The Cookie Hunter: Automated Black-box Auditing for Web
Authentication and Authorization Flaws

Kostas Drakonakis*
FORTH ICS, Greece
kostasdrk@ics.forth.gr

ABSTRACT

In this paper, we focus on authentication and authorization flaws
in web apps that enable partial or full access to user accounts.
Specifically, we develop a novel fully automated black-box auditing
framework that analyzes web apps by exploring their susceptibil-
ity to various cookie-hijacking attacks while also assessing their
deployment of pertinent security mechanisms (e.g., HSTS). Our
modular framework is driven by a custom browser automation tool
developed to transparently offer fault-tolerance during extended
interactions with web apps. We use our framework to conduct
the first automated large-scale study of cookie-based account hi-
jacking in the wild. As our framework handles every step of the
auditing process in a completely automated manner, including the
challenging process of account creation, we are able to fully au-
dit 25K domains. Our framework detects more than 10K domains
that expose authentication cookies over unencrypted connections,
and over 5K domains that do not protect authentication cookies
from JavaScript access while also embedding third party scripts
that execute in the first party’s origin. Our system also automat-
ically identifies the privacy loss caused by exposed cookies and
detects 9,324 domains where sensitive user data can be accessed
by attackers (e.g., address, phone number, password). Overall, our
study demonstrates that cookie-hijacking is a severe and prevalent
threat, as deployment of even basic countermeasures (e.g., cookie
security flags) is absent or incomplete, while developers struggle to
correctly deploy more demanding mechanisms.

CCS CONCEPTS

- Security and privacy — Web application security.

KEYWORDS

Black-box Testing; Cookie Hijacking; Authentication; Authoriza-
tion; Large-Scale Measurement

“Part of this work was completed while at the University of Illinois at Chicago.
¥ Sotiris Ioannidis is also with FORTH ICS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00
https://doi.org/10.1145/3372297.3417869

Sotiris Ioannidis
Technical University of Crete, Greece
sotiris@ece.tuc.gr

Jason Polakis
University of Illinois at Chicago, USA
polakis@uic.edu

ACM Reference Format:

Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The Cookie
Hunter: Automated Black-box Auditing for Web Authentication and Au-
thorization Flaws. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS "20), November 9-13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.
1145/3372297.3417869

1 INTRODUCTION

Web services have become treasure troves of sensitive data, ren-
dering user accounts high-value targets for attackers. Recently, au-
thentication flaws in popular web applications (or “apps”) exposed
sensitive data and allowed access to critical functionality of millions
of accounts [4, 5]. Reports have even implicated nation-state adver-
saries in attacks that ultimately aimed to steal user credentials [6, 7].
As such, authentication and authorization flaws in web apps are of
great importance [89, 98] as they pose a significant threat. However,
detecting such flaws is challenging.

As new technologies and features continue to emerge, web apps
are becoming increasingly complicated. This complexity is exacer-
bated by their rapid evolution and the addition of new functionality
and modules [35, 39]. This can result in the introduction of semantic
bugs whose composite nature [81] renders detection a challeng-
ing task [39, 70]. Moreover, the massive codebase that comprises
modern web apps is often developed by separate teams, which can
have a negative impact [72] and result in fragmented auditing pro-
cedures that do not fully capture the side effects that arise from
the interoperability of different components. Web apps can also
include legacy code, which is often a significant source of new vul-
nerabilities [33], further complicating internal auditing procedures.
To make matters worse, applicable security mechanisms are often
deployed in an incomplete or incorrect manner [32, 47, 52, 76, 92].
As a result, external auditing initiatives from researchers can sig-
nificantly contribute to the overall hygiene of the web ecosystem
by discovering vulnerabilities. However, the sheer scale of this is-
sue and the prevalence of obfuscation [78] mandate an automated,
black-box dynamic analysis.

In this paper we adopt such an approach and focus on flaws
that lead to the exposure of authentication cookies that allow ad-
versaries to access sensitive data or account functionality. While
recent studies have demonstrated that such flaws exist even in the
most popular websites [30, 44, 77], these studies relied on signifi-
cant manual effort and were, thus, inherently small-scale covering
a very limited number of domains. With surveys reporting that
Internet users in the US now have ~150 password-protected ac-
counts [2], and tens of thousands of websites streamlining account
creation through Single Sign-On [44], it is apparent that manual
efforts are not sufficient. To that end, we develop a completely

automated black-box auditing framework that detects authenti-
cation and authorization flaws in web apps and identifies what
sensitive/personal user information can be harvested by attack-
ers. Our system is designed to handle every step of the process,
including account creation and user-level interactions. Specifically,
our framework analyzes the characteristics and infers the access
privileges granted to cookies, while also evaluating the deployment
of security mechanisms that can prevent cookie-hijacking attacks.

The main design goal of our framework is to automatically audit
web apps in a black-box manner, without any prior knowledge of
the underlying app’s structure or code. The framework is driven
by XDriver, our custom browser-automation tool built on top of
Selenium, designed for robustness and fault-tolerance during pro-
longed interactions with web apps. As XDriver is geared towards
security-related tasks, we have implemented modules for evalu-
ating security mechanisms that are pertinent to our study (e.g.,
HSTS). The black-box auditing process is handled by a series of
components dedicated to specific phases of our workflow, including
components that employ differential analysis and a series of oracles
for inferring the account’s “state” reached by requests depending
on the cookies submitted and the level of account access granted
to those cookies. This requires identifying which cookies are used
for authentication and exploring the conditions for different attack
vectors under which they can be hijacked. Finally, our framework
includes a novel module that analyzes web apps and detects per-
sonal user data (e.g., name, email, phone number) that is accessible
using hijacked cookies. This is achieved through an in-depth in-
vestigation that analyzes the app’s client-side source, storage, and
URL parameters to detect the exposure of sensitive data.

Using our framework we conduct the first fully automated, com-
prehensive, large-scale analysis of cookie hijacking in the wild.
First, we crawl 1.5 million domains, and identify over 200 thou-
sand domains that support account creation. Subsequently, our
framework manages to fully audit almost 25 thousand (~12%) of
the domains, requiring 8.5 minutes per domain on average. Our ex-
periments reveal that 50.3% of those domains expose their cookies
under different scenarios and, thus, suffer from authentication or
authorization flaws. To make matters worse, we find that security
mechanisms that could prevent these attacks are not widely adopted
(only 11.8% of vulnerable domains do so) or are often deployed in an
erroneous manner. In more detail, we find that 10,921 domains ex-
pose authentication cookies over unencrypted connections, which
can be hijacked by passive eavesdroppers and used to access users’
accounts. Moreover, 5,099 domains do not protect their authenti-
cation cookies from JavaScript-based access while simultaneously
including embedded, non-isolated, third party scripts that run in
the first party’s origin. With these scripts being fetched from 2,463
unique third party domains, users currently face a considerable
risk of malicious, compromised, or honest-but-curious third parties
reading their authentication cookies.

Due to the severity of the flaws detected by our system, it is
crucial that our findings are made available to developers so they
can patch their systems. While we have notified several vulnera-
ble domains, finding an appropriate contact point for such a vast
number of domains is infeasible; thus, we will set up a notification
service that allows developers to access the auditing results. In
summary, our main research contributions are:

e We develop a custom browser automation tool that transparently
offers robustness during prolonged interaction with web apps.
Our tool is tailored for security-oriented tasks and includes mod-
ules for assessing relevant security mechanisms. As our system
can streamline a wide range of research projects, our code will
be made open source.

e We develop a novel framework for the automated black-box
detection of flaws in web apps. Our framework incorporates a
series of modules and oracles that employ differential analysis
for automatically evaluating the feasibility of cookie hijacking
attacks under different threat models, and detecting the exposure
of personal user data across multiple dimensions. To facilitate
further research, we will share our code with vetted researchers
upon publication.

e We conduct the largest study of cookie-based authentication and
authorization flaws by auditing ~25K domains. Our comprehen-
sive evaluation reveals a plethora of security malpractices and
misconfigurations, as 50.3% of the domains are vulnerable to at
least one attack.

2 BACKGROUND AND THREAT MODEL

Our framework focuses on detecting authentication and authoriza-
tion flaws that stem from the incorrect handling or protection of
cookies. While cookie hijacking is not a new attack vector, it can still
affect even the most popular websites (e.g., Google, Facebook) and
expose users to significant threats [77] including complete account
takeover [44]. We consider the following types of attackers.

Passive network attacker. This attacker, referred to as an
eavesdropper, has the ability to intercept and inspect unencrypted
HTTP traffic (but does not attempt to modify it). We assume this at-
tacker cannot intercept HTTPS traffic, and do not explore more elab-
orate, active attacks (e.g., SSL-stripping [60], cookie-overwriting [94]).
This means that any cookies that are not protected with the secure
flag can be intercepted by this attacker when appended to an HTTP
request. This can, e.g., occur naturally while a user browses a web-
site (since many websites serve certain resources over HTTP). An
important detail that amplifies the practicality of this attack is that
even when a domain supports HTTPS, browsers will by default
attempt to access the domain over HTTP before being redirected
by the web server to HTTPS [77]. While this can be prevented with
mechanisms like HSTS, they are still not widely adopted and are
often deployed incorrectly [52, 76].

Web attacker. This attacker can execute some JavaScript code
within the origin of the web app, e.g., through a cross-site scripting
(XSS) attack [45]. Another attack vector is introduced if the web
app includes a script from a third party domain without “isolating”
it in an iframe, effectively allowing it to execute in the first party’s
origin [65]; malicious scripts (e.g., malvertising [59]) or compro-
mised script providers can then read first party cookies [18]. We
define as third-party any scripts that are loaded from a different
domain [73, 82, 83], where the term domain will be used to refer to
the eTLD+1 domain throughout the paper. Consequently, cookies
that are not protected with the httpOnly flag will be readable by
client-side code and can be obtained by the attacker. We refer to
these two attack vectors as JS cookie stealing.

example.com

- Privacy Auth-
‘ SSO }—» Success? { Auditor ¢ Cookies]
Yes
Vo No Yes
URL

Discovery
Found No No
j SS0? > Abort ‘ ‘ End }(‘ Vulnerable?
No
Found
forms? T

v
Yes

Cookie
Auditor

Figure 1: Major phases in our auditing workflow.

It is important to stress that our framework does not search for
XSS bugs or malicious third party scripts; our system focuses on au-
tomatically inferring the feasibility of stealing authentication cook-
ies through JavaScript due to insufficient protection, and exploring
the subsequent privacy implications for users. As such, the numbers
reported on JavaScript-based cookie stealing are an upper bound
that is contingent on the presence of XSS vulnerabilities or mali-
cious third party scripts. Nonetheless, XSS vulnerabilities remain
one of the most common attacks against web applications [1] and a
plethora of detection systems have been proposed (e.g., [20, 82, 85]).
Similarly, recent work has highlighted the prevalence of (suspicious)
third party scripts [49, 55].

3 SYSTEM DESIGN AND IMPLEMENTATION

Here we present our framework and the methodology of the core
components of our black-box auditing process. Figure 1 depicts a
high-level view of the workflow for clarity, and to facilitate presen-
tation. In the following subsections we highlight each component
in our pipeline and provide design and implementation details.

3.1 Automated Account Setup

The first phase in our workflow is to automatically create accounts.

URL Discovery. This module follows a straightforward process
of crawling domains and terminating when both a login and a
signup form have been located. As a first step it explores the URLs
included in the public dataset by Ghasemisharif et al. [44]. If it
does not locate both types of forms, next it will crawl the target
web application. The crawl starts at the landing page and goes to a
depth of 2 — we opt for a more shallow crawl to reduce the crawl’s
duration and enable our large-scale study. Our framework collects
all links included in each page that point to the same domain, and
subsequently visits and inspects them. This step prioritizes links
that contain an account-related keyword (e.g., signin, register etc.)
and follows a breadth-first search (BFS) approach. If both types of
forms are yet to be found, the final step is to collect the first 30 links
from the homepage and inspect them, excluding previously-visited
URLs. This is based on the intuition that such pages are typically
easily accessible to users and not hidden behind multiple menus,
and are usually at the top of the page.

