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In modern biology and life science, augmented microscopy 
attempts to improve the quality of microscope images to extract 
more information, such as introducing fluorescent labels, increas-

ing the signal-to-noise ratio (SNR) and performing super-resolution. 
Previous advances in microscopy have allowed the imaging of bio-
logical processes with higher and higher quality1–8. However, these 
advanced augmented-microscopy techniques usually lead to high 
costs in terms of the microscopy hardware and experimental condi-
tions, resulting in many practical limitations. In addition, there are 
specific concerns when recording processes in live cells, tissues and 
organisms: the imaging process should neither notably affect the 
biological processes nor substantially harm the sample’s health. For 
example, assessing phototoxicity is a major problem in live fluores-
cence imaging9,10. With these restrictions, high-quality microscope 
images are hard, expensive and slow to obtain. While some micro-
scope images, like transmitted-light images11, can be collected at 
relatively low cost, they are not sufficient to provide accurate statis-
tics and correct insights without augmentation. As a result, modern 
biologists and life scientists usually have to deal with the trade-offs 
between the quality of microscope images and the restrictions in the 
process of collecting them12–14.

In recent years, the development of deep learning15 has pushed 
the boundaries of such trade-offs by enabling fast and inexpensive 
microscopy augmentation using computational approaches16–18. 
The augmented microscopy task is formulated as a biological image 
transformation problem in deep learning. Specifically, models com-
posed of multi-layer artificial neural networks take low-quality 
microscope images as inputs and transform them into high-quality 
ones through computational processes. Deep learning has led to 
success in various augmented microscopy applications, such as pre-
diction of fluorescence signals from transmitted-light images8,19–25, 
virtual refocusing of fluorescence images26, content-aware image 
restoration27, fluorescence image super-resolution28 and axial 
under-sampling mitigation29.

Among these successful applications of deep learning, 
U-Net-based neural networks have been the mainstream mod-
els. U-Net was first proposed for 2D electron microscopy image 
segmentation30 and later extended to other biological image  

transformation tasks, including cell detection and quantification31. 
In the field of augmented microscopy, most deep learning mod-
els directly apply U-Net-based neural networks by only changing 
the loss functions for training21–23,25,27. In general, the U-Net is an 
encoder–decoder framework of neural network architectures for 
image transformation. It consists of a down-sampling path to cap-
ture multi-scale and multi-resolution contextual information, and a 
corresponding up-sampling path to enable precise voxel-wise pre-
dictions. Recent studies have enhanced the U-Net by incorporating 
residual blocks32–35 and supporting 3D image transformation36.

Despite the success of these U-Net-based neural networks for 
augmented microscopy, we observe three intrinsic limitations 
caused by the fact that they implement the encoder–decoder path 
by stacking local operators like convolutions and transposed con-
volutions with small kernels. First, in local operators, the receptive 
field (RF) size of an output unit, determined by the kernel size, is 
usually small and does not aggregate information from the entire 
input (Fig. 1a). While stacking these local operators increases the 
RF size for the final output units37, the RF size is still fixed given 
a specific neural network architecture. Each output unit follows a 
local path through the network and only has access to the infor-
mation within its RF on the input image. Given a large input 
image, the network has to go deeper with more down-sampling 
and up-sampling operators to ensure each output unit received 
information from the entire input image. Such an approach is not 
efficient in terms of the amount of training parameters and com-
putational expenses. In addition, the local path tends to focus on 
local dependencies among units and fails to capture long-range 
dependencies38,39, which are crucial for accuracy and consistency 
in biological image transformation. Second, the fixed-size RF lim-
its the model’s inference performance as well. The U-Net is usually 
trained with small patches of paired images (Fig. 1b), where cut-
ting large images into small patches increases the amount of train-
ing data and stabilizes the training process by allowing large batch 
sizes40. As the U-Net produces the output of the same spatial size 
as the input, it is common to feed in the entire image or patches of 
much larger spatial sizes than the training patches during the pre-
diction procedure (Fig. 1b, Supplementary Fig. 1), in order to speed  
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up the inference25,27,30,31. However, with the fixed-size RF, the model 
fails to take advantage of the knowledge from the entire input if the 
spatial size of the input is larger than that of RF, preventing potential  
inference performance boost. Third, all the local operators work 
with kernels whose weights are fixed after the training process, 
which means the importance of an input unit to an output unit  
is determined and not input dependent during the inference 
stage (Fig. 1a). This property is helpful in detecting and extract-
ing local patterns15. However, the model is supposed to be able to 
selectively use or ignore extracted information when transforming 
different input images, raising the need of operators that support 
input-dependent weights.

In this work, we argue that all three limitations can be addressed 
by introducing the attention operator38 into U-Net-based neural 
networks. To demonstrate this point, we compare the attention 
operator with a typical local operator: convolution (Fig. 1a). There 
are essential differences between the convolution and the attention 
operator. On one hand, the convolution has a local RF determined 
by its kernel, where each output unit receives information from a 
local area of input units. Meanwhile, note that the kernel weights 
are fixed after training. In other words, the weights do not depend 
on inputs during the inference. On the other hand, the attention 
operator computes each output unit as a weighted sum of all input 
units, where the weights are obtained through interactions between 
different representations of the inputs (Methods). As a result, the 
attention operator is a non-local operator with a global receptive 
field, which can potentially overcome the first two limitations. In 
addition, the weights in the attention operator are input dependent, 
addressing the third limitation.

