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Advances in deep learning have led to remarkable success in augmented microscopy, enabling us to obtain high-quality micro-
scope images without using expensive microscopy hardware and sample preparation techniques. Current deep learning models
for augmented microscopy are mostly U-Net-based neural networks, thus sharing certain drawbacks that limit the performance.
In particular, U-Nets are composed of local operators only and lack dynamic non-local information aggregation. In this work,
we introduce global voxel transformer networks (GVTNets), a deep learning tool for augmented microscopy that overcomes
intrinsic limitations of the current U-Net-based models and achieves improved performance. GVTNets are built on global voxel
transformer operators, which are able to aggregate global information, as opposed to local operators like convolutions. We
apply the proposed methods on existing datasets for three different augmented microscopy tasks under various settings.

n modern biology and life science, augmented microscopy

attempts to improve the quality of microscope images to extract

more information, such as introducing fluorescent labels, increas-
ing the signal-to-noise ratio (SNR) and performing super-resolution.
Previous advances in microscopy have allowed the imaging of bio-
logical processes with higher and higher quality'~*. However, these
advanced augmented-microscopy techniques usually lead to high
costs in terms of the microscopy hardware and experimental condi-
tions, resulting in many practical limitations. In addition, there are
specific concerns when recording processes in live cells, tissues and
organisms: the imaging process should neither notably affect the
biological processes nor substantially harm the sample’s health. For
example, assessing phototoxicity is a major problem in live fluores-
cence imaging”'’. With these restrictions, high-quality microscope
images are hard, expensive and slow to obtain. While some micro-
scope images, like transmitted-light images'’, can be collected at
relatively low cost, they are not sufficient to provide accurate statis-
tics and correct insights without augmentation. As a result, modern
biologists and life scientists usually have to deal with the trade-offs
between the quality of microscope images and the restrictions in the
process of collecting them'?-'%.

In recent years, the development of deep learning' has pushed
the boundaries of such trade-offs by enabling fast and inexpensive
microscopy augmentation using computational approaches'®-%.
The augmented microscopy task is formulated as a biological image
transformation problem in deep learning. Specifically, models com-
posed of multi-layer artificial neural networks take low-quality
microscope images as inputs and transform them into high-quality
ones through computational processes. Deep learning has led to
success in various augmented microscopy applications, such as pre-
diction of fluorescence signals from transmitted-light images®"*->,
virtual refocusing of fluorescence images®, content-aware image
restoration”’, fluorescence image super-resolution”® and axial
under-sampling mitigation®.

Among these successful applications of deep learning,
U-Net-based neural networks have been the mainstream mod-
els. U-Net was first proposed for 2D electron microscopy image
segmentation® and later extended to other biological image

transformation tasks, including cell detection and quantification®.
In the field of augmented microscopy, most deep learning mod-
els directly apply U-Net-based neural networks by only changing
the loss functions for training”-***>”. In general, the U-Net is an
encoder-decoder framework of neural network architectures for
image transformation. It consists of a down-sampling path to cap-
ture multi-scale and multi-resolution contextual information, and a
corresponding up-sampling path to enable precise voxel-wise pre-
dictions. Recent studies have enhanced the U-Net by incorporating
residual blocks**~* and supporting 3D image transformation’.
Despite the success of these U-Net-based neural networks for
augmented microscopy, we observe three intrinsic limitations
caused by the fact that they implement the encoder-decoder path
by stacking local operators like convolutions and transposed con-
volutions with small kernels. First, in local operators, the receptive
field (RF) size of an output unit, determined by the kernel size, is
usually small and does not aggregate information from the entire
input (Fig. 1a). While stacking these local operators increases the
RF size for the final output units”, the RF size is still fixed given
a specific neural network architecture. Each output unit follows a
local path through the network and only has access to the infor-
mation within its RF on the input image. Given a large input
image, the network has to go deeper with more down-sampling
and up-sampling operators to ensure each output unit received
information from the entire input image. Such an approach is not
efficient in terms of the amount of training parameters and com-
putational expenses. In addition, the local path tends to focus on
local dependencies among units and fails to capture long-range
dependencies®™*, which are crucial for accuracy and consistency
in biological image transformation. Second, the fixed-size RF lim-
its the model’s inference performance as well. The U-Net is usually
trained with small patches of paired images (Fig. 1b), where cut-
ting large images into small patches increases the amount of train-
ing data and stabilizes the training process by allowing large batch
sizes'’. As the U-Net produces the output of the same spatial size
as the input, it is common to feed in the entire image or patches of
much larger spatial sizes than the training patches during the pre-
diction procedure (Fig. 1b, Supplementary Fig. 1), in order to speed

Texas A&M University, Department of Computer Science and Engineering, College Station, TX, USA. 2These authors contributed equally: Zhengyang Wang,

Yaochen Xie. Me-mail: sji@tamu.edu

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell



ARTICLES

NATURE MACHINE INTELLIGENCE

up the inference?>*”***!. However, with the fixed-size RE, the model
fails to take advantage of the knowledge from the entire input if the
spatial size of the input is larger than that of RF, preventing potential
inference performance boost. Third, all the local operators work
with kernels whose weights are fixed after the training process,
which means the importance of an input unit to an output unit
is determined and not input dependent during the inference
stage (Fig. la). This property is helpful in detecting and extract-
ing local patterns'”. However, the model is supposed to be able to
selectively use or ignore extracted information when transforming
different input images, raising the need of operators that support
input-dependent weights.

