Browser Form Autofill

Xu Lin

Panagiotis Ilia

Jason Polakis

University of Illinois at Chicago, USA University of Illinois at Chicago, USA University of Illinois at Chicago, USA

xlin48@uic.edu

ABSTRACT

Providing functionality that streamlines the more tedious aspects
of website interaction is of paramount importance to browsers as
it can significantly improve the overall user experience. Browsers’
autofill functionality exemplifies this goal, as it alleviates the burden
of repetitively typing the same information across websites. At the
same time, however, it also presents a significant privacy risk due
to the inherent disparity between the browser’s interpretation of a
given web page and what users can visually perceive.

In this paper we present the first, to our knowledge, comprehen-
sive exploration of the privacy threats of autofill functionality. We
first develop a series of new techniques for concealing the presence
of form elements that allow us to obtain sensitive user information
while bypassing existing browser defenses. Alarmingly, our large-
scale study in the Alexa top 100K reveals the widespread use of
such deceptive techniques for stealthily obtaining user-identifying
information, as they are present in at least 5.8% of the forms that are
autofilled by Chrome. Subsequently, our in-depth investigation of
browsers’ autofill functionality reveals a series of flaws and idiosyn-
crasies, which we exploit through a series of novel attack vectors
that target specific aspects of browsers’ behavior. By chaining these
together we are able to demonstrate a novel invasive side-channel
attack that exploits browser’s autofill preview functionality for in-
ferring sensitive information even when users choose to not utilize
autofill. This attack affects all major Chromium-based browsers and
allows attackers to probe users’ autofill profiles for over a hundred
thousand candidate values (e.g., credit card and phone numbers).
Overall, while the preview mode is intended as a protective measure
for enabling more informed decisions, ultimately it creates a new
avenue of exposure that circumvents a user’s choice to not divulge
their information. In light of our findings, we have disclosed our
techniques to the affected vendors, and have also created a Chrome
extension that can prevent our attacks and mitigate this threat until
our countermeasures are incorporated into browsers.

CCS CONCEPTS

« Security and privacy — Browser security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3417271

pilia@uic.edu

polakis@uic.edu

KEYWORDS
Web Browsers; Autocomplete; Form Autofill; Data Exfiltration

ACM Reference Format:

Analysis of the Privacy Threats of Browser Form Autofill. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS °20), November 9-13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3372297.3417271

1 INTRODUCTION

Browsers lie at the heart of the web ecosystem, as they are the
de-facto platform that mediates users’ access to most online ser-
vices. As websites continue to provide novel (and often complex)
functionality to attract and engage users, browsers provide the
necessary foundation by deploying new APIs and features that
enable these functionalities and minimize friction during user in-
teraction. A considerable pain point for users, which often leads
to frustration and higher drop-off rates, is the completion of web
forms [2]. This arduous task is particularly burdensome for users
on mobile devices, who are inhibited by the devices’ limited screen
real estate. To minimize the hassle of completing and submitting
web forms, major browsers have deployed form autofill capabilities.
These features provide tangible benefits to users as browsers can
automatically fill out the form input fields on behalf of the user and
significantly reduce the amount of effort required.

Even though the autofill functionality is undoubtedly useful for
users, it can be easily misused by malicious or invasive websites.
For instance, a shady website can have a form with only one visible
input field (e.g., email address for a newsletter subscription) while
also including input fields for other information that are visually
hidden from the user (e.g., their home address and phone number).
As browsers generally populate all input fields for which there is
a corresponding value in the user’s autofill profile, even if those
input fields are not visible, attackers can misuse autofill to exfiltrate
private and sensitive information without the user’s knowledge or
consent. While a series of blog posts have mentioned the exfiltration
of credentials and credit card numbers [24, 40], and news articles
have reported the risks of autofill [5], the flaws of browsers’ autofill
capabilities have not been investigated in depth, nor has the global
prevalence of such invasive practices been measured.

In this paper we present the first comprehensive analysis of major
browsers’ autofill functionality across multiple dimensions. Initially,
we devise numerous previously-unreported approaches for hid-
ing input fields in a page and “concealing” the actual information
that is obtained by the form. Our evaluation of major browsers
reveals a worrisome state of affairs, as most browsers do not have
any preventative countermeasures in place to prevent this form
of privacy-invasive deceptive practices, or are severely lacking as

they are ineffective against the majority of techniques that we de-
vise. Subsequently, we conduct a large-scale measurement study on
the Alexa top 100K websites for identifying pages exhibiting such
behavior through hidden form fields. As the heuristics employed
for detecting and parsing forms differ across browsers, we conduct
our study for both Firefox and Chrome. Alarmingly, we find that
5,295 (24.5%) and 1,843 (5.8%) of the websites with forms that are
autofilled by Firefox and Chrome, respectively, also include hidden
input elements. Moreover, fields that collect personally identifiable
information (PII), such as the user’s name, phone number and email
address, are among those that are commonly hidden.

However, one could argue that more privacy-cautious users may
avoid using autofill on less trusted sites. To that end, we demon-
strate an even more severe novel attack that infers the user’s infor-
mation without requiring the autofill functionality to actually be
triggered. This attack exploits autofill’s preview mode and works
against all Chromium-based browsers that we tested. In essence,
this inference attack is achieved by chaining together a series of
novel techniques that misuse flaws that we identified in multiple
aspects of Chromium’s autocomplete functionality and behavior.

First, we demonstrate that these browsers are susceptible to what
we refer to as a fleld-type mismatch attack; we find that they do not
match the type of a form field that is going to be autofilled to the
expected field type of that value in the user’s autocomplete profile.
For instance, while phone numbers are typically <input> tag ele-
ments (i.e., a textbox), the browser will actually match that value to
a <select> element (i.e., a drop-down menu) that has a matching
option. We also found that we can include multiple drop-down
menus of the same type (e.g., email) in a single form. Second, we
have identified a side-channel leak in the autofill preview feature,
which allows users to see what values will be autofilled if they
decide to do so. These preview values are in an overlay that is not
accessible by the page’s DOM. However, we found that numerous
style attributes of the drop-down menu change if the user’s profile
value matches a value included in that menu. Thus, we can identify
that a specific drop-down menu includes the user’s value, but can-
not directly infer which value it is. However, by combining these
two attacks and strategically replicating values across a unique
combination of elements, we can infer the user’s exact value. Last,
our attacks bypass specific type-based and size-limit safeguards, by
dynamically changing the type and characteristics of elements. This
allows us to probe a user’s autofill profile for sensitive information
(e.g., email, phone, credit card number) without any limits on the
number of candidate values that we can test. Our proof-of-concept
implementation can probe the user’s profile for 100K candidate
values in 4-5 seconds on desktops and 8-9 seconds on laptops.

Due to the severity of our attacks, we develop an appropriate
countermeasure in the form of a Chrome extension. Our extension
leverages the heuristics that we have devised for inferring whether
a page’s autofillable elements are hidden or masqueraded, to detect
and prevent the use of such deceptive techniques. We have also
disclosed our findings to the affected browser vendors, in hope that
they will incorporate our proposed techniques for better protecting
their users. Overall, we find that the inherent disconnect between
what is rendered by a browser and what is actually visible to the
user leaves ample room for misuse and deception. We believe that
our analysis of how users can be harmed and how to remediate

these attacks will facilitate tackling this significant yet understudied
privacy threat. In summary, our research contributions are:

e We explore how major browsers handle web forms and
present methods that allow adversaries to hide form ele-
ments and stealthily exfiltrate highly-sensitive user infor-
mation. We demonstrate techniques that bypass technical
countermeasures and also highlight the limitations of exist-
ing user-centric mitigation strategies.

e We conduct an in-depth analysis and present a series of new
attacks that exploit flaws and idiosyncrasies in browsers’
behavior. We combine all our techniques to demonstrate a
novel and severe side-channel attack that infers users’ PII
even when they are cautious and avoid using autofill.

e We develop a tool that detects the deployment of hidden
elements and conduct a large-scale study in the Alexa top
100K, revealing the prevalence of such practices in the wild.
Accordingly, we develop a browser extension that detects
deceptive forms and prevents the exfiltration of user data.

o To further facilitate research on this topic, we make our code
and data publicly available.

2 BACKGROUND AND THREAT MODEL

Browsers have long provided autocomplete suggestions to users,
where a website can specify the expected value type for each input
field (e.g., last name, address, email) and the browser will assist the
user typing by providing suggestions based on values previously en-
tered by the user in fields of this type. Nowadays, all major browsers
provide form autofill functionality that automatically populates the
input fields of a web form with values from the user’s autofill profile.
According to estimations by Google, this functionality can speedup
form completion times by 30% [3].

2.1 Browser Autofill

Here we present an overview of various aspects of browsers’ autofill
functionality and provide additional pertinent details.