Based on this insight, we build a family of non-local operators 
upon the attention operator, namely global voxel transformer oper-
ators (GVTOs) (Fig. 1c, Methods). GVTOs organically combine 
local and non-local operators (Supplementary Fig. 11) and can cap-
ture both local and long-range dependencies. In particular, GVTOs 
extend the attention operator to serve as flexible building blocks in 
the U-Net framework. Specifically, we develop GVTOs to support 
not only size-preserving, but also down-sampling and up-sampling 
tensor processing, which covers all kinds of operators in the U-Net 
framework. It is worth noting that, while GVTOs are designed for 
the U-Net framework, they can also be used in other kinds of net-
works as well.

With GVTOs, we propose GVTNets (Fig. 1c, Methods), an 
advanced deep learning tool for augmented microscopy, to address 
the limitations and improve current U-Net-based neural networks. 
GVTNets follow the same encoder–decoder framework as the 
U-Net while using GVTOs instead of local operators only. To be 
concrete, we force GVTNets to connect the down-sampling and 
up-sampling paths using the size-preserving GVTO at the bottom 
level, which separates GVTNets from the U-Net. In addition, we 
allow users to flexibly use more GVTOs to replace local operators in 
the U-Net framework.

In the following, we (1) demonstrate the power of the basic 
GVTNets where only one size-preserving GVTO at the bottom level 
is applied, (2) show the effectiveness of employing more GVTOs 
in GVTNets and point out how GVTNets improve the inference 
performance, (3) explore the use of GVTOs in more complex and 
composite models, and (4) investigate the generalization ability of 
GVTNets. All the experiments are conducted on publicly available 
datasets for augmented microscopy18,25,27.

Results
GVTNets training and inference. GVTNets are trained end-to-end 
under a supervised learning setting through back-propagation15 
(Methods). While the model aims at augmenting microscopy com-
putationally, it still requires a relatively small amount of augmented 
microscopy images to be collected for training. Specifically, the 

training data are registered pairs of biological images before and 
after augmentation. Once trained, the model can be used to aug-
ment microscope images in silico, without involving expensive 
microscopy hardware or techniques. Following previous studies, we 
crop the training images into patches of smaller spatial size to train 
GVTNets. However, during the inference procedure, we feed in the 
entire image for prediction (Fig. 1b). Note that GVTNets are able 
to handle inputs of any spatial size, and in particular, tend to per-
form better given larger inputs due to the ability of utilizing global 
information from the entire input. The power of GVTNets come 
from the use of GVTOs, which are inherently different from local 
operators as well as the fully connected (FC) layers in deep learning 
(Methods).

Label-free prediction of 3D fluorescence images from 
transmitted-light microscopy. First, we ask whether basic 
GVTNets achieve improved performance over U-Net-based neural 
networks. A basic GVTNet differs from the U-Net only at its bot-
tom level, by using a size-preserving GVTO instead of convolutions. 
This replacement is crucial, giving each output unit access to infor-
mation from the entire input image, regardless of the spatial size. 
We apply a basic GVTNet on the public dataset from Ounkomol 
et al.25, where the task is label-free prediction of 3D fluorescence 
images from transmitted-light microscopy (Fig. 2a).

The dataset is composed of 13 datasets corresponding to 13 dif-
ferent subcellular structures. All the images in the datasets are spa-
tially registered and obtained from a database of images produced 
by the Allen Institute for Cell Science’s microscopy pipeline25. The 
training and testing splits are provided by Ounkomol et al.25 and 
available in our published code. For each structure, the training data 
are 30 spatially registered pairs of 3D transmitted-light images and 
ground-truth fluorescence images. The number of testing images is 
18 for the cell membrane, 10 for the differential interference con-
trast (DIC) nuclear envelope and 20 for the others.

We use the model proposed by Ounkomol et al.25, which is the 
current state-of-the-art model, as the baseline on the 13 datasets. 
The baseline model is a U-Net-based neural network of depth five 
containing 23,280,769 training parameters, while the basic GVTNet 
that we used is of depth four containing 6,172,225 training param-
eters (Supplementary Fig. 2). As a result, the basic GVTNet has only 
26.5% of training parameters of the baseline model. In addition, 
the computation speed becomes faster; that is, the GVTNet takes  
0.4 s to make a prediction for one 3D image while the U-Net takes 
1 s (ref. 25).

We quantify the model performance by computing the Pearson 
correlation coefficient on the testing data (Methods). On all of the 
13 datasets, our basic GVTNet consistently outperforms the U-Net 
baseline. We perform one-tailed, paired t-tests and obtain P values 
smaller than 0.05 for all datasets, showing the improvements are 
statistically significant (Fig. 2b). The visualization of predictions 
indicates that the GVTNet captures more details than the U-Net 
baseline due to the access to more information, and is able to use 
global information to avoid local inconsistency (Fig. 2c). The quan-
titative testing results in terms of Pearson correlation coefficients 
are provided in Supplementary Table 1. Examples of predictions on 
testing images for all 13 structures can be found in Supplementary 
Fig. 3. These experimental results indicate the effectiveness of only 
one size-preserving GVTO and the resultant basic GVTNets.

