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ABSTRACT
Graphs neural networks (GNNs) learn node features by aggregating

and combining neighbor information, which have achieved promis-

ing performance on many graph tasks. However, GNNs are mostly

treated as black-boxes and lack human intelligible explanations.

Thus, they cannot be fully trusted and used in certain application

domains if GNN models cannot be explained. In this work, we

propose a novel approach, known as XGNN, to interpret GNNs

at the model-level. Our approach can provide high-level insights

and generic understanding of how GNNs work. In particular, we

propose to explain GNNs by training a graph generator so that

the generated graph patterns maximize a certain prediction of the

model. We formulate the graph generation as a reinforcement learn-

ing task, where for each step, the graph generator predicts how to

add an edge into the current graph. The graph generator is trained

via a policy gradient method based on information from the trained

GNNs. In addition, we incorporate several graph rules to encour-

age the generated graphs to be valid. Experimental results on both

synthetic and real-world datasets show that our proposed methods

help understand and verify the trained GNNs. Furthermore, our

experimental results indicate that the generated graphs can provide

guidance on how to improve the trained GNNs.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have shown their effectiveness and

obtained the state-of-the-art performance on different graph tasks,

such as node classification [11, 37], graph classification [39, 47],

and link prediction [46]. In addition, extensive efforts have been

made towards different graph operations, such as graph convolu-

tion [13, 16, 19], graph pooling [20, 44], and graph attention [10,

36, 37]. Since graph data widely exist in different real-world appli-

cations, such as social networks, chemistry, and biology, GNNs are

becoming increasingly important and useful. Despite their great

performance, GNNs share the same drawback as other deep learn-

ing models; that is, they are usually treated as black-boxes and

lack human-intelligible explanations. Without understanding and

verifying the inner working mechanisms, GNNs cannot be fully

trusted, which prevents their use in critical applications pertaining

to fairness, privacy, and safety [7, 40]. For example, we can train a

GNN model to predict the effects of drugs where we treat each drug

as a molecular graph. Without exploring the working mechanisms,

we do not know what chemical groups in a molecular graph lead

to the predictions. Then we cannot verify whether the rules of

the GNN model are consistent with real-world chemical rules, and

hence we cannot fully trust the GNN model. This raises the need

of developing interpretation techniques for GNNs.

Recently, several interpretations techniques have been proposed

to explain deep learning models on image and text data. Depending

on what kind of interpretations are provided, existing techniques

can be categorized into example-level [5, 9, 29, 31, 32, 43, 45, 48]

or model-level [8, 24, 25] methods. Example-level interpretations

explain the prediction for a given input example, by determin-

ing important features in the input or the decision procedure for

this input through the model. Common techniques in this cate-

gory include gradient-based methods [31, 32, 43], visualizations

of intermediate feature maps [29, 48], and occlusion-based meth-

ods [5, 9, 45]. Instead of providing input-dependent explanations,

model-level interpretations aim to explain the general behavior of

the model by investigating what input patterns can lead to a certain

prediction, without respect to any specific input example. Input

optimization [8, 24–26] is the most popular model-level interpreta-

tion method. These two categories of interpretation methods aim at
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explaining deep models in different views. Since the ultimate goal

of interpretations is to verify and understand deep models, we need

to manually check the interpretation results and conclude if the

deep models work in our expected way. For example-level meth-

ods, we may need to explore the explanations for a large number

of examples before we can trust the models. However, it is time-

consuming and requires extensive expert efforts. For model-level

methods, the explanations are more general and high-level, and

hence need less human supervision. However, the explanations

of model-level methods are less precise compared with example-

level interpretations. Overall, both model-level and example-level

methods are important for interpreting and understanding deep

models.

Interpreting deep learning models on graph data become in-

creasingly important but is still less explored. To the best of our

knowledge, there is no existing study on interpreting GNNs at the

model-level. The existing study [4, 40] only provides example-level

explanations for graph models. As a radical departure from exist-

ing work, we propose a novel interpretation technique, known as

XGNN, for explaining deep graph models at the model-level. We

propose to investigate what graph patterns can maximize a cer-

tain prediction. Specifically, we propose to train a graph generator

such that the generated graph patterns can be used to explain deep

graph models. We formulate it as a reinforcement learning prob-

lem that at each step, the graph generator predicts how to add an

edge to a given graph and form a new graph. Then the generator

is trained based on the feedback from the trained graph models

using policy gradient [35]. We also incorporate several graph rules

to encourage the generated graphs to be valid. Note that the graph

generation part in our XGNN framework can be generalized to

any suitable graph generation method, determined by the dataset

at hand and the GNNs to be interpreted. Finally, we trained GNN

models on both real-world and synthetic datasets which can yield

good performance. Then we employ our proposed XGNN to explain

these trained models. Experimental results show that our proposed

XGNN can find the desired graph patterns and explains these mod-

els. With our generated graph patterns, we can verify, understand,

and even improve the trained GNN models.