In this work, we argue that all three limitations can be addressed
by introducing the attention operator® into U-Net-based neural
networks. To demonstrate this point, we compare the attention
operator with a typical local operator: convolution (Fig. 1a). There
are essential differences between the convolution and the attention
operator. On one hand, the convolution has a local RF determined
by its kernel, where each output unit receives information from a
local area of input units. Meanwhile, note that the kernel weights
are fixed after training. In other words, the weights do not depend
on inputs during the inference. On the other hand, the attention
operator computes each output unit as a weighted sum of all input
units, where the weights are obtained through interactions between
different representations of the inputs (Methods). As a result, the
attention operator is a non-local operator with a global receptive
field, which can potentially overcome the first two limitations. In
addition, the weights in the attention operator are input dependent,
addressing the third limitation.

Based on this insight, we build a family of non-local operators
upon the attention operator, namely global voxel transformer oper-
ators (GVTOs) (Fig. 1c, Methods). GVTOs organically combine
local and non-local operators (Supplementary Fig. 11) and can cap-
ture both local and long-range dependencies. In particular, GVTOs
extend the attention operator to serve as flexible building blocks in
the U-Net framework. Specifically, we develop GVTOs to support
not only size-preserving, but also down-sampling and up-sampling
tensor processing, which covers all kinds of operators in the U-Net
framework. It is worth noting that, while GVTOs are designed for
the U-Net framework, they can also be used in other kinds of net-
works as well.

With GVTOs, we propose GVTNets (Fig. 1c, Methods), an
advanced deep learning tool for augmented microscopy, to address
the limitations and improve current U-Net-based neural networks.
GVTNets follow the same encoder-decoder framework as the
U-Net while using GVTOs instead of local operators only. To be
concrete, we force GVTNets to connect the down-sampling and
up-sampling paths using the size-preserving GVTO at the bottom
level, which separates GVTNets from the U-Net. In addition, we
allow users to flexibly use more GVTOs to replace local operators in
the U-Net framework.

In the following, we (1) demonstrate the power of the basic
GVTNets where only one size-preserving GVTO at the bottom level
is applied, (2) show the effectiveness of employing more GVTOs
in GVTNets and point out how GVTNets improve the inference
performance, (3) explore the use of GVTOs in more complex and
composite models, and (4) investigate the generalization ability of
GVTNets. All the experiments are conducted on publicly available
datasets for augmented microscopy'®*>”’.

Results

GVTNets training and inference. GVTNets are trained end-to-end
under a supervised learning setting through back-propagation’
(Methods). While the model aims at augmenting microscopy com-
putationally, it still requires a relatively small amount of augmented
microscopy images to be collected for training. Specifically, the

training data are registered pairs of biological images before and
after augmentation. Once trained, the model can be used to aug-
ment microscope images in silico, without involving expensive
microscopy hardware or techniques. Following previous studies, we
crop the training images into patches of smaller spatial size to train
GVTNets. However, during the inference procedure, we feed in the
entire image for prediction (Fig. 1b). Note that GVTNets are able
to handle inputs of any spatial size, and in particular, tend to per-
form better given larger inputs due to the ability of utilizing global
information from the entire input. The power of GVTNets come
from the use of GVTOs, which are inherently different from local
operators as well as the fully connected (FC) layers in deep learning
(Methods).

Label-free prediction of 3D fluorescence images from
transmitted-light microscopy. First, we ask whether basic
GVTNets achieve improved performance over U-Net-based neural
networks. A basic GVTNet differs from the U-Net only at its bot-
tom level, by using a size-preserving GVTO instead of convolutions.
This replacement is crucial, giving each output unit access to infor-
mation from the entire input image, regardless of the spatial size.
We apply a basic GVTNet on the public dataset from Ounkomol
et al.”>, where the task is label-free prediction of 3D fluorescence
images from transmitted-light microscopy (Fig. 2a).

The dataset is composed of 13 datasets corresponding to 13 dif-
ferent subcellular structures. All the images in the datasets are spa-
tially registered and obtained from a database of images produced
by the Allen Institute for Cell Science’s microscopy pipeline”. The
training and testing splits are provided by Ounkomol et al.*® and
available in our published code. For each structure, the training data
are 30 spatially registered pairs of 3D transmitted-light images and
ground-truth fluorescence images. The number of testing images is
18 for the cell membrane, 10 for the differential interference con-
trast (DIC) nuclear envelope and 20 for the others.

We use the model proposed by Ounkomol et al., which is the
current state-of-the-art model, as the baseline on the 13 datasets.
The baseline model is a U-Net-based neural network of depth five
containing 23,280,769 training parameters, while the basic GVTNet
that we used is of depth four containing 6,172,225 training param-
eters (Supplementary Fig. 2). As a result, the basic GVTNet has only
26.5% of training parameters of the baseline model. In addition,
the computation speed becomes faster; that is, the GVTNet takes
0.4s to make a prediction for one 3D image while the U-Net takes
1s (ref.?).

We quantify the model performance by computing the Pearson
correlation coefficient on the testing data (Methods). On all of the
13 datasets, our basic GVTNet consistently outperforms the U-Net
baseline. We perform one-tailed, paired t-tests and obtain P values
smaller than 0.05 for all datasets, showing the improvements are
statistically significant (Fig. 2b). The visualization of predictions
indicates that the GVTNet captures more details than the U-Net
baseline due to the access to more information, and is able to use
global information to avoid local inconsistency (Fig. 2¢). The quan-
titative testing results in terms of Pearson correlation coefficients
are provided in Supplementary Table 1. Examples of predictions on
testing images for all 13 structures can be found in Supplementary
Fig. 3. These experimental results indicate the effectiveness of only
one size-preserving GVTO and the resultant basic GVTNets.