We note that both GVTNets and the U-Net baselines perform 
poorly on the datasets corresponding to Golgi apparatus and des-
mosome subcellular structures. According to Ounkomol et al.25, 
a possible explanation is that the correlations between the input 
transmitted-light microscope images and the target fluorescence 
images are weak in these two datasets. As most supervised deep 
learning methods models try to capture the correlations between 
inputs and outputs during training, the inference performance 
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could be poor if the correlations are weak. Nevertheless, a global 
view is helpful, as more correlations are considered when making 
the prediction for each voxel. And GVTNets indeed improve the 
performance on these datasets. In addition, we also find that the 
amount of improvements brought by GVTNets vary for different 
datasets. We suspect that this is due to the characteristics of dif-
ferent subcellular structures. For example, the shapes are sparser 
for actomyosin bundles and tight junctions (Supplementary  
Fig. 3). It may be more important to capture the correlations among 
distant voxels when predicting these subcellular structures, where 
GVTNets achieve more improvements.

Content-aware 3D image denoising. Next, we explore the poten-
tial of GVTNets by applying more GVTOs. Specifically, we apply 
GVTNets with both size-preserving and up-sampling GVTOs on 
two independent content-aware 3D image denoising tasks (Fig. 3a);  
namely, improving the SNR of live-cell imaging of planarian 
Schmidtea mediterranea and developing Tribolium castaneum 
embryos.

The datasets, published by Weigert et al.27, contain pairs of 3D 
low-SNR images and ground-truth high-SNR images for training 
and testing. The training data are provided in the form of 17,005 and 
14,725 small, cropped patches of size 64×64×16 for planaria and 
Tribolium datasets (hereafter ‘Planaria' and ‘Tribolium' datasets), 
while the testing data are 20 testing images of size 1,024×1,024×95 
and 6 testing images of average size around 700×700×45 for the two 
datasets, respectively. In addition, the testing data come with three 
image conditions referring to three different SNR levels, leading to 
three degrees of denoising difficulty (Fig. 3b). Here, the image con-
ditions refer to the laser power and exposure time during image col-
lection27. Generally, low laser power and short exposure time lead 
to low SNR levels. Concretely, in the Planaria dataset, four different 
laser-power/exposure-time conditions are used: GT (ground truth) 
and C1–C3; specifically 2.31 mW, 30 ms (GT); 0.12 mW, 20 ms (C1); 
0.12 mW, 10 ms (C2); and 0.05 mW, 10 ms (C3). Similarly, in the 
Tribolium dataset, four different laser-power imaging conditions 
are used: GT and C1–C3; specifically, 20 mW (GT); 0.5 mW (C1); 
0.2 mW (C2); and 0.1 mW (C3). As a result, each ground-truth 
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high-SNR image in the testing dataset has three corresponding 
low-SNR images.

The baseline models in these experiments are the content-aware 
image restoration (CARE) networks27, which are based on the 3D 
U-Net36. The U-Net-based CARE networks achieve the current 
best performance on these two datasets, serving as a strong base-
line. We build a GVTNet by replacing the bottom convolutions and 
up-sampling operators with corresponding size-preserving and 
up-sampling GVTOs (Supplementary Fig. 4).

In order to quantify the model performance, we compute two 
evaluation metrics: the structural similarity index (SSIM)41 and 
normalized root-mean-square error (NRMSE) (Methods). The 

models are evaluated individually under three SNR levels. The visu-
alization results demonstrate that the GVTNet can take advantage 
of long-range dependencies to recover more details in areas with 
weak signals than the U-Net (Fig. 3c). The quantitative results also 
indicate substantial and consistent improvements of the GVTNet 
over the U-Net-based CARE under all image conditions on both 
datasets, revealing the advantages of GVTNets with more GVTOs 
(Supplementary Fig. 5, Supplementary Table 2). More examples of 
predictions on testing images can be found in Supplementary Figs. 7.

To provide insights on how GVTNets improve the inference 
performance by utilizing global information, we conduct extra 
experiments by varying the spatial sizes of input images during the 
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addition, the GVTNet avoids artefacts caused by local operators.

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell



ARTICLESNATURE MACHINE INTELLIGENCE

inference process. To be specific, as both GVTNets and the U-Net 
are able to handle inputs of any spatial size, we can either feed the 
entire image directly into the model or crop the image into small 
prediction patches and reconstruct the entire augmented image 
after prediction (Supplementary Fig. 1). Theoretically, since the RF 
size in the U-Net is fixed and local, the prediction results will be 
the same as long as the size of the prediction patches is larger than 

that of RF. On the other hand, the RF size in GVTNets is dynamic 
and global, and always covers the entire input image. This property 
allows the use of more knowledge for better inference performance 
given large prediction patches, even if the training patches are much 
smaller. To verify this insight, we train the GVTNet and CARE on 
the Planaria dataset and compare prediction results in terms of SSIM 
when using prediction patches of sizes ranging from 64×64×48 to 
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1,024×1,024×95 (entire image size). The results are summarized 
in Fig. 3d. Examples of predictions are provided in Supplementary  
Fig. 8 and detailed performance comparisons with error bars are 
provided in Supplementary Fig. 9. The prediction results of the 
U-Net remain the same when increasing prediction patch sizes, 
forming a horizontal line (Supplementary Fig. 1). On the contrary, 
important improvements can be observed for the GVTNet. These 
results show a unique advantage of GVTNets, that a performance 
boost can be achieved by using larger prediction patches. This 
advantage can be easily achieved without the need to retrain the 
model, which is expensive and time consuming. However, note that 
larger prediction patch sizes do not always lead to better perfor-
mance. The correlations among voxels will get weaker and weaker 
with increasing distance. It is possible that more noise is aggregated 
than useful information when the prediction patch size reaches a 

certain point. For example, in Fig. 3d, we can observe a local maxi-
mum when the prediction patch size is 512×512×95 for C2.