For each visited page, we extract any forms that resemble a
login or signup process, and a series of heuristics are employed for
detecting such forms within a page’s code. Specifically, for each
form we first count the number of text, email, password, checkbox
and radio type input fields. We also check which of those are visible
following the custom heuristics proposed by SSOScan [96]. If there
are no password fields we skip the form since it probably is not a
login or signup form (e.g., contact forms are common). If it contains
more than one password field we label it as a signup form since
such forms usually require the user to retype the password for
verification. If there is a single password field and a single text field
we label it as a login form, as this is the typical structure of such
forms. If there are more than one text fields or checkbox/radio fields
(accounting for the "remember me" option in login forms) the form is
labeled as a signup form. If the form has a more irregular structure
and has not been identified with these heuristics, our system resorts
to using two sets of regular expressions (one for login and one for
signup) for analyzing the HTML code and detecting elements that
allow us to label the form accordingly.

Automated sign up. Automating the account creation process
in an application-agnostic way is a challenging task. This is due to
the fact that websites have different requirements and constraints
regarding the type and format of information for the fields needed
for completing the registration. These vary and pertain to the num-
ber and type of fields (e.g., email, password, username etc.), as well
as to the different restrictions in what is considered a valid input.
For instance, a website might consider “+1 012 345 6789” a valid US
number while another might require a different format.

The Signup module iterates over the discovered signup pages
and attempts to fill each candidate form appropriately. We use a
manually-curated set of regular expressions that try to detect what
type of information each input element is expecting (e.g., email,
postal address, date). We first carefully assign labels to each of the
input elements by checking the for attribute of label elements, since
we expect them to be the most descriptive. If there is no match, we
move on to the element’s HTML code (i.e., its attributes), which
can reveal useful information about its type (e.g., an element of
type email or with a descriptive id like last_name). If our mod-
ule has yet to identify what type of information is expected, we
consider the text content preceding the element. While this is the
most common convention for labeling elements, developers are
not constrained and can structure their forms differently. We, thus,
follow a conservative strategy and consider these assigned labels
as possible labels, since we cannot be certain of the form structure
- in some cases the input element’s accompanying text might be
after the element. This is also why we prioritize any previously
identified labels, and consider the “possible” labels as a last resort.

If there is still no match, we use Google Translate to translate any
labels assigned to the element in English and repeat the aforemen-
tioned process. This is needed since our analysis is not limited to
English websites and foreign content is common. We refrain from
using Google Translate initially, since the previous steps might
reveal the type of field, allowing us to avoid the unnecessary API
calls. Finally, we resort to either a random string for text inputs or
a random selection for select and radio elements. To generate valid
inputs after having detected the element’s type, we use Python’s
Faker package. We also infer the input’s expected size by inspecting

its size and maxlength attributes and adjust our value accordingly.

After filling out the inputs we submit the form. At this point we

need to infer whether the signup attempt was successful or not.

We employ the following oracle that deems the signup process

successful if any step yields a positive result:

e Visit the homepage and check if any of the submitted identifiers
appear. The intuition is that if signup failed, websites would
not store the provided information. We refrain from making the
same check at the landing page after the form submission, since
a website might display identifiers in an error message.

o Visit the form’s URL and check if it is still displayed. The intu-
ition is that after a successful signup the website will not keep
displaying the form. However, we have observed cases where the
signup was successful, but the signup form was still displayed.

e Check if we received any emails from the domain. The intuition is
that a failed signup attempt would not trigger an email delivery.

o Attempt to login to the website with our automated Login module
(described further down). A successful login attempt indicates
that the signup was successful.

If the signup is deemed successful we store the filled values and
end the signup process. Otherwise, we try to identify any required
fields in the form (i.e., by checking for the HTML required attribute
or an asterisk or the required keyword in the element’s labels)
and attempt to resubmit the form using only those, to reduce the
probability of error. If that fails once again, we move on to the
next form, until a successful registration is detected or all forms
have been processed. After registration we also handle any emails
sent by the domain, typically pertaining to account verification, to
ensure that our newly created account is valid. As we cannot be
certain of those emails’ structure or of any action that might be
required, we extract and visit all URLs included in the email and
try to detect commonly used keywords and phrases pertaining to
successful verification. Through empirical analysis we observed
that several websites might require the user to additionally click
on a button in that page to finish the process. Therefore, if we do
not detect any of the above keywords, we resort to clicking all
displayed clickable elements in the page.

Automated login. For us to complete the login process, we
visit the discovered login URLSs (i.e., the ones that contain a login
form) and submit each candidate form with our test account cre-
dentials. Concluding whether the login attempt has been successful
is straightforward in most cases; the login oracle re-fetches the
page with the login form and checks whether the submitted form
remains in the page. If not, the login attempt is considered success-
ful. During our empirical analysis we observed that several poorly
designed websites kept displaying the form even after a successful
login; to account for such cases, if the form persists, our login ora-
cle additionally checks if any of our test account’s identifiers (e.g.,
email, username etc.) are now present in the homepage’s source
code. Similarly, it uses a set of heuristics for detecting whether any
logout buttons are displayed in the homepage. If either process
yields a result the login is deemed successful.

SSO Fallback. If our system is not able to successfully complete
the traditional account creation process, it alternatively identifies
whether the app supports Single Sign-On with one of the most
popular Identity Providers (IdPs) — we currently support Facebook

and Google. If SSO elements are discovered it attempts to automati-
cally complete the SSO process using test accounts that have been
registered in the IdPs. First we need to identify if the site actually
supports SSO; we have created a set of regular expressions that
identify potential HTML elements in a page that can be used for per-
forming SSO. The detection of such elements is performed during
the execution of the URLDiscovery module. The module terminates
if both login and signup forms have been located, regardless of the
discovery of potential SSO elements. This is due to the fact that the
available SSO options usually accompany the account related forms
(if a traditional login scheme is supported). Thus, when locating a
login or signup form we also detect if the site also supports SSO.

For each URL, we iterate over the candidate SSO elements and
click them. We prioritize elements that are displayed, based on the
intuition that sites are usually upfront about the available login
options. For displayed elements we use Selenium’s click method,
effectively replicating a user’s action. For hidden elements we re-
frain from trying to make those elements appear, which would
involve clicking over other elements and potentially leading to
unintended behavior and considerably increasing the process’ dura-
tion. Instead, we try to trigger their onClick method via JavaScript.
While this is generally effective, in some cases the candidate el-
ement is an outer wrapper element (e.g., a <div> element which
contains an <a> element), and clicking it via JavaScript will not
trigger SSO. Thus, for each non-displayed candidate element we
also consider its children elements. While this leads to additional
elements that need to be tested, we can quickly click on elements
and decide if one is an actual SSO element; the overhead induced
by this approach is negligible in practice.

The straightforward approach for inferring whether we clicked
the correct element is to wait for the appearance of a predefined
element, as a button that authorizes the app to access user data on
the IdP should appear. However, this is inefficient and expensive
as we would need to wait a sufficiently long time after clicking on
every element to ensure that the necessary steps (and background
server-communication) of the SSO protocol actually completed. We
opt for a more elaborate approach that relies on the fact that an
HTTP request is issued towards the IdP’s SSO endpoint when the
correct element is clicked. We setup a modified proxy in passive
mode which notifies our framework if such an outgoing request
is observed. This allows us to quickly iterate over all candidate
elements. The first time our system logs into a website we authorize
the app in the IdP by following a few easily-automated steps.

It is worth noting that inferring whether the SSO process was
successful is not necessarily equivalent to determining if our system
is logged in the web app. For instance, a website might require a
few extra steps to be taken (typically pertaining to account setup)
after the user clicks on the SSO button and authorizes the app in
the IdP; in this case our system will be in an intermediary state
where the user is not yet fully logged in. We employ two separate
oracles to decide if SSO completed and if we are logged in. The
SSO oracle first checks if the SSO element we clicked on is still
displayed. If not, the SSO was (most likely) successful. However, as
some websites keep displaying the elements even after a successful
SSO, the SSO oracle utilizes the SSO login oracle for further verifying
the successful completion of the SSO process. This oracle searches
for displayed account identifiers, logout buttons, and our IdP test

account’s profile photo which is often fetched from the IdP. If any
of those checks is positive, the SSO login is deemed successful. This
oracle focuses only on displayed elements, because we found cases
where a website that was authorized in the IdP loaded identifiers
provided by the IdP and displayed them in the page’s source (e.g.,
in an inline JavaScript object) without having logged the user in.

Some websites require a few extra steps pertaining to account
setup to be taken in order to complete the SSO. We detect and
automate this process as well, using a modified Signup module that
has a few minor changes in its workflow and oracle, which address
SSO-specific variations in the process. Typically, websites display
two options for completing the account setup after a successful
SSO, the first being to link the new SSO identity with an existing
account and the second about creating a new account. We detect any
clickable elements that indicate the latter using regular expressions
and iteratively click them. We then collect all forms displayed in
the page, as we do not have any knowledge of their structure (i.e., it
is common that such an account setup form might not even include
a password field). Finally, we iterate over the discovered forms, fill
and submit them, and consult our modified Signup oracle for each
submission. As such, the oracle has been modified so the check for
identifiers is done only on displayed elements, for the same reason
with the SSO login oracle. In addition, if all other checks fail, we
check if any password type fields were submitted in the signup
form. If that is the case, we proceed by performing a generic login
attempt using the discovered login forms.

False Positive/Ambiguous Login Elimination. After creat-
ing an account, we perform a final step to eliminate cases where
our oracles yield a false positive (i.e., consider a login attempt to be
successful despite not actually being logged in) or are not able to
disambiguate between being logged in or not for a specific website.
We send an HT TP request without appending any cookies and con-
sult our login oracle once again; if it claims we are still logged in
we mark the website as a false positive and abort the process. This
happens when a website does not follow any of the development
“conventions” that our oracles anticipate, or other mechanisms in-
terfere with the session’s state (e.g., a website displays an identifier
that was stored in localStorage even when no cookies are sub-
mitted). It is worth noting that while it is straightforward to clear
such storage mechanisms, we refrain from doing so since this can
have unexpected effects on a website’s intended functionality and
impact the operation of subsequent modules.

Captchas. Protecting account creation through captchas is com-
mon practice and, as such, creating a captcha solver can consid-
erably improve the coverage our system obtains. Initially, we im-
plemented a solver based on recent attacks against Google’s audio
reCaptcha [22, 80]. Unfortunately, reCaptcha’s advanced risk anal-
ysis system currently detects the use of WebDriver, which results
in Google not serving captchas to our framework. Since building a
stealthier captcha solver is out of the scope of our work, and fund-
ing human captcha-solving services to create accounts presents an
ethical dilemma, we opted to not handle such cases. However, due
to the popularity of domains that employ captchas, in our evalua-
tion we include a set of popular domains for which we completed
the account creation process manually. We stress, however, that
the ~25K domains that comprise the bulk of our evaluation did not
require any manual intervention.

3.2 Cookie Auditor

To investigate whether users are exposed to session hijacking at-
tacks due to flawed or vulnerable authentication practices, the next
phase of our framework’s workflow relies on modules that analyze
the cookies set by a specific web app and identify potential hijacking
opportunities based on their attributes. As we require a method for
deducing with minimal overhead which cookies provide some form
of authentication, we design and implement a simple, yet effective,
algorithm that we present in Algorithm 1 (see Appendix). The core
idea is to inspect whether the discovered cookies are protected with
the appropriate security-related attributes and subsequently infer
which of those cookies are used for authentication.

Cookie attributes. Our CookieAuditor algorithm begins by
identifying which cookies set by the website are protected with the
secure and httpOnly attributes and groups them accordingly (line 2).
If a cookie has both attributes enabled, it will be included in both
sets. It then iterates over these cookie sets (8) and infers whether
the website is vulnerable to a specific attack from our threat model
based on the corresponding attribute. Before actually evaluating a
cookie set, it first checks if the set is empty. This indicates that the
site is vulnerable to the attack, e.g., if none of the cookies has the
secure flag set, an eavesdropper could successfully perform a cookie
hijacking attack (9-10), as described in prior manual studies [77].
On the other hand, if the attribute is present in one or more cookies,
the algorithm will either infer the result from the previously tested
set or evaluate this cookie set.