We note that both GVTNets and the U-Net baselines perform
poorly on the datasets corresponding to Golgi apparatus and des-
mosome subcellular structures. According to Ounkomol et al.”,
a possible explanation is that the correlations between the input
transmitted-light microscope images and the target fluorescence
images are weak in these two datasets. As most supervised deep
learning methods models try to capture the correlations between
inputs and outputs during training, the inference performance
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Fig. 1| GVTNets architecture, training and inference. a, Comparisons between a 3x3 convolution and the attention operator in terms of RF and working
mechanism during the inference procedure. The convolution, a typical local operator, has a fixed-size RF and fixed weights after training. On the contrary,
the attention operator always allows a global RF and input-dependent weights during prediction. GVTOs, the key components of GV TNets, are built
upon the attention operator. b, Training and inference of GVTNets. During the training procedure, registered pairs of microscope images before and after
augmentation are collected and cut into small patches. During the inference procedure, the entire image is fed into the model to obtain the augmented
output. ¢, Architecture of GVTNets. A GVTNet of depth four. The use of GVTOs differs from U-Net in GVTNet. The GV TNet fixes one size-preserving
GVTO at the bottom level and allows optional GVTOs as down-sampling and up-sampling operators. Detailed descriptions of GVTNets and GVTOs are

provided in the Methods.

could be poor if the correlations are weak. Nevertheless, a global
view is helpful, as more correlations are considered when making
the prediction for each voxel. And GVTNets indeed improve the
performance on these datasets. In addition, we also find that the
amount of improvements brought by GVTNets vary for different
datasets. We suspect that this is due to the characteristics of dif-
ferent subcellular structures. For example, the shapes are sparser
for actomyosin bundles and tight junctions (Supplementary
Fig. 3). It may be more important to capture the correlations among
distant voxels when predicting these subcellular structures, where
GVTNets achieve more improvements.

Content-aware 3D image denoising. Next, we explore the poten-
tial of GVTNets by applying more GVTOs. Specifically, we apply
GVTNets with both size-preserving and up-sampling GVTOs on
two independent content-aware 3D image denoising tasks (Fig. 3a);
namely, improving the SNR of live-cell imaging of planarian
Schmidteamediterranea and developing  Tribolium castaneum
embryos.
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The datasets, published by Weigert et al.’, contain pairs of 3D
low-SNR images and ground-truth high-SNR images for training
and testing. The training data are provided in the form of 17,005 and
14,725 small, cropped patches of size 64x64X16 for planaria and
Tribolium datasets (hereafter ‘Planaria’ and ‘Tribolium' datasets),
while the testing data are 20 testing images of size 1,024x1,024X95
and 6 testing images of average size around 700x700x45 for the two
datasets, respectively. In addition, the testing data come with three
image conditions referring to three different SNR levels, leading to
three degrees of denoising difficulty (Fig. 3b). Here, the image con-
ditions refer to the laser power and exposure time during image col-
lection”. Generally, low laser power and short exposure time lead
to low SNR levels. Concretely, in the Planaria dataset, four different
laser-power/exposure-time conditions are used: GT (ground truth)
and C1-C3; specifically 2.31 mW, 30 ms (GT); 0.12mW, 20 ms (C1);
0.12mW, 10 ms (C2); and 0.05mW, 10 ms (C3). Similarly, in the
Tribolium dataset, four different laser-power imaging conditions
are used: GT and C1-C3; specifically, 20mW (GT); 0.5mW (C1);
0.2mW (C2); and 0.1mW (C3). As a result, each ground-truth
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Fig. 2 | GVTNets on label-free prediction of 3D fluorescence images from transmitted-light microscopy. a, Task overview. This augmented microscopy
task is to predict the fluorescence images of subcellular structures from inexpensive transmitted-light images without fluorescent labels. b, Prediction
performance for different subcellular structures (higher is better). Top, distributions of the Pearson correlation coefficient (r) between the ground-truth
images and the predicted images of the GVTNet on the testing datasets for 13 different subcellular structures. Each pair of images leads to a point in

the distribution. In the box and whisker plots, the 25th, 50th and 75th percentile points are marked by the box, and whiskers indicate the minimum and
maximum. The number of testing images is 18 for the cell membrane, 10 for the differential interference contrast (DIC) nuclear envelope and 20 for the
others. Bottom, one-tailed paired t-test results on the performance of the GVTNet and the U-Net baseline. The degrees of freedom is the number of testing
images minus one. All the P values are smaller than 0.05. ¢, Example of predicting fluorescence images of tight junctions from transmitted-light images.
From left to right: transmitted-light input images, the predicted fluorescence images using the U-Net baseline, the predicted fluorescence images using the
GVTNet and the ground-truth fluorescence images. We visualize the centre z-, y- and x-slices for 3D images. Clearly, the GVTNet captures more details. In

addition, the GVTNet avoids artefacts caused by local operators.

high-SNR image in the testing dataset has three corresponding
low-SNR images.

The baseline models in these experiments are the content-aware
image restoration (CARE) networks”, which are based on the 3D
U-Net*. The U-Net-based CARE networks achieve the current
best performance on these two datasets, serving as a strong base-
line. We build a GVTNet by replacing the bottom convolutions and
up-sampling operators with corresponding size-preserving and
up-sampling GVTOs (Supplementary Fig. 4).