Content-aware 3D-to-2D image projection. While we use GVTOs 
to build GVTNets, GVTOs are a family of operators that support any 
size-preserving, down-sampling and up-sampling tensor processing 
and can be used outside GVTNets. Therefore, we further examine 
the proposed GVTOs on more complicated and composite models. 
In particular, we apply GVTOs and GVTNets on the 3D Drosophila 
melanogaster flywing surface projection task42,43 (Fig. 4a).

The model for this task is supposed to take a noised 3D image as 
the input and project it into a denoised 2D surface image. The typi-
cal deep learning model involves two parts: a network for 3D-to-2D 
surface projection, followed by a network for 2D image denoising. 
For example, the current best model, CARE27, uses a task-specific 
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convolutional neural network (CNN)15 for projection and a 2D 
U-Net for denoising. The task-specific CNN is also composed of 
convolutions, down-sampling and up-sampling operators. We 
design our model based on CARE by applying GVTOs in the first 
CNN and replace the 2D U-Net with a 2D GVTNet (Supplementary 
Fig. 10). The resulting composite model employs size-preserving 
and up-sampling GVTOs in both parts.

We compare our model with CARE on the ‘Flywing' dataset27 in 
terms of SSIM and NRMSE. The dataset contains 16,891 pairs of 
small 3D noisy image patches and ground-truth 2D surface image 
patches for training, and 26 complete images for testing.

The quantitative results indicate that the composite model aug-
mented by GVTOs achieves substantial improvements (Fig. 4c). 
We provide detailed quantitative results in Supplementary Table 3.  
The visualization results show that the GVTOs have a stronger 
capability to recognize non-noisy objects at regions of lower SNR 
within an image, where the original model tends to fail (Fig. 4b). 
This is because the global information is of great importance to the 
projection tasks, especially along the z-axis, where the projection 
happens. Specifically, for each (x, y) location in the 3D image, only 
one voxel along the z-axis will be projected to the 2D surface. This 
restriction is only available when the model has the global infor-
mation along the z-axis. Therefore, plugging GVTOs into the pro-
jection process can effectively improve the overall performance. 
More examples of predictions on testing images can be found in  
Supplementary Fig. 11.

Transfer learning ability of GVTNets. We have shown the effec-
tiveness of GVTNets for augmented microscopy applications under 
a supervised learning setting. In the following, we further investi-
gate the generalization ability of GVTNets under a simple transfer 
learning setting44, where we train GVTNets on one dataset and per-
form testing on other datasets for the same task. In this case, the 
inconsistencies between the training and testing data often lead to 
the collapse of models based on local operators, such as the U-Net. 
One reasonable explanation is that the weights of kernels in local 
operators are fixed after training and independent to the inputs44. 
This limits the ability to deal with the different data distributions in 
training and inference procedures.

As GVTOs achieve input-dependent weights, we hypothesize 
that GVTNets are more robust to such inconsistencies and have 
a better generalization ability. We conduct experiments to verify 
the hypothesis using the three datasets from Weigert et al.27: the 
Planaria, Tribolium and Flywing datasets. Note that all these data-
sets originally have 3D high-SNR ground-truth images for the 3D 
denoising task. By applying PreMosa45 on the 3D ground-truth 
images, we can obtain 2D ground-truth images for the 3D-to-2D 
projection task. Therefore, these datasets can be used in either 
task for both training and testing. The baseline models are still the 
U-Net-based CARE networks in these experiments, and we use the 
same GVTNet as introduced above for comparison (Supplementary 
Fig. 4, Supplementary Fig. 10). In general, we train GVTNet and 
CARE on one of the three datasets, and compare their testing per-
formance on the remaining two datasets, resulting in three sets of 
experiments. To be concrete, the first two experiments where either 
the Planaria or Tribolium dataset is used for training are doing the 
3D denoising tasks. The third experiment where models are trained 
on the Flywing dataset is performing the 3D-to-2D projection task.

The comparison results in terms of SSIM and NRMSE are shown 
in Fig. 5. Detailed quantitative results can be found in Supplementary 
Table 4. GVTNet obtains a more promising transfer learning perfor-
mance than CARE, indicating a better generalization ability.