Evaluating a set means that we exclude it from the browser’s
cookie jar (i.e., those cookies will not be sent in the subsequent
request), issue a new HTTP request to the website, and consult the
login oracle to determine if we are still logged in (30-32). As can be
easily deduced, being logged in while excluding all cookies with a
specific attribute means that the website is indeed vulnerable to the
specific attack. However, if the exact same cookie set has been tested
before we can directly conclude whether the website is vulnerable
or not (14-15). Finally, in cases where the cookie set is a subset of
a previously tested set where our test account remained logged
in, we can again safely conclude that the website is vulnerable
for this attack as well (16-18). For instance, if we excluded the
set [A, B, C] and we were still logged in (i.e., vulnerable) then
testing the set [A, C] would also result in a logged in state, since
we would now send even more cookies than before. This is why we
prioritize larger cookie sets (we omitted this part of our algorithm
for brevity). Finally, after evaluating a cookie set, we send another
request containing all the cookies, to make sure our session is still
valid. (only if we were logged out after the test). If the session has
been invalidated by the server, we login again and update our cookie
values with those of the new session. This allows us to efficiently
identify if a website is susceptible to cookie hijacking and, if so, via
what means. In the worst case scenario, our approach would need
9 requests, i.e., 3 requests per security-related cookie attribute. It
is important to note that this technique has the drawback of not
revealing which of the cookies are actually authentication cookies.

Authentication Cookies. To further analyze the root causes
of authentication flaws, our framework needs to be able to identify
the subset of authentication cookies among all the cookies that
are set. Mundada et al. [64] proposed an algorithm, however, their

approach overlooks certain cases and can lead to incorrect results.

We build upon the core algorithm they proposed and modify it to

correctly handle additional cases. Their proposed algorithm starts

by considering only the cookies set at login time (login cookies)
and generating a partially ordered set (POSET) of every possible
combination. Since the search space is exponential, and in many
cases infeasible to test all combinations, the algorithm establishes

a series of rules based on the outcome of certain tests to reduce the

testing time. The core algorithm works as follows:

e Alternate by testing one round from the bottom of the POSET
(i.e., disabling cookies from a full cookie set) followed by a round
from the top of the POSET (i.e., enabling cookies from an empty
cookie set). According to their description, rounds are followed
in an incremental manner and all cookie sets for a given round
are tested consecutively (e.g., all cookie sets where only 1 cookie
is disabled, then all cookie sets where 1 is enabled etc.). This is
also the root cause that leads to incorrect results in certain cases,
as we detail next.

e If a disabled cookie set causes the test to fail (i.e., the user is
logged out), then all subsequent cookie sets that do not contain
this set can be skipped.

o If an enabled cookie set is found to cause the test to succeed (i.e.,
the user remains logged in), then all subsequent cookie sets that
contain this set can be skipped.

e If a cookie that was not set at login time is detected to be part
of an authentication combination, a similar nested process is
executed for the non-login cookies and the login cookie array is
expanded to include these cookies.

While this approach is generally effective, we have identified
scenarios where it yields incorrect results. To illustrate such a case,
consider the following example: if a website has two authentica-
tion cookie combinations, e.g., [A,B] and [C,D], the algorithm will
first set a rule when disabling two cookies. Specifically, when dis-
abling [A,C] none of the authentication cookie combinations we
are looking for will be complete, and the user will be logged out
of the web app. This results in establishing the rule “any cookie
set that does not include [A,C] should be skipped®. Later on, when
disabling the set [B,D] (which satisfies the first rule), the user will
again be logged out, leading to a similar rule for this set as well.
At this point the ruleset dictates that any set that does not include
[A,C] or [B,D] will be skipped. However, in the very next round (i.e.,
when enabling two cookies), when checking whether the actual
authentication cookie combinations should be tested, the algorithm
will skip them as they do not satisfy the above ruleset. As a result,
the actual authentication cookie combinations will not be inferred.

Thus, we cannot blindly follow such rules when enabling cookie
sets. This, however, introduces the risk of a major performance
penalty. Consider a second example of a website that has two au-
thentication combinations, e.g., [A] and [B]. The first rules the
algorithm will set will be when enabling a single cookie. Specifi-
cally, when only enabling [A] the user will be logged in and a rule
will be set, dictating that “any cookie set that includes [A] should
be skipped”. Likewise, when enabling [B] a similar rule will be set.
In the next round (i.e., when disabling two cookies) the only set
that will be tested will be the one not containing [A] and [B], as it
is the only one that respects the current ruleset, and the user will
be logged out. This results in the rule “any cookie set that does not

include [A] or [B] should be skipped” being set. Next, when enabling
two cookies, and having established that we cannot follow the last
rule when enabling cookies, the algorithm will then test all sets of
length two that do not contain any of the two authentication cook-
ies. The following rounds of the algorithm behave similarly (i.e.,
disabling/enabling three cookies and so on). However, we can tell
that the algorithm has already detected the authentication cookie
combinations and should not try any more tests.

To avoid this performance issue, we modify the algorithm to
respect such rules when enabling cookies, but in a slightly different
manner: cookie sets that result in the user being logged out when
disabled are flattened into a vector (e.g., the ruleset [[A,C], [B,D]]
from the first example becomes [A, B, C, D]) and we safely skip
the cookie sets that do not include any of these cookies. In our
first example this results in the authentication cookie combinations
being detected. In the second example it results in not testing any
sets that are redundant after detecting the correct combinations.

We also note that while we label them as authentication cookies,
since they lead to the exposure of user identifiers, this might be the
result of flaws in the web app’s authorization policies, and not due
to them actually being designed as (or intended for) authentication.
Nonetheless, our goal is not to infer the developers’ intention but
to identify which cookies lead to (full or partial) authentication.

3.3 Privacy Leakage Auditor

Apart from automatically detecting flaws that expose authentica-
tion cookies, our goal is to also identify what personal or sensitive
user data attackers can obtain. We develop PrivacyAuditor for lo-
cating leaked user information following a differential analysis
methodology. Our framework first effectively replicates a session
hijacking attack; it creates a fresh browser instance and includes all
stolen cookies, i.e., the ones that are not protected with the corre-
sponding cookie attributes. If our system has labelled a specific web
app as susceptible to both eavesdropping and JS cookie stealing
attacks we only simulate the eavesdropping attack to demonstrate
the privacy threat posed by attackers that are less sophisticated due
to space constraints. Our system also deploys a logged-out browser
alongside the authenticated browser and then proceeds with col-
lecting links of interest. The module focuses on URLs that match
account related keywords (e.g. profile, settings) and also collects
the top 30 links that appear in the main browser but not in the
logged-out one (or less if not that many exist). Typically, we expect
those links to point to restricted areas of the website where user
information, possibly sensitive, will be stored.

We check each page for user information that was supplied dur-
ing the signup process. If SSO was used, our system also checks
for information that the web app might have pulled from the IdP
(we have populated our Facebook and Google profiles with ad-
ditional information). We inspect the rendered page source once
JavaScript-generated content has finished loading. Since user data
can be leaked in ways that are not directly visible to the attacker,
our system also inspects other potential leakage points, including
cookies, local and session storage, and the page’s URL (we do not
look at outgoing connections since we are not interested in what
information is shared with third parties, and leaked identifiers will
already be present in one of the locations we search). To account for

cases where user information may be “obfuscated”, we also check
for encoded values of all the identifiers using common encoding
(base64, base32, hex, URL encodings) and hashing techniques (MD5,
SHA1, SHA256, SHA512). While we are able to capture obfuscated
values of all user-specific information, in our experimental evalua-
tion we only discuss obfuscated passwords and emails; this is due
to their sensitive nature and because hashed emails can constitute
PII and in certain cases are easily reversible [3, 37, 61].

3.4 Browser Automation

At the heart of any web app auditing framework lies the browser
and, thus, it is imperative that our framework is orchestrated by a
robust browser automation component. In practice, while Selenium
is a powerful tool, it is better suited for testing scenarios when the
web app’s structure and behavior are known in advance. However,
when conducting a complex, large-scale analysis there is no a priori
knowledge of either. There are also numerous scenarios where un-
expected behavior, structure changes, or software crashes impact
browser automation functionality. For instance, at any moment
during the execution of a module there might be an unexpected
popup (e.g., an alert). This can block all other functionality, such
as fetching and interacting with elements in the page. Moreover,
current error raising and handling support can lead to ambiguous
states; e.g., when Selenium’s Chromedriver crashes (which is a
common issue) a TimeoutException might be raised, which is also
what happens when a website actually times out. Thus, we need a
way to handle such obstacles efficiently whenever they occur with-
out aborting and restarting the whole process. Finally, while other
well-designed options exist, e.g., Selenium-based OpenWPM [40],
we find that they focus on the browser setup, management and
synchronization parts of automation, with little focus on dynamic
interaction (e.g., element clicking, form submission) which is a
critical aspect of our study. In addition, while Puppeteer [16] does
offer interaction functionality, it suffers from the same robustness
issues as Selenium, which our system tackles (e.g., element stale-
ness, crash recovery, robust error handling). Moreover, Puppeteer is
specifically designed for Chrome/Chromium, while we aim to make
our automation component compatible with different browsers.

To address these limitations we develop XDriver, a custom browser
automation tool designed for security-oriented tasks that offers im-
proved fault-tolerance during prolonged black-box interactions
with web apps. XDriver is built on top of Selenium and the official
Chrome and Firefox WebDrivers [11, 13], and will be made open
source. We extend Selenium’s high level WebDriver class to en-
hance our system’s robustness by addressing the aforementioned
challenges in a way that is transparent to the caller scripts. Due to
space limitations here we present the most prominent exceptions
and how our system handles them, as well as a number of useful
auxiliary mechanisms we implement. Our extensions amount to
approximately 1,500 lines of code.

Invocation. XDriver extends Selenium’s WebDriver class and
declares a custom invoke method which accepts a parent class
method as an argument (e.g., WebDriver.find_element) and an
arbitrary number of named and unnamed arguments. Invoke then
calls the passed method in a try-except block, catches any raised
exception and either calls the appropriate exception handler or

returns a default value. XDriver then overrides all of WebDriver’s
methods to call their parent class counterparts via invoke.

Element staleness. As our auditing requires prolonged, multi-
phase interaction with web apps, page elements frequently become
“stale”, which creates complications and can lead to crashes. XDriver
is designed to handle such cases transparently and robustly. All
interactions start by fetching a page element, e.g., based on the
id attribute, and proceed with processing that element. If in the
meantime this element is deleted or, more commonly, an asynchro-
nous page load or redirection occurs, a StaleElementReference-
Exception is raised when interacting with the element, indicating
that it is no longer attached to the DOM. However, while from a
user’s perspective the element might still be present in the page,
from Selenium’s point of view it is a new element under a new ob-
ject reference, with no relation to the previously returned element.
To handle this, when a find_element_by method is invoked, the
returned element’s object reference is stored as the key in a hash ta-
ble, with a tuple containing the invoked method and its arguments
as the value. Then, whenever such an exception occurs, the given
element’s reference is retrieved from that hash table and XDriver
attempts to re-fetch it by invoking the stored method. If the element
is found, the old element’s object is updated transparently with the
newly returned element, and the initial requested operation that
raised the exception is retried. Otherwise, the exception is raised
since the element truly does not appear in the page.

Handling crashes and timeouts. When Chromedriver or some
other component (e.g., intermediate proxy) crashes and a Timeout-
Exception is raised, our XDriver module detects the crash, trans-
parently restores the browser instance and state and eventually
fulfills any module’s request that was interrupted by the crash.
Specifically, it launches a new browser instance, reloads the cur-
rent browser profile to maintain state and updates its own object
reference with that of the new one, so as to transparently update
all references of the driver held by the framework modules. It also
obtains the last known URL and retries the interrupted operation.
The StaleElementReferenceException handler is extremely use-
ful in this case, since all retrieved web element objects will have
become stale due to the browser reboot.

Auxiliary mechanisms. Several other mechanisms have been
implemented in XDriver, which further aid our main framework’s
functionality, such as a retry mode, a configurable built-in crawler
and our form-filling functionality described previously. Due to
space constraints we provide more details in the Appendix. Overall,
all of the above enhancements allow for more fault-tolerant inter-
action with web apps, reduce code complexity, and allow our main
framework modules to focus on their specific tasks.

