Model
	2.1 Browser Autofill
	2.2 Threat Model

	3 Stealthy Data Exfiltration
	4 Data Inference Attacks
	4.1 Field-Type Mismatch Attack
	4.2 Autofill Preview Attack
	4.3 Dynamic Element Replacement Attack

	5 User-centric Browser Mitigations
	6 Measuring Deception in the Wild
	6.1 Measurements

	7 Case Studies
	8 Countermeasure
	9 Discussion and Future Work
	10 Related Work
	11 Conclusions
	References