Discussion
We have introduced GVTNets built on GVTOs, an advanced deep 
learning tool for augmented microscopy. Compared with U-Net, 
GVTNets are more powerful models that are capable of capturing 
long-range dependencies and selectively aggregating global infor-
mation for inputs of any spatial size. With GVTNets, various aug-
mented microscopy tasks can be performed with notably improved 
accuracy, such as predicting the fluorescence images of subcellular 
structures directly from transmitted-light images without using flu-
orescent labels, conducting content-aware image denoising and pro-
jecting a 3D microscope image to a 2D surface for analysis. We have 
demonstrated the superiority of GVTNets and GVTOs on several 
publicly available datasets for augmented microscopy18,25,27. In par-
ticular, we have provided examples where GVTNets achieve better 
inference performance with inputs of larger spatial sizes, indicating  
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Fig. 5 | Generalization ability of GVTNets. Comparisons of the transfer learning performance between the U-Net base CARE and our GVTNets, in terms 
of SSIM (left, higher is better) and NRMSE (right, lower is better). Rows represent the dataset on which the models are trained and columns represent the 
dataset on which the models are tested. The first two rows correspond to the 3D denoising tasks and the third row corresponds to the 3D-to-2D projection 
tasks. The diagonal charts are the performance of models trained and tested on the same datasets. The GVTNets can achieve a promising performance 
under this simplest transfer learning setting, due to the input-dependent weights of GVTOs. The 68% confidence intervals are marked by computing the 
standard deviation over testing images.
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the ability of utilizing global information. In addition, besides the 
supervised learning setting, GVTNets outperform the U-Net under 
a simple transfer learning setting, showing better generalization 
ability due to input-dependent weights.

We anticipate that our work would exert potential impacts on 
biological image analysis in general and augmented microscopy 
specifically. Image analysis plays an indispensable role in biologi-
cal research, where machine learning methods and tools have been 
widely used and dramatically advanced biological research and dis-
coveries. In particular, the past decade has witnessed revolutionary 
changes in machine learning with the rapid developments of deep 
learning15. Recent studies22,24,25,27,46 have shown that deep learning 
allows biological research to transcend the limits imposed by imag-
ing hardware, enabling discoveries at scales and resolutions that 
were previously impossible. We observe that most of these biologi-
cal image analysis tasks can be formulated as biological image trans-
formation problems18. In such tasks, U-Net30,31 is the most popular 
and successful deep model, achieving state-of-the-art performan
ces18,24,25,27. Our proposed GVTNets can be directly used to replace 
U-Net and boost the performance by addressing U-Nets' intrinsic 
limitations. Specifically, our experimental results have shown the 
superiority of GVTNets in various augmented microscopy tasks. 
These results are expected to have an immediate and strong impact 
on basic biology by enabling discoveries, observations and mea-
surements that were previously unobtainable. In addition, since the 
limitations of U-Net are general and not task specific, we anticipate 
that GVTNets will improve on U-Net in other biological image 
transformation tasks and potentially benefit a wider range of bio-
logical research based on image analysis. Last but not least, from 
a practical perspective, deployment of solutions is as important 
as their development18. To make GVTNets easy to use in various 
biological image transformation tasks, we publish our code as an 
open-source tool with detailed instructions (Supplementary Note 
2). Our code may greatly benefit both biology and computer science 
research communities.

In the literature, there exist many other studies that attempt to 
improve various aspects of U-Net47–51. Among them, some stud-
ies47,48,51 explore a similar direction to our work, which is to allow 
U-Net to capture long-range dependencies or global context infor-
mation. They can be divided into two main categories. One is to 
add modules composed of dilated convolutions, like Zhang et al.47 
and CE-NET51. Dilated convolutions can expand the RF of convolu-
tions to capture longer-range dependencies. However, they are still 
local operators in essence, sharing similar limitations. For example, 
they cannot collect global information when inputs become larger 
than the RF. The other category is to apply global pooling to extract 
global information and use it to facilitate local operators, such as 
RSGU-Net48. However, important spatial information is lost dur-
ing global pooling, which potentially limits performance. Differing 
from these two categories, we extend the attention operator to 
achieve the goal. To demonstrate the advantages of our method over 
previous methods, we compare GVTNets with representative mod-
els, RSGU-Net48 and CE-NET51, on content-aware 3D image denois-
ing tasks (Supplementary Table 5). Our method outperforms both 
methods substantially, with similar computational cost.

Other studies49,50 improve U-Net in orthogonal directions. Oktay 
et al.49 propose adding the gate mechanism to the skip connections, 
filtering out irrelevant information. It is worth noting that the gate 
mechanism and the attention mechanism are essentially differ-
ent in terms of computation, functionality and flexibility. The gate 
mechanism performs spatially element-wise filtering so that there is 
no explicit communication between spatial locations. On the con-
trary, the attention mechanism aggregates information from all spa-
tial locations (Methods). Moreover, the gate mechanism can only 
be used for size-preserving tensor processing, while the attention 
mechanism can be extended for down-sampling and up-sampling 

tensor processing by our GVTOs. Zhou et al.50 propose a nested 
U-Net architecture by adding dense skip connections. The nested 
architecture facilitates the training and yields better inference 
performance.

In terms of augmenting images with deep learning meth-
ods, generative adversarial network (GAN)52 is a promising cho
ice18,22,46,53. We point out that GAN-based methods are orthogo-
nal to our GVTNets in the sense that they can be used together. 
Note that GAN is composed of a generator and a discriminator. 
In GAN-based image augmentation models, the generator is typi-
cally a U-Net53, which we can improve with our GVTNets. We con-
duct experiments on content-aware 3D image denoising tasks. The 
results can be found in Supplementary Table 6. As indicated by the 
results, under the GAN framework, our GVTNets can improve on 
U-Net.