Security mechanisms. Another important feature is the de-
tection and evaluation of security mechanisms pertinent to our
study. HTTP Strict Transport Security (HSTS) instructs a user’s
browser to connect to the HSTS-enabled domain only over HTTPS
for a specified amount of time, even if an explicit HTTP URL is
followed or typed in the address bar by the user. While this seems
fairly straightforward to deploy, domains often do so incorrectly or
partially [52, 76, 77]). To evaluate deployment and detect miscon-
figurations, our module first checks whether the domain is in the
Chromium preload list [12] and, if not, uses a passive proxy to cap-
ture the target website’s redirection flow from its HTTP endpoint

to HTTPS. For each redirection, it stores the HSTS policy (if one
is sent) and assesses whether the (sub)domain is indeed protected.
Our module detects all the misconfigurations and errors presented
in [52]. We note that while we implement mechanisms that are
relevant to this work, XDriver’s modular design streamlines the
addition of other security mechanisms.

4 EXPERIMENTAL EVALUATION

We experimentally evaluate our black-box auditing framework
and present our findings from the largest study on cookie-based
authentication and authorization flaws in the wild.

Datasets. We use two different versions of the Alexa Top 1 mil-
lion list. The first dataset was fetched on 09/14/2017; this dataset was
useful for guiding the design and implementation of our framework.
However, since recent work has revealed that domain ranking lists
exhibit significant fluctuation even within short periods of time [74],
we also obtained a second up-to-date version on 05/07/2019, when
it was time to conduct the final evaluation. All the experiments
presented here were conducted between May-October 2019 on a
combined dataset that included a total of 1,585,964 unique domains.

Workflow statistics. One of our main goals is the ability to
conduct automated black-box auditing of modern web apps with-
out knowledge of their structure, access to the source code, or input
from developers. The complexity and often ad-hoc nature of web
development render this a challenging task, and various obstacles
can prevent the successful completion of a given module. Figure 4
in the Appendix provides statistics on the number of domains for
which each phase of our workflow was successful. In general, our
auditing modules are highly effective, successfully completing their
analysis for 93-98% of the domains they handle. Automated account
creation presents the most considerable obstacle; namely, out of
the 168,594 domains for which we identified a signup option, we
successfully registered and logged into 13.7% of them, while in 2,066
cases our system managed to login via SSO, out of which 346 were
a fallback after a failed signup attempt. It is worth noting that for
domains where we detected a signup option but were not able to
create an account, 19,491 (~13.8%) embedded Google’s reCaptcha.
Yet our framework is still able to create accounts on 25,242 domains,
accounting for almost 12% of the domains for which we have identi-
fied a signup option — for comparison, prior related studies analyzed
25 [77] and 149 [64] domains. In studies with a different focus, Zhou
and Evans used SSO to audit 1,621 domains for SSO implementation
flaws, while DeBlasio et al. [36] explored the risk of password reuse
by creating accounts in over 2,300 domains. In other words, our
study is several orders of magnitude larger than prior studies with
a similar focus, and at least one order of magnitude larger than
studies that employed some form of automated account creation.
We provide more details on our system’s effectiveness and false
negative rates in the Appendix.

Cookies. Audited domains set an average of 14.02 cookies, while
susceptible domains set 1.21 authentication cookies and have 1.1
authentication combinations on average. In Table 1, we show the
number of domains that expose their authentication cookies, i.e.,
do not protect them with the corresponding cookie attributes.

Eavesdropping. We find that 12,014 unique domains do not pro-
tect their authentication cookies with the secure flag, even though

Table 1: Number of unique domains that do not adequately
protect their cookies from specific attacks.

Attack # of Domains (%)

Eavesdropping 12,014 (48.43%)

No HSTS 10,495 (87.36%)

HSTS Preloaded 64 (0.53%)

Full HSTS 188 (1.56%)
Faulty HSTS

- Protected 736 (6.13%

- Vulnerable 426 (3.55%

Final Vulnerable 10,921 (90.9%

)
)
)
)

JS cookie stealing 5,680 (22.9%

Total 12,484 (50.33%)

1,815 of those set the flag for at least one of their cookies. How-
ever, web apps might make use of HTTP-Strict-Transport-Security
(HSTS), which can prevent the leakage of those, otherwise exposed
cookies. Merely checking for the presence of HSTS headers in the
web app’s responses is not sufficient, since prior studies have found
that developers often deploy HSTS incorrectly [52, 76] or do not ad-
equately protect their entire domain [77]. As such, our framework
includes a module for evaluating the correctness and coverage of
HSTS deployment for domains that are vulnerable to eavesdropping
(the other attacks are not affected by HSTS).

We find that the situation has not improved much compared to
prior studies, as the vast majority of domains do not deploy HSTS.
While flawed HSTS deployment remains common, we find that
63.3% of the domains that have a faulty deployment do manage
to prevent our cookie hijacking attacks. This is because the set of
(sub)domains the auth cookies are sent to are protected by HSTS.
For instance, if example.com deploys HSTS properly on the www
subdomain, but leaves the base domain unprotected, and at least
one auth cookie has its domain attribute set to www.example.com,
then there is no way for an eavesdropper to retrieve this cookie.
The most common misconfiguration is not enabling HSTS on the
base domain (696 domains), out of which 143 attempted to set
HSTS over HTTP. The remaining domains, while properly setting
HSTS on their main domain, did not use the includeSubdomains
directive, thus potentially leaving certain subdomains exposed. We
also find that out of the remaining domains only 99 employ CSP’s
upgrade-insecure-requests directive. While this reduces the at-
tack surface, these domains remain vulnerable since this mechanism
does not upgrade top-level navigational requests from third-party
sites or the initial request (e.g., when a user opens a new tab and
visits a site). Overall, 10,921 domains are vulnerable and expose
cookies to eavesdroppers even when accounting for the presence of
relevant security mechanisms. We further correlate these domains
with the Single Sign On data released by [44] and found that four
of these domains are also SSO identity providers (Amazon, Bitly,
DeviantArt, GoodReads) and have at least 1,346 unique relying
parties, out of which 138 have been audited by our system; 87 were
found secure and 51 vulnerable to at least one of our attacks.

JS cookie stealing. We find that users face a considerable threat
due to their authentication cookies being accessible via (malicious)
JavaScript, as a total of 5,680 domains do not protect them with

Table 2: Number of domains for different values of authenti-
cation cookies and combinations of authentication cookies.

1 2 3 4 5 6 7

Auth combos 10,878 1,110 39 10 3 - -
Auth cookies 9912 1,700 364 54 7 2 1

100 =

— Eavesdropping 1400
X 80 —‘ JS cookie stealing o 1200 |
© o 1000
= 60 ©

o o 800
© 40t % 600
=

= | S 400
3 20 I 200 -

0
R e

QP PEDRAMROAIN

R I A RS

N

NP PP
Domain Rank

NEFFFEEFEFEFEFS
RSP ORIS RO Y
Domain Rank

Figure 2: Percentage (left) and absolute number (right) of
vulnerable domains per ranking bin.

the httpOnly flag. Our framework’s analysis of those domains re-
veals that 5,099 include at least one embedded 3rd party script (i.e.,
not isolated in an iframe) that runs in the 1st party’s origin and
has “permission” to read the user’s 1st party cookies. These are
fetched from 2,463 unique 3rd party domains. To make matters
worse, only 239 of those use the Subresource Integrity (SRI) fea-
ture [15] to prevent the manipulation of fetched scripts, and only
one domain protects all loaded scripts. Similarly to [31], we find
that all SRI-protected scripts are libraries (e.g., jquery). It is impor-
tant to emphasize that this attack explores the potential threat from
compromised or rogue 3rd parties, and that our numbers do not
reflect active attacks currently underway in the wild. While our
study’s focus is not on detecting malicious scripts actually stealing
users’ cookies, we consider this an interesting future direction.
We emphasize that the 5,680 domains are not necessarily vul-
nerable to session hijacking through XSS, since other prevention
mechanisms might be in place. For instance, Web Application Fire-
walls (WAFs) [38, 54] or Content Security Policies (CSP) [92] could
be deployed to mitigate XSS attacks which could also prevent cookie
stealing. Nonetheless, recent work has shown that even such de-
fense mechanisms can be bypassed [57]. As such, our findings
constitute an upper bound for web apps that are vulnerable to
cookie-stealing via XSS. Nonetheless, while adoption of httpOnly
is not as limited as in the past [95], it remains an important issue.
Auth combos. Table 2 breaks down the AuthCookies results
and reports the number of domains with the corresponding number
of authentication cookies and combinations. An interesting observa-
tion is that 435 of the domains that have more than one combination
contain at least one secure combination among them, yet remain
susceptible to attacks due to other combination(s) being exposed.
This highlights how the ever-increasing complexity in web apps
leads to authorization flaws. We also find that 76 domains contain
cookie combinations that are correctly detected by our approach
for which the algorithm from [64] returns incorrect results.
Popularity. We break down the vulnerable domains based on
their Alexa rank in Figure 2. In general, our framework detects

Table 3: Personal user data that can be obtained by attackers.

@ g g
Data S O & Q Total (%)
Email 6,894 776 174 51 7,130 (61)
Email hash 885 68 10 0 930 (7.98)
Fullname 4,287 198 170 44 4,330 (37)
Firstname 648 58 8 10 686 (5.9)
Lastname 618 86 19 13 665 (5.7)
Username 1,856 339 48 175 1,956 (16.7)
Password 2 20 0 0 22(0.19)
Pswd hash 12 57 0 0 68 (0.6)
Phone 1,594 8 7 2 1,598 (13.7)
Address 656 0 0 1 656 (5.6)
VAT 17 0 0 0 17 (0.15)
Workplace 540 3 3 1 543 (4.6)
Total (%) 9,122 (78) 1,236 (10.6) 314 (2.7) 290 (2.5)

more vulnerable domains in the highest ranking bin. This can be
partially attributed to popular websites being more likely to support
account creation (we find twice as many such domains in the most
popular bin compared to the least popular one), while the process
succeeds for roughly 11 — 13% of domains across all bins. We also
break down the vulnerable websites based on their categories (e.g.,
online shopping) in the Appendix.

Privacy leakage. In Table 3, we break down the personal or
sensitive information that an attacker can acquire upon success-
fully hijacking a user’s cookies, as detected by our PrivacyAuditor
module. We also report the total number of domains leaking such
information, grouped per sensitive field (e.g., email) and also based
on the source of leakage (e.g., page source). While a domain might
appear in different columns of the same sensitive field, or different
rows of the same source of leakage, it is only counted once in the
corresponding totals. In general, we find that the page’s source is
the most common avenue of exposure, but passwords are typically
exposed through cookies. Furthermore, 59 out of the 68 hashed
passwords detected by our system are MD5 hashes, which do not
offer much protection against offline brute-forcing attacks. In prac-
tice, the attacker could potentially recover the password and obtain
full control over the victim’s account in those services; password
reuse [9, 69] can result in attackers accessing accounts in other
services as well. Apart from common identifiers like emails and
usernames, many domains expose highly sensitive data like home
addresses and phone numbers. Overall, an abundance of data is
exposed that can be used for doxxing [79], and a plethora of scams
including targeted phishing [48] and identity theft [21].

System performance. In Figure 3 we show the total time in
seconds required by each module in our framework. Since some
modules might fail for certain domains, the different CDFs have
been calculated using their corresponding totals. The total time
required for auditing websites for attacks (i.e., all modules up to
CookieAuditor) is denoted as Total Attack. The total time required
for the analysis including the execution of AuthCookies and Priva-
cyAuditor is denoted as Full Analysis. We find that our framework’s
performance is suitable for large-scale studies as half of the domains
can be completely audited within 5 minutes and 90% in less than 17

Login - Cookie Auditor

URL Discovery — Qokie Auditor

Privacy Auditor - Full Analysis ‘
Signup SSO

Total Attack

Domains (CDF)

100 1000
Time (sec)

Figure 3: Time required by each module of our system.

minutes. While certain domains in the long tail of the distribution
require considerably more time, this is typically due to latency is-
sues with their specific servers. While Webdriver crashes can affect
performance, our XDriver optimizations minimize their impact by
transparently recovering the browser’s state.