2 RELATEDWORK
2.1 Graph Neural Networks
Graphs are wildly employed to represent data in different real-

world domains and graph neural networks have shown promising

performance on these data. Different from image and text data, a

graph is represented by a feature matrix and an adjacency matrix.

Formally, a graph G with n nodes is represented by its feature ma-

trix X ∈ Rn×d and its adjacency matrix A ∈ {0, 1}n×n . Note that

we assume each node has a d-dimension vector to represent its

features. Graph neural networks learn node features based on these

matrices. Even though there are several variants of GNNs, such

as graph convolution networks (GCNs) [19], graph attention net-

works (GATs) [37], and graph isomorphism networks (GINs) [39],

they share a similar feature learning strategy. For each node, GNNs

update its node features by aggregating the features from its neigh-

bors and combining them with its own features. We take GCNs as

an example to illustrate the neighborhood information aggregation

scheme. The operation of GCNs is defined as

Xi+1 = f (D− 1

2 ÂD− 1

2XiWi ), (1)

where Xi ∈ Rn×di and Xi+1 ∈ Rn×di+1 are the input and output

feature matrices of the ith graph convolution layer. In addition,

Â = A + I is used to add self-loops to the adjacency matrix, D de-

notes the diagonal node degree matrix to normalize Â. The matrix

Wi ∈ R
di×di+1

is a trainable matrix for layer i and is used to perform
linear feature transformation and f (·) denotes a non-linear acti-
vation function. By stacking j graph convolution layers, the j-hop
neighborhood information can be aggregated. Due to its superior

performance, we incorporate the graph convolution in Equation (1)

as our graph neural network operator.

2.2 Model-level Interpretations
Next, we briefly discuss popular model-level interpretation tech-

niques for deep learning models on image data, known as input

optimization methods [8, 24–26]. These methods generally gener-

ate optimized input that can maximize a certain behavior of deep

models. They randomly initialize the input and iteratively update

the input towards an objective, such as maximizing a class score.

Then such optimized input can be regarded as the explanations for

the target behavior. Such a procedure is known as optimization and

is similar to training deep neural networks. The main difference is

that in such input optimization techniques, all network parameters

are fixed while the input is treated as trainable variables. While

such methods can provide meaningful model-level explanations for

deep models on images, they cannot be directly applied to interpret

GNNs due to three challenges. First, the structural information of a

graph is represented by a discrete adjacency matrix, which cannot

be directly optimized via back-propagation. Second, for images, the

optimized input is an abstract image and the visualization shows

high-level patterns and meanings. In the case of graphs, the ab-

stract graph is not meaningful and hard to visualize. Third, the

obtained graphs may not be valid for chemical or biological rules

since non-differentiable graph rules cannot be directly incorporated

into optimization. For example, the node degree of an atom should

not exceed its maximum chemical valency.

2.3 Graph Model Interpretations
To the best of our knowledge, there are only a few existing studies

focusing on the interpretability of deep graph models [4, 40]. The

recent GNN interpretation tool GNN Explainer [40] proposes to

explain deep graph models at the example-level by learning soft

masks. For a given example, it applies soft masks to graph edges

and node features and updates the masks such that the prediction

remains the same as the original one. Then some graph edges and

node features are selected by thresholding the masks, and they

are treated as important edges and features for making the pre-

diction for the given example. The other work [4] also focuses on

the example-level interpretations of deep graph models. It applies

several well-known image interpretation methods to graph mod-

els, such as sensitivity analysis (SA) [12], guided backpropagation

(GBP) [33], and layer-wise relevance propagation (LRP) [3]. The

SA and GBP methods are based on the gradients while the LRP

method computes the saliency maps by decomposing the output
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Figure 1: Illustrations of our proposed XGNN for graph interpretation via graph generation. The GNNs represent a trained
graph classification model that we try to explain. All graph examples in the graph set are classified to the third class. The
left part shows that we can manually conclude the key graph patterns for the third class but it is challenging. The right part
shows that we propose to train a graph generator to generate graphs that can maximize the class score and be valid according
to graph rules.

prediction into a combination of its inputs. In addition, both of

these studies generate input-dependent explanations for individual

examples. To verify and understand a deep model, humans need to

check explanations for all examples, which is time-consuming or

even not feasible.