In order to quantify the model performance, we compute two
evaluation metrics: the structural similarity index (SSIM)*' and
normalized root-mean-square error (NRMSE) (Methods). The

models are evaluated individually under three SNR levels. The visu-
alization results demonstrate that the GVTNet can take advantage
of long-range dependencies to recover more details in areas with
weak signals than the U-Net (Fig. 3c). The quantitative results also
indicate substantial and consistent improvements of the GVTNet
over the U-Net-based CARE under all image conditions on both
datasets, revealing the advantages of GVTNets with more GVTOs
(Supplementary Fig. 5, Supplementary Table 2). More examples of
predictions on testing images can be found in Supplementary Figs. 7.

To provide insights on how GVTNets improve the inference
performance by utilizing global information, we conduct extra
experiments by varying the spatial sizes of input images during the
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Fig. 3 | GVTNets on content-aware 3D image denoising. a, Task overview. This augmented microscopy task is to improve the SNR by removing the noise
from the low-SNR images captured in poor imaging conditions. b, Image conditions. The ground-truth image captured with full exposure and laser power,
along with three noised images captured in weaker conditions at three different levels (C1-C3). ¢, Examples of content-aware 3D image denoising. From
top to bottom: the input noisy images, the predicted denoised images using the U-Net-based CARE, the predicted denoised images using the GVTNet and
the ground-truth denoised images. On both Planaria and Tribolium datasets, the U-Net fails to capture details in input regions with weak signals. On the
contrary, the GVTNet obtains more precise predictions with more detail in such regions. d, The inference performance in terms of SSIM over increasing
prediction patch sizes on the Planaria dataset (higher is better). The number of testing images is 20. Dotted lines represent the U-Net and solid lines
represent the GVTNet. The inference performance of the GVTNet increases with larger prediction patch sizes, showing its ability to utilize knowledge from

the entire input.

inference process. To be specific, as both GVTNets and the U-Net
are able to handle inputs of any spatial size, we can either feed the
entire image directly into the model or crop the image into small
prediction patches and reconstruct the entire augmented image
after prediction (Supplementary Fig. 1). Theoretically, since the RF
size in the U-Net is fixed and local, the prediction results will be
the same as long as the size of the prediction patches is larger than

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

that of RE On the other hand, the RF size in GVTNets is dynamic
and global, and always covers the entire input image. This property
allows the use of more knowledge for better inference performance
given large prediction patches, even if the training patches are much
smaller. To verify this insight, we train the GVTNet and CARE on
the Planaria dataset and compare prediction results in terms of SSIM
when using prediction patches of sizes ranging from 64x64x48 to
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Fig. 4 | GVTNets on content-aware 3D-to-2D image projection. a, Task overview. This augmented microscopy task is to project a low-SNR 3D image
into a high-SNR 2D surface. The model consists of a ProjectionNet that produces an intermediate 2D low-SNR image and a 2D GV TNet that outputs the
high-SNR 2D image. b, Examples of content-aware 3D-to-2D image projection. From top to bottom: the predicted images using the U-Net-based CARE,
the predicted images using the GVTNet and the ground-truth images. Visualization results indicate that the U-Net is more sensitive to the irregular input
voxel values and collapses in surrounding areas. In addition, the U-Net tends to give ambiguous and blurred predictions where the input information is
insufficient. On the contrary, the GVTNet is more robust to these cases. ¢, Prediction performance on the testing data of the Flywing dataset, in terms

of SSIM and NRMSE under three imaging conditions. The number of testing images is 26. The 68% confidence intervals are marked by computing the

standard deviation over testing images.

1,024%1,024x95 (entire image size). The results are summarized
in Fig. 3d. Examples of predictions are provided in Supplementary
Fig. 8 and detailed performance comparisons with error bars are
provided in Supplementary Fig. 9. The prediction results of the
U-Net remain the same when increasing prediction patch sizes,
forming a horizontal line (Supplementary Fig. 1). On the contrary,
important improvements can be observed for the GVTNet. These
results show a unique advantage of GVTNets, that a performance
boost can be achieved by using larger prediction patches. This
advantage can be easily achieved without the need to retrain the
model, which is expensive and time consuming. However, note that
larger prediction patch sizes do not always lead to better perfor-
mance. The correlations among voxels will get weaker and weaker
with increasing distance. It is possible that more noise is aggregated
than useful information when the prediction patch size reaches a

certain point. For example, in Fig. 3d, we can observe a local maxi-
mum when the prediction patch size is 512x512x95 for C2.

Content-aware 3D-to-2D image projection. While we use GVTOs
to build GVTNets, GVTOs are a family of operators that support any
size-preserving, down-sampling and up-sampling tensor processing
and can be used outside GVTNets. Therefore, we further examine
the proposed GVTOs on more complicated and composite models.
In particular, we apply GVTOs and GVTNets on the 3D Drosophila
melanogaster flywing surface projection task*>** (Fig. 4a).

The model for this task is supposed to take a noised 3D image as
the input and project it into a denoised 2D surface image. The typi-
cal deep learning model involves two parts: a network for 3D-to-2D
surface projection, followed by a network for 2D image denoising.
For example, the current best model, CARE”, uses a task-specific

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell
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under this simplest transfer learning setting, due to the input-dependent weights of GVTOs. The 68% confidence intervals are marked by computing the

standard deviation over testing images.

convolutional neural network (CNN)" for projection and a 2D
U-Net for denoising. The task-specific CNN is also composed of
convolutions, down-sampling and up-sampling operators. We
design our model based on CARE by applying GVTOs in the first
CNN and replace the 2D U-Net with a 2D GVTNet (Supplementary
Fig. 10). The resulting composite model employs size-preserving
and up-sampling GVTOs in both parts.