Popular domains. While our main goal is to automatically ex-
plore the feasibility of cookie hijacking at scale, popular domains
are of particular interest because they are used by hundreds of
millions of users and, thus, can have a greater impact if vulner-
able. Considering that our framework’s entire workflow is fully
automated and that app-agnostic account setup is extremely chal-
lenging, we opt to manually assist with the account setup for a
subset of the most popular domains. Specifically, we consider the
top 1K domains, where we identified 698 account-based websites.
Out of those, 95 were already fully handled by our framework. For
the rest, we manage to manually create accounts in 206 domains,
which we provided to our framework to complete the automated
auditing process. The remaining domains either protected their
login forms with reCAPTCHAs, detected the presence of our web-
driver, or requested information during signup that we were unable
to provide (e.g., phone numbers for SMS verification, valid SSN etc.).
Moreover, for 45 websites our Login Oracle could not disambiguate
between being logged in and logged out; when sending a HTTP
request without any cookies our account would still appear to be
logged in. In total, we audited 301 popular websites (the additional
206 domains were not included in our previously reported numbers,
thus, pushing our total analysis to over 25K domains).

We find that 149 are vulnerable to eavesdropping, 46 of which
were fully handled by our framework. Only 10 domains deploy
HSTS effectively, while another 30 (20.13%) use HSTS but remain
susceptible due to faulty deployment. For JS cookie stealing, 115
domains were found susceptible and 104 include at least one embed-
ded 3rd party script (from 266 domains) — only five make use of SRI.
Overall, 57.81% of the domains do not provide adequate defenses,
which is alarming considering their massive user base.

Hijacking validation. To manually validate our results and
ensure that an attacker can actually access victims’ accounts, we
conduct an exploratory experiment on domains that were fully
handled by our framework. We randomly select ten and hand-pick
another ten domains out of Alexa’s Top-1K, and randomly select
another ten from the remaining domains, and simulate cookie hi-
jacking attacks. We setup a browser instance where we log in the
website and capture all cookies that are exposed depending on the

threat model. Next, we launch a new browser with different char-
acteristics (user agent etc.) on a different machine, in a different
network subnet, where we include the stolen cookies and visit the
website. We manually interact with the website to detect the extent
of access the attacker obtains. We do not set a time limit; instead
we opt for an exhaustive approach where we try to identify all user-
specific functionality that should be tested. We detail our findings
in the Appendix. For the Top-1K random subset, we get full account
access for seven domains (i.e., all tested operations succeeded), and
partial access for three domains. For the other random subset we
get full access in nine out of ten domains. Indicatively we can view
and modify account settings, preferences, shopping lists, orders
and subscriptions and post comments. In five of all the domains we
could also change the user’s password without knowledge of the
current password. For the manually selected popular domains, we
get full access in five domains, partial access in four.

This highlights a significant advantage of cookie-based account
hijacking over credential-based (e.g., phishing): additional fraud-
detection checks employed during login [24] (e.g., IP geo-location [71],
comparison of browser fingerprints [50]) are ommitted because the
cookies are part of a session that has already been verified as legiti-
mate (i.e, when the victim logged in). While certain attackers can
pass geo-location checks (e.g., using an IP address near the user’s
location [67]), deceiving browser-based security checks is signifi-
cantly more challenging. While spoofing the victim’s fingerprints
has been theorized [19] it has not been demonstrated in practice.
Surprisingly, throughout all our experiments we identified only one
domain (Cloudflare) where we could not access the victim’s account
from the attacker’s machine, indicating additional machine-specific
checks that we have not come across in any other domain.

5 DISCUSSION

Automated account creation. Our experimental evaluation re-
vealed that automatically creating accounts is a significant chal-
lenge. While our current implementation allowed us to audit orders-
of-magnitude more domains than prior manual studies [30, 77], we
plan to explore the adoption of more sophisticated heuristics that
automatically infer the predicates of account generation in a specific
web app and create corresponding inputs. Automatically detecting
and parsing error messages returned by the app can be used as
feedback for inferring which form fields’ format is violated. This,
however, is a challenging task as, again, web developers are not
constrained to a specific format or structure for returning such
messages. Furthermore, each form input variation requires a form
submission, which can lead to a significant impact to the overall
performance and also trigger anti-bot mechanisms. Certain manda-
tory resources can also prevent our system from completing the
process, e.g., an app may require a valid phone number in a specific
country. While attackers can leverage “shady” phone providers [86],
this remains an important obstacle for researchers.

Privacy leakage inference. Our system evaluates the leakage
of personal or sensitive user information by detecting specific iden-
tifiers. In practice, information can be implicitly leaked, e.g., per-
sonalized results in search engines or e-commerce systems can
reveal sensitive data (typically exposed through site-specific func-
tionality). As part of our future work, we plan to explore the use

of user-action templates that are based on the website’s category
(e.g., search engine, e-commerce), intended to elicit personalized
results. Additionally, it is possible that some user information might
already be publicly available on the same or a different website and,
thus, the detected identifiers do not constitute actual leakage. While
leakage can be highly contextual (e.g., a user’s email address being
publicly available in general versus a local eavesdropper being able
to match that person to their email address) we consider this an
interesting challenge and plan to explore the feasibility of detection
schemes that disambiguate between public and private information.

Countermeasures, disclosure, ethics. Our framework discov-
ered flaws that are exposing millions of users to significant threat.
We emphasize that no user accounts were affected during our exper-
iments — we only used test accounts. It is also crucial that devel-
opers are informed of our findings and address them. While the
adoption of cookie security flags is more straightforward, correctly
deploying HTTPS and HSTS will likely be more challenging for
developers [32, 51-53]. For disclosure we leveraged the insight pro-
vided by prior work [58, 73, 84] and sent direct notifications to the
affected domains for which we could find a valid contact email
address. Specifically, we initially collected security. txt files [10],
that typically include such contact points. This method proved to
be the most ineffective, as such files are not widely adopted, i.e.,
only 23 domains had them. We then used an off-the-shelf email
harvester tool for search engines [8]. Next, we crawled the websites
starting from their home page and visiting all contact related URLs,
as well as the top 10 first level links. We also collected each domain’s
WHOIS record and searched for registered abuse addresses. We fil-
tered all collected email addresses to ensure that they belong to the
susceptible domain, so as to avoid sending our security-sensitive
findings to unrelated parties. Overall, this process yielded 5,373
email addresses which we used for notification. For the remaining
domains we sent our notification to standard aliases (security,
abuse, webmaster, info) [73, 84]. We also manually searched
for contact points for all domains we explicitly name in the paper
(apart from 2 that did not have a contact email or form). For the
notification process we used an institutional email address to in-
crease credibility and provided additional details and remediation
advice to all websites that responded. All the responses we received
acknowledged our findings, except one case where the developer
persistently misunderstood the technical aspects of cookie hijack-
ing. While we followed a best-effort approach to directly notify
affected domains, it is infeasible to do so for all of them. Thus, we
will also setup a notification service where developers can obtain
our reports after proving ownership of a given domain.

HSTS issue. During our experiments we uncovered an unex-
pected behavior in Chrome with HSTS preloading; we observed that
it did not work as expected in slightly older Chrome versions and
the initial request to a preloaded domain was, in fact, over HTTP.
After communication with the Chromium team they informed us
that their policy dictates that any Chrome version more than 70
days old does not enforce HSTS preloading because such hardcoded
information is considered stale. This has significant implications for
users that do not update their software on time, which is common
behavior [62, 88, 91]. To the best of our knowledge this issue with
HSTS has not been mentioned in prior studies.

Code sharing. Our browser automation tool will be made open
source as it can facilitate various research projects, especially those
focused on Web security. However, publicly releasing our auto-
mated account creation modules poses a significant risk, as they
are directly applicable to a plethora of real world attacks and could
be misused for malicious purposes; the capabilities of our system
far surpass the capabilities of such tools typically found in under-
ground markets [68]. To that end, and to further contribute to the
community, we have opted to make these modules available to
vetted researchers upon request.

6 RELATED WORK

Cookies and sessions. Several prior studies have explored cer-
tain aspects of authentication and authorization flaws in web apps.
Sivakorn et al. [77] manually audited 25 popular domains (and
their respective mobile apps and browser extensions). Calzavara et
al. [30] recently implemented black-box strategies for identifying
session integrity flaws using a browser extension, and audited 20
popular websites where they found several vulnerabilities under
different threat models. However, the most challenging parts of the
process are not automated and app-agnostic (e.g. account creation,
status oracles), rendering large-scale deployment and analysis infea-
sible. Neither of these studies included the JavaScript-based threats
that we explore. In another work, Calzavara et al. [27] conducted
a large-scale study on TLS vulnerabilities that can enable session
hijacking. Kwon et al. [56] exploited the shortcomings of a specific
TLS cipher suite and proved that, under certain assumptions, it
is possible to disable cookie attributes in HTTPS traffic. Finally,
Jonker et al. [46] proposed a system for automated login that can
enable post-login studies. However, their system does not handle
account creation which is the most challenging process.

While these studies provide useful insights, they are inherently
small-scale, require significant manual effort, or are complimentary
to our work as they focus on different problems that enable session
hijacking (e.g. TLS vulnerabilities). In contrast, our work achieves
orders of magnitude larger coverage of audited domains, analyzes
the root causes of such attacks and further explores the use of
other defense mechanisms, as well as the privacy leakage users face.
Orthogonal to our work are prior studies that proposed defenses
against session hijacking attacks [17, 23, 28, 29, 34, 66, 87].

Cookies and browsers. Singh et al. [75] built a framework for
analyzing the usage of browser features in the wild and detecting
browsers’ access-control flaws, e.g., secure cookies being sent over
HTTP. Franken et al. [43] evaluated how different browsers and anti-
tracking extensions handle third party requests and showed that
cookie-bearing third party requests can be leaked by all browsers,
even in the presence of protection mechanisms like sameSite cookies.
Zheng et al. [94] studied how cookie integrity can be diminished by
various adversaries due to specification violations in browser and
server-side implementations, and demonstrated practical attacks
on popular websites. Cookies are also commonly used for tracking,
and Cahn et al. [25] explored their use through empirical large-
scale measurements and reported the prevalence of third party
cookies. Moreover, Englehardt et al. [41] showed that a passive
eavesdropper can exploit third-party cookies to reconstruct up to
74% of a user’s browsing history. These studies are orthogonal to

our work since we do not examine browser shortcomings in terms
of leaking cookies that can lead to session hijacking; instead, we
explore the effects of developer malpractices which, however, can
be exacerbated by browsers’ inability to properly handle cookies.

Security headers and policies. Chen et al. [32] examined the
CORS specification, and browser/server-side implementations, and
found security issues in all cases, several previously unknown,
which could even lead to data theft and account hijacking. Kranch
et al. [52], performed the first in-depth study on HSTS and HPKP,
identifying various misconfigurations in preloaded domains as well
as Alexa’s Top 1M. Mendoza et al. [63] examined HTTP header
inconsistencies between websites and their mobile counterparts,
and reported cases of mismatches in set cookie flags. Stock et al. [83]
presented a longitudinal study on the Web’s evolution and, among
other things, measured the adoption of security mechanisms. While
we leverage certain aspects of these studies [52], our goal is not
to evaluate these mechanisms in a generic context; instead, we
evaluate the deployment of the relevant mechanisms and how they
either enable or prevent session hijacking specifically.

SSO and sessions. Several studies have focused on SSO-related
vulnerabilities. Zhou and Evans [96] implemented SSOScan, a tool
that detected vulnerabilities in Facebook’s SSO scheme and found
that of the 1,660 audited websites, 146 leaked credentials and 202
misused them. While SSOScan handles SSO authentication flows,
several issues render it unsuitable for our study; however, we do in-
corporate one of their heuristics in our framework. Mainly, our sys-
tem needs to handle non-SSO websites, which account for the vast
majority of sites we audit (~92%); this necessitates more advanced
and robust form-handling capabilities to address the more complex
and diverse nature of non-SSO registration. For instance, SSOScan
only uses an input element’s id and name attributes to infer its type,
while we leverage all of its attributes, dedicated label elements,
as well as the input’s preceding text as possible labels. Also, since
SSOScan processes all input elements of a page at once, there is a
chance that it uses an unrelated submit button; we avoid this by
processing each form separately. Finally, if SSOScan is not able to
locate a conventional submit button it will not be able to submit the
form, while our system attempts to do so via Selenium’s submit
method. For SSO workflows, we identified several challenges that
SSOScan was not able to handle. For instance, SSOScan’s oracle
relies on the SSO login button not being displayed after logging in,
which, as aforementioned, is not always the case. We address this
by separating our SSO and SSO Login oracles. In addition, SSOScan
operates only on the homepage for locating candidate elements,
while we employ a crawling approach to obtain better coverage.
Finally, their tool only considers English sites.

