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ABSTRACT

Graph neural networks have shown significant success in the field of
graph representation learning. Graph convolutions perform neigh-
borhood aggregation and represent one of the most important
graph operations. Nevertheless, one layer of these neighborhood
aggregation methods only consider immediate neighbors, and the
performance decreases when going deeper to enable larger recep-
tive fields. Several recent studies attribute this performance dete-
rioration to the over-smoothing issue, which states that repeated
propagation makes node representations of different classes indis-
tinguishable. In this work, we study this observation systematically
and develop new insights towards deeper graph neural networks.
First, we provide a systematical analysis on this issue and argue
that the key factor compromising the performance significantly
is the entanglement of representation transformation and propa-
gation in current graph convolution operations. After decoupling
these two operations, deeper graph neural networks can be used
to learn graph node representations from larger receptive fields.
We further provide a theoretical analysis of the above observation
when building very deep models, which can serve as a rigorous and
gentle description of the over-smoothing issue. Based on our theo-
retical and empirical analysis, we propose Deep Adaptive Graph
Neural Network (DAGNN) to adaptively incorporate information
from large receptive fields. A set of experiments on citation, co-
authorship and co-purchase datasets have confirmed our analysis
and insights and demonstrated the superiority of our proposed
methods.
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1 INTRODUCTION

Graphs, representing entities and their relationships, are ubiqui-
tous in the real world, such as social networks, point clouds, traffic
networks, knowledge graphs, and molecular structures. Recently,
many studies focus on developing deep learning approaches for
graph data, leading to rapid development in the field of graph neural
networks. Great successes have been achieved for many applica-
tions, such as node classification [6, 8, 10, 11, 20, 29, 30, 32], graph
classification [5, 7, 13, 17, 31, 33, 34, 37] and link prediction [35, 36].
Graph convolutions adopt a neighborhood aggregation (or message
passing) scheme to learn node representations by considering the
node features and graph topology information together, among
which the most representative method is Graph Convolutional
Networks (GCNs) [10]. GCN learns representation for a node by
aggregating representations of its neighbors iteratively. However,
a common challenge faced by GCN and most other graph con-
volutions is that one layer of graph convolutions only consider
immediate neighbors and the performance degrades greatly when
we apply multiple layers to leverage large receptive fields. Several
recent works attribute this performance degradation to the over-
smoothing issue [2, 14, 32], which states that representations from
different classes become inseparable due to repeated propagation. In
this work, we study this performance deterioration systematically
and develop new insights towards deeper graph neural networks.

We first systematically analyze the performance degradation
when stacking multiple GCN layers by using our quantitative met-
ric for node representation smoothness measurement and a data
visualization technique. We observe and argue that the main fac-
tor compromising the performance greatly is the entanglement of
representation transformation and propagation. After decoupling
these two operations, it is demonstrated that deeper graph neu-
ral networks can be deployed to learn graph node representations
from larger receptive fields without suffering from performance
deterioration. The over-smoothing issue is shown to affect per-
formance only when extremely large receptive fields are utilized.
We further give a theoretical analysis of the above observation
when building very deep models, which shows that graph node
representations will become indistinguishable when depth goes
infinity. This aligns with the over-smoothing issue. The previous
descriptions of the over-smoothing issue simplify the assumption
of non-linear activation function [14, 32] or make approximations
of different probabilities [32]. Our theoretical analysis can serve as
a more rigorous and gentle description of the over-smoothing issue.
Based on our theoretical and empirical analysis, we propose an effi-
cient and effective network, termed as Deep Adaptive Graph Neural
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Network, to learn node representations by adaptively incorporating
information from large receptive fields. Extensive experiments on
citation, co-authorship, and co-purchase datasets demonstrate the
reasonability of our insights and the superiority of our proposed
network.

2 BACKGROUND AND RELATED WORKS

First, we introduce our notations used throughout this paper. Gen-
erally, we let bold uppercase letters represent matrices and bold
lowercase letters denote vectors. A graph is formally defined as
G = (V, E), where V is the set of nodes (vertices) that are indexed
from 1tonand E C V X V is the set of edges between nodes in V.
n = |V| and m = |E| are the numbers of nodes and edges, respec-
tively. In this paper, we consider unweighted and undirected graphs.
The topology information of the whole graph is described by the
adjacency matrix A € R™", where A(; ;) = 1 if an edge exists be-
tween node i and node j, otherwise 0. The diagonal matrix of node
degrees are denoted as D € R™", where D; ;) = X; Aq j)- Ni
denotes the neighboring nodes set of node i. An attributed graph
has a node feature matrix X € R™4_ where each row x; € R4
represents the feature vector of node i and d is the dimension of
node features.

2.1 Graph Convolution Operations

Most popular graph convolution operations follow a neighborhood
aggregation (or message passing) fashion to learn a node represen-
tation by propagating representations of its neighbors and applying
transformation after that. The £-th layer of a general graph convo-
lution can be described as

a\¥) = PROPAGATION(”) ({x(f_”, x\Mje Ni}})

1

x{{ = TRANSFORMATION®) (a{")). W
ng) is the representation of node i at I-th layer and x(io) is initial-
ized as node feature x;. Most graph convolutions, like GCN [10],
GraphSAGE [8], GAT [29], and GIN [31], can be obtained under this
framework by deploying different propagation and transformation
mechanisms.