We compare our model with CARE on the Flywing' dataset” in
terms of SSIM and NRMSE. The dataset contains 16,891 pairs of
small 3D noisy image patches and ground-truth 2D surface image
patches for training, and 26 complete images for testing.

The quantitative results indicate that the composite model aug-
mented by GVTOs achieves substantial improvements (Fig. 4c).
We provide detailed quantitative results in Supplementary Table 3.
The visualization results show that the GVTOs have a stronger
capability to recognize non-noisy objects at regions of lower SNR
within an image, where the original model tends to fail (Fig. 4b).
This is because the global information is of great importance to the
projection tasks, especially along the z-axis, where the projection
happens. Specifically, for each (x, y) location in the 3D image, only
one voxel along the z-axis will be projected to the 2D surface. This
restriction is only available when the model has the global infor-
mation along the z-axis. Therefore, plugging GVTOs into the pro-
jection process can effectively improve the overall performance.
More examples of predictions on testing images can be found in
Supplementary Fig. 11.

Transfer learning ability of GVTNets. We have shown the effec-
tiveness of GVTNets for augmented microscopy applications under
a supervised learning setting. In the following, we further investi-
gate the generalization ability of GVTNets under a simple transfer
learning setting"’, where we train GVTNets on one dataset and per-
form testing on other datasets for the same task. In this case, the
inconsistencies between the training and testing data often lead to
the collapse of models based on local operators, such as the U-Net.
One reasonable explanation is that the weights of kernels in local
operators are fixed after training and independent to the inputs*.
This limits the ability to deal with the different data distributions in
training and inference procedures.
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As GVTOs achieve input-dependent weights, we hypothesize
that GVTNets are more robust to such inconsistencies and have
a better generalization ability. We conduct experiments to verify
the hypothesis using the three datasets from Weigert et al.”’: the
Planaria, Tribolium and Flywing datasets. Note that all these data-
sets originally have 3D high-SNR ground-truth images for the 3D
denoising task. By applying PreMosa® on the 3D ground-truth
images, we can obtain 2D ground-truth images for the 3D-to-2D
projection task. Therefore, these datasets can be used in either
task for both training and testing. The baseline models are still the
U-Net-based CARE networks in these experiments, and we use the
same GVTNet as introduced above for comparison (Supplementary
Fig. 4, Supplementary Fig. 10). In general, we train GVTNet and
CARE on one of the three datasets, and compare their testing per-
formance on the remaining two datasets, resulting in three sets of
experiments. To be concrete, the first two experiments where either
the Planaria or Tribolium dataset is used for training are doing the
3D denoising tasks. The third experiment where models are trained
on the Flywing dataset is performing the 3D-to-2D projection task.

The comparison results in terms of SSIM and NRMSE are shown
in Fig. 5. Detailed quantitative results can be found in Supplementary
Table 4. GVTNet obtains a more promising transfer learning perfor-
mance than CARE, indicating a better generalization ability.

Discussion

We have introduced GVTNets built on GVTOs, an advanced deep
learning tool for augmented microscopy. Compared with U-Net,
GVTNets are more powerful models that are capable of capturing
long-range dependencies and selectively aggregating global infor-
mation for inputs of any spatial size. With GVTNets, various aug-
mented microscopy tasks can be performed with notably improved
accuracy, such as predicting the fluorescence images of subcellular
structures directly from transmitted-light images without using flu-
orescent labels, conducting content-aware image denoising and pro-
jecting a 3D microscope image to a 2D surface for analysis. We have
demonstrated the superiority of GVTNets and GVTOs on several
publicly available datasets for augmented microscopy'®*%. In par-
ticular, we have provided examples where GVTNets achieve better
inference performance with inputs of larger spatial sizes, indicating
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the ability of utilizing global information. In addition, besides the
supervised learning setting, GVTNets outperform the U-Net under
a simple transfer learning setting, showing better generalization
ability due to input-dependent weights.

We anticipate that our work would exert potential impacts on
biological image analysis in general and augmented microscopy
specifically. Image analysis plays an indispensable role in biologi-
cal research, where machine learning methods and tools have been
widely used and dramatically advanced biological research and dis-
coveries. In particular, the past decade has witnessed revolutionary
changes in machine learning with the rapid developments of deep
learning'®. Recent studies?>***>*”* have shown that deep learning
allows biological research to transcend the limits imposed by imag-
ing hardware, enabling discoveries at scales and resolutions that
were previously impossible. We observe that most of these biologi-
cal image analysis tasks can be formulated as biological image trans-
formation problems'®. In such tasks, U-Net**’' is the most popular
and successful deep model, achieving state-of-the-art performan
ces'*+>77 Qur proposed GVTNets can be directly used to replace
U-Net and boost the performance by addressing U-Nets' intrinsic
limitations. Specifically, our experimental results have shown the
superiority of GVTNets in various augmented microscopy tasks.
These results are expected to have an immediate and strong impact
on basic biology by enabling discoveries, observations and mea-
surements that were previously unobtainable. In addition, since the
limitations of U-Net are general and not task specific, we anticipate
that GVTNets will improve on U-Net in other biological image
transformation tasks and potentially benefit a wider range of bio-
logical research based on image analysis. Last but not least, from
a practical perspective, deployment of solutions is as important
as their development'®. To make GVTNets easy to use in various
biological image transformation tasks, we publish our code as an
open-source tool with detailed instructions (Supplementary Note
2). Our code may greatly benefit both biology and computer science
research communities.

