
Awakening the Web’s Sleeper Agents:

Misusing Service Workers for Privacy Leakage

Soroush Karami

University of Illinois at Chicago

skaram5@uic.edu

Panagiotis Ilia

University of Illinois at Chicago

pilia@uic.edu

Jason Polakis

University of Illinois at Chicago

polakis@uic.edu

Abstract—Service workers are a powerful technology sup-
ported by all major modern browsers that can improve users’
browsing experience by offering capabilities similar to those of
native applications. While they are gaining significant traction
in the developer community, they have not received much
scrutiny from security researchers. In this paper, we explore
the capabilities and inner workings of service workers and
conduct the first comprehensive large-scale study of their API
use in the wild. Subsequently, we show how attackers can exploit
the strategic placement of service workers for history-sniffing
in most major browsers, including Chrome and Firefox. We
demonstrate two novel history-sniffing attacks that exploit the
lack of appropriate isolation in these browsers, including a non-
destructive cache-based version. Next, we present a series of use
cases that illustrate how our techniques enable privacy-invasive
attacks that can infer sensitive application-level information, such
as a user’s social graph. We have disclosed our techniques to all
vulnerable vendors, prompting the Chromium team to explore a
redesign of their site isolation mechanisms for defending against
our attacks. We also propose a countermeasure that can be
incorporated by websites to protect their users, and develop a
tool that streamlines its deployment, thus facilitating adoption at
a large scale. Overall, our work presents a cautionary tale on
the severe risks of browsers deploying new features without an
in-depth evaluation of their security and privacy implications.

I. INTRODUCTION

As the Web continues to evolve, browsers have become
complex application platforms that mediate a significant part of
our online activities. With web apps continuously introducing
novel functionality to increase user engagement, browsers
deploy new APIs and technologies to support such initiatives.
As a result, modern web browsers often integrate new tech-
nologies and mechanisms that introduce novel attack vectors
with significant security and privacy implications [35], [36],
[47], [27]. As such, it is crucial that the security community
conducts in-depth investigations of the risks introduced by
emerging browser features.

Service workers (SWs) are such an emerging technology,
gaining significant traction within the browser ecosystem [48]
as they provide functionality that bridges the gap between web
apps and applications that run natively on a user’s device.
Their capability to run in the background independently of the

web application’s page, coupled with browser APIs, enables
a rich set of features that were previously out of the realm
of capabilities of web apps (e.g., push notifications, back-
ground syncing, programmatically-driven caching). To better
understand their prevalence and use in the wild we develop
an automated testing framework for the dynamic analysis of
SWs. Our system, which is built on top of an instrumented
version of Chromium, automatically visits websites, extracts
their SWs, and analyzes their use of APIs. We leverage our
framework for studying how SW APIs are used in the top one
million Alexa sites, and identify over 30K domains currently
setting SWs and taking advantage of their capabilities.

Subsequently, we conduct an empirical exploration of the
privacy threats that the presence of SWs poses to users and
identify several novel privacy-invasive attacks. We demonstrate
how one of the cornerstones of SW capabilities (that of pre-
fetching and caching resources) can be misused for history
sniffing attacks. We design and implement two attack tech-
niques that use iframes on a third-party website to fetch
cross-domain resources, resulting in the activation of other
origins’ SWs. Then, by using the information provided by the
Performance API or by measuring those resources’ loading
times, our techniques can detect the presence of a SW in
the user’s browser, indicating that the user has previously
visited a particular website. With the use of iframes for
the activation of SWs, our techniques essentially circumvent
browsers’ site isolation mechanisms. Our attacks, which work
on all major browsers that implement SWs except Safari, are
more practical and robust than prior history sniffing attacks: (i)
each SW’s cache is programmatically managed by the SW and
not subject to the browser’s common cache eviction policy that
affects prior attacks, (ii) our Performance-API-based attack is
not subject to false positives or negatives and (iii) it is also
non-destructive, as opposed to prior cache-based techniques.
Furthermore, we have built a tool that automatically identifies
resources appropriate for our attacks on a target domain,
allowing us to conduct the largest experiment for evaluating
domains’ susceptibility to history sniffing to date.

While our main focus is inferring which websites a user
has visited, our methodology also enables other forms of
privacy-leakage attacks. We present a series of such use cases
that illustrate how SW-specific behavior enables attacks that
infer sensitive application-level information. First, we show
that cached resources can reveal more fine-grained information
about which specific pages have been visited in sensitive
domains like an e-shop with sexual paraphernalia and a portal
for searching people. Second, we demonstrate how post-login

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23104
www.ndss-symposium.org

resource caching can allow attackers to infer that users have
an account or are currently logged into a given website
(e.g., Tinder, Gab). Third, we outline how attackers can use
WhatsApp to uncover if a target user is part of the victim’s
social circle. In certain cases, a more resourceful attacker can
even infer if a visitor is part of a given WhatsApp group, which
could enable a (partial) deanonymization attack.

Overall, our research demonstrates that the strategic place-
ment of SWs for handling HTTP requests, combined with ac-
cess to functionality-rich APIs and the lack of proper isolation,
presents several opportunities for misuse that result in severe
privacy loss for users. As SWs continue to gain significant
traction in the web development community, the threat that
they pose to users will only increase over time. As such,
we have set remediation efforts in motion by disclosing our
findings to all vulnerable browser vendors and web services.
Accordingly, the first attack that uses the Performance API for
determining if a resource is fetched through a SW, has been
addressed by most notified browsers at the time of this writing.

Alarmingly, the underlying issues that enable our attacks
lie in browsers’ site isolation mechanisms that allow iframes

in third-party websites to activate other parties’ SWs and use
them for retrieving resources. As such, the appropriate solution
to address the root cause of our attacks is to redesign site
isolation mechanisms and prevent the use of SWs in third-
party websites. This, however, is not trivial to implement and
requires significant effort. To that end, we propose an access
control mechanism for restricting websites’ SWs from being
activated and used by other sites. To assist web developers
in implementing the proposed countermeasure and facilitate
its adoption at a large scale, we will open source our tool for
automatically incorporating appropriate checks that implement
the desired access control policy.

In summary, our research contributions are:

• We present an overview of the inner workings and capa-
bilities of SWs and develop a framework for dynamically
analyzing them. Subsequently we conduct a large-scale
measurement study on the use of SWs and provide the
first, to our knowledge, comprehensive analysis of their
API usage in the wild. We will publicly share our data to
facilitate further research.

• We introduce a series of novel privacy attacks that exploit
the placement and functionality of SWs. We present two
practical and robust history sniffing attacks (including a
non-destructive version) that exploit the lack of appro-
priate isolation in browsers, and we conduct the largest
study on the applicability of such attacks to date.

• We present a series of use cases that highlight how SWs
can be misused for more privacy-invasive attacks that
infer application-level information.

• The severity and impact of our attacks has driven browsers
to modify their systems and has prompted Chromium’s
exploration of a redesign of their site-isolation mecha-
nism, which poses significant challenges. To better protect
users in the short term, we will publicly release a tool
that streamlines the deployment of an access control
mechanism that can prevent our attacks.

II. BACKGROUND AND THREAT MODEL

As web browsers continue to mediate a significant portion
of our online activities, there is an ongoing trend of pushing
functionality that is typically associated with native apps to
cloud and web applications (e.g., collaborative document writ-
ing in Overleaf). Browsers are in a constant state of evolution,
with new functionality-rich APIs being deployed. One such
recent feature are Service Workers (SWs), which aim to fill the
gap between native and web apps. Traditionally, web apps have
lacked certain capabilities common to native apps, preventing
them from reaching their full potential. Functionality such as
sending push notifications, syncing in the background, working
offline, and pre-caching for optimization, is now within the
realm of capabilities of modern web apps with SWs.

Service workers run independently of the web application
and do not have access to the DOM tree, i.e., cannot directly
read a page’s content. They are also event-driven scripts and,
unlike other workers, can exist without a reference from the
document. That means that they can become idle when not in
use and restart when next needed (on an event). Specifically,
there are six events that service workers can respond to:

Install event. Once the browser registers a service worker,
the install event occurs. This is, conceptually, a similar
process to installing a native application. With this event ser-
vice workers go through a preparation process that establishes
them for subsequent use, e.g., by populating an IndexedDB
and caching necessary assets.

Activate event. This event is sent after the install event
completes and the SW is activated. During this process, typical
actions include cleaning up old caches and anything else
associated with a previous version of the SW (i.e., after a
website pushes an updated version of its SW).

Push event. In this event, SWs use push API and
notifications API to provide push notification for web
apps. The push API allows the SW to receive messages
pushed from the server. The notifications API provides
a method for integrating push notifications from web apps into
the underlying operating system’s native notification system.
Servers can send push messages at any time, even when the
web application is not running, and remotely activate the SW.
Push functionality, however, requires explicit user approval.

Message Event. Host web applications cannot access their
SWs directly. To communicate with their SWs they need to
use the postMessage() method to send data. For receiving
the data SWs must implement a message event listener.

Sync event. The sync API of SWs allows use of web
application functionality even when the device is in offline
mode, and defer the syncing of user actions until the device
has stable Internet connectivity (e.g., offline email composi-
tion in Gmail). This API also allows servers to periodically
push updates to the SWs; the next time users open the web
application, they can use updated, cached data.