Without losing generalization, we focus on the Graph Convolu-
tional Network (GCN) [10], the most representative graph convolu-
tion operation, in the following analysis. The ¢-th layer forward-
propagation process is formulated as

xO = 4 (gx(f—l)w(l’))’ @)

¢ =
d and XD e Rmd“™ are the output and in-

1

where X(©) e R

, where
A = A+ I is the adjacency matrix with added self-connections.
D ;) = XjA(,j is the diagonal node degree matrix. w e

(=15 g() . . . . . .
RE"Txd g layer-specific trainable weight matrix. ¢ is a non-

linear activation function like ReLU [21]. Intuitively, GCN learns
representation for each node by propagating neighbors’ represen-
tations and conducting non-linear transformation after that. GCN
is originally applied for semi-supervised classification, where only

partial nodes have training labels in a graph. Thanks to the propa-
gation process, representation of a labeled node carries the infor-
mation from its neighbors that are usually unlabeled, thus training
signals can be propagated to the unlabeled nodes.

2.2 Related Works

From Eq.(2), one layer GCN only considers immediate neighbors,
i.e. one-hop neighborhood. Multiple layers should be applied if
multi-hop neighborhood is needed. In practice, however, the perfor-
mance of GCN degrades greatly when multiple layers are stacked.
Several works reveal that stacking many layers can bring the over-
smoothing issue, which means that representations of nodes con-
verge to indistinguishable limits. To our knowledge, [14] is the
first attempt to demystify the over-smoothing issue in the GCN
model. The authors first demonstrate that the propagation pro-
cess of the GCN model is a special symmetric form of Laplacian
smoothing [28], which makes the representations of nodes in the
same class similar, thus significantly easing the classification task.
Then they show that repeatedly stacking many layers may make
representations of nodes from different classes indistinguishable.
The same problem is studied in [32] by analyzing the connection
of nodes’ influence distribution and random walk [16]. Recently,
SGC [30] is proposed by reducing unnecessary complexity in GCN.
The authors show that SGC corresponds to a low-pass-type filter
on the spectral domain, thus deriving smoothing features across a
graph. Another recent work [2] verify that smoothing is the nature
of most typical graph convolutions. It is showed that reasonable
smoothing makes graph convolutions work and over-smoothing
results in poor performance.

Due to the potential concern of the over-smoothing issue, a
limited neighborhood is usually used in practice and it is diffi-
cult to extend. However, long-range dependencies should be taken
into consideration, especially for peripheral nodes. Also, small re-
ceptive fields are not enough to propagate training signals to the
whole graph when the number of training nodes is limited under
a semi-supervised learning setting. [14] applies co-training and
self-training to overcome the limitation of shallow architectures.
A smoothness regularizer term and adaptive edge optimization
are proposed in [2] to relieve the over-smoothing problem. Jump-
ing Knowledge Network [32] deploys a layer-aggregation mecha-
nism to adaptively select a node’s sub-graph features at different
ranges rather than to capture equally smoothed representations for
all nodes. [11] utilizes the relationship between GCN and PageR-
ank [22] to develop a propagation mechanism based on personalize
PageRank, which can preserve the node’s local information while
gather information from a large neighborhood. Recently, Geom-
GCN [24] and non-local GNNs [15] are proposed to capture long-
range dependencies for disassortative graph by designing non-local
aggregators.

3 EMPIRICAL AND THEORETICAL ANALYSIS
OF DEEP GNNS

In this section, we first propose a quantitative metric to measure
the smoothness of graph node representations. Then we utilize
this metric, along with a data visualization technique, to rethink
the performance degradation when utilizing GCN layer to build
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Figure 1: t-SNE visualization of node representations derived by different numbers of GCN layers on Cora. Colors represent

node classes.

deep graph neural networks. We observe and argue that the en-
tanglement of representation transformation and propagation is
a prominent factor that compromises the network performance.
After decoupling these two operations, deeper graph neural net-
works can be built to learn graph node representations from large
receptive fields without suffering from performance degradation.
The over-smoothing issue is shown to influence the performance
only when extremely large receptive fields are adopted. Further,
we provide a theoretical analysis of the above observation when
building very deep models, which aligns with the conclusion of
over-smoothing issue and can serve as a rigorous description of
the over-smoothing issue.

3.1 Quantitative Metric for Smoothness

Smoothness is a metric that reflects the similarity of node repre-
sentations. Here, we first define a similarity metric between the
representations of node i and node j with their Euclidean distance:

1

D(x;j,xj) = 5 :

llxall {1l

where x; is the feature representation of node i and ||-|| denotes the
Euclidean norm. The Euclidean distance is a simple but effective
way to measure the similarity of two representations, especially in
high dimensional space. Smaller Euclidean distance value incidates
higher similarity of two representations. To remove the influence
of the magnitude of feature representations, we use normalized
node representations to compute their Euclidean distance, thus
constraining D(x;, x;) in the range of [0, 1].

Based on the similarity metric in Eq.(3), we further propose a
smoothness metric SMV; for node i, which is computed as the
average distance between node i to other nodes:

. ®)

1
SMV; = —— D(xj,xj). 4
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Hence, SMV; measures the similarity of node i’s representations
to the entire graph. For instance, a node in the periphery or a leaf
node usually has a large smoothness metric value. Further, we can
use SMVg to represent the smoothness metric value of the whole
graph G. Its mathematical expression is defined as:

1
SMVg = — Z SMV;. (5)
n ¢
ieV
Here, SMV; is negatively related to the overall smoothness of
nodes’ representations in graph G.

3.2 Why Deeper GNNs Fail?

In this section, we utilize our proposed smoothness metric to inves-
tigate the performance deterioration phenomenon in deep graph
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Figure 2: Test accuracy and smoothness metric value of node
representations with different numbers of GCN layers on
Cora. "Init" means the smoothness metric value of the orig-
inal data.

neural networks. Here, we mainly use the GCN layer for anal-
ysis, but the main results can be easily applied to other graph
deep learning methods. Besides using our proposed metric from
the quantitative perspective, we employ a data visualization tech-
nique t-SNE [18]. t-SNE provides an interpretable visualization,
especially on high-dimensional data. t-SNE is capable of capturing
both the local structure and the global structure like clusters in
high-dimensional data, which is consistent with the classification
of nodes. Hence, we utilize t-SNE to demonstrate the discriminative
power of node representations in the graph.