Creating autofill profile. A profile is automatically created
when a user completes and submits a form for the first time. Multiple
autofill profiles can be stored in the user’s browser (e.g., a “personal”
one with values for home address and mobile phone number, and a
“professional” one with the respective work-based values). While
a second profile is typically created by the user manually, some
browsers (e.g., Chrome) generate it automatically when a submitted
form contains values that do not match those of an existing profile.

Triggering autofill. When the user clicks on a form’s input field
the browser dynamically generates an overlay window that shows
the stored autofill profiles, to facilitate selection when multiple
profiles exist. This autofill window appears whenever a user clicks
on a form field with an autofillable type and at least three fields
exist in that form (even if two of those are hidden). In Chrome,
in certain cases (e.g., autocomplete=*‘first-name’’) the overlay
will appear even if the form only has one field. As the user moves
the mouse, if it passes (or hovers) over a profile entry in the overlay
window, the values that are stored in the profile will appear in the
corresponding input fields (we refer to this functionality as autofill
preview). At that point, the user can select (i.e., click on) an entry
from the overlay window to trigger the autofill functionality and

First Name * Last Name *

Jiorn smith

John

ACME Corporation LS Email Address

Manage addresses john_smith@example.com

Company/Institution * Phone

ACME Corporation 1234567890

Figure 1: Example of autofill preview functionality.

the browser will populate the form with values from the profile.
The user can also click somewhere outside of the overlay window
for it to “disappear”, and no autofill functionality will be triggered.

Value selection. Input fields can specify the type of the data
that they expect using the autocomplete attribute. Browsers use
this attribute as well as attributes such as the field’s name, id, place-
holder text etc., and employ heuristics to determine or predict the
field’s type. Apart from these heuristics, as mentioned in the Google
Chrome Privacy Whitepaper [1], Chrome also sends some informa-
tion about the website (i.e., hash of the page’s hostname) and the
names of the input fields to Google, so as to receive a more accurate
prediction of each field’s data type based on server-side analysis.

Autofilling hidden elements. Currently, browsers do not suf-
ficiently detect and prevent deceptive practices that use disguised
or hidden input fields to exfiltrate sensitive user information in a
stealthy way. In more detail, Chrome only avoids autofilling fields
that have their visibility attribute set to hidden or collapse, and those
that have the display attribute set to none. It does not, however,
attempt to detect input fields that are otherwise hidden or disguised
(e.g., placed out of the screen, covered by an overlay, having size
equal to zero etc.). Such fields are populated along with all the
non-disguised ones when the autofill functionality is triggered, as
we will discuss in more detail in Section 3.

On the other hand, Firefox has a different approach and fills out
all' input fields, even those that have the visibility attribute set to
hidden. If the same element appears more than once in the page,
irrespectively if it’s visible or hidden, Firefox fills only the first one
that it finds as it parses the page. The strategy that Firefox follows
for protecting users is to show them a message when they start
entering a value in a form, informing them about the generic types
of the information that will be filled out. However, this approach
shifts the burden entirely onto the user, who must somehow infer
the true extent to which a website is collecting their information and
avoid triggering the autofill process when necessary. We discuss
the pitfalls of this design choice and how it does not adequately
protect users from deceptive practices in Section 5.

Autofill preview. This functionality, which is enabled when a
user hovers the mouse over the autofill overlay window to select
one of the profiles, provides a preview of what autofill will do,
allowing users to make a more informed decision. Specifically, it
displays the values of that profile within the form’s input fields,
as shown in Figure 1. Importantly, the preview functionality does
not trigger the autofill mechanism and the form’s input fields are
not really populated with the profile’s values. Due to the obvious

ICurrently Firefox only autofills address information for users in the US [4].

privacy implications, browsers display these values in overlay fields
that are not part of the DOM and are not accessible to the page.
Preview functionality is not currently available in mobile devices.

Handling credit card information. In all browsers, the aut-
ofill profile includes basic/contact information (e.g., name, organiza-
tion, address, email etc.). Payment information such as credit card
numbers, which is highly sensitive, is stored separately and stricter
mechanisms are employed for autofilling this type of information.
In Firefox, autofill for credit cards is currently disabled by default.

When a form includes input fields for both contact and payment
information, the autofill functionality that is triggered by a field
of one of those categories does not fill out the fields of the other
category. In other words, triggering autofill for contact information
(i.e., those stored in the autofill profile) only inputs contact informa-
tion but not payment information; for payment information to be
filled it needs to be triggered by another field from that category.

Apart from separating contact and payment information, there
are additional requirements for triggering the autofill functionality
for credit cards. First, credit cards’ autofill works only when the
page is loaded over HTTPS. Moreover, in addition to the credit card
number input field, the form also needs to include a field for the
card’s CVV code or a field for its expiration date (or month). If none
of these additional fields exist in the form, browsers do not autofill
the credit card number. Furthermore, unlike contact information
for which the page can use drop-down menus with multiple option
values instead of input fields, autofill for credit cards is restricted to
input fields. That is, browsers do not select the credit card’s number
from the available options if a drop-down menu is used.

As detailed in Section 4, we have devised an attack that bypasses
all of these restrictions and misuses the autofill preview functionality
to exfiltrate the user’s credit card number without triggering autofill
and without exposing any visual clues to the user.

Autocomplete Attribute. This attribute specifies the type of
information that is expected to be entered in a form element. Ac-
cording to the HTML standard [6], this attribute can also be set to
“off”, indicating that this element should not be autofilled by the
browser. We found, however, that all browsers apart from Firefox
deliberately ignore this directive and populate those elements.

2.2 Threat Model

In this paper we consider as the attacker any website that uses hid-
den form input elements, or employs other deceptive techniques,
that misuse browsers’ autocomplete and form autofill functionali-
ties for conducting privacy-invasive attacks (e.g., exfiltrating user
sensitive information in a stealthy manner). In practice, the forms
that include such hidden fields, and the JavaScript code needed for
carrying out the attacks, can be included due to various motivations;
e.g., they may be included in a form deliberately by the publisher
so as to avoid explicitly requesting users for personal information
(e.g., phone number or street address) since that pushes users away
and reduces form conversion rates [29]. The form may also be from
a third-party script (e.g., fetched from a marketing company [44])
for tracking users [17, 18, 23]), or even part of a form-skimming
campaign on a compromised website [21]. In the context of this
work, we do not consider websites that collect user information by
means other than exploiting the autofill functionalities.

Table 1: Browsers that autofill form fields that are hidden
from the user, based on various concealment techniques.

Techniques

CSS Display

CSS Visibility

CSS Opacity
Covered by overlay
Non-effective size
Off-screen placement
Ancestor’s overflow

‘Firefox Chrome Brave Edge Safari Opera

ENENENENENENEN
SNENENENE
SNANENENE
SNENENENE
NIRRT
SNENENENE

Furthermore, we do not focus on how that exfiltrated information
is actually used by the website or how the collected/inferred values
are sent to their backend server or third parties. Finally, while such
controversial practices may also be used for legitimate purposes
(e.g., detecting bots in registration forms), or may be the result of
developer implementation bugs, we still consider them indicative
of suspicious (if not outright malicious) activities, as sensitive user
information is acquired without the user’s knowledge or consent.

3 STEALTHY DATA EXFILTRATION

Attackers can use hidden form elements to stealthily exfiltrate sen-
sitive user information when the autofill functionality is triggered.
While it is fairly easy for attackers to deploy such an attack, it is
also inherently challenging for browsers to detect hidden input
fields as there are various techniques for concealing their presence.
Some of those techniques are straightforward as they change the
style attributes of the elements, while others are more elaborate
and non-trivial to detect. Furthermore, autofill functionality can be
triggered by visible input elements of any type. To avoid raising sus-
picion, attackers can use visible input elements that require data of
a non-sensitive, non-PII type and hide the input fields that require
sensitive data. For instance, a form could have a visible element for
a user’s country, which is not invasive from the user’s perspective,
while using hidden input fields to obtain the user’s home address.

Next we describe various properties and techniques that can be
used for hiding HTML elements. Table 1 presents a summary of
these techniques and their respective support across major browsers.
Specifically, we test whether a browser will autofill a form element
whose presence has been concealed using each technique respec-
tively. While one of these techniques has been mentioned in public
before, we identify several previously-unknown methods that are
effective against all the major browsers we test.

CSS display property. The simplest approach for hiding an
element is to set its CSS display property to none. This property
completely removes the element and the space it occupies, as if it
never existed in the page. Also, this property can be inherited from
a parent element. In our experiments Firefox is the only browser
that fills elements that have been hidden using this technique.

CSS visibility property. The visibility property specifies
whether an element should be visible or not. When this property is
set to hidden the element becomes invisible, but its original space
and position in the page layout are reserved. It can be also set to
collapse, which is treated in the same way as hidden for <input>
and <select> elements. Similarly to the display property, the
visibility property can be inherited from a parent element.