Fetch event. This functionality allows SWs to pose as a
client-side programmable proxy between the web application
and the outside world, and gives websites fine-grained control
over network requests. For example, a developer can control
the caching behavior of requests for the site’s HTML code

2

and treat them differently than image resources fetched by
the website. A FetchEvent is fired every time a web
application’s resources are requested.

Using these events allows developers to create web applica-
tions that are reliable, fast, and engaging. However, apart from
all the usability benefits that the Fetch API presents, it also
poses a significant threat to users as we detail in Section IV.

A. Caching Files with Service Workers.

Caching resources can significantly improve performance
as it will result in the app’s content being loaded faster under
a variety of network conditions. Unlike the typical browser
cache (HTTP Cache), the Cache Storage API gives the
SW full programmatic control of the cache. It allows SWs to
store assets delivered by responses and keyed by their requests.

A common caching strategy implemented with SWs is to
pre-cache assets during installation. During the first visit and
the SW’s install event, assets like HTML, CSS, JavaScript,
images, etc., are downloaded and inserted into the cache.
Listing 1 shows an example of such a pre-caching strategy.

this.addEventListener('install',function(event){

event.waitUntil(

caches.open('v1').then(function(cache){

return cache.addAll([

'index.html',

'offline.html',

'static/style.css',

'static/app.js',

'images/logo.jpg',

'images/icon.png'

]); })); });

Listing 1. Pre-caching implemented in the install event.

To use cached assets the SW needs to have a FetchEvent
listener. A FetchEvent fires every time any resource con-
trolled by a service worker is fetched. The cache contains
a list of requests and matching responses, and the SW
uses caches.match(event.request) to match the re-
quested resources to the corresponding ones that are available
in the cache. The respondWith(response) method is
used to send a response back to the web application. Listing 2
shows how a SW can uses the cache to provide the requested
resources. It first asks the cache to look up the request and
return the response. If the file is not in the cache, it will then
try to fetch it from the network.

self.addEventListener('fetch',function(event){

event.respondWith(

caches.match(event.request)

.then(function(response){

return response || fetch(event.request);

})); });

Listing 2. Service worker uses cache in the FetchEvent.

Another common caching strategy implemented with SWs
is to provide offline access. In cases where the requested
resources are not available in the cache and the network is un-
reachable, SWs can intercept requests and provide alternative
resources. Listing 3 shows the implementation of this strategy.
If the user is offline, the SW can detect it and respond to all
requests with an HTML page that has already been stored in
the cache.

self.addEventListener('fetch', (event) => {

if (!self.navigator.onLine) {

event.respondWith(

caches.match("offline.html")

); } });

Listing 3. Responding to requests with offline pages.

The FetchEvent is fired for navigation in the SW’s
scope. The default scope is the path to the SW file and extends
to all directories below it. If the SW script is located in the
root directory, the SW will control requests from all files in
this domain. It is also possible to set an arbitrary scope during
registration, but a SW cannot have a scope “above” its own
path. For example, in Listing 4 the scope of the SW is set to
/app/, which means that the SW will control requests from
pages in the /app/ directory and below.

navigator.serviceWorker.register(

'/service-worker.js',

{ scope: '/app/'}

);

Listing 4. Setting arbitrary scope for a service worker.

Despite the benefits of SWs for web apps’ performance,
they are not without cost. A SW can take time to start up if
it is not already running; this can happen if a user has not
visited the web app in a while. The time it takes a SW to boot
up depends on the user’s device; according to [54] it takes
20−100ms for desktop users and > 100ms for mobile users.

B. SW Cache Storage vs. Browser Cache

There are several differences between the traditional
browser cache and the SW cache, which result in our attacks
being more robust and impactful than previous cache-based
history-sniffing attacks. In general, resources are stored in
the SW cache storage during the installation of SWs (upon
first visiting a website). On the contrary, resources are stored
in the browser cache during navigation of websites. While
the browser cache relies on HTTP headers or the browser’s
built-in heuristics [40] to manage cached resources, a code-
driven approach (CacheStorage API) is used for SW
cache storage. Next, the resources in the SW cache storage
are not ephemeral in nature; there are no automatic, built-
in expiration algorithms or freshness checks, and once a SW
stores an item in the cache storage, it will persist until its code
explicitly removes it.

Furthermore, SWs ignore Cache-Control headers when
caching data [10]. As such, the attacks that we present in
this paper are more robust and practical than prior attacks,
where target resources could be evicted by the browser, thus,
removing the artifacts left by the user’s browsing activity.
Also, this storage space can grow to considerable size [12],
with Chrome and Firefox allowing up to 6% and 10% of
the device’s free disk space per origin, respectively. As such,
websites can aggressively cache resources without the need
to remove cached resources due to space constraints. More-
over, the idiosyncrasies of SW-based caching enable a non-
destructive attack (i.e., it can be performed multiple times),
which is not the case with typical cache-based attacks.

Finally, we note that recent versions of major browsers
separate the browser cache based on the origin, to prevent

3

 0

 1000

 2000

 3000

 4000

 5000

 6000

1-
10

0K

10
0K

-2
00

K

20
0K

-3
00

K

30
0K

-4
00

K

40
0K

-5
00

K

50
0K

-6
00

K

60
0K

-7
00

K

70
0K

-8
00

K

80
0K

-9
00

K

90
0K

-1
M

S
e

rv
ic

e
 W

o
rk

e
r

S
u

p
p

o
rt

Website Rank

Fig. 1. Number of domains installing SWs, grouped based on their popularity.

documents from one origin from knowing whether a resource
from another origin was cached [2]; this prevents previously
proposed history-sniffing attacks that use the browser cache.

C. Threat Model

For the attacks presented in this paper, we follow a threat
model typically used in prior work on history sniffing and
other privacy-invasive attacks. We assume that the attacker
is able to execute JavaScript code in the user’s browser. For
ease of presentation we assume that the user visits a website
controlled by the attacker. In practice, however, our attacks
could be deployed at an even larger scale (e.g., through ads).

III. SERVICE WORKERS IN THE WILD

In this section we provide a large-scale measurement study
on the prevalence of SWs in the top 1M Alexa websites and
explore which API features these SWs currently implement.

Methodology. To automate the process of identifying web-
sites that have SWs, we use Selenium to drive Chromium.
Upon first opening a page that has a SW, it takes a few
seconds for the browser to register the SW and for the
install event handler to complete before it is ready to
use. Then, for the SW to be able to control the page,
either the user must refresh (or revisit) the page or the
SW must call self.clients.claim(). In our experi-
ments we open each page in a fresh browser instance, wait
for 10 seconds to ensure that the SW is ready to use,
and then refresh the page to bring it under the control of
the SW. Finally, we inject JavaScript code that reads the
navigator.serviceWorker.controller [14] object.
If the website is using a SW this object contains the script URL
and status of the SW; otherwise the object is null.

While detecting the presence of a SW is straightforward,
identifying which features and functionalities each SW im-
plements presents a considerable challenge. A simplistic ap-
proach would be to statically inspect the SWs’ code. However,
the prevalence of obfuscation and minification [44] would
significantly affect the correctness of such an approach. As
such, we instrument the Chromium browser and build a
dynamic analysis tool that logs the SW-specific API calls.
To do so we modify the following Blink modules: ser-
vice worker, cache storage, background sync, notifications,
and push messaging. Each of these modules has a set of
functions that implement the APIs that a SW can call. We add

TABLE I. SERVICE WORKER FUNCTIONALITY IN THE ALEXA TOP 1M.

Websites with SWs
Functionality Landing page w/ Additional pages

Caching 8,559 9,446
Fetch 8,895 9,900
Web Push 23,227 25,457
Sync 90 94
SW to Client Message 8,339 8,844
Client to SW Message 10,593 11,796
importScripts 22,380 23,706

a logger to each one of these functions to record which one is
being called and the arguments that are passed. The arguments
that are collected from the API calls also include the URLs
that are intercepted by the FetchEvent. In Section IV-D we
describe how we utilize our instrumented browser to collect
these intercepted URLs and evaluate their suitability for our
attacks. Furthermore, since the web push API requires the
user’s permission for sending notifications, we modify its code
to grant this permission to all websites by default.

Dataset. Using our instrumented browser we visit the top
1M Alexa websites (12/2019-02/2020) and identify SWs on
30,229 sites; we break down the relative popularity of the
domains based on their Alexa rank in Figure 1. As one might
expect, the most popular websites are more likely to install a
SW, as they improve the user’s browsing experience.

SW functionality. By inspecting which APIs are called by
each SW we can infer the features and functionalities that they
implement. Based on the assumption that a SW is typically
installed on the landing page, we first visit the landing page
of each website and if a SW is found we then randomly visit 10
additional pages under the same domain. During this process
our instrumented browser records information about all the
API calls. Our findings are presented in Table I. Since a SW
may exhibit different types of functionality, the same domain
may be counted in multiple categories. We provide a complete
list of all the API calls and their mapping to each type of
functionality in the Appendix.