We develop a series of graph neural networks (GNNs) with differ-
ent depths in terms of the number of GCN layers, and evaluate them
on three citation datasets; those are Cora, CiteSeer and PubMed [25].
In particular, we also include a graph neural network with depth of
0, which is approximated with a multi-layer perceptron network. A
GNN with depth of 0 can be viewed as aggregating information from
a 0-hop neighborhood, which only considers node features while
with the graph structure ignored. We conduct 100 runs for each
model on each dataset, using the same data split scheme as [10].

The result on Cora is illustrated in Figure 2. We provide results
on other datasets in Section A.1 in the appendix. We can observe
that test accuracy increases as the rise of the number of layers in
the beginning, but degrades dramatically from 3 layers. Besides,
from the t-SNE visualization on Cora in Figure 1 (t-SNE visual-
ization results of other datasets are provided in Appendix A.3.),
the discriminative power of the node representations derived by
different numbers of GCN layers has the similar trend. The node
representations generated by multiple GCN layers, like 6 layers,
are very difficult to be separated.
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Figure 3: t-SNE visualization of node representations derived by models as Eq.(6) with different numbers of layers on Cora.

Colors represent node classes.
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Figure 4: Test accuracy and smoothness metric value of node
representations with different numbers of layers adopted in
models as Eq.(6) on Cora.

Several studies [2, 14] attribute this performance degradation
phenomenon to the over-smoothing issue. However, we question
this view for the following two reasons. First, we hold that the
over-smoothing issue only happens when node representations
propagate repeatedly for a large number of iterations, especially
for a graph with sparsely connected edges. As shown in Table 1,
all these three citation datasets have a small value of edge density,
hence several propagation iterations are not enough to make over-
smoothing happen, theoretically. Second, as shown in Figure 2, the
smoothness metric value of graph node representations has a slight
downward trend as the number of propagation iterations increases.
According to [14], the node representations suffering from the over-
smoothing issue will converge to the same value or be proportional
to the square root of the node degree, where the corresponding
smoothness metric value should be close to 0, computed by our
quantitative metric. However, the metric value in our experiments
is relatively far from the ideal over-smoothing situation.

In this work, we argue that it is the entanglement of transfor-
mation and propagation that significantly compromise the perfor-
mance of deep graph neural networks. Our argument is originated
from the following two intuitions. First, the entanglement of rep-
resentation transformation and propagation makes the number of
parameters in transformation intertwined with the receptive fields
in propagation. As illustrated in Eq.(1), one hop propagation re-
quires a transformation function, thus leading to a large number
of parameters when considering a large receptive field. Hence, it
might be hard to train a deep GNN with a large number of param-
eters. This can possibly explain why the performance of multiple
GCN layers in Figure 2 fluctuates greatly. Second, representation

propagation and transformation should be viewed as two separate
operations. Note that the class of a node can be totally predictable
by its initial features, which explains why MLP, as shown in Figure
2 and 1, performs well without using any graph structure informa-
tion. Propagation based on the graph structure can help to ease the
classification task by making node representations in the same class
to be similar, under the assumption that connected nodes usually
belong to the same class. For instance, intuitively, the class of a
document is completely determined by its content (i.e. its feature
derived by word embedding), instead of the references relation-
ships with other documents. Utilizing its neighbors’ features just
eases the classification of documents. Hence, representation trans-
formation and propagation play their distinct roles from feature
and structure aspects, respectively.

To support and verify our argument, we decouple the propaga-
tion and transformation in Eq.(2), leading to the following model:

Z = MLP (X)

Xout = softmax (KkZ) . (6)

Z € R™¢ denotes the new feature matrix transformed from the
original feature matrix by an MLP network, where c is the number of
classes. After the transformation, we apply a k-steps propagation to
derive the output feature matrix X,,; € R™ . A softmax classifier
is applied to compute the classification probabilities. Notably, the
separation of transformation and propagation processes is also
adopted in [11] and [30] but for the sake of reducing complexity.
In this work, we analyze this scheme systematically and reveal
that it can help to build deeper models without suffering from
performance degradation, which has not been prioritized by the
community.

The test accuracy and smoothness metric value of representa-
tions with different numbers of layers adopted in Eq.(6) on Cora
are illustrated in Figure 4 (Results for other datasets are shown in
Appendix A.2). After resolving the entanglement of feature trans-
formation and propagation, deeper models is capable of leveraging
larger receptive fields without suffering from performance degrada-
tion. We can observe that the over-smoothing issue starts compro-
mising the performance at an extremely large receptive field, such
as 75-hop on Cora. The smoothness metric value decreases greatly
after that, which is demonstrated by the metric value of nearly 0.
Besides, from the t-SNE visualization in Figure 3 (The t-SNE visual-
ization results of other datasets are provided in Appendix A.4), deep
models with large receptive fields, like 50-hop, still generating dis-
tinguishable node representations, which is impressive compared
to the regular GCN model. In practice, we usually do not need an
extremely large receptive field because the highest shortest path
distance in a connected component usually is an acceptable small



number. Thus training signals can be propagated to the entire graph
with a small number of layers. This is demonstrated by the fact
that graph neural networks with 2 or 3 GCN layers usually perform
competitively. However, deep models with large receptive fields are
necessary to incorporate more information, especially with limited
training nodes under a semi-supervised learning setting.