CSS opacity property. The opacity property specifies the trans-
parency level of the element. When the opacity value is set to 0, the
element becomes fully transparent and, thus, invisible to the user.
However, this concealment technique does not work for <select>
tag elements (i.e., drop-down menus), which are visible to the user
even when they are transparent. This property is not inherited, but
an element cannot be less transparent than its parent. As shown in
Table 1 this, and all subsequent methods, work in all the browsers.

Covered by overlay. This trick overlays a non-transparent ele-
ment on top of the element of reference to completely cover it.

Non-effective size. The element is invisible due to its non-effective
size (i.e., width or height equal to zero).

Off-screen placement. We can hide an element that has a fixed
or absolute position in the page by moving it out of the device’s
screen area, using the top, bottom, left, and right properties. This
technique has been previously demonstrated by a researcher [5].

Ancestor’s overflow. This approach places the element out of
the bounds of its ancestor’s overflow to make it invisible to the user.
This can be implemented in various ways; for example the attacker
can set the parent element’s height or width equal to zero. Another
way, when the ancestor element has an effective size, is to position
the element in reference out of the actual ancestor’s bounds and set
the ancestor’s overflow property to hidden, to disable scrolling
functionality for the ancestor element.

Summary. In general, the detection of concealed autofillable
input fields is not a trivial challenge for browsers, due to the va-
riety and heterogeneity of methods and properties available for
interacting with elements. The list of deceptive techniques that we
present above is most likely not exhaustive, and other techniques
for hiding the presence of input fields may be feasible.

4 DATA INFERENCE ATTACKS

We present a number of design flaws and idiosyncrasies in the aut-
ofill functionality of Chromium-based browsers, and detail a series
of attacks that exploit these flaws to bypass existing safeguards.
We then demonstrate how these individual attacks can be used as
building blocks and chained together to construct a more powerful
attack that can be used to infer highly sensitive information (e.g.,
credit card number) from a user’s autocomplete profile. More im-
portantly, this attack completely removes the requirement for users
to trigger the autofill functionality, rendering it a severe threat even
for more privacy-cautious users that may avoid using autofill.

4.1 Field-Type Mismatch Attack

The majority of user information stored by browsers in autofill
profiles is typically populated in <input> tag elements. Notable
exceptions are the values for the user’s country and state, which
are often encountered in websites as <select> tag elements. This
is due to the limited size of their value space, compared to other
types of information that have significantly more potential values.

Despite the fact that most types of information are intended for
use with form input elements, browsers do not restrict the use of
these types of information from being used in drop-down menus.
Furthermore, apart from allowing their use as drop-down menu
types, browsers will also automatically select the option matching
the value stored in the user’s autofill profile (if there is a match),

when the autofill functionality is triggered. The only type of input
information that browsers will not automatically select from a drop-
down menu is the credit card number. In other words, credit card
numbers are not autofillable when a <select> tag element is used.
This lack of checks and restrictions for types other than that of a
credit card means that an attacker can use, for instance, a drop-down
menu populated with various email addresses and the browser will
select the entry that matches the user’s email if it matches one of the
options. Moreover, attackers can include up to 200 different drop-
down menus of the same type within a given page, thus, increasing
the overall number of candidate values matched against the user’s
profile. If a value that matches the user’s original value is found in
any of the drop-down menus, it will be automatically selected. If a
value is found in multiple menus, it will be selected in all of them.
Finally, Chromium-based browsers do not autofill <input> ele-
ments that have their visibility property set to hidden/collapse or
their display property to none. When, however, the attacker uses
drop-down menus instead of input elements, all these browsers
select the correct values in the menus when autofill is triggered.

4.2 Autofill Preview Attack

As described in Section 2, browsers provide an autocomplete pre-
view functionality, allowing users to see what values will be auto-
completed if the autofill functionality is triggered. In more detail,
whenever a user clicks on any autofillable element, an overlay win-
dow appears showing the various user autofill profiles. The preview
functionality is activated if the mouse’s cursor passes over any part
of the autocomplete overlay window associated with one of the
profiles. The preview values that are shown in the form will only be
entered into the form if the user clicks on the window choosing a
profile to be used. Next, we present a side-channel attack against the
autocomplete preview, that works in Chromium-based browsers,
and allows an attacker to infer a user’s information even though
this information is never actually written into the form.
Side-channel leakage. While the preview window and dis-
played values are part of an overlay that is not part of the page’s
DOM, nor are they accessible through JavaScript, we can detect
if a value is previewed in any of the elements by observing their
style properties. Through experimentation we identified 22 style
properties (such as background-color, border-bottom-color, border-
bottom-left-radius etc.) that change when a value is previewed in
an element. These properties are accessible by the page’s JavaScript.
In its simplest form this side-channel allows the attacker to detect
that a value from the user’s profile is previewed, but it does not
reveal the actual value. A critical idiosyncrasy, however, is that
these style property changes occur in drop-down menus only if one
of the options in the menu matches the value in the user’s profile.
Value inference. Next, we leverage this behavior to infer the
exact value in the user’s profile through the strategic placement and
replication of probing values across multiple drop-down menus in
the page. The intuition here is to replicate each candidate value
across a unique set of drop-down menus, such that each combina-
tion of menus is “activated” by exactly one candidate value. This
way, when the autocomplete preview functionality is activated, if
the browser matches the user’s actual value with a value that exists
in some specific drop-down menus, the attacker can detect those

menus’ style changes (even if they are hidden from the user) and
infer the user’s actual value. It is also important to note that in
cases where a user has multiple profiles (e.g., a personal and a work
profile) this attack can harvest the information from all profiles if
the mouse cursor passes over them in the preview window.
Probing size constraints. As this attack requires the replica-
tion of candidate values across multiple drop-down menus, we now
explore a strategy for maximizing the number of values that can
be probed. Through experimentation we found that Chromium
allows at most 200 form elements in a page. We also found that
<select> elements are limited to 512 entries per drop-down menu.
Considering that one element is needed for the user to activate the
autocomplete preview functionality, we are left with 199 drop-down
menus that can have up to 199 X 512 = 101,888 values in total.
For the replication of values across drop-down menus, we find
that an effective strategy that does not suffer from false positives, is
to progressively increase the number of entries per candidate value
when there are no other unique combinations left for that number.
199
1

More specifically, this strategy places () = 199 unique values

without replication (i.e., one in each drop-down menu), (129) =
19,701 values in two drop-down menus each (i.e., 39,402 entries
out of the total of 101,888 options), and for the remaining available
positions each value will appear in exactly 3 different menus (i.e.,
(101,888 - (2x19,701) - (1Xx199))/3 = 20,762 values). With this repli-
cation strategy an attacker can probe up to 40,659 unique values in
the page that can potentially match the user’s value (we present a
technique for overcoming this limit in Section 4.3).

Type constraints. The basic version of this attack works for all
types of autofillable information except for phone and credit card
numbers. For those two types, Chromium has additional safeguards
in place that we need to overcome. Specifically, for phone numbers
it only autofills the first element of that type that it finds in the page.
For credit card numbers, as discussed in Section 2, the browser only
autofills form input elements, but not drop-down menus.

4.3 Dynamic Element Replacement Attack

To bypass the restrictions imposed on credit card and phone num-
bers we design two techniques for extending our attack that rely
on dynamically changing the form elements in the page.

Phone numbers. When targeting phone numbers, our attack
initially places multiple identical input elements in the page, includ-
ing the one that is used to trigger the autofill functionality. All these
elements need to be the same, to trick the browser into filling them
all at once. When the user clicks on the visible input element we
dynamically replace all the remaining identical form elements with
drop-down menus, and replicate the candidate values across them
as described previously. This allows us to infer the user’s exact
phone number from the preview functionality. More importantly,
this extension to the autocomplete preview attack removes the
constraints imposed by the browser on the number of entries that
each drop-down menu can have. As a result, our attack can now
probe the user’s profile for as many phone numbers as we want.

Credit cards. We follow a similar approach for bypassing the
restrictions imposed for credit card numbers. We use form input
fields of a credit card type; when the user clicks on the form element
that will trigger the preview functionality, we dynamically replace

them with drop-down menus and populate them with credit card
numbers. In that way, the browser is tricked into matching the
previewed credit card of the user with the entries in the menus.
Again, this allows us to bypass the size limit for the drop-down
menus. While we can have arbitrarily large numbers of entries in
each menu, we observed that the dynamic replacement of input
element with drop-down menus causes a delay that may affect our
attack if our page probes for millions of values. This delay is due to
the browser parsing all the form elements that are now significantly
larger than a normal form element.

An additional detail that we need to handle in this attack is that
Chromium changes the style properties of all the dynamically in-
cluded drop-down menus during the autocomplete preview. These
properties change even for menus that do not have any value match-
ing those in the user’s profile. This could have prevented us from
differentiating between the menus, but we have observed that the
style properties of the menus that actually have a matching value
change back to their default values when the preview ends (i.e., the
user moves the mouse cursor away from the autocomplete window).
As the properties of the non-matching elements are not restored,
we are still able to infer which values the user has previewed.