The key components of GVTNets are GVTOs. One concern about 
GVTOs is the efficiency. Given inputs of the same size, GVTOs usu-
ally require more time and take up more memory for computation 
than local operators like convolutions. This is due to the use of the 
self-attention operator. However, the high cost of GVTOs does not 
necessarily make GVTNets more expensive than U-Net. By taking 
advantage of the more powerful GVTOs, the overall network archi-
tecture can be simpler, improving the efficiency. For example, in 
the label-free fluorescence image prediction experiments, we have 
shown that a GVTNet can outperform a U-Net-based neural net-
work with only 26.5% of training parameters and faster computa-
tion speed.

Another limitation of GVTNets is a shared disadvantage of 
current deep learning models25,27. Models trained on one biologi-
cal image transformation dataset can hardly be used for another 
dataset. Therefore, high-quality training data must be collected for 
each task, which is expensive and time consuming. GVTNets have 
shown promising improvements under the simplest transfer learn-
ing setting without fine-tuning. We anticipate that the combination 
of GVTNets and recent advances of transfer learning44 and meta 
learning54 can greatly alleviate this limitation.

Methods
Network architecture. General framework. GVTNets follow the same encoder–
decoder framework as U-Net30,31,36, which represents a family of deep neural 
networks for biological image transformations. An encoder takes the image to 
be transformed as the input and computes feature maps of gradually reduced 
spatial sizes, which encode multi-scale and multi-resolution information from 
the input image. Then a corresponding decoder uses these feature maps to 
produce the transformed image, during which feature maps of gradually increased 
spatial sizes are computed. GVTNets support both 2D and 3D biological image 
transformations. We use the 3D case to describe the architecture in detail (Fig. 1c).

In our GVTNets, the encoder starts with an initial 3×3×3 convolution that 
transforms the input image into a chosen number of feature maps of the same 
spatial size, initializing the encoding. The encoding process is achieved by 
down-sampling operators interleaved with optional size-preserving operators. 
Each down-sampling operator halves the size along each spatial dimension of 
feature maps but doubles the channel dimension, that is, the number of feature 
maps. To be specific, given a d × h × w × c tensor representing c feature maps 
of the spatial size d × h × w as inputs, a down-sampling operator will output an 
d/2 × h/2 × w/2 × 2c tensor. Feature maps of the same spatial size are considered 
at the same level. As a result, the number of levels, also known as the depth of the 
network, is determined by the number of down-sampling operators in the encoder.

Correspondingly, the decoder is composed of the same number of up-sampling 
operators interleaved with optional size-preserving operators. The decoding process 
computes feature maps of increased spatial sizes in a level-by-level fashion, where 
each up-sampling operator doubles the size along each spatial dimension of feature 
maps but halves the channel dimension, as opposed to down-sampling operators. 
Therefore, there is a one-to-one correspondence between down-sampling and 
up-sampling operators. The decoder ends with an output convolution that outputs 
transformed image of the same spatial size as the input image.

The encoder and decoder are connected at each level. The bottom level 
contains the outputs of the encoder, which are feature maps of the smallest size in 
the U-Net framework. These feature maps, after optional size-preserving operators, 
serve as inputs to the decoder. In upper levels, there exist skip connections 
between the encoder and decoder. Concretely, the input feature maps to each 
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down-sampling operator are concatenated or added to the output feature maps of 
the corresponding up-sampling operator. The skip connections allow the decoder 
to take advantage of encoded multi-scale and multi-resolution information, which 
increases the capability of the framework and facilitates the training process30,35.

Global voxel transformer networks. The major difference between our GVTNets 
and the original U-Net lies in the choices of the size-preserving, down-sampling 
and up-sampling operators. GVTNets are equipped with GVTOs, which can be 
flexibly used for size-preserving, down-sampling or up-sampling tensor processing. 
In particular, GVTNets fix the size-preserving operator at the bottom level to 
be the size-preserving GVTO, ensuring that global information is encoded and 
aggregated before going through the decoder. The other size-preserving operators 
are set to pre-activation residual blocks33, consisting of two 3×3×3 convolutions 
with the ReLU activation function55 (Supplementary Fig. 12a). Down-sampling and 
up-sampling GVTOs can be used as corresponding operators based on the datasets 
and tasks.

Global voxel transformer operators. As described above, the key components of 
our GVTNets are GVTOs, which are able to selectively use long-range information 
among input units. We take the 3D case to illustrate the size-preserving GVTO 
first, followed by the down-sampling and up-sampling GVTOs.

Size-preserving GVTO. Given the input third-order tensor X 2 Rd ´ h´w ´ c

I
 

representing c feature maps of the spatial size d × h × w, the size-preserving GVTO 
performs three independent 1×1×1 convolutions on X

I
 and obtains three tensors, 

namely the query (Q), key (K
I

) and value (V
I

) tensor, where Q;K;V 2 Rd ´ h´w ´ c

I
. 

Afterwards, Q, K
I

 and V
I

 are unfolded along the channel dimension56 into matrices 
Q;K;V 2 Rc ´ dhw

I
. These matrices go through the attention operator defined as

Y ¼ V " NormalizeðKTQÞ 2 Rc ´ dhw

where Normalize(⋅) is a normalization function that normalizes each column of 
QTK 2 Rdhw ´ dhw

I
. Specifically, the size-preserving GVTO simply uses 1/dhw as the 

normalization function:

Y ¼ V
KTQ
dhw

¼ 1
dhw

VKTQ 2 Rc ´ dhw

where dhw is the second dimension of Q and subjected to corresponding changes 
in the down-sampling and up-sampling GVTOs. After the attention operator, 
the matrix Y is then folded back to a tensor Y 2 Rd ´ h´w ´ c

I
. The final outputs of 

the size-preserving GVTO is the summation of X
I
 and Y

I
, which means a residual 

connection from the inputs to the outputs32. In particular, we use the pre-activation 
technique as well33. As a result, the size-preserving GVTO preserves the dimension 
of the inputs (Supplementary Fig. 13e).