Overall, we found 9,446 websites that implement caching
functionality in their SWs. These have at least one method
of the Cache or CacheStorage interfaces, such as put,
addAll, match, open, etc. 8,559 of those websites have a
SW implementing caching on the landing page. Fetch function-
ality is provided by the FetchEvent interface and is found
on 9,900 websites, while 8,895 of those implement Fetch in the
SW controlling their landing pages. API calls of this interface
are request, respondWith etc. For having Web Push,
websites use the PushSubscription, PushManager, and
Notification interfaces. We observed API calls related to
Web Push on 25,457 websites. Only 94 websites use Sync;
this is most likely due to the fact that the SyncEvent and
SyncManager interfaces have not been standardized yet.

Websites can communicate with their SWs with the post
messaging APIs. We identified 11,796 websites that use
ServiceWorker.postMessage API for sending a mes-
sage, and 8,844 websites that use client.postMessage

in their SWs to send a message to clients (i.e., pages or
iframes which are currently open and within the SW’s scope).

4

the image’s URL is used as the source of an iframe on a
third-party website (i.e., website1.com), the image request
will go through the SW. In other words, the iframe activates
example.com’s SW, which handles the request similarly to
requests that originate from the first-party website. As such,
the SW will return the resource from its cache, if it’s cached,
or fetch it from the first-party’s server otherwise. In general, a
SW acts as a proxy for all requests that originate from pages
within its scope. In practice, however, it can also be activated
by an iframe on a third-party website when the src attribute
of the iframe is a URL within the SW’s scope. This lack of
proper isolation, creates a new attack vector for history sniffing
attacks. Next, we detail our two main techniques.

A. PerformanceAPI-based Attack

In the first attack, the attacker’s website attempts to load
an iframe for one suitable resource (automatically identified
by our tool described in Section IV-D) for each target website,
in an attempt to activate their SWs and make them handle the
resource fetching. When the resources are loaded, we utilize
the PerformanceResourceTiming interface [15] to infer
whether the resource was fetched through a SW. While we
use a timing API, this attack is not a timing-based attack. The
PerformanceResourceTiming interface allows web ap-
plications to retrieve detailed timing data regarding the loading
of their resources. This API provides timing information for
various steps of each resource’s loading process, e.g., redirec-
tion, DNS lookup, TCP connection setup, etc. However, in the
case of cross-origin resources, the API will by default return
a value of zero for most attributes. According to the Resource
Timing W3C Draft Specification [16]: “Cross-origin resources
MUST be included as PerformanceResourceTiming

objects in the Performance Timeline. If the timing allow
check algorithm fails for a resource, these attributes of its
PerformanceResourceTiming object MUST be set to
zero: redirectStart, redirectEnd, domainLookupStart, [...]”.

Crucially, however, there are still other attributes that can
be used for inferring whether a resource was fetched through a
SW. We have empirically found that the workerStart and
nextHopProtocol attributes can be used for our attack. In
more detail, the workerStart attribute returns a timestamp
immediately before dispatching the SW’s FetchEvent. If the
request is not intercepted by a SW, the attribute will always
return zero. In other words, if the value of the workerStart
attribute is non-zero, it means that the request has been
intercepted by a SW. While cache-based attacks are typically
destructive (i.e., if a given resource does not already exist it
will be fetched), this technique is not. We empirically found
that the cache storage has a higher priority than the browser
cache. Therefore, even if a resource exists in the browser cache,
it will be retrieved by the SW from the cache storage, and
the value of workerStart will be non-zero. When there is
no SW, the value of workerStart will be zero, regardless
of whether the resource is cached in the browser cache or
not. Furthermore, the nextHopProtocol attribute returns a
string value representing the network protocol used to fetch the
resource. This attribute will contain an empty string when the
resource is “retrieved from relevant application caches or local
resources” [16]. Our experiments reveal that it always returns
an empty string when a SW is used. Therefore, we can use the

nextHopProtocol attribute, similarly to workerStart,
to infer the presence of the SW in a user’s browser.

This attack can test multiple websites in parallel with-
out affecting its accuracy. This is done by loading mul-
tiple iframes for different target domains at the same
time. Our attack prototype injects multiple hidden iframes

in batches; after each batch finishes loading we inspect
the resources’ entries in the Performance table and call
clearResourceTimings to clear the timing buffer.

B. Timing-based Attack

In this attack we determine if a user has visited a website by
measuring the time that it takes to load a requested resource. If
the user has visited the website previously and the requested
resource is already cached by the SW, the resource will be
retrieved from the cache storage instead of being fetched over
the network. Since the loading time is significantly lower when
the resource is cached locally, we can determine if a website’s
SW is installed in the user’s browser or not.

For this attack we need to compare the measured loading
time with a baseline value. A simple approach would be to
compare the target resource’s loading time to a fixed threshold.
Our experiments showed that the performance of this approach
can be affected by the user’s network and browser load (i.e.,
multiple open tabs, multiple resources fetched simultaneously,
etc). Another approach that is more robust to such exter-
nal factors is to concurrently load the same resource twice,
once through the SW’s cache (if a SW is installed) and the
other over the network, and to compare their loading times.
To achieve this, our attack uses three iframes for each
target resource. First, we use an iframe for booting up
the SW; the sole purpose of this iframe is to remove the
bootstrap delay from the timing measurements. Then, our
JavaScript code simultaneously injects two more iframes

in the page that separately load the same resource. While both
iframes point to the resource’s URL, one employs cache-
busting and decorates the URL with a random parameter (e.g.,
src="example.com/img.jpg?v=random"). Since the
decorated URL does not match a cache entry, the resource
will be fetched directly from the server.

var iframe = document.createElement("iframe");

var body = document.getElementById("body");

body.appendChild(iframe);

iframe.onload = function(event) {

duration = performance.now()-start;

iframe.remove();

}

start = performance.now();

iframe.src = <URL>

Listing 5. Adding an iframe and measuring its loading time.

As shown in Listing 5, to estimate the resources’ loading
times our code calls performance.now() right before
injecting the two iframes in the page and after each iframe
is loaded. Since both iframes are injected in the page at
roughly the same time, we expect both to be similarly affected
by the browser’s load, and that any significant difference in
the loading times will be the result of one of them being
retrieved from the cache and the other being fetched from
the server. If the SW is not installed, both requests will end

6

up on the network, and the resources’ loading times will be
comparable. We empirically found that if the loading time of
the target resource is at most equal to 0.8 of the loading time
of the control resource, we can deduce that the target resource
is retrieved from the cache. Otherwise both resources were
fetched from the network. After running this attack against a
particular user, all the target resources will be stored in the
browser cache. Thus, when running the attack again for the
same user, we will not be able to detect if the target resources
are coming from the cache storage or the browser cache. As
such, we cannot have accurate results if we repeat the attack
on the same user.

C. Browser Behavior

Some aspects of browsers’ functionalities and operations
are not standardized, and in certain cases browsers may behave
differently. In this section, we compare how these different
behaviors can affect the coverage of our attacks.

Security headers. Our attacks rely on iframes for load-
ing cross-domain resources in the attacker’s website. However,
websites can restrict their resources from being rendered in
iframes through the X-Frame-Options (i.e., ‘deny’
or ‘sameorigin’) or Content-Security-Policy

(frame-ancestors) headers in their responses [42]. When
such restricted resources are used in iframes, they are
fetched, but the browser does not display them. With regards
to the Performance API, Chromium-based browsers do not
provide any PerformanceEntries (i.e., entries returned
by the PerformanceResourceTiming interface) for such
restricted cross-domain resources. Thus, such resources cannot
be used for the PerformanceAPI-based attack if the victim
browser is Chromium-based; however, we find that this affects
less than 20% of susceptible domains. On the other hand,
while Firefox respects the security headers and does not render
such resources in iframes, it provides timing information
for them through the Performance API. As such, in the case
of Firefox, these response headers do not prevent our attack.

Interestingly, we observed a peculiar behavior for certain
domains like www.nytimes.com. Specifically, we found
that their resources have the security headers when a SW is
not installed and the resource is fetched directly from the
server, but they are absent when a SW is installed in the
user’s browser and the resource is loaded from its cache
storage. After a more in-depth inspection, we deduced that
the back-end server of these domains are configured to add
such headers when the request originates from a third party
but not for first-party requests. As a result, in the first visit
to the website, where the resources are inserted into the
cache storage, they are stored without the security headers. In
such cases, since the headers are absent when the resource is
loaded from a SW’s cache, Chromium-based browsers handle
them similarly to any other resource that is not restricted by
headers and, accordingly, provides the timing information in
the Performance API. Therefore, by observing those resources’
entries in the PerformanceResourceTiming results we
can infer that the service worker is installed.

It should be noted that while the security headers prevent
cross-origin resources from being rendered in iframes, these
resources are fetched by the browser, and thus an attacker can

still estimate the time required for fetching them. Subsequently,
the timing-based attack is still possible in all browsers even
when the mentioned security headers prevent iframes from
being loaded in the attacker’s website.