Scale of attack. Our dynamic replacement of autofillable ele-
ments allows us to induce inconsistencies in the browser’s behavior,
and also removes the limit on the number of options that we can
include in the drop-down menus. In fact, the size limitation is
removed for all types of information when their corresponding
elements are dynamically replaced, not only phone and credit card
numbers. When our page probes up to 40K values, the attack is
instant and there is no discernible delay, and our system can obtain
the values from multiple profiles in the autofill window if the mouse
passes over them (see demo video [16]). When further increasing
the scale of the attack, we are only limited by two factors: (i) the
time required to fetch the form from the web server, and (ii) the
time required for the client-side computations to complete.

During our experiments we found that the attacker can eas-
ily overcome (i) through compression. Due to the nature of the
form’s data, gzip is particularly effective, allowing us to compress
the attack form that probes 150K phone or credit card numbers
to approximately 2MB, which matches the median webpage size
according to the HTTP Archive [7]. The effect of issue (ii) will vary
depending on the capabilities of the client’s device. Currently, we
have tested our proof of concept implementation on a variety of
off-the-shelf laptops and have found that the user needs to stay on
the page for 8-9 seconds per 102K probed values (demo video: [15]).
When the user is on a desktop machine, we found that the same
attack requires 4-5 seconds (demo video: [14]). Attackers can also
selectively increase the number of candidate values for users with
more powerful machines (e.g., deciding based on the WebGL Ren-
derer attribute [19, 28] or other hardware information). We note
that due to the increased browser processing when probing 100K
values, if the mouse hovers over multiple autocomplete profiles our
attack only infers the value from the last previewed profile.

Reducing search space. While the number of values probed
by our attack is not actually constrained by the browser, users are
unlikely to stay on a page with a form for a very long time. As
such, attackers can further improve the success of their attack by
reducing the potential size of the search space for the given type of

john_smith@example.com John Smith

Also autofills address, name, organization

Preferences

TRSTNEmE

Country

Figure 2: Example notification (yellow strip) shown by Fire-
fox during the autocomplete process.

information they want to infer. For instance, if the attackers want to
infer the user’s street address, they can leverage the user’s IP address
and construct a set of probing values for the user’s city.? Indicatively,
NYC which is the most populous city in the United States, has a
total of ~102K named geographic places (streets, bridges, rail lines,
etc.) [10] which can be easily probed within a reasonable time frame.
Similarly, attackers can leverage the IP address to probe phone
numbers that start with that city’s or state’s area code. Probing
for 102K values would, thus, allow the attacker to cover ~11.3%
of all possible 7-digit combinations for a given area.® Attackers
trying to exfiltrate credit card numbers could first take advantage
of the structure of credit card numbers to generate valid candidate
values (e.g., targeting specific banks [25]). Alternatively, attackers
can cheaply buy credit card numbers missing the cardholder’s name
in bulk from underground markets [34] and probe those.
Incognito mode. Our preview attack does not require the user
to actually use the autofill functionality, and the autofill window
appears whenever the user clicks on any form element of an aut-
ofillable type. Also, it infers the values from multiple autocomplete
profiles, if the mouse passes over their entry in the preview window.
This renders our attack particularly pertinent against cautious users
that may have a “decoy” profile with bogus values (e..g, with a pseu-
donym and a secondary email address that is entered in untrusted
websites) or who otherwise avoid using autocomplete. Cautious
users may also visit untrusted websites in private (i.e., incognito)
mode. While certain browser functionalities differ in private mode,
we find that our attacks are not prevented by incognito. Currently,
the only way users can prevent this attack is to disable the autofill
functionality entirely, through the browser’s settings.

5 USER-CENTRIC BROWSER MITIGATIONS

Currently, Firefox and Safari are the only major browsers that
attempt to mitigate the surreptitious exfiltration of data by enabling
users to make more informed decisions. While such an approach
can significantly raise the bar for attackers if designed correctly,
users may still ignore the information showed by the browser. As
such, we believe that browsers should also incorporate mechanisms
for detecting and preventing form-field concealment techniques,
which we describe in Section 8. Nonetheless, for our analysis we

2MaxMind reports 80% and 68% accuracy for states and cities respectively [9].
3Phone numbers in the US have 10 digits; the first 3 digits denote the area code.

street-address
(all address-line
info combined

address-linet,
address-line2,
address-line3

Telephone

country, address-levell address-level2 A
Address]_) country-| name>_)< (state) >_)< (city) >_)< Zip code >_)
tel-country-code tel-are tel-local tel-national tel
(234) (567) (5678901) (2345678901) (+12345678901)

first name,
< middle name > > < gastiname > > <(first+midd|e+last)

name

()

organization

[
[
o
[
[

TTT

Organization

[j Firefox notification label
<:> Form element type

Figure 3: Hierarchy of Firefox’s notification labels and the field types covered by each label. The field types are ordered from
coarser to more fine-grained and, when needed, additional explanations or example values are provided in a parenthesis.

assume that users take the notification into account, and will focus
on how current approaches are still susceptible to deception.
Firefox presents a notification that states what type of infor-
mation will be autocompleted; an example is shown in Figure 2.
As such, theoretically, even if a form element is hidden through
some deceptive technique the user will be aware of what informa-
tion will be disclosed. As can be seen in Figure 3, the notification
shown to users can only contain five high-level, coarse-grain labels.
This introduces a new avenue for deception; attackers can have a
high-level form element that is visible to users (e.g., country or tele-
phone country code) and have a specific, fine-grained element (e.g.,
street address or phone number) hidden for exfiltrating uniquely-
identifying user information. As such, the user will not be able to
perceive any discrepancy between the form and the notification
message, as all notification labels will correspond to visible form
elements. This may also create a false sense of security for users, as
the browser shows an explicit warning message that verifies their
visual perception of what information the page will obtain.
Safari follows a similar approach, but provides additional fine-
grained information. Specifically, Safari’s message will explicitly
state if the user’s first and/or last name will be provided to the
form, and also more details about the information from their profile
that will be autocompleted. However, while Safari differentiates
between home and work address in the notification, it follows the
same approach with Firefox where these two coarse-grained labels
are used for any of the address-related field types. As such, attackers
can include a visible field for generic address information (e.g.,
country) and have a hidden field that obtains the postal address.
At the same time, Safari’s design is more complex from a user-
interaction standpoint, since clicking on a field other than the name
will present a window with 2 different autofill options, one with
a generic label and one with all the detailed information that will
be autofilled in the form. In this case, the user could likely avoid
disclosing the sensitive information to the hidden fields by selecting
the first option. As typical behavior is to start from the top of the
form [33], it is likely that many users will only see the coarse-
grained labels. Nonetheless, since users have the option to see
exactly what information will be autofilled through the browser’s
UI (albeit not in the typical workflow) we consider Safari’s design

more effective. Nonetheless, explicitly including the fine-grained
labels in all the notification windows will allow users to better
protect their data. We consider a user study on the effectiveness of
these notification messages an interesting future direction.

6 MEASURING DECEPTION IN THE WILD

Here we present our large-scale measurement on the prevalence of
autofill-based deception in the wild. We first describe our methodol-
ogy and practical challenges of identifying the autofillable elements
and detecting those that are concealed, and then continue with a
detailed analysis of our collected dataset.

Crawling. We have instrumented Chromium (v81) and Firefox
(v74) and used Selenium to visit the Alexa Top 100K websites with
both browsers. Our system records the autofill information for each
input field when visiting a website and the autofill functionality
is activated. Upon visiting a website, our crawler identifies all the
input fields and drop-down menus in the page and triggers the
autofill preview functionality in an automated way. At this point,
our instrumented browsers record information about the elements
that are being filled out. After that, we use our heuristics to identify
whether those autofillable elements are visible to the user or not.

In Chromium, once the crawler clicks on an <input> field and the
preview window appears, we automatically choose the first saved
profile for preview and record the information of autofillable fields.
We noticed that there is a slight difference between Chromium
and Chrome regarding autofill behavior. Chromium comments out
the source code that autofills the company field, while Chrome
supports autofilling this field. Thus, we uncommented the code to
make Chromium consistent with Chrome for our experiments. In
Firefox, we record how it parses the form upon clicking, including
which fields are autofillable and their types. Finally, since a page
may have multiple forms, and fields in one form may not be able to
trigger autofill for those in a different form, we click each <input>
in the page to ensure that we will record all the autofillable fields.

Detecting Non-Visible Elements. The concealment techniques
that leverage specific CSS property values for making input ele-
ments invisible (i.e., the first three entries in Table 1) are straightfor-
ward to detect. For such cases, our crawler simply checks the values

Table 2: Sites and pages where autofill is triggered, and cases
where our system detected hidden elements.