In the literature, there exist many other studies that attempt to
improve various aspects of U-Net”~'. Among them, some stud-
ies'*%°! explore a similar direction to our work, which is to allow
U-Net to capture long-range dependencies or global context infor-
mation. They can be divided into two main categories. One is to
add modules composed of dilated convolutions, like Zhang et al.*’
and CE-NET"". Dilated convolutions can expand the RF of convolu-
tions to capture longer-range dependencies. However, they are still
local operators in essence, sharing similar limitations. For example,
they cannot collect global information when inputs become larger
than the RE The other category is to apply global pooling to extract
global information and use it to facilitate local operators, such as
RSGU-Net*. However, important spatial information is lost dur-
ing global pooling, which potentially limits performance. Differing
from these two categories, we extend the attention operator to
achieve the goal. To demonstrate the advantages of our method over
previous methods, we compare GVTNets with representative mod-
els, RSGU-Net* and CE-NET"', on content-aware 3D image denois-
ing tasks (Supplementary Table 5). Our method outperforms both
methods substantially, with similar computational cost.

Other studies**” improve U-Net in orthogonal directions. Oktay
et al.* propose adding the gate mechanism to the skip connections,
filtering out irrelevant information. It is worth noting that the gate
mechanism and the attention mechanism are essentially differ-
ent in terms of computation, functionality and flexibility. The gate
mechanism performs spatially element-wise filtering so that there is
no explicit communication between spatial locations. On the con-
trary, the attention mechanism aggregates information from all spa-
tial locations (Methods). Moreover, the gate mechanism can only
be used for size-preserving tensor processing, while the attention
mechanism can be extended for down-sampling and up-sampling
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tensor processing by our GVTOs. Zhou et al.” propose a nested
U-Net architecture by adding dense skip connections. The nested
architecture facilitates the training and yields better inference
performance.

In terms of augmenting images with deep learning meth-
ods, generative adversarial network (GAN)* is a promising cho
ice'®?>1 We point out that GAN-based methods are orthogo-
nal to our GVTNets in the sense that they can be used together.
Note that GAN is composed of a generator and a discriminator.
In GAN-based image augmentation models, the generator is typi-
cally a U-Net™, which we can improve with our GVTNets. We con-
duct experiments on content-aware 3D image denoising tasks. The
results can be found in Supplementary Table 6. As indicated by the
results, under the GAN framework, our GVTNets can improve on
U-Net.

The key components of GVTNets are GVTOs. One concern about
GVTOs is the efficiency. Given inputs of the same size, GVTOs usu-
ally require more time and take up more memory for computation
than local operators like convolutions. This is due to the use of the
self-attention operator. However, the high cost of GVTOs does not
necessarily make GVTNets more expensive than U-Net. By taking
advantage of the more powerful GVTOs, the overall network archi-
tecture can be simpler, improving the efficiency. For example, in
the label-free fluorescence image prediction experiments, we have
shown that a GVTNet can outperform a U-Net-based neural net-
work with only 26.5% of training parameters and faster computa-
tion speed.

Another limitation of GVTNets is a shared disadvantage of
current deep learning models*”. Models trained on one biologi-
cal image transformation dataset can hardly be used for another
dataset. Therefore, high-quality training data must be collected for
each task, which is expensive and time consuming. GVTNets have
shown promising improvements under the simplest transfer learn-
ing setting without fine-tuning. We anticipate that the combination
of GVTNets and recent advances of transfer learning* and meta
learning® can greatly alleviate this limitation.

Methods

Network architecture. General framework. GVTNets follow the same encoder—
decoder framework as U-Net***'*°, which represents a family of deep neural
networks for biological image transformations. An encoder takes the image to

be transformed as the input and computes feature maps of gradually reduced
spatial sizes, which encode multi-scale and multi-resolution information from

the input image. Then a corresponding decoder uses these feature maps to
produce the transformed image, during which feature maps of gradually increased
spatial sizes are computed. GVTNets support both 2D and 3D biological image
transformations. We use the 3D case to describe the architecture in detail (Fig. 1c).

In our GVTNets, the encoder starts with an initial 3X3X3 convolution that
transforms the input image into a chosen number of feature maps of the same
spatial size, initializing the encoding. The encoding process is achieved by
down-sampling operators interleaved with optional size-preserving operators.
Each down-sampling operator halves the size along each spatial dimension of
feature maps but doubles the channel dimension, that is, the number of feature
maps. To be specific, given a d X h X wX c tensor representing ¢ feature maps
of the spatial size d X h X w as inputs, a down-sampling operator will output an
dl2x h/2 X w/2 X 2c tensor. Feature maps of the same spatial size are considered
at the same level. As a result, the number of levels, also known as the depth of the
network, is determined by the number of down-sampling operators in the encoder.

Correspondingly, the decoder is composed of the same number of up-sampling
operators interleaved with optional size-preserving operators. The decoding process
computes feature maps of increased spatial sizes in a level-by-level fashion, where
each up-sampling operator doubles the size along each spatial dimension of feature
maps but halves the channel dimension, as opposed to down-sampling operators.
Therefore, there is a one-to-one correspondence between down-sampling and
up-sampling operators. The decoder ends with an output convolution that outputs
transformed image of the same spatial size as the input image.

The encoder and decoder are connected at each level. The bottom level
contains the outputs of the encoder, which are feature maps of the smallest size in
the U-Net framework. These feature maps, after optional size-preserving operators,
serve as inputs to the decoder. In upper levels, there exist skip connections
between the encoder and decoder. Concretely, the input feature maps to each
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down-sampling operator are concatenated or added to the output feature maps of
the corresponding up-sampling operator. The skip connections allow the decoder
to take advantage of encoded multi-scale and multi-resolution information, which
increases the capability of the framework and facilitates the training process**.