Non-destructive attack. In Chromium-based browsers
the nextHopProtocol attribute is empty not only when
the response comes from the SW but also when the re-
sponse comes from the browser cache. That is, when the
nextHopProtocol attribute is used for inferring the user’s
visited websites, after running the attack once, the browser
may add some of the fetched resources in the browser cache.
This can occur for domains that did not have a SW installed in
the user’s browser. In such a case, running the attack at a later
time can potentially result in a false positive detection where a
domain is incorrectly identified as part of the user’s browsing
history. To avoid this issue we add a random parameter to
each resource’s URL when injecting the iframes in our
website. In this way, the request bypasses both cache storage
and browser cache. This request goes through the SW, which
then fetches the resource from the network, and then sends it
back to the attacker’s website. The attacker is able to detect that
the response has come from a SW by checking the value of the
nextHopProtocol attribute. Interestingly, we observed that
Firefox returns an empty string when the resource is retrieved
from the cache storage by a SW, but not when loaded from the
browser cache. This discrepancy in Firefox makes our attack
non-destructive even without adding the random parameter.

D. Automated Resource Profiling

An important and challenging dimension of our work is
to automatically identify resources that are susceptible to our
attacks, which would enable running our attacks at scale. In
this section, we describe our automated tool that relies on a
differential analysis approach for identifying such resources.

This tool is built on top of the instrumented Chromium
browser that we describe in Section III. Specifically, we use
the instrumented browser for logging all the requests that
are intercepted by the SW’s FetchEvent listener. When
visiting each website, our tool collects the URLs that have
gone through the SW as well as the URLs of the resources that
are stored in the website’s cache storage. To identify cached
resources we use Chrome’s DevTools Protocol. By calling
‘requestCacheNames’ from the ‘CacheStorage’ domain we get
the names of the caches, and ‘requestEntries’ returns the data
that is stored in them. In Listing 6 we include Python code
that uses Selenium Webdriver to collect the cached resources.
Listing 7 shows our code for collecting the resources’ URLs
and their headers from the results of the DevTools Protocol.

caches = driver.execute_cdp_cmd(

"CacheStorage.requestCacheNames",

{ "securityOrigin": <website_origin>})['caches']

allCacheStorages = []

for cache in caches:

id = cache['cacheId']

entries = driver.execute_cdp_cmd(

"CacheStorage.requestEntries",

{"cacheId": id,

"skipCount": 0,

"pageSize": 50,

"pathFilter": ""})['cacheDataEntries']

allCacheStorages.append(entries)

Listing 6. Using Chrome’s DevTools protocol for collecting cached resources.

7

resources = []

for cacheStorage in allCacheStorages:

for record in cacheStorage:

reqUrl = record["requestURL"]

headers = record["responseHeaders"]

resources.append([reqUrl,headers])

Listing 7. Collecting the URL and headers of all the cached resources.

After identifying the URLs of all the fetched and cached
resources for each website we filter out the URLs that corre-
spond to third-party domains, as these cannot be used in our
attacks. Finally, we test the suitability of the remaining URLs
as described next.

Attack variant 1: PerformanceAPI-based. For each one
of the resources our tool launches the instrumented browser
(which already has the SW installed from the previous step)
and a fresh instance of an unmodified browser. In both
browsers, we open a website under our control that includes an
iframe that loads the target resource. At this point, our mod-
ified browser checks whether (i) the requested resource goes
through the FetchEvent and (ii) the response is obtained
with the respondWith() function (described in Section II).
In both browsers, our tool also inspects the resource’s HTTP
response for security headers such as X-Frame-Options

and Content-Security-Policy. It also inspects the
values of the workerStart and nextHopProtocol at-
tributes in the Resource Timing API [15]. Comparing the
results of the two browsers allows us to verify if the resource
is suitable for the PerformanceAPI-based attack or not.

Attack variant 2: Timing-based. In the PerformanceAPI-
based attack we can use all the URLs collected from a
FetchEvent or the cache storage. For the timing-based attack,
however, we can only use URLs from the cache storage. To
identify resources suitable for the timing-based attack our tool
performs the following process. Again we use two instances of
our browser, with and without a SW, and open a website under
our control. Our website has two iframes this time: one
fetches the target URL, and the other fetches the same URL
decorated with a random parameter. Comparing the loading
times of all four resource requests allows us to understand
whether (i) the SW processes both requests in the same way
(i.e., the SW strips the random value), (ii) there is a CDN on
route to the server (the URL with a random parameter in the
fresh browser takes significantly longer time to be fetched),
and (iii) the URL is detectable based on the differences in the
loading times. To determine if a resource is a good candidate
for our timing-based attack, we run this process 3 times and
check whether the loading times follow a consistent pattern.

E. Vulnerable Browsers

As shown in Table III, all Chromium-based browsers and
Firefox are vulnerable to both of our attacks. More specifically,
for the first attack, which leverages the Performance API,
we can use the workerStart and nextHopProtocol

attributes. In Firefox, both attributes can be used to reveal if a
requested resource is fetched through a SW. For Chromium-
based browsers, the PerformanceAPI-based attack that uses the
nextHopProtocol attribute works in all browsers, while
the version that leverages workerStart works in all but
Brave. Furthermore, all Chromium-based browsers and Firefox

TABLE III. BROWSERS THAT ARE VULNERABLE () TO OUR HISTORY

SNIFFING ATTACKS. WS AND NHP STAND FOR WORKERSTART AND

NEXTHOPPROTOCOL RESPECTIVELY.

Browser Version
PerformanceAPI

Timing
WS NHP

Firefox 72.0.2

Brave 1.3 #

Chrome 79

Edge 79

Opera 66

Safari 12.1.2 # # #

TABLE IV. DOMAINS SUSCEPTIBLE TO EACH ATTACK.

Attack Firefox Chromium-based

API-based 6,706 (100%) 5,507 (81.03%)
Timing-based 6,504 (96.98%) 6,504 (96.98%)

Combined 6,706 (100%) 6,591 (98.28%)

are vulnerable to the timing-based attack. Our attacks are not
applicable against Safari as it correctly isolates SWs (i.e., a SW
cannot be activated by an iframe on a third-party website).
Interestingly, since iOS restricts browsers to use the Webkit [1]
browser engine, they all behave the same as Safari. While
browsers on iOS are not vulnerable to our attacks, they are
on MacOS. Finally, in the Tor browser and Firefox’s private
browsing mode, websites cannot register a SW; therefore, they
are not vulnerable to these attacks. Incognito mode in Chrome
works like normal mode, and users are vulnerable to these
attacks. However, since the two modes are isolated from each
other, the attacker does not have access to SWs that had been
installed in the browser’s normal mode, and incognito SWs are
removed after closing the window; thus the attacks can only
detect websites that are currently open in different tabs. As
such, the attacks have limited applicability in incognito mode.

V. EXPERIMENTAL EVALUATION

Here we present a series of experiments that explore
practical aspects of our attacks and their privacy implications.

History-sniffing susceptibility. Our large-scale measure-
ment study detected 8,895 SWs with a FetchEvent listener,
which is the main requirement for our attacks. For our attacks
we only consider websites with Fetch functionality on their
landing page. Using our automated resource profiling tool we
identified a total of 6,706 websites that have resources suitable
for running our attacks. In Firefox, both variations of the
PerformanceAPI-based attack work on all 6,706 websites. In
Chromium-based browsers our PerformanceAPI-based attack
can detect a total of 5,507 (81.03%) websites. Specifically,
we identified 5,465 websites that have certain resources that
do not include X-Frame-Options or CSP header, and 302
websites that have at least one resource that only contains
these headers when it is requested directly by a third-party
and not through a SW. Some of these cases overlap, resulting
in 5,507 unique domains. Finally, we identified 6,504 (96.98%)
websites that are susceptible to our timing-based attack. This
attack has the same coverage in all vulnerable browsers. The
other 202 (3.02%) websites have FetchEvent and requests
are intercepted by the SW, but they do not actually cache any

8

10
1

10
2

10
3

10
4

10
5

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
 (

m
s
)

Resources (one per website, sorted)

No service worker installed
Service worker, resources cached

Service worker, fetched from network

Fig. 4. Average loading times when the requested resources are retrieved from
SWs’ cache or fetched from the server. The latter occurs if (i) the resource is
not matched with the cache’s contents, or (ii) the SW is not installed.

resources. Certain websites are vulnerable to the API-based
attack but not the timing-based attack; when combining both of
our attacks we can detect 6,591 unique websites in Chromium-
based browsers, accounting for 98.28% of all the susceptible
websites. These results are summarized in Table IV.

Timing-based attack. Since the PerformanceAPI-based
attack is always accurate by design (i.e., it does not have any
false positives or negatives), here we evaluate the performance
and practicality of our timing-based attack. To that end, we first
run our automated resource profiling tool (i.e., timing-based
mode, see Section IV-D) and identify a suitable resource on
200 randomly-selected websites that can be used in this attack.

Feasibility. First, we explore how loading time changes
under the different scenarios the attacker can face, and present
the average loading times for each resource (from the 3 runs
performed by the tool) in Figure 4. Specifically, in this figure
we aim to illustrate the discriminating effect of the presence
of a SW combined with the caching of the resource. Our
experiments show that when a resource is retrieved from the
cache storage the loading times are significantly lower than the
time that is spent for fetching the resource from the network
(regardless of a SW being installed or not), demonstrating the
effectiveness of using these resources in a timing attack.