Sites w/ Sites w/ Pages w/ Pages w/

Autofill Hidden Field Autofill Forms Hidden Autofill
Firefox 21,589 5,295 92,063 8,760
Chrome 31,621 1,843 83,054 2,776

of the corresponding properties. For properties like display and vis-
ibility that are inheritable from ancestors, and the element’s opacity
which can be also affected by the parent’s opacity, our system also
evaluates those properties for the input fields” ancestors.

To detect fields that are covered by other elements, our heuristics
first estimate the position and effective size of every element in the
page, and then determine whether any of those elements are placed
on top of others. Additionally, we also check the opacity value of the
overlay elements, as they need to be non-transparent to effectively
cover the elements that lie beneath them. In a similar fashion, by
estimating the position and size of the input elements, our heuris-
tics determine whether those are positioned outside of the screen
boundaries, or outside of their ancestors’ overflow boundaries.

Additional visual obstacles. In practice, additional aspects
of modern websites can lead to mislabeling. As such, our system
faces additional challenges for accurately assessing the presence
of deceptive techniques, as common web development practices
can misleadingly make it appear as though an element is being
concealed. Next we provide more details on our approach and
heuristics for handling such cases.

Popup overlays. These are typically a window, lightbox, or full-
screen takeover, typically layered on top of the page’s content; we
need to remove these popups as they render the pages’ content
inaccessible. We detect them and remove them by setting their style
attribute to "display:none !important".

Website navigation and header. For every <input> and <select>
element in the page, that are returned by the getElementsByTag-
Name() method, we scroll the page using the scrollIntoView()
method to make the visible ones appear on the screen. We have
observed that some elements might still be temporarily covered
by the website’s navigation bar, banner, or ads. For this reason, if
an element is still not in view after the initial scrolling, we scroll
further upwards and downwards and check if it comes in view.

Cookie consent overlays. During our experiments we observed
that when such overlays are removed, some form elements may also
be removed. For this reason we do not remove them but scroll the
page to make all visible elements appear. It is noted that the cookie
consent overlay is different from the popup overlay. Popup overlays
render the page content inaccessible and, thus, need to be removed.
In contrast, the cookie consent overlay is typically a small banner at
the top or bottom of the page [45] and does not affect accessibility
to the page. While our initial plan was to programmatically interact
with the consent overlays and accept the use of cookies, we found
that the diversity of web pages, the differences in overlay behaviors
(e.g., some may induce navigation to a different page) and the
variance in text language lead to complications that prevent us
from adequately covering all cases. Instead, we found that simply
scrolling was sufficient, as visible elements are brought into view.

Hide Element(s) |

Firefox

[w/ Autofill Forms s

Domains
N
o
o
o

3500 Chrome
3000
2500
2000
1500
1000
508
S S g o g

N R R N N T A AN A
AT O A ¢

Domain Rank

Figure 4: Domains w/ autofillable forms and hidden fields
for Firefox and Chrome, grouped based on Alexa rank.

6.1 Measurements

Our crawling lasted from 11/19/2019 to 12/3/2019, where we visited
the landing pages of the Alexa Top 100K websites (using the list
from 11/13/2019), from where we followed all links to other pages
on the same domain. We chose to follow this approach as forms
(e.g., sign up, subscription, etc) are typically accessible from the
landing page. This resulted in more than 214K pages that have
forms with autofillable fields. We also note that the numbers that
we present only take into account hidden elements that are actually
autofilled by each browser; if the form contains hidden elements
that are, for any reason, not filled by the browser we do not include
them in our analysis as they do not affect users.

We break down the results from this process in Table 2. In general,
we see a considerable difference in the overall numbers across
browsers; this is because Chrome and Firefox use different heuristics
for parsing forms, detecting field types, and deciding whether to
autofill a given field. As a result, Chrome is far more aggressive in
autofilling forms (e.g., by ignoring the autocomplete attribute as
discussed in Section 2) resulting in 46.5% more sites where a form
is autofilled compared to Firefox, and 63.1% more forms overall. On
the other hand, Firefox does not have any checks for preventing
hidden elements from being filled, resulting in an almost 3x increase
in the number of autofilled forms that contain hidden elements.
While this lack of checks is likely due to the adoption of the autofill
notification shown to users (Section 5), their current approach does
not adequately protect users as we detail below.

Domain popularity. Figure 4 provides more details on the num-
ber of websites with forms that are autocompleted and their use of
hidden elements, based on their Alexa rank. While we see higher
numbers for both browsers in the most popular bracket (the top
10K), there is no consistent pattern for the remaining groups. Fur-
thermore, in Firefox we detect between 414-631 domains in all bins,
while Chrome fluctuates between 152-250. We also break down
these sites based on their top-level domain and find that around
56.5% of them in both browsers belong to ".com". Somewhat sur-
prisingly we find that ".edu" and ".org" are among the top 4 for
both browsers. We also identified 73 and 24 ". gov. *" domains in
Firefox and Chrome, respectively, that included hidden fields.

Table 3: Number of domains and hidden autofillable form
fields for each deceptive technique seen in the wild.

Firefox Chrome

Technique Domains Fields Domains Fields
display_none_ancestor 9,177 12,675 692 1,111
display_none 1,271 2,134 468* 758*
covered 1,129 1,554 769 1,119
visibility_hidden 109 211 117* 143*
off screen 94 131 249 497
off_ancestors_overflow 88 131 91 144
non_effective_size 61 74 53 75
transparent_ancestor 23 42 75 123
transparent 11 11 27 43
visibility_hidden_ancestor 1 1 - -

*Chrome only autofills <select> fields hidden with these techniques.

Concealment techniques. In Table 3 we provide detailed sta-
tistics about the techniques that we detected being used in the wild.
Leveraging the display attribute (either directly or though the ele-
ment ancestors’) is the most prevalent approach, while the use of
overlays to cover fields is also widespread. Placing fields off-screen
is also fairly common in Chrome, but seen less widely in Firefox.
Interestingly, while leveraging the display property of ancestors
is the most common technique, we do not see the same approach
used often with the visibility attribute; in fact, we only identify
one such case in Firefox. While Chrome does not autofill input
fields hidden through display:none and visibility:hidden, it
does autofill drop-down menus hidden that way. Finally, we ana-
lyzed the hidden drop-down menus detected by our system and
found that all of them were collecting types commonly associated
with drop-down menus - in other words, we did not identify any
domains using our field-type mismatch technique.

Hidden Elements. Figure 5 shows how many hidden elements
were autofilled across domains. This is the aggregate number from
all the forms detected on each domain. Again, we see that Firefox
autofills more hidden elements due to the lack of any invisibility
checks, while the vast majority of websites have less than 10 hid-
den elements. The largest number of hidden fields within a single
domain was 45 and 256 for Chrome and Firefox respectively.

Next we focus on what type of user information websites are
obtaining from hidden autofilled form fields. As shown in Figure 6,
we see a variety of types being targeted. While more generic fields
like country and state are commonly collected, we also see a large
number of sites collecting more sensitive and user-identifying infor-
mation. For instance, the user’s first and last name are the second
and third most often collected values in Firefox, while the user’s
email address, phone number and address-linel are popular targets
in both browsers. In more detail, we find that 11.2% and 10.9% of
the domains collect the user’s first and last name in Firefox, while
in Chrome that drops to 3.2% and 2.8%. This significant skew in the
relative percentages in Chrome is due to the large number of do-
mains with state and country information that were autofilled. As
aforementioned, Chrome does not enforce its visibility constraints
to drop-down menus, resulting in this deviation. Finally, we find
that 15 domains obtain the user’s credit card expiration date in