3.3 Theoretical Analysis of Very Deep Models

The empirical analysis in the previous section shows that decou-
pling transformation and propagation can help to build much deeper
models which can leverage larger receptive fields to incorporate
more information. In this section, we provide a theoretical analysis
of the above observation when building very deep graph neural net-
works, which aligns with the over-smoothing issue. [14] and [32]
study the over-smoothing issue from the perspective of Laplacian
smoothing and nodes’ influence distribution, with several simpli-
fied assumptions like non-linear transformation and probability
approximations. After decoupling transformation from propaga-
tion, our theoretical analysis can serve as a more rigorous and
gentle description of the over-smoothing issue. In this section, we
strictly describe the over-smoothing issue for 2 typical propagation

mechanisms. , )

Z@ - D 'Aand Z@ =D 2AD ?,where A = A + I, are two
frequently utilized propagation mechanisms. The row-averaging
normalization K@ is adopted in GraphSAGE [8] and DGCNN [37].
The symmetrical normalization scheme Z@ is applied in GCN [10].
In the following, we describe the over-smoothing issue by proving

~k ~k
the convergence of Ag and A, respectively, when k goes to infinity.
Lete = [1,1,---,1] € R be a row vector whose all entries

are 1. Function ¥(x) = —%— normalizes a vector to sum to 1 and
sum(x)
X

function ®(x) = TxT

normalizes a vector such that its magnitude
is 1.

THEOREM 3.1. Given a connected graph G, limg_,, Z@ =g,
where Ilg is the matrix with all rows are wg and wg = ¥(eD).

~k
THEOREM 3.2. Given a connected graph G, limy_,, Ag = Ilg,

~1 ~1
where Tl = ®(D2eT)(@(D?eT))T.

From the above two theorems, we can derive the exact conver-

gence value of Z:a and Zg, respectively, when k goes to infinity
in an infinite deep model. Hence, applying infinite layers to prop-
agate information iteratively is equivalent to utilizing I1g or Il
to propagate features by one step. Rows of Il are the same and
rows of Il are proportional to the square root value of the cor-
responding nodes’ degrees. Therefore, rows of Ilg or Il are lin-
early inseparable and utilizing them as propagation mechanism
will generate indistinguishable representations, thereby leading to
the over-smoothing issue.

To prove these two theorems, we first introduce the following
two lemmas. The proofs of these two lemmas can be found in
Appendix A.5 and A.6.

LeEMMA 3.3. Given a graph G, A is an eigenvalue ofz@ with left
eigenvector vy € R and right eigenvector v, € R™! if and only

-~ ~_1
if A is an eigenvalue of A with left eigenvector viD 2 € R™*" and
1

right eigenvector D? v, € R"™!.

LEMMA 3.4. Given a connected graph G, Ag andZ@ always have
an eigenvalue 1 with unique associated eigenvectors and all other
eigenvalues A satisfy |A| < 1. The left and right eigenvectors ofg@
associated with eigenvalue 1 are eD € R gnd el e R"™¥1, respec-

~ 1 1
tively. For Ao, they are eD? € R™" gnd D?eT € R™1,

Proor. (of Theorem 3.1) Z@ can be viewed as a transition matrix
because all entries are nonnegative and each row sums to 1. The
graph G can be further regarded as a Markov chain, whose transi-
tion matrix P is ;1@. This Markov chain is irreducible and aperiodic
because the graph G is connected and self-loops are included in the
connectivity. If a Markov chain is irreducible and aperiodic, then
limg 00 P¥ =TI, where IT is the matrix with all rows equal to 7
and s can be computed by #P = 7, s.t. }; 7r; = 1[12]. It is obvious
that 7 is the unique left eigenvector of P and is normalized such

~k
that all entries sum to 1. Hence, limy_,o, Ag = Ilg, where Ilg is

the matrix with all rows are g and mg = ‘I’(ef)) from Lemma
34. [m}

Proor. (of Theorem 3.2) Although Z@ cannot be processed as
a transition matrix like :ﬁ@, it is a symmetric matrix, which is
diagonalizable. We have Z@ = QAQT, where Q is an orthogonal
matrix whose columns are normalized eigenvectors of Z@ and A
is the diagonal matrix whose diagonal entries are the eigenvalues.
Then the k-th power of 2@ can be computed by

k
A = 0AQ" - AQ" = 0AFQT = M twiwl, (1)
i=1

where v; is the normalized right eigenvector associated with A;.
From Lemma 3.4, Ao always has an eigenvalue 1 with unique
associated eigenvectors and all other eigenvalues A satisfy |A| < 1.

~k 1 ~1
Hence, limy_,o, A = ®(D? e @D2el))T. o

These two theorems hold for connected graphs that are fre-
quently studied in graph neural networks. For a disconnected graph,
these theorems can also be applied to each of its connected compo-
nents, which means that applying these propagation mechanisms
infinite times will generate indistinguishable node representations
in each connected components.

The above theorems reveal that over-smoothing will make node
representations inseparable and provide the exact convergence
value of frequently used propagation mechanisms. Theoretically, we
have proved that the over-smoothing issue is inevitable in very deep
models. Further, the convergence speed is a more important factor
that we should consider in practice. Mathematically, according
to Eq.(7), the convergence speed depends on the other eigenvalues
except 1 of the propagation matrix, especially the second largest
eigenvalue. Intuitively, the propagation matrix is determined by the
topology information of the corresponding graph. This might be the
reason for our observation in Section 3.2 that a sparsely connected
graph suffers from the over-smoothing only when extremely deep
models are applied.
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Figure 5: An illustration of the proposed Deep Adaptive Graph Neural Network (DAGNN) . For clarity, we show the pipeline
to generate the prediction for one node. Notation letters are consistent with Eq.(8) but bold lowercase versions are applied to
denote representation vectors. s is the projection vector that computes retainment scores for representations generating from
various receptive fields. sg, s1, s2, and s represent the retainment scores of z, hy, hy, and hy, respectively.