Performance. Next, we assess the attack’s accuracy in
practice. To that end, we randomly visit N out of the 200
websites and emulate a user’s browsing activity that installs
SWs. Subsequently our user visits the attacker’s website, which
conducts the timing-based attack for inferring which pages the
user has visited. We run this experiment 50 times each for
N = 20, 50. As shown in Table V, our attack correctly detects
87.9% and 87.13% of the websites that have a SW installed,
for browsing history of a size of 20 and 50, respectively. Also,
in both cases our attack has a low false positive rate (i.e.,
websites that our attack incorrectly detects as visited) of around
1.5%, and is very precise, with an overall F1 score above 92%.
After investigating our false negatives, we observed that most
of them correspond to a small set of websites that our attack
cannot detect across most (or all) of the runs where these
websites had a SW installed. This is due to the loading times
of the two requests being sufficiently similar for considering
both as being fetched from the network.

TABLE V. DETECTION ACCURACY OF THE TIMING-BASED ATTACK.

#SWs Installed

Metric N = 20 N = 50

True Positives (TP) 87.9% 87.13%
False Negatives (FN) 12.1% 12.86%
False Positives (FP) 1.48% 1.63%
F1 Score 92.8% 92.3%

In some cases our attack cannot determine correctly if a
SW is installed or not. These cases can be attributed to (i)
the way that particular SWs handle fetch events and (ii) the
use of content delivery networks (CDNs) for caching first-
party resources. In particular, with regards to the first case,
we observed that some SWs fetch the resource from the
network for both iframes, even though it is already stored
in the cache. After examining their source code, we found
that some SWs implement a network-first caching strategy for
particular resources [9], where they first attempt to fetch the
resource from the network, and if this is not possible (i.e.,
the user is offline) they serve a cached, and probably older,
copy of the resource. Also, we came across cases of incorrect
implementations, where the SW does not attempt to match
the request with the cache, and always fetches the resource
from the network. In those cases, our attack cannot detect
the existence of a SW, as both resources are fetched over the
network. We have also observed a small number of SWs that
strip any parameters from requested URLs before attempting to
match them with the contents in their cache. This also results
in inconclusive loading times that prevent our attack.

The second problematic category is when websites utilize
CDNs to serve their resources. The issue depends on the
CDN’s behavior, and can occur when there is no SW installed
in the user’s browser. Specifically, if a SW is installed, the
resource that does not include a random parameter in its
source URL will be retrieved from the SW’s cache, while
the other resource will most likely not exist in the CDN’s
cache due to the random parameter. In this case our attack
correctly identifies that a SW exists. In the case, however,
where there is no SW installed, both requests will be sent
to the CDN, and most probably one of the responses will
be served from the CDN’s cache while the other will be
retrieved from the first-party’s server by the CDN (i.e., the
CDN cache may miss because of the random parameter). Due
to the significant difference in the resources’ loading times our
attack will consider the effects of the CDN caching as being
caused by a SW, i.e., a false positive.

Attack duration. An important dimension of our attacks,
which determines their practicality, is the time required for the
attack to complete. Thus, we run an experiment that measures
the duration of each attack for various numbers of tested
domains. In each iteration of the experiment we visit our
website 6 times. In 3 of the visits we have 10% of the websites
with a SW installed. In the other 3 visits we do not install any
SW, simulating the worst case scenario where all resources
need to be fetched from the network. Furthermore, our website
is configured to perform the timing-based attack during the
first visit, and the Performance-API-based attack during the
other two visits. The difference between the latter two visits,

9

10
0

10
1

10
2

10
3

25 50 100 250 500

A
tt
a
c
k
 D

u
ra

ti
o
n
 (

s
)

Tested Resources (one per website)

10% of websites w/ SW

Time-based attack

API-based, P-25

API-based, P-50

No SWs installed

Time-based attack

API-based, P-25

API-based, P-50

Fig. 5. Time required for performing the proposed attacks.

is that in one of them the attack loads 25 iframes in parallel
while in the other one it loads 50. This allows us to compare
our attacks both in the presence and absence of SWs. Finally,
we run the experiment for different number of websites to be
tested, to assess the scalability of our attacks. In each run we
choose a random subset of resources to be tested, and test the
same set of resources in all six visits.

Figure 5 presents the average attack duration over 10
different runs, both with SWs installed and without, for a
varying number of resources (we test up to 500 websites).
The timing-based attack takes much longer to complete; this
is expected, as the attack tests the resources one-by-one, to
avoid interference that can affect the loading times. Also, since
the timing-based attack always fetches at least one resource
from the network (the one with the random parameter), the
duration of the attack does not decrease significantly when
SWs are installed. On the other hand, the API-based attack
issues multiple requests in parallel and is much faster than the
timing-based one. Indicatively, when parallelizing 50 requests
this attack tests 500 domains in less than 18 and 35 seconds,
depending on SWs being installed or not. While the timing-
based attack is not optimal for testing a large number of
domains, in practice, the attacker only needs to use it for
the cases that cannot be detected by the Performance-API-
based attack (see Table IV). Apart from combining the attacks,
attackers could also follow a more targeted approach and
compile a list of websites that reveal sensitive information,
or websites that belong to specific categories of interest.

Classifying detectable websites. To better understand
the privacy implications of the proposed attacks, we used
McAfee’s website categorization tool to categorize the 6,706
websites that are vulnerable to our attacks, and check whether
any sensitive ones are included. This allowed us to categorize
6,412 websites, which were assigned to 78 different categories.
We manually inspected these categories and combined certain
sensitive categories that are closely related, resulting in 72
categories. For instance, we consider the categories of Health,
Pharmacies and Drugs as a single category in our analysis.

Figure 6 presents a subset of the categories that reveal
information about the user’s interests and preferences, as well
as personal and sensitive information. As expected, many web-
sites are related to Online Shopping and Merchandising (1,690

10
0

10
1

10
2

10
3

O
nline Shopping

M
erchandising

G
eneral News

Fashion/Beauty

Travel

Education

Finance/Banking

Health

Pornography

Recreation/Hobbies

Job Search

G
am

bling

Religion/Ideologies

Dating/Personals

Politics

D
e
te

c
ta

b
le

 W
e
b
s
it
e
s

Categories

Sensitive

Fig. 6. Categorization of websites detectable by our attacks.

and 507 respectively). While the non-sensitive categories may
not directly reveal private information about the user, they
are typically part of Ad Preference Manager profiles [17]
and can be leveraged by advertisers for user targeting [30].
Moreover, websites that are susceptible to fine-grained history
sniffing (see Section VI-C) could enable the inference of
sensitive data. Regarding the sensitive categories, we observe
a considerable number of websites that are related to Health
and Pornography (i.e., 112 and 90, respectively), and a smaller
number of websites that are related to Religion, Dating and
Politics. In total, we found 403 (6%) of the detectable websites
that are associated with sensitive categories, that reveal user
information, and can be misused by attackers. Interestingly,
124 of these websites are also susceptible to our fine-grained
history sniffing attack, potentially revealing highly sensitive
information about the user. Finally, we find that our API-based
attack in Chrome can detect 294 of the 403 sensitive websites,
as they do not use x-frame-options or CSP headers.

VI. ADDITIONAL ATTACKS AND USE CASES

Due to the idiosyncrasies of SWs’ caching behavior, our
attack methodology is not limited to stealing users’ browsing
history, but can also be used to infer additional, potentially
more sensitive information, by targeting specific pages and
resources. Here we present a series of use cases that highlight
the additional capabilities of our attack techniques.

A. Registration Inference

During our experiments we observed that certain websites
fetch and store additional resources when users are logged
into their account. Two interesting examples that illustrate the
privacy implications of this behavior are Tinder (a popular
dating site) and Gab (a site that attracts “alt-right users,
conspiracy theorists, and trolls, and high volumes of hate
speech” [58], [57]). When the user visits these websites for
the first time and SWs are registered, they do not populate the
cache with all the needed resources; some of them are fetched
and cached only after the user is authenticated to the service.

While these post-login resources are not sensitive, detecting
them in the user’s cache reveals not only that the user has
visited the website at some point, but that they also have an
account on that service. We also observed that these resources
are not deleted from the cache storage after the user logs out;
as such, this works even if the user is not currently logged in.
It is important to note that we are not able to identify such
post-login resources in a fully automated manner, since that
would require the ability to automatically register and create

10

self.addEventListener('fetch',function(event){

referrer = (new URL(event.request.referrer)).host;

if(referrer==self.location.hostname ||

referrer.match(<allowlist-item>)!=null){

/*Remaining SW functionality goes here*/ }});

Listing 8. Controlling access to SWs by leveraging the referrer.

infer whether the victim has searched for specific individuals.
Another interesting example of a website that is susceptible
to this attack is pleasurestore.in. This website, which
sells sex paraphernalia, fetches and stores the images of the
products that appear in every page the user visits. As such,
attackers not only infer that the user has visited this store, but
can also learn more sensitive information (e.g., infer the user’s
gender or sexual preferences and orientation).

VII. ATTACK MITIGATION

The root cause that enables our attacks is the improper
isolation of SWs in browsers, which allows iframes on third-
party websites to use the SWs of other origins for fetching
resources. This can be prevented by redesigning site isolation
mechanisms to prevent the activation of SWs from third-
party websites. We have disclosed our findings to vulnerable
browsers, which are currently working towards fixing the
underlying problem. However, such non-trivial changes will
require a considerable amount of time before being deployed.