Chrome. In Firefox, we detected 2 domains with hidden fields for
the credit card expiration date and the cardholder’s name. Based on
our findings we believe that attackers have not yet discovered our
techniques for bypassing the constraints for credit card numbers.
Anti-bot detection. Certain sites may use hidden fields as a
way of detecting bots, assuming that users cannot fill in fields that
they do not see. However, this assumption is incorrect, due to the
autofill functionality of browsers. While we cannot definitively
infer the motivation behind the inclusion of hidden fields, we iden-
tify websites where all hidden fields have visible counterparts as
potential instances of this strategy. We find 272 (14.75%) such sites
for Chrome and 305 (5.76%) for Firefox. This difference is due to
the fact that Firefox will only fill out one field for a given type; as
such, in all these cases only the hidden element gets filled but the
visible one does not (due to the hidden one being first or the visible
one having the autocomplete attribute set to “of f”). Overall, even
if the motivation in these cases is not malicious, it still reflects a
privacy-invasive practice where users unknowingly leak private
data. For instance, a Chrome user may decide to delete certain visi-
ble fields that were autofilled but still end up disclosing that data.
Similarly, a Firefox user would see an empty visible field of a given
type but still have their information exposed in the hidden field.
Firefox label-granularity deception. Next, we analyze all the
data collected from our Firefox crawl, and explore whether domains
are potentially misusing the coarse granularity of the notification
labels. In more detail, we identify domains where the most specific
visible element of a given category (see Figure 3) is coarser than
any hidden elements of the same category. An example of such
a case would be a domain where the user is shown a “country”
element (part of the Address category) while an element for “street-
address” (also part of the Address category) is hidden. Overall, we
find that 874 domains (16.5%) exhibit this behavior. If we filter out
cases where the combination of visible fields equals the granularity
of information obtained from hidden fields (e.g., first-name and
last-name are visible, and name is hidden) we are still left with
650 domains where the Firefox warning message is inadequate at
informing users about the true extent of the PII information they
are divulging to the website. Figure 7 shows the percentage of
domains, out of all the domains that hide elements, exhibiting this
behavior. In aggregate, 12.3% of all autofillable forms with hidden
fields deceive users into divulging more specific (i.e., identifying)
information than what they intend, or expect, based on the fields
that are visible to them and Firefox’s notification. While we cannot
infer if these domains are purposefully or inadvertently exploiting
the label-granularity mismatch, the inherent limitations of this
approach are currently exposing users to considerable risk.
Detection accuracy. To assess the effectiveness of our heuris-
tics we randomly selected 20 pages per concealment technique,
where we had detected hidden elements, and manually inspected
their code to establish whether these elements are actually hidden
or not. As such, we have manually inspected a total of 140 pages
(70 pages with hidden elements autofilled in Chrome, and 70 in
Firefox). Since our heuristics are the same for all pages, irrespective
of the browser, our results are reported in aggregate.
These 140 pages have 828 autofillable input elements in total,
where 282 of them are detected by our heuristics as hidden. Through
manual inspection we have verified that all of these 282 elements

[Firefox mmmsm Chrome mmmmm 50

1000
T 08 B
Q o6 g 100
2] ‘©
[=
£ £
©
g 0.4 8 10
8

0.2 Chrome ——]

o Firefox

: @
1 10 100 256 :\f ‘\e%ege
Hidden Fields (log) & &

Figure 5: Hidden elements across all Figure 6: Most common types of hidden

forms detected within each domain. autofilled fields.

are indeed not visible to the user (TP rate: 100%) and that there are
no other hidden elements in any page that our heuristics failed to
detect (FN rate: 0%). From the 546 input elements that are visible,
our heuristics incorrectly labeled 6 elements as hidden (FP rate:
1.09%), in 3 of the 140 pages. In the first case, the 4 elements that
we detect as hidden are fully transparent, but the developer used
the CSS ::before selector to include visible pseudo-elements on top
of them, to make them noticeable to the user. In the second case, a
popup appears after the user scrolls the page, and covers one of the
input elements, which we detect as hidden. Last, in the third case,
the developer used a list inside of an input element to implement a
custom drop-down menu, which our heuristics considered as being
covered by another element.

7 CASE STUDIES

In this section we present some interesting examples of hidden
form field use cases that we identified during our large-scale study.

E-commerce. We identified a Brazilian e-commerce retail store
that has a visible zip-code input field on every product page, offering
to calculate the shipping and delivery time. However, the form also
includes hidden autofillable elements that obtain the user’s full
name, email address, and phone number.

Marketing. We identified 27 domains that used code from a “re-
tail digital marketing automation platform” that specializes in email
marketing and mobile messaging. While this marketer’s code cre-
ates a visible email input field, so users can subscribe to newsletters,
their code also creates two autofillable hidden fields that obtain the
user’s first and last name. While the autocomplete attribute is set
to of f, this is ignored by Chromium-based browsers. Furthermore,
this part of the form has an explicit comment urging developers to
not delete these fields as they are intended for use by the marketing
system. Finally, the form is submitted directly to the marketer’s
servers and not to the first-party origin.

Anti-bot detection. During our experiments we found that cer-
tain sites employ MailChimp, a popular email marketing company
that uses hidden form elements as a method of detecting bot-driven
signups. While such automated actions are typically prevented
through CAPTCHAS, recent studies have demonstrated effective
attacks even against the most prevalent CAPTCHA services [36, 47].
This may be the motivation behind the deployment of additional
form-related defenses. However, apart from the obvious privacy

@%@ @ \q"@\\o
NN

& % BF "b'
Q'b 'g & 65‘2\6&

35 O O 1O (O O A O O O
00 g o (O (B A T

@ SV @ o
AN N AN NN,
AQH O o | (O (AR o8 q@

6\{0 N (\%&

> Ot Domain Rank

Figure 7: Fraction of domains with hid-
den, autofillable elements for which
Firefox’s coarse labels are insufficient.

implications of this practice, where users may unintentionally dis-
close information that they are not willing to share with a given
domain, this also introduces additional usability issues that affect
users and vendors alike. As Chrome ignores the autocomplete
attribute, Chrome users’ autofill functionality is resulting in false
positives that trigger the anti-bot detection, thus, preventing users
from registering [8]. As this can easily drive users away, there is a
direct negative impact for the users as well as the web sites.
Firefox label granularity. As described in Section 5, the coarse-
grained nature of the warning message shown by Firefox creates an
avenue for misuse, as websites can reveal generic, non-identifying,
fields and then hide specific, user-identifying fields of the same cate-
gory. One such example is the US News website which has a manda-
tory visible field for the ZIP code, but has various more-specific
address-related hidden elements, including street-address.

8 COUNTERMEASURE

The attacks that we demonstrate pose a significant privacy threat
as they enable the stealthy exfiltration of sensitive user data. As
browser vendors may not adequately address this issue, we have
developed an extension for Chrome that can mitigate our attacks.

Operation. After a page is loaded, our extension parses the
DOM to identify all the form elements and leverages the heuristics
that we have devised (Section 3) for identifying whether any of
those are hidden from the user. Then, based on its mode of operation
it either shows a warning to the user about these elements (lax
mode) or automatically removes them from the page (strict mode).
We decided to remove these elements from the page instead of
setting their autocomplete attribute to “of f”, as Chrome ignores
this attribute and autofills those elements anyway.

Methodology. Our extension first identifies all the <input>and
<select> tag elements of each form in the page, and determines
which of those are autofillable. For this step our extension checks
whether a form has at least 3 such elements or whether it has only
2 elements which use the autocomplete attribute to specify the
expected value type (e.g., autocomplete=“name”). It also checks if
there is at least one visible input field, which is needed for triggering
autofill. Moreover, our extension uses the same regular expressions
as Chromium for determining each element’s autofill type.

For the autofillable elements, our extension uses the method
getComputedStyle() to retrieve and check their display, visibility

and opacity attributes, as well as the attributes of their parent
nodes. To detect if an element is placed outside the boundaries of
the screen or whether it is covered by another element, we use
getBoundingClientRect() to get its size and position relative to
the viewport. To detect covered elements we calculate their center
points and use elementFromPoint() to get the top-most element
at that point, and check against those and their ancestors’ properties
and position. Similarly we check the position of their ancestors
and whether the elements are placed out of their overflow bounds.
Finally, we decided to preemptively detect and remove deceptive
elements when the page is loaded instead of when the user clicks on
a form element (i.e., strict mode), to avoid potential race conditions
that would allow a page to obtain the user’s data.

Performance. To measure the overhead imposed by our exten-
sion, we randomly chose 500 pages that have hidden autofillable
elements from our large-scale study and visit them with our ex-
tension in place. We observe that it takes only 13.09ms on average
(median: 12.78ms, 75th. 15.41ms, and 95th. 20.36 ms), to parse the
page and run our heuristics for detecting all the hidden form el-
ements. As such, while our countermeasure should optimally be
incorporated by the browser, the performance impact of our exten-
sion is negligible and will not affect the user’s experience.

Detectability. Browser extensions can be detected based on the
uniqueness of their behavior when interacting with a page. This en-
ables browser fingerprinting [39, 43] and the inference of sensitive
data [27]. Our extension is detectable, as malicious websites can
infer its presence by including hidden form elements and detecting
if they get modified. While our extension can be detected and used
as part of a browser fingerprint, we consider that the more spe-
cific and uniquely identifying user information that is obtainable
when our countermeasure is not in place far outweighs the risk of
installing our extension.

9 DISCUSSION AND FUTURE WORK

Here we further discuss additional aspects of our work, and also
highlight limitations and possible future research directions.

Attack likelihood. Our work demonstrates two types of attacks
with different prerequisites. The first type, which aims to obtain user
PII through hidden form fields, requires the victim to use autofill.
While research exists on how to improve the usability of forms to
reduce the likelihood of users leaving prior to completion [33], sites
do not actually need the user to submit the form since they can
read the autofilled data. Nonetheless, one could argue that more
cautious users will not even trigger autofill on less trustworthy sites.
In such cases we can deploy our preview attack — users only need
to click on a form field and move their mouse downwards so as to
momentarily pass over the preview window. Furthermore, recent
work has demonstrated how click interception remains a threat [46];
such techniques can be combined with our second attack to infer
the user’s sensitive information once they are tricked into clicking
the form field. Similarly, recent studies have explored the use of
deception in a different context (e.g., shopping sites [31], mobile
apps [22]). While most dark patterns they explore are not relevant
to our work, techniques that involve the aesthetic manipulation of
the UI (e.g., disguising ads) could potentially be applicable.