Global voxel transformer networks. The major difference between our GVTNets
and the original U-Net lies in the choices of the size-preserving, down-sampling
and up-sampling operators. GVTNets are equipped with GVTOs, which can be
flexibly used for size-preserving, down-sampling or up-sampling tensor processing.
In particular, GVTNets fix the size-preserving operator at the bottom level to

be the size-preserving GVTO, ensuring that global information is encoded and
aggregated before going through the decoder. The other size-preserving operators
are set to pre-activation residual blocks™, consisting of two 3x3x3 convolutions
with the ReLU activation function® (Supplementary Fig. 12a). Down-sampling and
up-sampling GVTOs can be used as corresponding operators based on the datasets
and tasks.

Global voxel transformer operators. As described above, the key components of
our GVTNets are GVTOs, which are able to selectively use long-range information
among input units. We take the 3D case to illustrate the size-preserving GVTO
first, followed by the down-sampling and up-sampling GVTOs.

Size-preserving GVTO. Given the input third-order tensor ' € R¥*/*w*¢
representing c feature maps of the spatial size d X h X w, the size-preserving GVTO
performs three independent 1x1x1 convolutions on # and obtains three tensors,
namely the query (2), key (#") and value (") tensor, where 2, 4", V" € ReAx hxwxc
Afterwards, 2, # and 7" are unfolded along the channel dimension*® into matrices
Q, K,V € R These matrices go through the attention operator defined as

Y = V - Normalize(KTQ) € R4

Where Normalize(-) is a normalization function that normalizes each column of
Q'K € R™*d gpecifically, the size-preserving GVTO simply uses 1/dhw as the
normalization function:
KT 1
Y = ViQ -

T cx dhw
dow ~ dnw ' QER

where dhw is the second dimension of Q and subjected to corresponding changes
in the down-sampling and up-sampling GVTOs. After the attention operator,

the matrix Y is then folded back to a tensor # € R**"***¢ The final outputs of
the size-preserving GVTO is the summation of 2 and %, which means a residual
connection from the inputs to the outputs™. In particular, we use the pre-activation
technique as well™. As a result, the size-preserving GVTO preserves the dimension
of the inputs (Supplementary Fig. 13e).

Down-sampling and up-sampling GVTOs. The extension from the size-preserving
GVTO to the down-sampling and up-sampling GVTOs is achieved by changing
the convolutions that compute 2, %", /". We take the down—sampling GVTO
as an example for illustration. Given the same input tensor Z € R**"*w*¢
we use a 3x3x3 convolution with stride 2 to obtain 2 € RY2*#/2xw/2x2¢ 3pq
two independent 1x1x1 convolutions to generate #~ € R?*"¥*% and
e RAXIxwx2 The following computation is the same; that is, 2, A", ¥~
are unfolded along the channel dimension into matrices Q € R2exdhw/8 and
K,V € R** " which are fed into the same attention operator and output the
matrix Y € R**#"/8 Folding it back results in a tensor & € RY/2*h/2xw/2x2c,
Comparing the dimensions of Z and %, we achieve a down-sampling process
that halves the size along each spatial dimension of feature maps but doubles
the channel dimension. We complete the down-sampling GVTO by adding
the residual connection in two ways, corresponding to two versions of the
down-sampling GVTO (Supplementary Fig. 13a,b). One is to perform an extra
3%3x%3 convolution with stride 2 through the residual connection from Z to %, in
order to transform Z to have the same dimension as %; the other is to directly add
2to %, based on the fact that 2 is obtained from %

The up-sampling GVTO is dual to the down-sampling GVTO. Instead of using
a convolution with stride 2, it uses a 3xX3x3 transposed convolution with stride 2 to
obtain 2 € R¥*2hx2wxc/2 1 addition, the other two 1x1x1 convolutions generate
H € R wxe/2qnd oy € RI¥I<wxe/2 The up-sampling GVTO doubles the size
along each spatial dimension of feature maps but halves the channel dimension
and also has two versions corresponding to different residual connections
(Supplementary Fig. 13¢,d).

Advantages of GVTOs. It is noteworthy that each spatial location in the output
tensor of GVTOs has access to all the information in the input tensor, and is able
to selectively use or ignore information. We illustrate this point by regarding

a € R W< a5 dx hx w c-dimensional vectors, where each vector represents
the information in a spatial location. In this view, each vector has a one-to-one
correspondence to each column in K and V in GVTOs, respectively. Revisiting

the attention operator, each column in Y is a vector representation of each spatial
location in the output tensor, and has a one-to-one correspondence to each column
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in Q. Moreover, each column in Y is computed as the weighted sum of columns in
V, whose weights are determined by the interaction between the corresponding
column in Q and all columns in K. The weights can be viewed as filters of the
amount of information from each spatial location in the inputs to the outputs. In
addition, as both Q and K are computed from the input tensor, the weights are
input dependent. Therefore, GVTOs achieve the dynamic non-local information
aggregation.

Comparisons with fully FC layers. It is important to note that the proposed GVTOs
are different from FC layers in fundamental ways, although they both allow each
output unit to use information from the entire input. Compared to FC layers,
outputs in GVTOs are computed based on relations among inputs. Thus the
weights are input dependent, rather than learned and fixed during prediction as

in FC layers. The only trainable parameters in GVTOs are the convolutions to
compute 2, ', ¥, whose sizes are independent of input and output sizes. As a
consequence, GVTOs allow variable-size inputs, and the positional correspondence
between inputs and outputs is preserved in GVTOs. By contrast, FC layers require
fixed-size inputs and positional correspondence is lost.