As such, we propose a mitigation and build a tool that can
assist web developers with fortifying their SWs against our
attacks. Our solution is based on implementing access control
logic inside SWs to restrict them from responding to incoming
requests that originate from unauthorized domains. In more
detail, requests that originate from an authorized domain (e.g.,
the first-party domain) will be processed normally while those
that originate from a non authorized one will bypass the SW
and the resources will be fetched directly from the network.
This can be implemented by using the referrer header of
the request. As shown in Listing 8, by using the referrer

header we can allow access to the relevant functionalities of the
SW only to pages of the first-party website (or other allowed
domains). If the referrer is not from an authorized origin
(or is an empty string) the request will go through the network,
as would happen if the SW was not installed.

To bypass this countermeasure, attackers might try to spoof
the referrer in the requests issued by the attack website.
To the best of our knowledge, this cannot be done directly with
JavaScript, as the referrer is set and controlled directly by
the browser, and is a read-only attribute. In this context, an
attacker can only effectively spoof the referrer header if
the target website supports open redirections, by specifically
crafting a request that redirects to the requested resource.
For example, considering a target website example.com,
the attacker would need to set the iframe’s source to
example.com/?redirect=example.com/img.jpg.
This sets example.com as the referrer for the
resource request, instead of the attackers domain. In this
case, the attack can be prevented if the target website
deploys our proposed countermeasure and also uses the
appropriate X-frame-options or CSP headers to restrict
frames. It should be noted though that the use of the

let orig_f = EventTarget.prototype.addEventListener;

EventTarget.prototype.addEventListener = function(){

if (arguments[0] == 'fetch'){

let handler = arguments[1]

arguments[1] = function(){

let event = arguments[0];

if (event.request.referrer){

let referrer =

(new URL(event.request.referrer)).host;

if(referrer==self.location.hostname ||

referrer.match(<allowlist-item>)!=null)

return handler.apply(this,arguments)

}

//else it will be fetched from the network

}

}

return orig_f.apply(this,arguments);

}

Listing 9. Adding the access control to SWs by overriding the
addEventListener’s prototype.

X-frame-options or CSP headers cannot prevent the
time-based attack when our countermeasure is not in place,
as the frames are actually fetched but the browser does not
render them, and thus the attacker is still able to measure
their loading times.

To assist developers in implementing this countermeasure,
we will release our tool that automatically incorporates these
checks in the SW’s code. Given the SW’s source code and a file
with a list of authorized domains, our tool injects a function at
the beginning of the SW’s source file, to be executed first, that
overrides the addEventListener function which exists
in the prototype of the EventTarget interface. Listing 9
shows how we override this function. If the first argument
of the addEventListener function is fetch, we include
our access control mechanism in the function that handles
the event. This makes the addEventListener(‘fetch’,
handler) function in the SWs behave like the function
that is shown in Listing 8. That is, if the referrer of the
intercepted request is in the allowlist, we run the event handler,
otherwise the request will be fetched directly from the network.
We note that this approach works correctly even in the case of
obfuscated SWs or SWs that import a third-party library for
implementing the fetch functionality.

VIII. DISCUSSION

Limitations. Our crawler initially only visits websites’
landing page for inferring the presence of a SW, and only
further analyses websites if one is found on the landing page.
We made this decision to render the overhead of our mea-
surement study more manageable, and because we observed
that the majority of websites install their SW on their landing
page. Furthermore, our system does not log into websites that
support user accounts. As such, our measurements present a
lower bound of vulnerable domains, since websites that require
login may install SWs on other parts of their domain or SWs
may only cache resources after users login.

The process of finding websites that are vulnerable to the
Registration Inference and Application-level Inference attacks
cannot be completely automated as this would require an
account on each website. It also requires extensive manual
effort for understanding the nature and purpose of different

12

cached resources (e.g., knowing that the cached images in
WhatsApp correspond to user photos) as opposed to the history
sniffing attacks which do not require such knowledge. While
we present a series of interesting use cases, our goal is to
demonstrate the feasibility and severity of such attacks, not to
provide a complete manual evaluation of all such services.

The API-based attack is efficient as it can issue requests
for multiple resources in parallel without affecting its accuracy,
where batches of 500 websites can be tested every 10-20
seconds, depending on the level of parallelization. On the other
hand, the timing-based attack is not optimal for testing a large
number of domains as it cannot be parallelized; thus it is better
suited for more targeted attacks (e.g., only sensitive websites).

Ethics and disclosure. Our experiments were conducted
using our own browsers and test accounts. We did not inter-
act with, or affect, actual users. Due to the severe privacy
implications of our attacks we disclosed our findings and
techniques to all vulnerable browser vendors and WhatsApp
(in January and February, 2020). Chrome split our report into
two bugs: one for the PerformanceAPI, which has been as-
signed a CVE (Blink>PerformanceAPIs) and one for the
site isolation (Internals>Sandbox>SiteIsolation).
Chromium releases that follow our disclosure have fixed the
issues that are related to the Performance API. Specifically,
for cross-origin iframes the PerformanceAPI now returns the
value of zero for the workerStart attribute and an empty
string for nextHopProtocol; this prevents our API-based
attack in Chromium-based browsers. Firefox also fixed the
PerformanceAPI issues, following our disclosure report, by
restricting the workerStart and nextHopProtocol at-
tributes. However, their fix actually introduced a new issue
that re-enables our attack: while in previous versions the
duration attribute always returned the request’s duration, in
the newer version this attribute returns zero when the request
is intercepted by a SW and the actual duration otherwise. We
have reported this new issue to Firefox.

Our attacks are possible due to a design flaw in the
browsers’ site isolation mechanism that allows third-party web-
sites to use other parties’ SWs. Unlike the PerformanceAPI-
based attack that can be prevented by restricting specific
attributes of the API, the timing-based attack requires the re-
design of the site isolation mechanism. This task is not trivial,
and these issues will most likely take a considerable amount of
time to be fixed. Specifically, Chrome’s feedback about these
issues stated that “this requires web API changes” and that “a
fix is likely quite a ways off”. Since the underlying issues have
not been fixed yet, and our timing-based attack is still possible,
our countermeasure will allow websites to protect their users
until browsers redesign their systems. Finally, WhatsApp fixed
the issues that allowed our application-level inference attack by
restricting cross-origin requests from accessing the SW cache,
similarly to our proposed countermeasure.

IX. RELATED WORK

Here we discuss prior work on history sniffing, and perti-
nent studies on the security implications of browser features.

History sniffing. Various attacks have been demonstrated
for sniffing users’ browsing history. Several of those were
through CSS features, with the visited pseudoclass being

one of the first features misused for inferring whether the user
has visited a specific URL based on the color of the rendered
hyperlink [19]. Janc and Olejnik [24] demonstrated a practical
implementation of this attack and conducted a study on over
270K users. To prevent such attacks, browsers have stopped
providing DOM mechanisms for directly detecting element
styles. Recently, Smith et al. [45] leveraged the CSS Paint API,
and also showed how the bytecode script cache can be misused
in Chrome and Brave. As with all cache-based techniques,
the attack’s practicality and robustness can be considerably
affected by external factors that result in the browser evicting
targeted resources (we note that not all attacks in [45] are
cache-based). On the contrary, the SW cache that we exploit
is solely under the SW’s control and no eviction occurs unless
the device or browser runs out of disk storage. Lee et al. [32]
evaluated the susceptibility of eight websites to an attack that
infers the caching of resources in the HTML5 App Cache.
This cache has since been deprecated, and developers are urged
to use service workers instead [13]. While these cache-based
attacks are typically destructive we also demonstrate a non-
destructive variant of our attack.

Kotcher et al. [29] proposed a timing-based attack that
measured the time required for rendering CSS filters, which
could be used for sniffing pixels rendered on the user’s screen.
One of the presented use cases was for a history sniffing attack;
however, accuracy was low and the overall attack impractical
as it required a considerable amount of time for checking a
single URL and suspicious visual actions that would alert users
(i.e., expanding a pixel to the size of the entire screen). Timing-
based attacks were proposed as early as 2000, with Felten
and Schneider demonstrating how this could be achieved by
measuring the time for performing a cross-site request [22].
The approach of Bortz and Boneh could infer if a user was
currently logged in a website but not whether it had been
accessed in the past [18]. Sanchez-Rola et al. [43] measured
the time required for server side computation to complete an
HTTP request carrying cookies; this attack works if the cookies
for a given domain have not expired or been deleted, and if
the sameSite cookie flag has not been set for at least one
cookie. They also performed the largest evaluation of a history
sniffing technique up to that point, with ∼ 10K websites.
Comparatively, we analyzed the top one million Alexa sites for
the presence of SWs, and evaluated the susceptibility of over
30K domains. Dabrowski et al., proposed a different cookie-
based attack, where a rogue captive portal could infer websites
the user has visited in the past [20].