Attack stealthiness. Common classes of deceptive attacks typ-
ically leave behind some form of visual clues that users can detect
(e.g., the URLs in phishing attacks). While attacks can leverage be-
haviors in certain browsers to further obscure these clues [30], the
clues are still present in parts of the page that average users have
been increasingly conditioned to check. Additionally, while more
sophisticated campaigns will trick the average user [37], typical
phishing attacks can be detected by average users [13]. On the other
hand, the attacks we demonstrate in this paper do not leave such
visual clues behind; unless users actually inspect the web page’s
source code there is no other way to identify the use of such decep-
tive techniques. This renders our techniques a particularly stealthy
and effective class of privacy-invasive attacks against users.

Root cause and mitigation. The underlying issue that enables
the attacks presented in this paper, is the inherent challenging
task for browsers to truly infer if something is visible to a user
or not. The disconnect between the browser’s view of a page and
the user’s visual perception, leaves ample room for misuse. While
we have identified several techniques for hiding elements, it is
likely that even more advanced techniques exist (e.g., color-based
deceptive techniques that make elements and text blend-in with the
background). As such, we will continue to augment our browser
extension as new techniques are identified. However, the root cause
from which these issues arise will render incomplete any defense
that is purely technical. More specifically, we believe that clearly
informing users what information will be provided to a form us-
ing precise fine-grained labels, can better equip users against this
privacy threat. Krol and Preibusch [32] showed that security or
privacy warnings lead to a reduced disclosure of sensitive data in
web forms, but the notification information shown by Safari and
Firefox is vastly different in nature (i.e., no alarming language and
not presented as an actual warning). As prior work on security
indicators and warnings has extensively demonstrated [12, 42], the
effectiveness of such practices can be affected by a multitude of
factors. A study that explores how users’ behavior is affected by
these notifications is out of the scope of our work, but we consider
it an important and interesting direction for future work.

Crawling coverage. Our large-scale study sheds light on the
prevalence of element-hiding techniques in the wild. As we fol-
lowed a depth-of-one approach, our measurements likely present a
lower bound on the use of deceptive techniques, as web sites may
include additional forms that are not directly accessible from the
landing page. Furthermore, websites may already be leveraging
other concealment techniques that are not detectable by our sys-
tem. Finally, we do not have access to post-login pages, which may
result in our crawler missing additional forms.

Browser monoculture. Microsoft’s recent decision to build
Edge off of Chromium attracted criticism as it exacerbates the mono-
culture issue. Our attacks highlight this risk, as all the flaws that
we exploit for our most invasive attack are present in several major
browsers (Chrome, Edge, Opera) including more privacy-oriented
ones (Brave) due to their reliance on the same underlying engine.
Another issue is the seeming unwillingness of certain browsers to
independently tackle vulnerabilities that stem from (or also affect)
Chromium, waiting instead for these issues to be addressed by the
Chromium team. For instance, Edge explicitly considers flaws that
also affect Chrome out of scope of their bug bounty program.

Password managers. While browsers are our main focus in this
work, we also investigate how two popular password managers
(LastPass, 1Password) handle hidden elements when they autocom-
plete forms and find that they are similarly vulnerable to browsers.
Specifically, 1Password does not fill elements only if they are hidden
by setting the CSS display property to none. LastPass does not
fill elements hidden using display:none and visibility:hidden
(strangely, it fills them if visibility is set to collapse). As the
LastPass extension has over 10 million downloads in the Google
Chrome store, and the 1Password extensions account for over 1.6
million downloads, their autofill behavior is currently exposing
many users to considerable privacy threats.

Disclosure and ethics. Due to the severity of our attacks, we
disclosed our techniques and findings to the affected browser ven-
dors; Chromium is currently working towards patching their sys-
tem. We also note that the experiments were conducted on the
authors’ machines using test browser profiles; no external users
participated, or were targeted, during our experiments.

10 RELATED WORK

To the best of our knowledge, this paper presents the first systematic
and comprehensive analysis of the autofill functionality available in
all major browsers. Our research demonstrates new attack vectors
that exploit this widely-used functionality, and highlights the severe
privacy threat that it poses to users. In this section we present an
overview of prior works that are related to autocompletion.

Web Forms. A series of blog posts by researchers [24, 40] and
a recently published paper [11], highlighted how credentials and
credit card numbers can be obtained through the browser auto-
complete functionality. In [24] they show that third-party scripts
included in a page can inject a hidden login form and leverage the
browser password manager’s autocomplete functionality to obtain
the user’s credentials for that particular website. In [40] they show
that third-party session-replay scripts included in the page can ob-
tain the information of a form, regardless of that information being
entered manually or autofilled by the browser. Even though these
approaches leverage the autocomplete functionality, the outlined
issues stem from the inclusion of third-party scripts that are not
restricted by the Same-Origin-Policy (SOP), and thus can access
the information that a user provides willingly to the first party. Es-
pecially in the case of credit cards, the exfiltration that is described
in [11, 40] is possible when the user intentionally provides this in-
formation to the first party. Our work, however, demonstrates new
techniques that remove such constraints and also comprehensively
explores the exfiltration of all types of PII from the user’s profile.

In another direction Starov et al. [38] and Chatzimpyrros et
al. [20] showed, respectively, that contact and registration forms can
expose users’ PII to third parties. Kapravelos et al. [26] showed that
malicious extensions can steal sensitive data, such as passwords
and email addresses, from web forms. On the other hand, in our
work we consider that the first-party may also be malicious, and
focus on devising techniques that exploit flaws in the autofill and
preview functionality, for exfiltrating sensitive information that
the user never intended to disclose. To make matters worse, our
data inference attacks do not actually require the user to enter
information in the form or even use autofill.

Password managers. In a different line of work that focused
on password-autocompletion, Silver et al. [35] explored the autofill
policies employed by 10 different browser, mobile, and third-party
password managers and identified how they differ across them.
They also investigated how the autofill functionality can be lever-
aged by third-parties for stealing user passwords. Their scenario
focused on a rogue WiFi router that injects login forms in multiple
frames in a page, which are autofilled by password managers, and
then malicious scripts can read the forms. In similar work, Stock
et al. [41] investigated how the password managers of all major
browsers behave with regards to login form autocompletion, and
how they can be misused by a XSS attacker that can run malicious
code in the context of another site.

Compared to our work, these studies focus on how the autocom-
plete functionality of password managers can be used to steal the
user’s credentials. No prior work attempts to explore how form
autofill can be used for stealthily exfiltrating various types of PII
from the user’s profile. While browsers are the main focus of our
work, we found that two of the most popular password managers
are also susceptible to a plethora of our element-hiding techniques.

11 CONCLUSIONS

In this paper we presented the first comprehensive evaluation of the
privacy threat that browsers’ autofill functionality poses to users.
As a starting point, we identified various techniques for hiding
the presence of form fields that are automatically filled by major
browsers. These techniques can be misused for stealthily obtaining
sensitive information, unbeknownst to users that leverage autofill
for its convenience. Our subsequent large-scale study revealed that
such deceptive practices are commonplace in the wild, as we found
that 5.8% of all forms that are autofilled by Chrome contain at least
one hidden field. More importantly, filling out hidden elements is
only the first flaw in browsers’ autofill functionality. Our in-depth
analysis revealed a series of flaws and idiosyncrasies that allowed
us to bypass all existing safeguards that protect the information in
users’ autocomplete profiles. While all these new attacks constitute
important privacy risks individually, when combined they enable a
far more egregious attack that exploits the preview functionality
and can infer the personal information of cautious users that decide
against using autofill. This attack works against all Chromium-
based browsers, highlighting the implications of the monoculture
issue affecting the browser ecosystem. The severity of our findings
prompted us to create a countermeasure to better protect users
until browser vendors address all the issues that we have reported.
Overall, while autofill is a major convenience for users, we hope
that our work sheds light on the significant privacy-utility tradeoff
it introduces and allows users to better protect their data.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
feedback. This work was supported by the DARPA ASED Program
and AFRL (FA8650-18-C-7880), and NSF (CNS-1934597). Any opin-
ions, findings, conclusions, or recommendations expressed herein
are those of the authors, and do not necessarily reflect those of the
US Government.

REFERENCES

(1]

[13]

[14

[15]

[16

[17]

[18

[19]

[20

[21]

[22

[23

[24]

[25]

[26

[27]

[28

[29

Google chrome privacy whitepaper. https://www.google.com/chrome/privacy/
whitepaper.html.