Down-sampling and up-sampling GVTOs. The extension from the size-preserving 
GVTO to the down-sampling and up-sampling GVTOs is achieved by changing 
the convolutions that compute Q, K

I
, V
I

. We take the down-sampling GVTO 
as an example for illustration. Given the same input tensor X 2 Rd ´ h´w ´ c

I
, 

we use a 3×3×3 convolution with stride 2 to obtain Q 2 Rd=2´ h=2 ´w=2 ´ 2c

I
 and 

two independent 1×1×1 convolutions to generate K 2 Rd ´ h´w ´ 2c

I
 and 

V 2 Rd ´ h ´w ´ 2c

I
. The following computation is the same; that is, Q, K

I
, V
I

 
are unfolded along the channel dimension into matrices Q 2 R2c ´ dhw=8

I
 and 

K;V 2 R2c ´ dhw

I
, which are fed into the same attention operator and output the 

matrix Y 2 R2c ´ dhw=8

I
. Folding it back results in a tensor Y 2 Rd=2 ´ h=2 ´w=2 ´ 2c

I
. 

Comparing the dimensions of X
I
 and Y

I
, we achieve a down-sampling process 

that halves the size along each spatial dimension of feature maps but doubles 
the channel dimension. We complete the down-sampling GVTO by adding 
the residual connection in two ways, corresponding to two versions of the 
down-sampling GVTO (Supplementary Fig. 13a,b). One is to perform an extra 
3×3×3 convolution with stride 2 through the residual connection from X

I
 to Y

I
, in 

order to transform X
I
 to have the same dimension as Y

I
; the other is to directly add 

Q to Y
I
, based on the fact that Q is obtained from X

I
.

The up-sampling GVTO is dual to the down-sampling GVTO. Instead of using 
a convolution with stride 2, it uses a 3×3×3 transposed convolution with stride 2 to 
obtain Q 2 R2d ´ 2h ´ 2w ´ c=2

I
. In addition, the other two 1×1×1 convolutions generate 

K 2 Rd ´ h´w ´ c=2

I
 and V 2 Rd ´ h ´w ´ c=2

I
. The up-sampling GVTO doubles the size 

along each spatial dimension of feature maps but halves the channel dimension 
and also has two versions corresponding to different residual connections 
(Supplementary Fig. 13c,d).

Advantages of GVTOs. It is noteworthy that each spatial location in the output 
tensor of GVTOs has access to all the information in the input tensor, and is able 
to selectively use or ignore information. We illustrate this point by regarding 
X 2 Rd ´ h´w ´ c

I
 as d × h × w c-dimensional vectors, where each vector represents 

the information in a spatial location. In this view, each vector has a one-to-one 
correspondence to each column in K and V in GVTOs, respectively. Revisiting 
the attention operator, each column in Y is a vector representation of each spatial 
location in the output tensor, and has a one-to-one correspondence to each column 

in Q. Moreover, each column in Y is computed as the weighted sum of columns in 
V, whose weights are determined by the interaction between the corresponding 
column in Q and all columns in K. The weights can be viewed as filters of the 
amount of information from each spatial location in the inputs to the outputs. In 
addition, as both Q and K are computed from the input tensor, the weights are 
input dependent. Therefore, GVTOs achieve the dynamic non-local information 
aggregation.

Comparisons with fully FC layers. It is important to note that the proposed GVTOs 
are different from FC layers in fundamental ways, although they both allow each 
output unit to use information from the entire input. Compared to FC layers, 
outputs in GVTOs are computed based on relations among inputs. Thus the 
weights are input dependent, rather than learned and fixed during prediction as 
in FC layers. The only trainable parameters in GVTOs are the convolutions to 
compute Q, K

I
, V
I

, whose sizes are independent of input and output sizes. As a 
consequence, GVTOs allow variable-size inputs, and the positional correspondence 
between inputs and outputs is preserved in GVTOs. By contrast, FC layers require 
fixed-size inputs and positional correspondence is lost.

Training loss. GVTNets are trained in an end-to-end fashion with two options of 
the loss functions. One is the mean-squared error (MSE):

LMSEðy; ŷÞ ¼
1
N

XN

i¼1
ðyi $ ŷiÞ

2

where y represents the ground-truth image, ŷ represents the model’s predicted 
image and N represents the total number of voxels in the image. The other is the 
mean absolute error (MAE):

LMAEðy; ŷÞ ¼
1
N

XN

i¼1
jyi $ ŷij

Both MSE and MAE measure the differences between the predicted image and 
the ground-truth image. The training process applies the Adam optimizer57 with a 
user-chosen learning rate to minimize the loss.

Evaluation metrics. Pearson correlation coefficient. Pearson correlation coefficient 
(r) is computed as

rðy; ŷÞ ¼
PN

i¼1ðyi $ μyÞðŷi $ μŷÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðyi $ μyÞ

2 PN
i¼1 ðŷi $ μŷÞ

2
q

where μy and μŷ
I

 are the mean of voxel intensities in y and ŷ, respectively.