Fett et al. [42] proposed and evaluated a formal model of the
OAuth 2.0 protocol. Wang et al. [90] employed differential testing
to identify logic flaws in SSO implementations and found several
popular IdPs and RPs to be vulnerable. Calzavara et al. [26] im-
plemented a lightweight browser-side monitor for web protocols
(e.g., OAuth) that uses formalized protocol specifications to enforce
confidentiality and integrity checks. Yang et al. [93] used symbolic
execution to audit SSO SDK libraries and discovered seven classes
of vulnerabilities in 10 SDKs. Zuo et al. [98] proposed a tool to
identify vulnerable authorization implementations in mobile apps,
which relied on differential traffic analysis for identifying fields of

interest in exchanged messages. They used Facebook’s SSO to audit
~5K apps (306 were vulnerable). They also explored data leakage
in mobile apps [97] that use a cloud-based back-end, stemming
from key misuse and authorization flaws. However, their leakage
exploration focuses on a very limited set of information and they
manually setup an account on only 30 apps. Ghasemisharif et al. [44]
demonstrated that SSO magnifies the scale and stealthiness of ac-
count hijacking, while rendering remediation impossible in most
cases. While we use SSO as an alternative way for registering test
accounts, identifying flaws in SSO implementations and specifica-
tions is not our objective. Nonetheless, these studies shed light on
a different problem that can lead to session hijacking.

7 CONCLUSIONS

We developed a completely automated auditing framework for web
apps that detects authentication and authorization flaws that re-
volve around the handling of cookies and stem from the incorrect,
incomplete, or non-existent deployment of appropriate security
mechanisms. Our framework is comprised of a series of modules
that include novel mechanisms to differentially analyze web apps,
assess the deployment of security mechanisms, and detect what user
data is exposed. At the heart of our framework lies a custom browser
automation tool designed for robust and fault-tolerant black-box
interaction with web apps. We used our framework to conduct the
largest study on session hijacking to date and audit 25K domains,
leading to a series of alarming findings. Despite the increasing
adoption of HTTPS, HSTS is rarely deployed (correctly or at all),
and ~11K domains are vulnerable to eavesdropping attacks that
enable partial or full access to users’ accounts. Furthermore, 23% of
domains are susceptible to cookie hijacking through JavaScript, the
majority of which also include third party scripts that execute in
the first party origin. We also demonstrated how hijacked cookies
allow access to sensitive and personal user information though var-
ious avenues of exposure. Our study reveals that cookie hijacking
remains a severe and pressing threat, as adoption of appropriate
security mechanisms remains limited and developers continue to
struggle with correct deployment. In an effort to shed light on the
scale of this threat, guide remediation efforts, and further incen-
tivize the adoption of security mechanisms, we have managed to
directly notify ~43% of the affected domains and will also deploy a
service for providing reports.

ACKNOWLEDGEMENTS.

We would like to thank the anonymous reviewers, and our shep-
herd Giancarlo Pellegrino, for their valuable feedback. This work
was partially supported by the National Science Foundation un-
der contract CNS-1934597. Any opinions, findings, conclusions,
or recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government. This
work has also received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 830927 (CONCORDIA) and under grant agreement No 833456
(GUARD).

REFERENCES

[1] 2017. Open Web Application Security Project - The OWASP Top 10. https:
//www.cloudflare.com/learning/security/threats/owasp-top-10/.

(2]
(3]

[19]

[20

[21]

[22

[23

[24]

[25]

[26

[27

[28

[29]

[30

[31]

2018. Dashlane - World Password Day: How to Improve Your Passwords. https:
//blog.dashlane.com/world-password-day/.

2018. Four cents to deanonymize: Companies reverse hashed email ad-
dresses. https://freedom-to-tinker.com/2018/04/09/four-cents-to-deanonymize-
companies-reverse-hashed-email-addresses/.

2018. WIRED - a new Google+ blunder exposed data from 52.5 million users. https:
/Iwww.wired.com/story/google-plus-bug-52-million-users-data-exposed/.
2018. WIRED - the Facebook hack exposes an Internet-wide failure. https:
//www.wired.com/story/facebook-hack-single- sign-on-data-exposed/.

2019. Ars Technica - DHS: Multiple US gov domains hit in serious DNS hijacking
wave. https://arstechnica.com/information-technology/2019/01/multiple-us-
gov-domains- hit-in-serious-dns- hijacking-wave-dhs-warns/.

2019. Cisco Talos - DNS Hijacking Abuses Trust In Core Internet Service. https:
//blog talosintelligence.com/2019/04/seaturtle.html.

2019. Email addresses harvester. https://github.com/maldevel/EmailHarvester.
2019. Google / Harris Poll - Online Security Survey. https://services.google.com/
fh/files/blogs/google_security_infographic.pdf.
2020. https://securitytxt.org/.

2020. ChromeDriver - WebDriver for Chrome.
chromium.org/chromedriver/downloads.

2020. The Chromium Projects - HTTP Strict Transport Security. https://www.
chromium.org/hsts.

2020. Geckodriver. https://github.com/mozilla/geckodriver.

2020. McAfee - Customer URL Ticketing System. https://trustedsource.org/en/
feedback/url.

2020. MDN Web Docs - Subresource Integrity. https://developer.mozilla.org/en-
US/docs/Web/Security/Subresource_Integrity.

2020. Puppeteer. https://developers.google.com/web/tools/puppeteer.

Ben Adida. 2008. Sessionlock: Securing Web Sessions Against Eavesdropping. In
Proceedings of the 17th International Conference on World Wide Web.

Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H Phung, Lieven Desmet,
and Frank Piessens. 2012. JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications. In Proceedings of the 28th Annual
Computer Security Applications Conference. ACM, 1-10.

Furkan Alaca and Paul C Van Oorschot. 2016. Device fingerprinting for augment-
ing web authentication: classification and analysis of methods. In Proceedings of
the 32nd Annual Conference on Computer Security Applications. ACM, 289-301.
Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In 27th USENIX Security Symposium (USENIX Security ’18). 377-392.

Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. 2009. All your
contacts are belong to us: automated identity theft attacks on social networks. In
Proceedings of the 18th international conference on World wide web. ACM, 551-560.
Kevin Bock, Daven Patel, George Hughey, and Dave Levin. 2017. unCaptcha: A
Low-Resource Defeat of reCaptcha’s Audio Challenge. In 11th USENIX Workshop
on Offensive Technologies (WOOT 17).

Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. 2015.
CookiExt: Patching the browser against session hijacking attacks. Journal of
Computer Security (2015).

Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek Pietraszek, Andy Archer,
Allan Aquino, Andreas Pitsillidis, and Stefan Savage. 2014. Handcrafted fraud
and extortion: Manual account hijacking in the wild. In Proceedings of the 2014
conference on internet measurement conference. ACM, 347-358.

Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. 2016. An Empirical
Study of Web Cookies. In Proceedings of the 25th International Conference on World
Wide Web (WWW 16).

Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schneidewind, Marco
Squarcina, and Mauro Tempesta. 2018. WPSE: Fortifying Web Protocols via
Browser-Side Security Monitoring. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association.

Stefano Calzavara, Riccardo Focardi, MatAzAa Nemec, Alvise Rabitti, and Marco
Squarcina. 2019. Postcards from the Post-HTTP World: Amplification of HTTPS
Vulnerabilities in the Web Ecosystem. In 2019 IEEE Symposium on Security and
Privacy.

Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta.
2017. Surviving the Web: A Journey into Web Session Security. Comput. Surveys
(2017).

Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2018. Sub-session hijack-
ing on the web: Root causes and prevention. In Journal of Computer Security.
Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and Michele Bugliesi. 2019.
Testing for Integrity Flaws in Web Sessions. In Computer Security - th European
Symposium on Research in Computer Security, ESORICS 2019.

Bertil Chapuis, Olamide Omolola, Mauro Cherubini, Mathias Humbert, and
Kévin Huguenin. 2020. An Empirical Study of the Use of Integrity Verification
Mechanisms for Web Subresources. In Proceedings of The Web Conference 2020
(WWW °20). Association for Computing Machinery.

https://sites.google.com/a/

(32]

[33

[34

@
2

[36

[37

[38

[40

[41

[42

=
&

[44

[45

[46]

(48

[49]

[50

[51

o
S

[53

Jianjun Chen, Jian Jiang, Haixin Duan, Tao Wan, Shuo Chen, Vern Paxson, and
Min Yang. 2018. We Still Don’t Have Secure Cross-Domain Requests: an Empirical
Study of CORS. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association.

Sandy Clark, Stefan Frei, Matt Blaze, and Jonathan Smith. 2010. Familiarity
breeds contempt: The honeymoon effect and the role of legacy code in zero-day
vulnerabilities. In Proceedings of the 26th annual computer security applications
conference. ACM, 251-260.

Italo Dacosta, Saurabh Chakradeo, Mustaque Ahamad, and Patrick Traynor.
2012. One-time Cookies: Preventing Session Hijacking Attacks with Stateless
Authentication Tokens. ACM Trans. Internet Technol. (2012).

Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. 2009. Nemesis:
Preventing Authentication & Access Control Vulnerabilities in Web Applications.
In Proceedings of the 18th Conference on USENIX Security Symposium. USENIX
Association, 267-282.

Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and Alex C Snoeren. 2017.
Tripwire: inferring internet site compromise. In Proceedings of the 2017 Internet
Measurement Conference. ACM, 341-354.

Levent Demir, Amrit Kumar, Mathieu Cunche, and Cedric Lauradoux. 2017. The
pitfalls of hashing for privacy. IEEE Communications Surveys & Tutorials 20, 1
(2017), 551-565

Lieven Desmet, Frank Piessens, Wouter Joosen, and Pierre Verbaeten. 2006. Bridg-
ing the gap between web application firewalls and web applications. In Proceed-
ings of the fourth ACM workshop on Formal methods in security. ACM, 67-77.
Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna.
2012. Enemy of the State: A State-Aware Black-Box Web Vulnerability Scan-
ner. In Presented as part of the 21st USENIX Security Symposium (USENIX Secu-
rity 12). USENIX, Bellevue, WA, 523-538. https://www.usenix.org/conference/
usenixsecurity12/technical- sessions/presentation/doupe

Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of ACM CCS 2016.

Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan Mayer, Arvind Narayanan, and Edward W. Felten. 2015. Cookies That
Give You Away: The Surveillance Implications of Web Tracking. In Proceedings of
the 24th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee.

Daniel Fett, Ralf Kiisters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security.

Gertjan Franken, Tom Van Goethem, and Wouter Joosen. 2018. Who Left Open
the Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie Policies. In
27th USENIX Security Symposium (USENIX Security 18). USENIX Association.
Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich,
and Jason Polakis. 2018. O Single Sign-Off, Where Art Thou? An Empirical
Analysis of Single Sign-On Account Hijacking and Session Management on
the Web. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association.

Shashank Gupta and Brij Bhooshan Gupta. 2017. Cross-Site Scripting (XSS)
attacks and defense mechanisms: classification and state-of-the-art. International
Journal of System Assurance Engineering and Management 8, 1 (2017), 512-530.
B. Krumnow H. Jonker, S. Karsch and M. Sleegers. 2020. Shepherd: A Generic
Approach to Automating Website Login. In Proceedings of the 2020 Workshop on
Measurements, Attacks, and Defenses for the Web.

Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen, VN Venkatakrishnan, Run-
qing Yang, and Zhenrui Zhang. 2015. Vetting SSL usage in applications with
SSLint. In 2015 IEEE Symposium on Security and Privacy. IEEE, 519-534.
Markus Huber, Martin Mulazzani, Edgar Weippl, Gerhard Kitzler, and Sigrun
Goluch. 2010. Exploiting social networking sites for spam. In Proceedings of the
17th ACM conference on Computer and communications security. ACM, 693-695.
Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha
Loizon, and Roya Ensafi. 2019. The chain of implicit trust: An analysis of the
web third-party resources loading. In The World Wide Web Conference. ACM,
2851-2857.

Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. 2019. Fingerprint Surface-
Based Detection of Web Bot Detectors. In European Symposium on Research in
Computer Security. Springer, 586-605.

Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. 2018. Coming of age: A lon-
gitudinal study of tls deployment. In Proceedings of the Internet Measurement
Conference 2018. ACM, 415-428.

Michael Kranch and Joseph Bonneau. 2015. Upgrading HTTPS in mid-air: An em-
pirical study of strict transport security and key pinning. In 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015.

Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.
2017. "1 Have No Idea What I'm Doing"-On the Usability of Deploying HTTPS.
In 26th USENIX Security Symposium (USENIX Security 17). 1339-1356.

(54

[55

[56

[57

[58

[59

[60

(61

[62

[63

(64

(66

[67

(68

[69

[70

[71

[72

[73

[74

]

]

]

]

]

]

]

]

]

]

Tammo Krueger, Christian Gehl, Konrad Rieck, and Pavel Laskov. 2010. TokDoc: A
Self-healing Web Application Firewall. In Proceedings of the 2010 ACM Symposium
on Applied Computing (SAC ’10).

Deepak Kumar, Zane Ma, Zakir Durumeric, Ariana Mirian, Joshua Mason, J Alex
Halderman, and Michael Bailey. 2017. Security challenges in an increasingly
tangled web. In Proceedings of the 26th International Conference on World Wide
Web. International World Wide Web Conferences Steering Committee, 677-684.
H. Kwon, H. Nam, S. Lee, C. Hahn, and J. Hur. 2019. (In-)Security of Cook-
ies in HTTPS: Cookie Theft by Removing Cookie Flags. IEEE Transactions on
Information Forensics and Security (2019).

Sebastian Lekies, Krzysztof Kotowicz, Samuel Grof3, Eduardo A. Vela Nava, and
Martin Johns. 2017. Code-Reuse Attacks for the Web: Breaking Cross-Site Script-
ing Mitigations via Script Gadgets. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS °17). ACM.

Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey,
Damon McCoy, Stefan Savage, and Vern Paxson. 2016. You’'ve Got Vulnera-
bility: Exploring Effective Vulnerability Notifications. In 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association.

Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. 2012. Know-
ing your enemy: understanding and detecting malicious web advertising. In
Proceedings of the 2012 ACM conference on Computer and communications security.
ACM, 674-686.

Moxie Marlinspike. 2009. New Tricks For Defeating SSL In Practice. BlackHat
DC (Feb. 2009).

Matthias Marx, Ephraim Zimmer, Tobias Mueller, Maximilian Blochberger, and
Hannes Federrath. 2018. Hashing of personally identifiable information is not
sufficient. SICHERHEIT 2018 (2018).

Arunesh Mathur, Nathan Malkin, Marian Harbach, Eyal Peer, and Serge Egelman.
2018. Quantifying Users’ Beliefs about Software Updates. CoRR (2018). http:
//arxiv.org/abs/1805.04594

Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. 2018. Uncovering
HTTP Header Inconsistencies and the Impact on Desktop/Mobile Websites. In
Proceedings of the 2018 World Wide Web Conference (WWW ’18). International
World Wide Web Conferences Steering Committee.

Yogesh Mundada, Nick Feamster, and Balachander Krishnamurthy. 2016. Half-
Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security (ASIA CCS ’16). ACM.

Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. 2012.
You are what you include: large-scale evaluation of remote javascript inclusions.
In Proceedings of the 2012 ACM conference on Computer and communications
security. ACM, 736-747.

Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen.
2011. SessionShield: Lightweight Protection against Session Hijacking. In Engi-
neering Secure Software and Systems, Ulfar Erlingsson, Roel Wieringa, and Nicola
Zannone (Eds.). Springer Berlin Heidelberg.

Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringhini. 2016. What
happens after you are pwnd: Understanding the use of leaked webmail credentials
in the wild. In Proceedings of the 2016 Internet Measurement Conference. ACM,
65-79.

Avanish Pathak. 2014. An analysis of various tools, methods and systems to gener-
ate fake accounts for social media. Northeastern University Boston, Massachusetts
December (2014).

Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.
Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM.

T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. 2017. NEZHA: Efficient
Domain-Independent Differential Testing. In 2017 IEEE Symposium on Security
and Privacy (SP), Vol. 00. 615-632. https://doi.org/10.1109/SP.2017.27

Tasonas Polakis, Marco Lancini, Georgios Kontaxis, Federico Maggi, Sotiris Ioanni-
dis, Angelos D. Keromytis, and Stefano Zanero. 2012. All Your Face Are Belong to
Us: Breaking Facebook’s Social Authentication. In Proceedings of the 28th Annual
Computer Security Applications Conference (Orlando, Florida, USA) (ACSAC ’12).
ACM, New York, NY, USA, 399-408. https://doi.org/10.1145/2420950.2421008
N. Ramasubbu, M. Cataldo, R. K. Balan, and]J. D. Herbsleb. 2011. Configuring
global software teams: a multi-company analysis of project productivity, quality,
and profits. In 2011 33rd International Conference on Software Engineering (ICSE).
261-270.

Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. 2020. Complex Security Policy? A Longitudinal Analysis of Deployed
Content Security Policies. In NDSS.

Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D. Strowes, and Narseo Vallina-Rodriguez. 2018. A Long Way to
the Top: Significance, Structure, and Stability of Internet Top Lists. In IMC.

[75

[76]

[77

<
&

[79

[80

(81

(82

%0
&

[84

[85

(87]

(88]

(89

[90

)
=

[92

[93

Kapil Singh, Alexander Moshchuk, Helen] Wang, and Wenke Lee. 2010. On the
incoherencies in web browser access control policies. In 2010 IEEE Symposium
on Security and Privacy. IEEE, 463-478.

Suphannee Sivakorn, Angelos D. Keromytis, and Jason Polakis. 2016. That’s
the Way the Cookie Crumbles: Evaluating HTTPS Enforcing Mechanisms. In
Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society
(Vienna, Austria) (WPES ’16). ACM, 71-81.

Suphannee Sivakorn, Jason Polakis, and Angelos D. Keromytis. 2016. The Cracked
Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Information. In
In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P ’16).
Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything
to Hide? Studying Minified and Obfuscated Code in the Web. In The World Wide
Web Conference. 1735-1746.

Peter Snyder, Periwinkle Doerfler, Chris Kanich, and Damon McCoy. 2017. Fifteen
minutes of unwanted fame: Detecting and characterizing doxing. In Proceedings
of the 2017 Internet Measurement Conference. ACM, 432-444.

Saumya Solanki, Gautam Krishnan, Varshini Sampath, and Jason Polakis. 2017. In
(Cyber)Space Bots Can Hear You Speak: Breaking Audio CAPTCHAs Using OTS
Speech Recognition. In Proceedings 10th ACM Workshop on Artificial Intelligence
and Security (AlSec ’17).

Sooel Son, Kathryn S. Mckinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repairing
access-control bugs in web applications. In In Network and Distributed System
Security Symposium (NDSS).

Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. 2019. Don’t
Trust The Locals: Investigating the Prevalence of Persistent Client-Side Cross-Site
Scripting in the Wild.. In NDSS.

Ben Stock, Martin Johns, Marius Steffens, and Michael Backes. 2017. How the
Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security. In
26th USENIX Security Symposium (USENIX Security 17). USENIX Association, 971
987. https://www.usenix.org/conference/usenixsecurity17/technical- sessions/
presentation/stock

Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael
Backes. 2016. Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In 25th USENIX Security Symposium (USENIX Security
16). USENIX Association.

Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebastian Lekies, and Martin Johns.
2015. From facepalm to brain bender: Exploring client-side cross-site scripting. In
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security. ACM, 1419-1430.

Kurt Thomas, Dmytro Iatskiv, Elie Bursztein, Tadek Pietraszek, Chris Grier,
and Damon McCoy. 2014. Dialing Back Abuse on Phone Verified Accounts. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’14). 465-476.

T. Unger, M. Mulazzani, D. FrAijhwirt, M. Huber, S. Schrittwieser, and E. Weippl.
2013. SHPF: Enhancing HTTP(S) Session Security with Browser Fingerprinting.
In 2013 International Conference on Availability, Reliability and Security.

Kami Vaniea and Yasmeen Rashidi. 2016. Tales of Software Updates: The Process
of Updating Software. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI 4AZ16). Association for Computing Machinery.

Rui Wang, Shuo Chen, and XiaoFeng Wang. 2012. Signing Me Onto Your Accounts
Through Facebook and Google: A Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In Proceedings of the 2012 IEEE Sympo-
sium on Security and Privacy (SP ’12). IEEE Computer Society, Washington, DC,
USA, 365-379. https://doi.org/10.1109/SP.2012.30

Rui Wang, Shuo Chen, and XiaoFeng Wang. 2012. Signing Me Onto Your Accounts
Through Facebook and Google: A Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In 2012 IEEE Symposium on Security and
Privacy (SP ’12). IEEE Computer Society.

Rick Wash, Emilee Rader, Kami Vaniea, and Michelle Rizor. 2014. Out of the Loop:
How Automated Software Updates Cause Unintended Security Consequences. In
10th Symposium On Usable Privacy and Security (SOUPS 2014). USENIX Associa-
tion.

Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP is dead, long live CSP! On the insecurity of whitelists and the future of
content security policy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1376-1387.

Ronghai Yang, Wing Cheong Lau, Jiongyi Chen, and Kehuan Zhang. 2018. Vetting
Single Sign-On SDK Implementations via Symbolic Reasoning. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association. https://www.
usenix.org/conference/usenixsecurity18/presentation/yang

Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao Wan, and
Nicholas Weaver. 2015. Cookies Lack Integrity: Real-World Implications. In 24th
USENIX Security Symposium (USENIX Security 15). USENIX Association, Wash-
ington, D.C. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/zheng

Yuchen Zhou and David Evans. 2010. Why aren’t HTTP-only cookies more
widely deployed. Proceedings of 4th Web 2 (2010).

[96] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web Ap-
plications for Single Sign-On Vulnerabilities. In 23rd USENIX Security Symposium
(USENIX Security 14). USENIX Association.

[97] Chaoshun Zuo, Zhigiang Lin, and Yingian Zhang. 2019. Why Does Your Data

Leak? Uncovering the Data Leakage in Cloud From Mobile Apps. In 2019 IEEE

Symposium on Security and Privacy. San Francisco, CA.

Chaoshun Zuo, Qingchuan Zhao, and Zhigiang Lin. 2017. AUTHSCOPE: Towards

Automatic Discovery of Vulnerable Authorizations in Online Services. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (CCS °17). ACM.

[98

A APPENDIX

A.1 Browser Automation

Unexpected Alerts. If an alert popup appears and an Unexpected-
AlertPresentException is raised during the invoked method, the
execution context is switched temporarily to the alert box, which is
then dismissed, and the method is retried. To prevent other alerts
from appearing in the current page’s context, the window.alert
method is overridden.

Retry mode. We have developed a retry mode, which is used
by XDriver whenever it needs to perform an action it can retry in
case of failure; this is done without having to return control back
to the caller, e.g., when a page’s links or login forms are requested.
Specifically, if an exception is raised while performing the operation,
XDriver will retry the operation for a certain amount of times before
raising the exception or returning a default value.

Built-in crawler. Our custom browser automation tool includes
a built-in crawler for streamlining crawl-based tasks, a functional-
ity that is especially vital in security-related studies. In our frame-
work’s context it is useful for our URLDiscovery and PrivacyAu-
ditor modules for crawling and processing websites. Modules that
want to initiate a crawl only need to call the crawl_init method
with the desired configuration options and then iteratively call the
crawl_next method, where all logic of the crawl is transparently
implemented. The following configuration options are currently
supported by our system: (i) Crawl depth, (ii) DFS or BFS mode, (iii)
optional support for a set of regular expressions that dictate which
URLs and even subdomains to follow or not follow (e.g., focus only
on login related URLs or crawl a specific subdomain), and (iv) an
optional break function that is applied after every fetched URL to
determine whether the crawl should stop (e.g., if a specific type of
form is found).