Training loss. GVTNets are trained in an end-to-end fashion with two options of
the loss functions. One is the mean-squared error (MSE):

L) =30 S, 05— 30

where y represents the ground-truth image, y represents the model’s predicted
image and N represents the total number of voxels in the image. The other is the
mean absolute error (MAE):

- 1 W N
Lyae(y,§) = ﬁZizl ly; — il

Both MSE and MAE measure the differences between the predicted image and
the ground-truth image. The training process applies the Adam optimizer” with a
user-chosen learning rate to minimize the loss.

Evaluation metrics. Pearson correlation coefficient. Pearson correlation coefficient
(r) is computed as

Zfil ;- /‘y)(j’i - Hy)

") =
VEL 05— 1) T 0 - )?

where p, and p; are the mean of voxel intensities in y and J, respectively.

Normalized root-mean-square error. The root-mean-square error (RMSE) is
computed as

RMSE(y, ) = /Luse(y, )
The NRMSE simply adds a normalization function on y and , respectively. In our

tools and experiments, we apply the same percentile-based normalization and
transformation as in Weigert et al.””. Concretely, the NRMSE is defined by

NRMSE(y, ) = \/mgnLMSE(¢(j/),N(y,0.1,99.9))

where

y — percentile(y,0.1)

N(y,0.1,99.9) =
(,0.1,99.9) percentile(y, 99.9) — percentile(y, 0.1)

is the percentile-based normalization, and ¢() = ay + f denotes a transformation

that scales and shifts 7. During the implementation, we let @ = S 333) and p=0
. . P Var(5—3)

to obtain ¢(3) so that the MSE is minimized.

Structural similarity index. The SSIM" is computed as

(2py5 + €1)(20y5 + €2)

SSIM(y, §) =
0.9) (uy* + uy* + a1)(0y* + 057 + ©2)

where 6, is the variance of y, o; is the variance of 7, 6,5 is the covariance of y and
3, and ¢; =(0.01L)? ¢,=(0.03L)* are two constant parameters of SSIM. Here, L
represents the range of intensity values and is set to 1.

Task-specific configurations. The settings of our device are: GPU: Nvidia GeForce
RTX 2080 Ti 11GB; CPU: Intel Xeon Silver 4116 2.10GHz; OS: Ubuntu 16.04.3 LTS.

Label-free prediction of 3D fluorescence images from transmitted-light microscopy.
The basic GVTNet used in the experiments of label-free prediction of 3D
fluorescence images is illustrated in Supplementary Fig. 2. The network has
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depth four, where the skip connections add feature maps from the encoder to the
decoder. In particular, the bottom block of the basic GVTNet is the size-preserving
GVTO (Supplementary Fig. 11e). The number of feature maps after the initial
convolution is set to 32. Batch normalization® with the momentum of 0.997 and
epsilon of 0.00001 is applied before each ReLU activation function.

The 13 subtasks corresponding 13 different subcellular structures are
performed separately and independently. To train the GVTNet, the 30 pairs of
training images are randomly cropped into patches of size 64X64x32 and each
training batch contains 16 pairs of patches. We minimize the MSE loss using the
Adam optimizer with a learning rate of 0.001 for 70,000 to 100,000 minibatch
iterations, depending on different subtasks. The training procedure lasts
approximately 675 min to 945 min for each of the 13 datasets™.

Context-aware 3D image denoising. The GVTNet used in the image denoising
tasks is illustrated in Supplementary Fig. 4. It follows a 3D U-Net framework of
depth three, that is, including two down-sampling and up-sampling operators,
respectively. The skip connections merge feature maps from the encoder to

the decoder by concatenation instead of addition. The bottom block is the
size-preserving GVTO and two up-sampling operators are the up-sampling
GVTOs v2 (Supplementary Fig. 11d). The number of feature maps after the initial
convolution is set to 32. No batch normalization is applied.

We use the MAE loss with the Bayesian deep learning technique™
(Supplementary Note 1) to train GVTNet. The training patch size is 64x64X16.
We train the model with a batch size of 16 and a base learning rate of 0.0004 with a
decay rate 0.7 for every 10,000 minibatch iterations. The training procedure takes
50 epochs and lasts about 345 min and 290 min for the Planaria and Tribolium
datasets”, respectively.

Content-aware 3D-to-2D image projection. The model for surface projection is
composed of a 3D-to-2D projection network and a 2D denoising network, as
illustrated in Supplementary Fig. 10. The projection network predicts the probability
of each voxel in the 3D input image belonging to the 2D surface, and uses summation
weighted by the predicted probabilities along the z-axis to finish the projection. The
probabilities are estimated by a GVTO-augmented CNN. The following 2D denoising
network is simply a 2D version of the GVTNet used in the image denoising tasks.
During training, the 3D input patch size is 64x64x50 and the 2D ground-truth
patch size is 64x64x1. The other training settings are the same as those in image
denoising experiments, except that we do not use the Bayesian deep learning
technique. The training procedure lasts 295 min for the Flywing dataset”.

Data availability

Datasets for label-free prediction of 3D fluorescence images from transmitted-light
microscopy” can be downloaded from https://downloads.allencell.org/
publication-data/label-free-prediction/index.html. Datasets for context-aware

3D image denoising and 3D-to-2D image projection’” can be downloaded from
https://publications.mpi-cbg.de/publications-sites/7207.

Code availability
The code for GVTNets training, prediction and evaluation (in Python/TensorFlow)
is publicly available at https://github.com/divelab/GVTNets and ref. ©.
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