4 DEEP ADAPTIVE GRAPH NEURAL
NETWORK

In this section, we propose Deep Adaptive Graph Neural Network
(DAGNN) based on the above insights. Our DAGNN contributes
two prominent advantages. First, it decouples the representation
transformation from propagation so that large receptive fields can
be applied without suffering from performance degradation, which
has been verified in Section 3.2. Second, it utilizes an adaptive
adjustment mechanism that can adaptively balance the information
from local and global neighborhoods for each node, thus leading
to more discriminative node representations. The mathematical

expression of DAGNN is defined as
Z = MLP (X) € RMX¢

c RHXC

c Rnx(kﬂ)xc

~
H;=AZt=12--,k
H = stack(Z,Hy,--- ,Hy)

S = o(Hs) c Rnx(k+1)><1 (8)

S= reshape (S) e RXIx(k+1)

Xout = softmax (squeeze (§H)) € R™C,

where c is the number of node classes. Z € R*¢ is the feature
matrix derived by applying an MLP network to the original fea-

ture matrix. We utilize the symmetrical normalization propagation
1 1

mechanism A =D 2AD ?, where A = A + L. k is a hyperparam-
eter that indicates the depth of the model. s € R®! is a trainable
projection vector. o(-) is an activation function and we apply sig-
moid. stack, reshape and squeeze are utilized to rearrange the data
dimension so that dimension can be matched during computation.

An illustration of our proposed DAGNN is provided in Figure 5.
There are three main steps in DAGNN: transformation, propagation
and adaptive adjustment. We first utilize a shared MLP network for
feature transformation. Theoretically, MLP can approximate any
measurable function [9]. Obviously, Z only contains the informa-
tion of individual nodes themselves with no structure information

included. After transformation, a propagation mechanism Ais ap-
plied to gather neighborhood information. H, denotes the represen-
tations obtained by propagating information from nodes that are
¢-hop away, hence Hy captures the information from the subtree of
height ¢ rooted at individual nodes. As the depth ¢ increase, more
global information is included in H, because the corresponding
subtree is deeper. However, it is difficult to determine a suitable ¢.
Small £ may fail to capture sufficient and essential neighborhood in-
formation, while large ¢ may bring too much global information and
dilute the special local information. Furthermore, each node has a
different subtree structure rooted at this node and the most suitable
receptive field for each node should be different. To this end, we
include an adaptive adjustment mechanism after the propagation.
We utilize a trainable projection vector s that is shared by all nodes
to generate retainment scores. These scores are used for represen-
tations that carry information from various range of neighborhood.
These retainment scores measure how much information of the cor-
responding representations derived by different propagation layers
should be retained to generate the final representation for each
node. Utilizing this adaptive adjustment mechanism, DAGNN can
adaptively balance the information from local and global neighbor-
hoods for each node. Obviously, the transformation process and the
adaptive adjustment process have trainable parameters and there
is no trainable parameter in the propagation process, leading to a
parameter-efficient model. Note that DAGNN is trained end-to-end,
which means that these three steps are considered together when
optimizing the network.

Decoupling representation transformation from propagation and
utilizing the learnable retainment score to adaptively adjust the
information from local and global neighborhoods make DAGNN
have the ability to generate suitable representations for specific
nodes from large and adaptive receptive fields. Besides, removing
the entanglement of representation transformation and propaga-
tion, we can derive a large neighborhood without introducing more
trainable parameters. Also, transforming representations to a low
dimensional space at an early stage makes DAGNN computationally



Table 1: Statistics of datasets. The edge density is computed by Zn—’;l Note that for a fair comparison with other baselines, we
only consider the largest connected component in co-purchase graphs as [27].

Dataset #Classes #Nodes #Edges Edge Density #Features #Training Nodes #Validation Nodes #Test Nodes
Cora 7 2708 5278 0.0014 1433 20 per class 500 1000
CiteSeer 6 3327 4552 0.0008 3703 20 per class 500 1000
PubMed 3 19717 44324 0.0002 500 20 per class 500 1000
Coauthor CS 15 18333 81894 0.0005 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 0.0004 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 0.0027 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 0.0042 745 20 per class 30 per class Rest nodes

Table 2: Results on citation datasets with both fixed and ran-
dom splits in terms of classification accuracy (in percent).

Models Cora CiteSeer PubMed

Fixed Random Fixed Random Fixed Random
MLP 61.6+0.6 598+24 61.0+1.0 588+22 742+0.7 70.1+x24
ChebNet 80.5+1.1 76.8+25 69.6+14 67.5+2.0 781+0.6 753+25
GCN 81.3+0.8 79.1+1.8 71.1£0.7 682+1.6 788+0.6 77.1+2.7
GAT 83.1+04 80.8+1.6 70.8+05 689+17 79.1+£04 77.8+2.1
APPNP 83.3+05 819+14 718+04 69.8+17 80.1+£0.2 79.5+2.2
SGC 81.7+0.1 80.4+1.8 71.3+0.2 68.7+21 789+0.1 76.8+2.6

DAGNN (Ours) 84.4+0.5 837+14 733+06 712+14 80.5+05 80.1+17

Table 3: Results on co-authorship and co-purchase datasets
in terms of classification accuracy (in percent).