In other side-channel techniques, Kim et al [26] aimed to
infer browsing history information based on changes in the
browser’s storage. Their attack is prone to false positives since
a multitude of online resources (e.g., banners, images, scripts)
regularly fetched from different domains can have the same
storage footprint. This is reflected in the attack’s low accuracy
despite their experiments being conducted on a few popular
sites. A more realistic number of sites (i.e., moving towards
an open-world setup) would significantly increase false posi-
tives. All major browsers fixed this issue by partitioning the
browser’s cache using the top frame’s origin [3].

Lee et al. [33] showed that the lack of appropriate memory
protection in GPUs could allow the extraction of rendered
webpage textures, but evaluated their attack when only two

13

tabs were open in the victim’s browser (randomly choosing
from the top 100 Alexa websites). In any realistic deployment
setting, where users have numerous tabs open, this technique
would suffer from many misclassifications. Van Goethem et
al. [52] showed how browser features can be leveraged for
obtaining timing measurements to estimate the size of cross-
origin resources, which can lead to the inference of private
information. While they used a SW, their attack could be
launched through simple JavaScript that inserts files in the
common cache without the use of a SW, i.e., their attack
did not require SW-specific functionality. Weinberg et al. [56]
demonstrated how interactive tasks (e.g., captchas, games)
could be used to trick users into revealing websites in their
browsing history. Apart from the practical challenge of requir-
ing user interaction, this attack exfiltrates an extremely limited
number of websites. Complimentary to history sniffing, Su et
al. [50] demonstrated how a user’s browsing history could be
linked to social media profiles and deanonymize users.

Browser APIs. As new browser APIs are rolled out, novel
attack vectors emerge. Snyder et al. [47], [46] explored the
usage of browser APIs and features in the wild, and measured
the security vs usability trade-off of removing rarely used
features. Olejnik et al. [38] explored how the adoption of
seemingly innocuous features like the Battery API can lead
to privacy threats (i.e., user tracking). Recently, Das et al. [21]
and Marcantoni et al. [37] presented large-scale measurements
on the use of mobile-specific HTML5 WebAPI calls that
enable a plethora of attacks. Tian et al. [51] demonstrated
how the HTML5 screen-sharing API could be used for various
attacks; the proposed history sniffing attack requires the target
URLs to actually be rendered on the user’s screen, presenting
an obstacle for the practicality of the attack and limiting the
number of target URLs that can be tested. Karami et al. [25]
showed how the Performance API can be used to detect what
browser extensions a user has installed.

Service Workers are a relatively recent browser feature
that has not received much scrutiny. Papadopoulos et al. [39]
explored their use for malicious client-side computations like
cryptomining, while Franken et al. [23] briefly explored SWs
in the context of cookie-carrying third-party requests and
found that SW-initiated requests are often not blocked by
privacy extensions. Watanabe et al. [55] proposed a persistent
man-in-the-middle attack that exploits SWs. In this attack,
malicious websites can register a SW in the scope of a
rehosting website. By using the fetch event listener this
malicious SW can intercept and manipulate any requests and
responses issued from the rehosting website. Lee et al. [31]
focused on the security threats of web push functionality.
They also proposed using SWs for a history-sniffing attack
which, however, had completely unrealistic assumptions and
requirements. Specifically, the attack could only happen if
victims visited the attacker’s website while they did not have
Internet connectivity. Furthermore, the victims needed to have
already visited the attacker’s site in the past so that a malicious
SW would already be installed in their browser; the attack
was also not applicable to Chromium-based browsers and
has since been fixed. Finally, their study was limited to the
presence of push and caching functionality, and did not provide
a comprehensive view of SW API use.

X. CONCLUSIONS

In this paper we investigated an emerging trend in web app
development, namely the use of service workers. We conducted
a large-scale measurement study and found that the adoption
of SWs has steadily increased in recent years, with almost 6%
of the top 100K websites leveraging their rich functionality.
Subsequently, we conducted an exploration of the threat that
SWs pose to users, and presented a series of novel privacy-
invasive attacks that exploit their capabilities in most modern
browsers. Initially, we demonstrated two variants of history
sniffing attacks that bypass current site isolation strategies and
allow an attacker to infer the presence of third-party SWs
through cross-origin requests hidden in iframes. We then
presented a more in-depth assessment of the implications of
our techniques, through a series of use cases that showcase the
feasibility of more privacy-invasive attacks, such as inferring
members of a user’s social circle or the existence of an
account in a “sensitive” web service, or obtaining clues about
the users’ sexual preferences through cached application-level
information. We also presented an experimental evaluation that
demonstrates the practicality of our attacks. In an effort to
protect users, we disclosed our findings to affected vendors
and remediation efforts are currently taking place, including
plans for exploring a redesign of Chromium’s site isolation
mechanism. Finally, we also developed an access-control-
based countermeasure to mitigate our impactful attacks while
browsers’ remediation efforts are underway. Overall, our work
sheds light on an emerging and severe threat and we hope that
it incentivizes additional research on the risks posed by SWs.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable feedback. This work was supported by the
DARPA ASED Program and AFRL (FA8650-18-C-7880), and
NSF (CNS-1934597). Any opinions, findings, conclusions, or
recommendations expressed herein are those of the authors,
and do not necessarily reflect those of the US Government.

REFERENCES

[1] “Apple Developer - App Store Review Guidelines,” https://developer.
apple.com/app-store/review/guidelines/#software-requirements,
accessed on 2020-02-04.

[2] “Chrome Platform Status - Partition the HTTP Cache,” https://www.
chromestatus.com/feature/5730772021411840.

[3] “Chrome Platform Status - Split HTTP auth cache by NetworkIsola-
tionKey,” https://www.chromestatus.com/feature/5739996117991424.

[4] “Firebase Documentation - Send messages to topics on Web/JavaScript,”
https://firebase.google.com/docs/cloud-messaging/js/topic-messaging.

[5] “OneSignal Service Worker,” https://documentation.onesignal.com/
docs/onesignal-service-worker-faq.

[6] “PushProfit,” https://www.pushprofit.net.

[7] “SendPulse,” https://sendpulse.com.

[8] “Workbox,” https://developers.google.com/web/tools/workbox/modules/
workbox-sw.

[9] “Workbox - workbox.strategies.NetworkFirst,” https://developers.
google.com/web/tools/workbox/reference-docs/v4/workbox.strategies.
NetworkFirst.

[10] “Service workers and the Cache Storage API,” 2018, https://web.dev/
service-workers-cache-storage/.

[11] “Forbes - How Progressive Web Apps Will Change Online
Business,” 2019, https://www.forbes.com/sites/theyec/2019/10/23/
how-progressive-web-apps-will-change-online-business.

14

[12] “Google Developer Docs - Offline Storage for Progressive Web
Apps,” 2019, https://developers.google.com/web/fundamentals/
instant-and-offline/web-storage/offline-for-pwa.

[13] “MDN Web Docs - Using the application cache,” https://developer.
mozilla.org/en-US/docs/Web/HTML/Using the application cache,
March 2019, accessed on 2020-01-05.

[14] “Serviceworkercontainer.controller,” https://developer.mozilla.org/
en-US/docs/Web/API/ServiceWorkerContainer/controller, November
2019, accessed on 2020-01-06.

[15] “Using the Resource Timing API,” https://developer.mozilla.org/en-US/
docs/Web/API/Resource Timing API/Using the Resource Timing
API, March 2019, accessed on 2020-01-14.

[16] “Resource Timing Level 2 - W3C Editor’s Draft,” https://w3c.github.
io/resource-timing, January 23, 2020, accessed on 2020-01-30.

[17] M. A. Bashir, U. Farooq, M. Shahid, M. F. Zaffar, and C. Wilson,
“Quantity vs. quality: Evaluating user interest profiles using ad pref-
erence managers.” in 26th Annual Network and Distributed System

Security Symposium, NDSS 2019, San Diego, California, USA, February

24-27, 2019.

[18] A. Bortz and D. Boneh, “Exposing private information by timing web
applications,” in Proceedings of the 16th international conference on

World Wide Web, 2007, pp. 621–628.

[19] A. Clover, “Css visited pages disclosure,” 2002, https://lists.w3.org/
Archives/327Public/www-style/2002Feb/0039.html.

[20] A. Dabrowski, G. Merzdovnik, N. Kommenda, and E. Weippl, “Browser
history stealing with captive wi-fi portals,” in 2016 IEEE Security and

Privacy Workshops (SPW). IEEE, 2016, pp. 234–240.

[21] A. Das, G. Acar, N. Borisov, and A. Pradeep, “The Web’s
sixth sense: A study of scripts accessing smartphone sensors,”
in Proceedings of the 25th ACM Conference on Computer and

Communication Security (CCS). ACM, 2018. [Online]. Available:
https://doi.org/0.1145/3243734.3243860

[22] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,”
in Proceedings of the 7th ACM conference on Computer and commu-

nications security, 2000, pp. 25–32.

[23] G. Franken, T. Van Goethem, and W. Joosen, “Who left open the cookie
jar? a comprehensive evaluation of third-party cookie policies,” in 27th

USENIX Security Symposium (USENIX Security 18), 2018, pp. 151–
168.

[24] A. Janc and L. Olejnik, “Web browser history detection as a real-
world privacy threat,” in European Symposium on Research in Computer

Security. Springer, 2010, pp. 215–231.