Return values. Additionally, to simplify the checks that the
caller modules have to make for determining whether a requested
operation was successful, we refrain from raising Selenium-level
exceptions and, instead, return default boolean values. Only in
cases where our handling mechanisms cannot resolve an issue we
consider the exception to be fatal and raise it. For instance, when a
module attempts to interact with an element that is not currently
interactable (e.g., clicking an invisible element) a False value is
returned instead of raising the default ElementNotVisibleExcep-
tion.

A.2 Attack Workflow Statistics

In Figure 4 we plot the number and percentages of domains pro-
cessed during each phase of our auditing procedure’s workflow.
First, our system identifies appropriate account signup or login
pages for ~13.4% of all the domains included in our dataset. Next,

Algorithm 1 CookieAuditor algorithm

1: function AubiT

2 critical_cookies « {

3 secure’ «— ['cookieA’,” cookieB, ...],
4 httpOnly’ < ['cookieD’,” cookieF’, ...], }
5: vulnerable « { ’secure’ « NULL,

6: *httpOnly” < NULL, }

7

8

tested — []

: for attr, cookies in critical_cookies do
9: if cookies.is_empty() then
10: vulnerable[attr] < True
11: else
12: for tested_attr in tested do
13: tested_set « critical_cookies[tested_attr]
14: if cookies == tested_set then
15: vulnerable[attr] < vulnerable[tested_attr]
16: else if vulnerable[tested_attr] AND
17: cookies.is_subset(tested_set) then
18: vulnerable[attr] < True
19: end if
20: end for
21: if vulnerable[attr] == NULL then
22: vulnerable[attr] = EVAL(cookies)
23: end if
24: end if
25: tested.append (attr)
26: end for
27: return vulnerable

28: end function

29: function EvaL(cookie_set)

30: BROWSER.remove_cookies(cookie_set)
31: BROWSER.refresh()

32: return login_oracle()

33: end function

the account creation process successfully completes for almost 12%
of those domains. As discussed in Section 5, the automated account
creation process is the biggest challenge for our framework due to
two reasons. First, the registration process may include predicates
that significantly complicate the automated input generation due
to input format constraints. For instance, the registration may in-
clude a mandatory field (e.g., postal address) that requires a valid
value for a specific location/country. Iteratively testing different
input formats can prohibitively increase the duration of the audit-
ing process at the scale of our analysis. Second, registration might
require access to a specific resource (e.g., phone number or credit
card) that is not feasible to obtain for a study of our scale. After
the account creation, we find that over half of the audited domains
fail to correctly protect their cookies and are susceptible to one of
the attacks covered by our threat model (as inferred by our Cookie
Auditor module presented in Algorithm 1). The remaining modules
are highly effective and infer the authentication cookies and de-
tect identifier leakage in the vast majority of the audited domains.
The failures in these modules are attributed to websites timing out
(or being generally unresponsive) after several auditing tests and
network failures. Also, when re-evaluating these domains other
factors can affect the execution of our modules, such as our test
account being deactivated, expired domains etc.

False negatives. To obtain more insights about our framework’s
effectiveness we perform an indicative experiment where we inves-
tigate the false negative rates (FN) of the different modules in our
system. Specifically, we randomly sample 20 websites per module,
where the module’s execution did not complete successfully, and
manually inspect whether these failures were actual true negatives
or not. For our URL discovery module, we identified only four FNs,
i.e. in four cases there was a login option that our system failed
to detect. Our generic account setup component yielded 3 FN, i.e.

148,516

213,293
188, 051

o
7] SSODomains

Signup/Login
Domains (69.63%)
Discovered URLs
(13.44%)
Failed audlted (437 /1.73%)

Failed Account
Setup (88.17%)

Failed AuthCookies
(444 / 3.56%)

Failed Leakage
(791/6.34%)

=] (20.95%)
AuthCookies
Audited
I 1248081 56.27% B 2040/9644% W
Setup Account Susceptible0 Leakage i
Classic & SSO (25,242 /11.83%) (12,484 /50.3%) (11,693 /93.66%)
(20,078 /9.41%)

Figure 4: Success rate for different workflow phases.

we successfully signed up and/or logged in the website, but were
not able to infer the state. Similarly, the SSO module had 5 FNs.
The Cookie Auditor yielded zero FN, meaning that there was not a
single case where our system identified a website as secure against
an attack, while it really was vulnerable. Finally, the Privacy Audi-
tor had 4 FNs, i.e. there was account information that we provided
during the signup process that was not detected as being leaked.
We did not measure the Authentication Cookies FN rates, as man-
ually identifying all authentication cookies and combinations is
prohibitively time consuming or even infeasible in many cases.

URL discovery effectiveness. As mentioned, our URL discov-
ery module initially explores the URLs provided by [44] before
falling back to our own crawling approach. As such, it is of interest
to quantify how useful this dataset was and, more importantly,
how effective our system was in cases where it had to employ our
own approach. For all the websites where we identified a signup
option, 23.1% were fully discovered using the dataset from [44],
while for the remaining 76.9% we had to fall back to crawling the
websites (43.1% were included in both datasets, while 33.8% were
not included in [44]).

Failed registrations. In an attempt to better understand the
reasons behind failed registrations, we manually inspected 50 ran-
domly selected websites. In 22 cases, there was some form of an
anti-bot challenge that our system was not able to solve and, thus,
could not proceed with registration. In 23 websites one of the fields
was rejected due to inappropriate formatting, e.g. mobile phones,
addresses, passwords etc. Finally, the remaining 5 websites failed
due to unexpected or complex form behavior, e.g. after filling in a
specific field, a custom drop down list appeared that also needed to
be detected and filled out.

A.3 Manual Session Hijacking Verification.

Table 6 breaks down the results from our manual session hijacking
validation experiment. We observe that in all but one cases, the

Table 4: Most common categories of susceptible domains.

Category #domains | Category #domains
Online Shopping 3,725 Soft/Hardware 252
Business 1,117 Sports 234
Marketing/Merch. 1,100 Job Search 229
Internet Services 642 Pornography 194
Entertainment 586 News 187
Education/Reference 558 Real Estate 178
Blogs/Wiki 393 Public Info 153
Fashion/Beauty 322 Health 148

access we obtain through our cookie hijacking attacks leads to
the exposure of sensitive information and functionality even if we
only obtain partial access. This includes the ability to view and edit
personal information, as well as execute site-specific functionality.
As expected, in most cases we cannot (fully) change account settings
(e.g., password, email). This is due to the fact that such operations
typically require the user to retype their password, which is not
known to the cookie-hijacking attacker. Nonetheless, we found that
multiple domains allow the attacker to change the password even
without knowledge of the current password.

A.4 Domain Categorization

Domain categorization. Table 4 reports the top domain categories
(classified using McAfee’s URL Ticketing System [14]) that are
vulnerable to at least one attack. We find that online shopping is
the most prevalent category of susceptible domains, highlighting
the privacy threat of cookie hijacking. These services include a
plethora of personal data (e.g., address), while. recommendations
and prior purchases can reveal sensitive user traits (e.g., sexual
orientation, religion). We also find 148 and 194 domains that provide

Table 5: The 20 most popular vulnerable domains.

nytimes.com
soundcloud.com

Domain ‘ Eavesdropping]S cookie stealing
amazon.com v v
reddit.com X v
twitch.tv X v
mail.ru v v
aliexpress.com v X
alipay.com v v
bing.com X v
amazon.co.jp v v
ebay.com v v
msn.com v X
xvideos.com v v
wordpress.com v X
amazon.in v v
xhamster.com v X
amazon.co.uk v v
pixnet.net v v
bongacams.com v X
roblox.com v X
v v
X v

health-related functionality and adult content respectively,. which
potentially enable access to extremely sensitive user data.

A.5 Popular Domains

Table 5 presents the 20 most popular domains found vulnerable
during our study, which span various categories (e.g., e-commerce,
blogging, pornography etc.). We manually verified the feasibility
of session hijacking attacks in every one of these domains. It is
important to note that all of these services have a massive user
base, most likely employ professional development teams and may
even have dedicated security teams, yet they still expose their users
to significant threat. Our PrivacyAuditor module also uncovered
several interesting findings. One domain leaked the password hash
in a cookie (avgle.com), two leaked the phone number in the page’s
source (123rf.com, naukri.com) and one in the local storage (south-
west.com). One domain leaked the user’s postal address in the
source (asus.com) and two leaked the user’s workplace in the source
(alibaba.com, mailchimp.com).

Another interesting observation is that even major services like
Amazon struggle with the correct deployment of security mecha-
nisms. Specifically, we found that while amazon.com deploys HSTS,
it does so in an incomplete manner. The policy is only set on the
“www” subdomain and thus the authentication cookies we have
identified are leaked over unencrypted connections to the base
domain, since their domain attribute is set to “.amazon.com”.

Table 6: Manually validated domains and hijacking capabilities.

Domain Read Write Settings Exposedinformation & functionality
Top-1K (hand-picked)
amazon.com 1)) X View/edit c.art, ?d preferenc.es, Vf)uchers/coupons, shopp'ing list, email subscriptions,
deals & notifications, browsing history and recommendations
. View/edit favorite stores, wish list, cart, profile photo, full name, follow sellers. View
aliexpress.com o L X .
messages, order history, coupons
View/edit cart, watchlist, saved searches/sellers, messages, address, profile photo. View
ebay.com [o X
recently viewed items, active bids/offers, purchase history, own items for sale
. View/edit cart, full name, phone number, gender, address, job information, favorites,
alibaba.com [[X / . P & .) .
profile photo. View messages, orders, transactions, contacts, recommendations
reddit.com ° °® X Vie\y/ edit' post.s, comments, saved, display name, about section, profile photo, inbox,
email notifications, block users
bing.com o o X View/edit search history, interests. View first name, profile photo
bestbuy.com > > X View/edit cart, saved items. View shopping history, orders
View/edit cart, wishlist, address, full name, gender, phone number, messages, reviews,
banggood.com o o X
comments, download full activity record. View orders, coupons, gifcards, search history
. View/edit cart, wishlist, full name, birthdate, email, notification settings. View orders,
wish.com [([X . .
recently viewed items
cloudflare.com O O X None. The attack only succeeds when performed from the same PC
Top-1K (randomly selected)
indeed.com () o X View/edit saved job offers, job applications, scheduled interviews, visited jobs
hotels.com () Q) X View/edit favorties, searches
.. View/edit phone number, comments, followed channels, password. View transaction
vidio.com o o v . .
history, watch history
nature.com [d X View/edit full name, professional information, subscriptions. View email
. . View/edit full name, email, job information, phone number, address. View recommen-
sciencedirect.com ([o X . .
dations, history
1fichier.com o o N/A View/edit files, folders, full name, address, phone number.
. View/edit bitlinks, link statistics, email address, delete account. View API key, session
bitly.com o o X . . 7
history (and disconnect all sessions)
. View/edit subscriptions, wish/favorites list, address, phone number. View email, birth-
cdiscount.com o o X . .
date, orders, messages, vouchers, credit card info
elsevier.com °® °® View/edit car.t, full name, email, address, phone number, partial payment information,
add new credit card
espncricinfo.com o o X View/edit full name, email, phone number, gender, address, delete account
Any-rank (randomly selected)
sendatext.co o o N/A View/edit SMS texts (sent and replies), calls, address book
metzlerviolins.com o o v View/edit address, cart, wish list, password. View orders
swotanalysis.com o o X View/edit teams and members, billing history, projects
kokpit.aero [] (] v View/edit full name, email, phone number, password, comments
brauchekondome.com o ([) X View/edit full name, address. View email, birth date, orders
soccergarage.com o o X View/edit username, email, company name, address, cart, wish list, delete profile
packlane.com [@) N/A View orders, saved designs
doggiesolutions.co.uk o o X View/edit full name, email, address, cart, delete profile. View order history
jellyfields.com o o v View/edit email, username, website, favorites, password
helmetstickers.com o o v View/edit full name, address, cart, password, delete profile. View order history

Access: full @, partial @, none O

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 System Design and Implementation
	3.1 Automated Account Setup
	3.2 Cookie Auditor
	3.3 Privacy Leakage Auditor
	3.4 Browser Automation

	4 Experimental Evaluation
	5 Discussion
	6 Related Work
	7 Conclusions
	References
	References
	A Appendix
	A.1 Browser Automation
	A.2 Attack Workflow Statistics
	A.3 Manual Session Hijacking Verification.
	A.4 Domain Categorization
	A.5 Popular Domains