Coauthor Coauthor Amazon Amazon

Models

Cs Physics  Computers Photo
LogReg 86.4+0.9 86.7%1.5 64.1+5.7 73.0£6.5
MLP 88.3+0.7 88.9+1.1 44.9+5.8 69.6 + 3.8
LabelProp 73.6£3.9 86.6+2.0 70.8 £8.1 72.6 £11.1
LabelProp NL 76.7+1.4 86.8+1.4 75.0 £ 2.9 83.9+2.7
GCN 91.1£0.5 92.8+1.0 82.6+24 91.2+1.2
GAT 90.5+0.6 92.5+0.9 78.0+19.0 85.7+20.3
MoNet 90.8£0.6 92.5+0.9 83.5+2.2 91.2+1.3
GraphSAGE-mean 91.3+2.8 93.0+0.8 82.4+ 1.8 91.4+1.3
GraphSAGE-maxpool ~ 85.0+1.1 90.3+1.2 N/A 90.4+1.3
GraphSAGE-meanpool  89.6 £0.9  92.6 + 1.0 79.9+2.3 90.7 £ 1.6
DAGNN (Ours) 92.8+0.9 94.0+0.6 84.5+1.2 92.0 0.8

efficient and memory-saving. In order to compute Az efficiently,
we choose to compute it sequentially from right to left with time
complexity O(n?c), which saves the computational cost compared
to O(n®) of calculating Zf first.

Notably, there are no fully-connected layers utilized as a classifier
at the end of this model. In our DAGNN, the final representations
Xour are used as the final prediction. Thus, the cross-entropy loss
for all labeled examples can be calculated as

C
L= Yip I Xout[ip) ©)
ieVp p=1

where V} is the set of labeled nodes and Y € R™*¢ is the label
indicator matrix. c is the number of classes.

5 EXPERIMENTAL STUDIES

In this section, we conduct extensive experiments on node classifica-
tion tasks to evaluate the superiority of our proposed DAGNN. We
begin by introducing datasets and experimental setup we utilized.
We then compare DAGNN with prior state-of-the-art baselines to
demonstrate the effectiveness of DAGNN. Also, we deploy some
performance studies to further verify the proposed model.

5.1 Datasets and Setup

We conduct experiments on 7 datasets based on citation, co-authorship,
or co-purchase graphs for semi-supervised node classification tasks;
those are Cora [25], CiteSeer [25], PubMed [25], Coauthor CS [27],
Coauthor Physics [27], Amazon Computers [27], and Amazon
Photo [27]. The statistics of these datasets are summarized in Ta-
ble 1. The detailed description of these datasets are provided in
Appendix A.7.

We implemented our proposed DAGNN and some necessary
baselines using Pytorch [23] and Pytorch Geometric [4], a library
for deep learning on irregularly structured data built upon Pytorch.
We consider the following baselines: Logistic Regression (LogReg),
Multilayer Perceptron (MLP), Label Propagation (LabelProp) [1],
Normalized Laplacian Label Propagation (LabelProp NL) [1], Cheb-
Net [3], Graph Convolutional Network (GCN) [10], Graph Attention
Network(GAT) [29], Mixture Model Network (MoNet) [20], Graph-
SAGE [8], APPNP [11], and SGC [30]. We aim to provide a rigorous
and fair comparison between different models on each dataset by
using the same dataset splits and training procedure. We tune hy-
perparameters for all models individually and some baselines even
achieve better results than their original reports. For our DAGNN,
we tune the following hyperparameters: (1) k € {5, 10, 20}, (2) weight
decay € {0, 2e-2, 5e-3, 5e-4, 5e-5}, and (3) dropout rate € {0.5, 0.8}.
Our code is publicly available !.

5.2 Overall Results

The results on citation datasets are summarized in Table 2. To
ensure a fair comparison, we use 20 labeled nodes per class as the
training set, 500 nodes as the validation set, and 1000 nodes as the
test set for all models. For each model, we conduct 100 runs for the
fixed training/validation/test split from [10], which is commonly
used to evaluate performance by the community. Also, we conduct
100 runs for each model on randomly training/validation/test splits,
where we additionally ensure uniform class distribution on the

!https://github.com/divelab/DeeperGNN



Table 4: Results with different training set sizes on Cora in terms of classification accuracy (in percent). Results in brackets

are the improvements of DAGNN over GCN.

#Training nodes per class 1 2 3 4 5 10 20 30 40 50 100
MLP 30.3 35.0 38.3 40.8 44.7 53.0 59.8 63.0 64.8 65.4 64.0
GCN 34.7 48.9 56.8 62.5 65.3 74.3 79.1 80.8 82.2 82.9 84.7
GAT 45.3 58.8 66.6 68.4 70.7 77.0 80.8 82.6 83.4 84.0 86.1
APPNP 44.7 58.7 66.3 71.2 74.1 79.0 81.9 83.2 83.8 84.3 85.4
SGC 43.7 59.2 67.2 70.4 71.5 77.5 80.4 81.3 81.9 82.1 83.6
DAGNN (Ours) 58.4(23.77) 67.7(1887) 72.4(1567) 75.51301) 76.7(11.47) 80.8@6.57) 83.7@467) 84.53.77) 85.6(347) 86.03.17) 87.1@241)
train split as [4]. We compute the average test accuracy of 100 runs. 10
As shown in Table 2, our DAGNN model performs better than the 0.9 “‘:; _—“"‘"‘——'*._—:’_—:._._ _____ .
representative baselines by significant margins. Also, the fact that 'I; '_’,: = T g — — t\_ _.
DAGNN achieves state-of-the-art performance on random splits 5\ 081 -= =" I I Sy :% "\.—\‘-‘
demonstrates the strong robustness of DAGNN. Quantitatively, for © 574 U :
the randomly split data, the improvements of DAGNN over GCN are a ~x
4.6%, 3.0%, and 3.0% on Cora, CiteSeer, and PubMed, respectively. O 0.67 —¢- Cora
The results on co-authorship and co-purchase datasets are sum- B 0.5 CiteSeer
marized in Table 3. We utilize 20 labeled nodes per class as the train- ¢ | ®- PubMed
ing set, 30 nodes per class as the validation set, and the rest as the F 0.4 ~®- CoauthorCS -
test set. The results of baselines are obtained from [27]. For DAGNN, Coauthor Physics
L. . . . 0.3 4 —%¢- Amazon Computers
we conduct 100 runs for randomly training/validation/test splits —#- Amazon Photo
as [27] to ensure a fair comparison with baselines. Our DAGNN 0.21— i i i i i i
model achieves better performance over the current state-of-the-art 1 5 10 20 50 100 200
models by significant margins of 1.5%, 1.0%, 1.0%, and 0.6% on the #layer/hop

Coauthor CS, Coauthor Physics, Amazon Computers, and Amazon
Photo, respectively. Note that DAGNN reduces the error rate by
11% on average.