Google developers - help users checkout faster with autofill. https://developers.
google.com/web/updates/2015/06/checkout-faster-with-autofill.

Google developers - help users checkout faster with autofill. https://developers.
google.com/web/updates/2015/06/checkout-faster-with-autofill.

Mozilla firefox features. https://wiki.mozilla.org/Firefox/Features/Form_Autofill#
Feature_Availability.

The guardian - browser autofill used to steal personal details in new phishing
attack, 2017. https://www.theguardian.com/technology/2017/jan/10/browser-
autofill-used-to-steal-personal-details-in-new- phising-attack-chrome- safari.
HTML Living Standard - Last Updated 26 February 2020. https://html.spec.
whatwg.org/multipage/form-control-infrastructure.html#attr-fe-autocomplete,
2020.

Http archive - state of the web, 2020. https://httparchive.org/reports/state-of-
the-web.

Mailchimp - troubleshooting the embedded signup form, 2020. https://mailchimp.
com/help/troubleshooting-the-embedded- signup-form/.

Maxmind db, 2020. https://www.maxmind.com/en/geoip2-city.

Nyc department of planning, 2020. https://www1.nyc.gov/site/planning/data-
maps/open-data.page#snd.

Gunes Acar, Steven Englehardt, and Arvind Narayanan. No boundaries: data
exfiltration by third parties embedded on web pages. In Proceedings of the 20th
Privacy Enhancing Technologies Symposium (PETS). Sciendo, July 2020.
Devdatta Akhawe and Adrienne Porter Felt. Alice in warningland: A large-scale
field study of browser security warning effectiveness. In Presented as part of the
22nd USENIX Security Symposium (USENIX Security 13), pages 257-272, 2013.
Mohamed Alsharnouby, Furkan Alaca, and Sonia Chiasson. Why phishing still
works: User strategies for combating phishing attacks. International Journal of
Human-Computer Studies, 82:69-82, 2015.

Anonymized. Preview demo: Desktop, 100k credit card values. https://vimeo.
com/412514626/fb485212ad.

Anonymized. Preview demo: Laptop, 100k email address values. https://vimeo.
com/412447440/e753a2cf4c.

Anonymized. Preview demo: Multiple autofill accounts. https://vimeo.com/
414161536/c3a9e00f1c.

Reuben Binns, Jun Zhao, Max Van Kleek, and Nigel Shadbolt. Measuring third-
party tracker power across web and mobile. ACM Transactions on Internet Tech-
nology (TOIT), 18(4):1-22, 2018.

Tomasz Bujlow, Valentin Carela-Espaiiol, Josep Sole-Pareta, and Pere Barlet-Ros.
A survey on web tracking: Mechanisms, implications, and defenses. Proceedings
of the IEEE, 105(8):1476-1510, 2017.

Yinzhi Cao, Song Li, Erik Wijmans, et al. (cross-) browser fingerprinting via os
and hardware level features. In NDSS, 2017.

Manolis Chatzimpyrros, Konstantinos Solomos, and Sotiris Ioannidis. You shall
not register! detecting privacy leaks across registration forms. In Computer
Security, pages 91-104. Springer, 2019.

Graham Cluley. Hackers” malicious script skimmed credit card details off robert
dyas website, 2020. https://www.grahamcluley.com/hackers-robert-dyas/.
Linda Di Geronimo, Larissa Braz, Enrico Fregnan, Fabio Palomba, and Alberto
Bacchelli. Ui dark patterns and where to find them: A study on mobile applications
and user perception. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, CHI °20, 2020.

Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 1388-1401, 2016.

Gunes Acar. Freedom To Tinker - No boundaries for user identities:
Web trackers exploit browser login managers. https://freedom-to-
tinker.com/2017/12/27/no-boundaries-for-user-identities-web- trackers-
exploit-browser-login-managers/, 2017.

Brendan Harkness. Anatomy of a credit card, 2020. https://www.creditcardinsider.
com/learn/anatomy- of- a- credit- card/.

Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Gio-
vanni Vigna, and Vern Paxson. Hulk: Eliciting malicious behavior in browser
extensions. In 23rd USENIX Security Symposium (USENIX Security 14), pages
641-654, 2014.

Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. Carnus:
Exploring the privacy threats of browser extension fingerprinting. In 27th Annual
Network and Distributed System Security Symposium. The Internet Society, 2020.
Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints. In 2016
IEEE Symposium on Security and Privacy (SP), pages 878-894. IEEE, 2016.
Lindsay Liedke. Wpforms blog - online form statistics & facts for 2020, 2020.
https://wpforms.com/online-form-statistics-facts/#form-conversions.

Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis. Hindsight:
Understanding the evolution of ui vulnerabilities in mobile browsers. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 149-162, 2017.

Arunesh Mathur, Gunes Acar, Michael J Friedman, Elena Lucherini, Jonathan
Mayer, Marshini Chetty, and Arvind Narayanan. Dark patterns at scale: Findings
from a crawl of 11k shopping websites. Proceedings of the ACM on Human-
Computer Interaction, 3(CSCW):1-32, 2019.

Séren Preibusch, Kat Krol, and Alastair R Beresford. The privacy economics of
voluntary over-disclosure in web forms. In The Economics of Information Security
and Privacy, pages 183-209. Springer, 2013.

Mirjam Seckler, Silvia Heinz, Javier A Bargas-Avila, Klaus Opwis, and Alexan-
dre N Tuch. Designing usable web forms: empirical evaluation of web form
improvement guidelines. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1275-1284, 2014.

Anisha Sekar. Stolen credit card numbers, 2015. https://www.nerdwallet.com/
blog/credit-cards/stolen-credit-card-numbers/.

David Silver, Suman Jana, Dan Boneh, Eric Chen, and Collin Jackson. Password
managers: Attacks and defenses. In Proceedings of the 23rd USENIX Confer-
ence on Security Symposium (USENIX Security 14), SEC’14, USA, 2014. USENIX
Association.

Suphannee Sivakorn, Jason Polakis, and Angelos D. Keromytis. I am robot: (deep)
learning to break semantic image captchas. In Proceedings of the 1st IEEE European
Symposium on Security and Privacy, EuroSP 16, 2016.

Emily Stark. The urlephant in the room. 2019.

Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. Are you sure you want to
contact us? quantifying the leakage of pii via website contact forms. Proceedings
on Privacy Enhancing Technologies, 2016(1):20-33, 2016.

Oleksii Starov and Nick Nikiforakis. Xhound: Quantifying the fingerprintability
of browser extensions. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 941-956. IEEE, 2017.

Steven Englehardt. Freedom To Tinker - No boundaries: Exfiltration of personal
data by session-replay scripts. https://freedom-to-tinker.com/2017/11/15/no-
boundaries-exfiltration-of- personal-data-by-session-replay-scripts/, 2017.

Ben Stock and Martin Johns. Protecting users against xss-based password man-
ager abuse. In Proceedings of the 9th ACM symposium on Information, computer
and communications security, pages 183-194, 2014.

Christopher Thompson, Martin Shelton, Emily Stark, Maximilian Walker, Emily
Schechter, and Adrienne Porter Felt. The web’s identity crisis: understanding the
effectiveness of website identity indicators. In 28th USENIX Security Symposium
USENIX Security 19), pages 1715-1732, 2019.

Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam
Doupé. Everyone is different: client-side diversification for defending against
extension fingerprinting. In 28th USENIX Security Symposium (USENIX Security
19), pages 1679-1696, 2019.

Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. Beyond
the front page: Measuring third party dynamics in the field. In Proceedings of
The Web Conference 2020, pages 1275-1286, 2020.

Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.
(un) informed consent: Studying gdpr consent notices in the field. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pages 973-990, 2019.

Mingxue Zhang, Wei Meng, Sangho Lee, Byoungyoung Lee, and Xinyu Xing. All
your clicks belong to me: investigating click interception on the web. In 28th
USENIX Security Symposium (USENIX Security 19), pages 941-957, 2019.

Binbin Zhao, Haiqin Weng, Shouling Ji, Jianhai Chen, Ting Wang, Qinming He,
and Reheem Beyah. Towards evaluating the security of real-world deployed
image captchas. In Proceedings of the 11th ACM Workshop on Artificial Intelligence
and Security, pages 85-96, 2018.

	Abstract
	1 Introduction
	2 Background And Threat Model
	2.1 Browser Autofill
	2.2 Threat Model

	3 Stealthy Data Exfiltration
	4 Data Inference Attacks
	4.1 Field-Type Mismatch Attack
	4.2 Autofill Preview Attack
	4.3 Dynamic Element Replacement Attack

	5 User-centric Browser Mitigations
	6 Measuring Deception in the Wild
	6.1 Measurements

	7 Case Studies
	8 Countermeasure
	9 Discussion and Future Work
	10 Related Work
	11 Conclusions
	References