[25] S. Karami, P. Ilia, K. Solomos, and J. Polakis, “Carnus: Exploring the
privacy threats of browser extension fingerprinting,” in 27th Annual

Network and Distributed System Security Symposium, NDSS 2020, San

Diego, California, USA, February 23-26, 2020. The Internet Society,
2020.

[26] H. Kim, S. Lee, and J. Kim, “Inferring browser activity and status
through remote monitoring of storage usage,” in Proceedings of the

32nd Annual Conference on Computer Security Applications, 2016, pp.
410–421.

[27] B. Kondracki, A. Aliyeva, M. Egele, J. Polakis, and N. Nikiforakis,
“Meddling middlemen: Empirical analysis of the risks of data-saving
mobile browsers,” in 2020 IEEE Symposium on Security and Privacy

(SP). IEEE, 2020, pp. 810–824.

[28] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes
are predictable from digital records of human behavior,” Proceedings

of the national academy of sciences, vol. 110, no. 15, pp. 5802–5805,
2013.

[29] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-origin pixel
stealing: timing attacks using css filters,” in Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security,
ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 1055–1062.
[Online]. Available: http://doi.acm.org/10.1145/2508859.2516712

[30] M. Lecuyer, R. Spahn, Y. Spiliopoulos, A. Chaintreau, R. Geambasu,
and D. Hsu, “Sunlight: Fine-grained targeting detection at scale with
statistical confidence,” in Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, 2015, pp. 554–
566.

[31] J. Lee, H. Kim, J. Park, I. Shin, and S. Son, “Pride and prejudice
in progressive web apps: Abusing native app-like features in web
applications,” in Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2018, pp. 1731–1746.

[32] S. Lee, H. Kim, and J. Kim, “Identifying cross-origin resource status
using application cache.” in Network and Distributed System Security

Symposium, NDSS, 2015.

[33] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered
on your browser by exploiting gpu vulnerabilities,” in 2014 IEEE

Symposium on Security and Privacy. IEEE, 2014, pp. 19–33.

[34] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet jones and
the raiders of the lost trackers: An archaeological study of web tracking
from 1996 to 2016,” in 25th USENIX Security Symposium (USENIX

Security 16), 2016.

[35] X. Lin, P. Ilia, and J. Polakis, “Fill in the blanks: Empirical analysis of
the privacy threats of browser form autofill,” in Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security,
2020, pp. 507–519.

[36] F. Marcantoni, M. Diamantaris, S. Ioannidis, and J. Polakis, “A large-
scale study on the risks of the html5 webapi for mobile sensor-based
attacks,” in The World Wide Web Conference, 2019, pp. 3063–3071.

[37] ——, “A large-scale study on the risks of the html5 webapi for
mobile sensor-based attacks,” in 30th International World Wide Web

Conference, WWW ’19. ACM, 2019.

[38] L. Olejnik, S. Englehardt, and A. Narayanan, “Battery status not
included: Assessing privacy in web standards.” in IWPE@ SP, 2017,
pp. 17–24.

[39] P. Papadopoulos, P. Ilia, M. Polychronakis, E. P. Markatos, S. Ioannidis,
and G. Vasiliadis, “Master of web puppets: Abusing web browsers
for persistent and stealthy computation,” in 26th Annual Network

and Distributed System Security Symposium, NDSS 2019, San Diego,

California, USA, February 24-27, 2019, 2019.

[40] J. R. R. Fielding, M. Nottingham, “Hypertext transfer protocol
(http/1.1): Caching,” https://httpwg.org/specs/rfc7234.html#heuristic.
freshness, June 2014, accessed on 2020-01-05.

[41] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock,
“Complex security policy? a longitudinal analysis of deployed content
security policies.” in 27th Annual Network and Distributed System

Security Symposium, NDSS, 2020.

[42] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson, “Busting frame
busting a study of clickjacking vulnerabilities on popular sites,” in Web

2.0 Security and Privacy. IEEE, 2010.

[43] I. Sanchez-Rola, D. Balzarotti, and I. Santos, “Bakingtimer: privacy
analysis of server-side request processing time,” in Proceedings of the

35th Annual Computer Security Applications Conference. ACM, 2019,
pp. 478–488.

[44] P. Skolka, C.-A. Staicu, and M. Pradel, “Anything to hide? studying
minified and obfuscated code in the web,” in The World Wide Web

Conference, 2019, pp. 1735–1746.

[45] M. Smith, C. Disselkoen, S. Narayan, F. Brown, and D. Stefan,
“Browser history re:visited,” in 12th USENIX Workshop on Offensive

Technologies (WOOT 18). Baltimore, MD: USENIX Association,
Aug. 2018. [Online]. Available: https://www.usenix.org/conference/
woot18/presentation/smith

[46] P. Snyder, L. Ansari, C. Taylor, and C. Kanich, “Browser feature usage
on the modern web,” in Proceedings of the 2016 Internet Measurement

Conference. ACM, 2016, pp. 97–110.

[47] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to
vibrate: A cost-benefit approach to improving browser security,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2017, pp. 179–194.

[48] T. Steiner, “What is in a web view: An analysis of progressive web
app features when the means of web access is not a web browser,” in
Companion Proceedings of the The Web Conference 2018, 2018, pp.
789–796.

[49] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the web tangled
itself: Uncovering the history of client-side web (in) security,” in 26th

USENIX Security Symposium (USENIX Security 17), 2017, pp. 971–
987.

15

[50] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-anonymizing web
browsing data with social networks,” in Proceedings of the 26th

International Conference on World Wide Web, 2017, pp. 1261–1269.

[51] Y. Tian, Y. C. Liu, A. Bhosale, L. S. Huang, P. Tague, and C. Jackson,
“All your screens are belong to us: attacks exploiting the html5 screen
sharing api,” in 2014 IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 34–48.

[52] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security,
2015, pp. 1382–1393.

[53] G. Venkatadri, A. Andreou, Y. Liu, A. Mislove, K. P. Gummadi,
P. Loiseau, and O. Goga, “Privacy risks with facebook’s pii-based
targeting: Auditing a data broker’s advertising interface,” in 2018 IEEE

Symposium on Security and Privacy (SP). IEEE, 2018, pp. 89–107.

[54] P. Walton, “Building faster, more resilient apps with service worker
(chrome dev summit 2018),” November 2018, accessed on 2020-01-05.

[55] T. Watanabe, E. Shioji, M. Akiyama, and T. Mori, “Melting pot
of origins: Compromising the intermediary web services that rehost
websites,” in 27th Annual Network and Distributed System Security

Symposium, NDSS 2020, San Diego, California, USA, February 23-26,

2020. The Internet Society, 2020.

[56] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via
user interaction and side channel attacks,” in 2011 IEEE Symposium

on Security and Privacy. IEEE, 2011, pp. 147–161.

[57] S. Zannettou, B. Bradlyn, E. De Cristofaro, H. Kwak, M. Sirivianos,
G. Stringini, and J. Blackburn, “What is gab: A bastion of free speech
or an alt-right echo chamber,” in Companion Proceedings of the The

Web Conference 2018, 2018, pp. 1007–1014.

[58] S. Zannettou, T. Caulfield, J. Blackburn, E. De Cristofaro, M. Sirivianos,
G. Stringhini, and G. Suarez-Tangil, “On the origins of memes by
means of fringe web communities,” in Proceedings of the Internet

Measurement Conference 2018, 2018, pp. 188–202.

APPENDIX

Table VI provides a list of all the API calls that can be used
in a SW, and how we map them to the different categories of
functionality reported in Section III.

TABLE VI. SERVICE WORKER CAPABILITIES AND THE

CORRESPONDING API CALLS.

Functionality API calls

Caching

cache.add
cache.addAll
cache.delete
cache.keys
cache.match
cache.matchAll
cache.matchAll
cache.put
CacheStorage.Delete
CacheStorage.has
CacheStorage.keys
CacheStorage.match
CacheStorage.open

Web Push

NotificationEvent.notification
PushEvent.data
PushManager.getSubscription
PushManager.permissionState
PushManager.subscribe
PushManager.supportedContentEncodings
PushMessageData.json
PushMessageData.text
PushSubscription.endpoint
PushSubscription.expirationTime
PushSubscription.getKey
PushSubscription.options
PushSubscription.toJSON
PushSubscription.unsubscribe

Fetch

FetchEvent.clientId
FetchEvent.preloadResponse
FetchEvent.request
FetchEvent.respondWith
FetchEvent.resultingClientId

Sync
SyncEvent.tag
SyncManager.getTags
SyncManager.register

SW to client Message Client.postMessage

Client to SW Message ServiceWorker.postMessage

importScripts ServiceWorkerGlobalScope.importScripts

16

	Introduction
	Background and Threat Model
	Caching Files with Service Workers.
	SW Cache Storage vs. Browser Cache
	Threat Model

	Service Workers in the Wild
	Misusing Service Workers: History Sniffing
	PerformanceAPI-based Attack
	Timing-based Attack
	Browser Behavior
	Automated Resource Profiling
	Vulnerable Browsers

	Experimental Evaluation
	Additional Attacks and Use Cases
	Registration Inference
	Application-level Inference
	Fine-grained History Sniffing

	attack mitigation
	Discussion
	Related Work
	Conclusions
	References
	Appendix