In summary, our DAGNN achieves superior performance on all
these seven datasets, which significantly demonstrates the effec-
tiveness of our proposed model. These results verify the superiority
of learning node representations from large and adaptive recep-
tive fields, which is achieved by decoupling transformation from
propagation and utilizing an adaptive adjustment mechanism in
DAGNN.

5.3 Training Set Sizes

The number of training samples is usually limited in the real world
graph. Hence, it is necessary to explore how models perform with
different training set sizes. To further demonstrate the advantage
that our DAGNN is capable of capturing information from large and
adaptive receptive fields, we conduct experiments with different
training set sizes for several representative baselines. MLP only uti-
lizes node features to learn representations. GCN and GAT include
the structure information by propagation representations through
edges, however, only limited receptive fields can be taken into con-
sideration and it is shown in Section 3.2 that performance degrades
when stacking multiple GCN layers to enable large receptive fields.
APPNP, SGC, and our DAGNN all have the ability to deploy a large
receptive field. Note that for a fair comparison, we set the depth in
APPNP, SGC, and DAGNN as 10, where information in the 10-hop
neighborhood can be included. For each model, we conduct 100
runs on randomly training/validation/test splits for every training
set size on Cora dataset. The results are present in Table 4 where
our improvements over GCN are also highlighted. Our DAGNN

Figure 6: Results of DAGNN with different depths.

achieves the best performance under different training set sizes.
Notably, The superiority of our DAGNN can be demonstrated more
obviously when fewer training nodes are used. The improvement of
DAGNN over GCN increases greatly when the number of training
nodes decreases. Extremely, only utilizing one training node per
class, DAGNN achieves an overwhelming result over GCN by a
significant margin of 23.7%. These considerable improvements are
mainly attributed to the advantage that DAGNN can incorporate
information from large receptive fields by removing the entangle-
ment of representation transformation and propagation. Reachable
large receptive fields are beneficial for propagating training sig-
nals to distant nodes, which is very essential when the number of
training nodes is limited. APPNP and SGC also can gather informa-
tion from a large neighborhood, but they perform not as good as
DAGNN. This performance gap is mainly caused by the adaptive
adjustment of DAGNN, which can adjust the information from
different receptive fields for each node adaptively.

5.4 Model Depths

In order to investigate when over-smoothing happens in our DAGNN,
we conduct experiments for DAGNN with different depths. For each
dataset, we choose different hyperparameter k in DAGNN, which
means the k-hop neighborhood is visible by each node, and conduct
100 runs for each setting. The results are illustrated in Figure 6. For
citation and co-authorship datasets, very deep models with large
numbers of propagation iterations can be applied with keeping sta-
ble or slightly decreasing performance, which can be attributed to



the design that we decouple the transformation from propagation
and utilize adaptive receptive fields to learn node representations in
DAGNN. Note that performances on co-purchase datasets decrease
obviously with the increment of depth. This should be resulted by
their larger value of edge density than other datasets, as shown
in Table 1. Intuitively, when nodes are more densely connected,
their representations will become indistinguishable by applying a
smaller number of propagation iterations, which aligns with our
assumption in Section 3.3 that further connection exists between
the graph topology information and convergence speed.

6 CONCLUSION

In this paper, we consider the performance deterioration problem
existed in current deep graph neural networks and develop new
insights towards deeper graph neural networks. We first provide
a systematical analysis on this issue and argue that the key factor
that compromises the network performance is the entanglement
of representation transformation and propagation. We propose to
decouple these two operations and show that deep graph neural
networks without this entanglement can leverage large receptive
fields without suffering from performance deterioration. Further,
we provide a theoretically analysis of the above strategy when
building very deep models, which can serve as a rigorous and gen-
tle description of the over-smoothing issue. Utilizing our insights,
DAGNN is proposed to conduct node representation learning with
the ability to capture information from large and adaptive receptive
fields. According to our comprehensive experiments, our DAGNN
achieves a better performance than current state-of-the-art mod-
els by significant margins, especially when training samples are
limited, which demonstrates its superiority.
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A APPENDIX

In this section, we provide necessary information for reproducing
our insights and experimental results. These include the quantita-
tive results and qualitative visualization on more datasets that can
further support our insights, the proofs of lemmas, and the detailed
description of datasets.

A.1 Test Accuracy and Smoothness Metric
Value of GCNs

Test accuracy and smoothness metric value of node representations
with different numbers of GCN layers are shown in Figure 7 for
CiteSeer and PubMed. They have the same trends as we discussed
in Section 3.2.
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Figure 7: Test accuracy and smoothness metric value of node
representations with different numbers of GCN layers on
CiteSeer and PubMed. "Init" means the smoothness metric
value of the original data.