Normalized root-mean-square error. The root-mean-square error (RMSE) is 
computed as

RMSEðy; ŷÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LMSEðy; ŷÞ

p

The NRMSE simply adds a normalization function on y and ŷ, respectively. In our 
tools and experiments, we apply the same percentile-based normalization and 
transformation as in Weigert et al.27. Concretely, the NRMSE is defined by

NRMSEðy; ŷÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min
ϕ

LMSEðϕðŷÞ;Nðy; 0:1; 99:9ÞÞ
r

where

Nðy; 0:1; 99:9Þ ¼ y $ percentileðy; 0:1Þ
percentileðy; 99:9Þ $ percentileðy; 0:1Þ

is the percentile-based normalization, and ϕðŷÞ ¼ αŷ þ β
I

 denotes a transformation 
that scales and shifts ŷ. During the implementation, we let α ¼ Covðy#!y;ŷ#!̂yÞ

Varðŷ#!̂yÞ
I

 and β = 0 
to obtain ϕðŷÞ

I
 so that the MSE is minimized.

Structural similarity index. The SSIM41 is computed as

SSIMðy; ŷÞ ¼
ð2μyμŷ þ c1Þð2σyŷ þ c2Þ

ðμy2 þ μŷ2 þ c1Þðσy2 þ σŷ2 þ c2Þ

where σy is the variance of y, σŷ
I

 is the variance of ŷ, σyŷ
I

 is the covariance of y and 
ŷ, and c1 = (0.01L)2, c2 = (0.03L)2 are two constant parameters of SSIM. Here, L 
represents the range of intensity values and is set to 1.

Task-specific configurations. The settings of our device are: GPU: Nvidia GeForce 
RTX 2080 Ti 11GB; CPU: Intel Xeon Silver 4116 2.10GHz; OS: Ubuntu 16.04.3 LTS.

Label-free prediction of 3D fluorescence images from transmitted-light microscopy. 
The basic GVTNet used in the experiments of label-free prediction of 3D 
fluorescence images is illustrated in Supplementary Fig. 2. The network has 
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depth four, where the skip connections add feature maps from the encoder to the 
decoder. In particular, the bottom block of the basic GVTNet is the size-preserving 
GVTO (Supplementary Fig. 11e). The number of feature maps after the initial 
convolution is set to 32. Batch normalization58 with the momentum of 0.997 and 
epsilon of 0.00001 is applied before each ReLU activation function.

The 13 subtasks corresponding 13 different subcellular structures are 
performed separately and independently. To train the GVTNet, the 30 pairs of 
training images are randomly cropped into patches of size 64×64×32 and each 
training batch contains 16 pairs of patches. We minimize the MSE loss using the 
Adam optimizer with a learning rate of 0.001 for 70,000 to 100,000 minibatch 
iterations, depending on different subtasks. The training procedure lasts 
approximately 675 min to 945 min for each of the 13 datasets25.

Context-aware 3D image denoising. The GVTNet used in the image denoising 
tasks is illustrated in Supplementary Fig. 4. It follows a 3D U-Net framework of 
depth three, that is, including two down-sampling and up-sampling operators, 
respectively. The skip connections merge feature maps from the encoder to 
the decoder by concatenation instead of addition. The bottom block is the 
size-preserving GVTO and two up-sampling operators are the up-sampling 
GVTOs v2 (Supplementary Fig. 11d). The number of feature maps after the initial 
convolution is set to 32. No batch normalization is applied.

We use the MAE loss with the Bayesian deep learning technique59 
(Supplementary Note 1) to train GVTNet. The training patch size is 64×64×16. 
We train the model with a batch size of 16 and a base learning rate of 0.0004 with a 
decay rate 0.7 for every 10,000 minibatch iterations. The training procedure takes 
50 epochs and lasts about 345 min and 290 min for the Planaria and Tribolium 
datasets27, respectively.

Content-aware 3D-to-2D image projection. The model for surface projection is 
composed of a 3D-to-2D projection network and a 2D denoising network, as 
illustrated in Supplementary Fig. 10. The projection network predicts the probability 
of each voxel in the 3D input image belonging to the 2D surface, and uses summation 
weighted by the predicted probabilities along the z-axis to finish the projection. The 
probabilities are estimated by a GVTO-augmented CNN. The following 2D denoising 
network is simply a 2D version of the GVTNet used in the image denoising tasks.

During training, the 3D input patch size is 64×64×50 and the 2D ground-truth 
patch size is 64×64×1. The other training settings are the same as those in image 
denoising experiments, except that we do not use the Bayesian deep learning 
technique. The training procedure lasts 295 min for the Flywing dataset27.

Data availability
Datasets for label-free prediction of 3D fluorescence images from transmitted-light 
microscopy25 can be downloaded from https://downloads.allencell.org/
publication-data/label-free-prediction/index.html. Datasets for context-aware  
3D image denoising and 3D-to-2D image projection27 can be downloaded from 
https://publications.mpi-cbg.de/publications-sites/7207.

Code availability
The code for GVTNets training, prediction and evaluation (in Python/TensorFlow) 
is publicly available at https://github.com/divelab/GVTNets and ref. 60.
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