A.2 Test Accuracy and Smoothness Metric
Value of Models as Eq.(6)

Test accuracy and smoothness metric value of node representations
with different numbers of layers adopted in models as Eq.(6) are
shown in Figure 8 for CiteSeer and PubMed. It is illustrated that
after decoupling transformation from propagation, we can apply
deeper models without suffering from performance degradation.
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Figure 8: Test accuracy and smoothness metric value of node
representations with different numbers of layers adopted in
models as Eq.(6) on CiterSeer and PubMed.

A.3 Visualization of Representations Derived
by GCNs

The t-SNE visualization of node representations derived by different
numbers of GCN layers are shown in Figure 9 and 10 for CiteSeer

and PubMed, respectively. The node representations become indis-
tinguishable when several layers are deployed.

A.4 Visualization of Representations Derived
by Models as Eq.(6)

The t-SNE visualization of node representations derived by model
as Eq.(6) with different numbers of layers are shown in Figure 11
and 12 for CiteSeer and PubMed, respectively. It is shown that after
the entanglement of representation transformation and propaga-
tion is removed, the model with a large receptive field, such as
50-hop, still generating distinguishable node representations. The
over-smoothing issue affects the distinguishability only when an
extremely receptive field, like 200-hop, is adopted.

A.5 Proof for Lemma 3.3

Proor. If A is an eigenvalue of Ag with left eigenvector v;
and right elgenvector Uy, We have 'ulA@ = Av; and Agv, =
Aoy, ie. 'ulD 'A = Av; and D Avr = Av,. We right multi-

_1
2

ply the first eigenvalue equation With D 2 and left multiply the

second elgenvalue equatlon with D2 respectlvely Then we can

derlve (v;D 2)D 2AD 2 = AMv;D 2)andD ZAD 2(Dz'u ) =

A(D : v, ). Hence, A is also an eigenvalue of Ao with left eigenvector

—_1 ~1 ~ ~
v;D * and right eigenvector D®v,. From Ag to Ag, we can prove
it in the same way. O

A.6 Proof for Lemma 3.4

Proor. We first prove that Z@ and ;1@ always have an eigen-
value 1 and all eigenvalues A satisfy || < 1. We have Agel = €T
because each row of ;{@ sums to 1. Therefore, 1 is an eigenvalue
of X@. Suppose that there exists an eigenvalue A that |[A| > 1 with
eigenvector v, then the length of the right side in ng = ko
grows exponentially when k goes to infinity. This indicates that

~k
some entries of Ag shoulde be larger than 1. Nevertheless, all en-
~k ~k
tries of Ag are positive and each row of A4 always sums to 1, hence

no entry of K’; can be larger than 1, which leads to contradiction.
From Lemma 3.3, K@ and K@ have the same eigenvalues. There-
fore, Z@ and ;1@ always have an eigenvalue 1 and all eigenvalues
A satisfy |4] < 1.

According to the Perron-Frobenius Theorem for Primitive Ma-
trices [26], there exists an eigenvalue r for an n X n non-negative
primitive matrix such that r > |A| for any eigenvalue A # r and
the eigenvectors associated with r are unique. The property that
the given graph is connected can guarantee that for Vi, j: 3k s.t.
Z®[i,j] > 0. Furthermore, there must exsit some k that can make
all entries of /A&k to be simultaneously positive because self-loops

are included in the graph. Formally, 3k: Zg[i, Jj] > 0 for Vi, j. Hence,
;‘ie; is a non-negative primitive matrix. From the Perron-Frobenius
Theorem for Primitive Matrices, Z@ always has an eigenvalue 1
with unique associated eigenvectors and all other eigenvalues A
satisfy |A| < 1. Based on Lemma 3.3, this property can be extended
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Figure 9: t-SNE visualization of node representations derived by different numbers of GCN layers on CiteSeer. Colors represent

node classes.
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Figure 10: t-SNE visualization of node representations derived by different numbers of GCN layers on PubMed. Colors repre-

sent node classes.
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Figure 11: t-SNE visualization of node representations derived by models as Eq.(6) with different numbers of layers on CiteSeer.

Colors represent node classes.
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Figure 12: t-SNE visualization of node representations derived by models as Eq.(6) with different numbers of layers on PubMed.

Colors represent node classes.

to Ao. We then compute the eigenvectors associated with eigen-
value 1. Obviously, e” is the right eigenvector of Ag associated
with eigenvalue 1. Next, assume v is the left eigenvector of Ag

associated with eigenvalue 1 and thus v 15_ :

is the left eigenvector
of Ap associated with eigenvalue 1. We know Ag is a symmet-
ric matrix, whose left and right eigenvectors associated with the

same eigenvalue are simply each other’s transpose. Hence, we uti-
~_1 ~1 ~

lize v;D > = (D?eT)T to obtain w; = eD. After deriving the

eigenvectors of Ag associated with eigenvalue 1, corresponding

eigenvectors of Ag can be computed by Lemma 3.3. O

A.7 Datasets Description and Statistics

Citation datasets. Cora, CiteSeer and PubMed [25] are represen-
tative citation network datasets where nodes and edges denote
documents and their citation relationships, respectively. Node fea-
tures are formed by bay-of-words representations for documents.
Each node has a label indicating what field the corresponding doc-
ument belongs to.
Co-authorship datasets. Coauthor CS and Coauthor Physics [27]

are co-authorship graphs datasets. Nodes denote authors, which
are connected by an edge if they co-authored a paper. Node features

represent paper keywords for each author’s papers. Each node has a
label denoting the most active fields of study for the corresponding
author.

Co-purchase datasets. Amazon Computers and Amazon Photo [27]

are segments of the Amazon co-purchase graph [19] where nodes
are goods and edges denote that two goods are frequently bought
together. Node features are derived from bag-of-words representa-
tions for product reviews and class labels are given by the product
category.

The datasets statistics are summarized in Table 1.
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