While input-dependent explanations are important for under-

standing deep models, model-level interpretations should not be

ignored. However, none of the existing work investigates the model-

level interpretations of deep graph models. In this work, we argue

that model-level interpretations can provide higher-level insights

and a more general understanding in how a deep learning model

works. Therefore, we aim at providing model-level interpretations

for GNNs. We propose a novel method, known as XGNN, to explain

GNNs by graph generation such that the generated graphs can

maximize a certain behavior.

3 XGNN: EXPLAINABLE GRAPH NEURAL
NETWORKS

3.1 Model-Level GNN Interpretation
Intuitively, given a trained GNN model, the model-level interpre-

tations for it should explain what graph patterns or sub-graph

patterns lead to a certain prediction. For example, one possible

type of patterns is known as network motifs that represent simple

building blocks of complex networks (graphs), which widely exist

in graphs from biochemistry, neurobiology, ecology, and engineer-

ing [1, 2, 23, 30]. Different motif sets can be found in graphs with

different functions [1, 23], which means different motifs may di-

rectly relate to the functions of graphs. However, it is still unknown

whether GNNs make predictions based on such motifs or other

graph information. By identifying the relationships between graph

patterns and the predictions of GNNs, we can better understand the

models and verify whether a model works as expected. Therefore,

we propose our XGNN, which explains GNNs using such graph

patterns. Specifically, in this work, we investigate the model-level

interpretations of GNNs for graph classification tasks and the graph

patterns are obtained by graph generations.

Formally, let f (·) denote a trained GNN classification model, and

y ∈ {c1, · · · , cℓ} denote the classification prediction. Given f (·) and
a chosen class ci , i ∈ {1, · · · , ℓ}, our goal is to investigate what input

graph patterns maximize the predicted probability for this class.

The obtained patterns can be treated as model-level interpretations

with respect to ci . Formally, the task can be defined as

G∗ = argmax

G
P(f (G) = ci ), (2)

where G∗
is the optimized input graph we need. A popular way to

obtain such optimized input for interpreting image and text models

is known as input optimization [8, 24–26, 43]. However, as dis-

cussed in Section 2.2, such optimization method cannot be applied

to interpret graph models because of the special representations

of graph data. Instead, we propose to obtain the optimized graph

G∗
via graph generation. The general illustration of our proposed

method is shown in Figure 1. Given a pre-trained graph classifica-

tion model, we interpret it by providing explanations for its third

class. Wemaymanually conclude the graph patterns from the graph

dataset. By evaluating all graph examples in the dataset, we can

obtain the graphs that are predicted to be the third class. Then we

can manually check what are the common graph patterns among

these graphs. For example, the left part of Figure 1 shows that a set

of four graphs are classified into the third class. Based on human

observations, we know that the important graph pattern leading

to the prediction is the triangle pattern consisting of a red node,

a yellow node, and a blue node. However, such manual analysis
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is time-consuming and not applicable for large-scale and complex

graph datasets. As shown in the right part, we propose to train a

graph generator to generate graph patterns that can maximize the

prediction score of the third class. In addition, we incorporate graph

rules, such as the chemical valency check, to encourage valid and

human-intelligible explanations. Finally, we can analyze the gener-

ated graphs to obtain model-level explanations for the third class.

Compared with directly manual analysis on the original dataset, our

proposed method generates small-scale and less complex graphs,

which can significantly reduce the cost for further manual analysis.

3.2 Interpreting GNNs via Graph Generation
Recent advances in graph generation lead to many successful graph

generation models, such as GraphGAN [38], ORGAN [14], Junction

Tree VAE [17], DGMG [22], and Graph Convolutional Policy Net-

work (GCPN) [41]. Inspired by these methods, we propose to train

a graph generator which generates G∗
step by step. For each step,

the graph generator generates a new graph based on the current

graph. Formally, we define the partially generated graph at step t
asGt , which contains nt nodes. It is represented as a feature matrix

Xt ∈ Rnt×d and an adjacency matrix At ∈ {0, 1}nt×nt , assuming

each node has a d-dimensional feature vector. Then we define a

θ -parameterized graph generator as дθ (·), which takes Gt as input,

and outputs a new graph Gt+1 that

Xt+1,At+1 = дθ (Xt ,At ). (3)

Then the generator is trained with the guidance from the pre-

trained GNNs f (·). Since generating the new graph Gt+1 from Gt
is non-differentiable, we formulate the generation procedure as

a reinforcement learning problem. Specifically, assuming there

are k types of nodes in the dataset, we define a candidate set

C = {s1, s2, · · · , sk } denoting these possible node types. For ex-

ample, in a chemical molecular dataset, the candidate set can be

C = {Carbon,Nitroдen, · · · ,Oxyдen, Fluorine}. In a social net-

work dataset where nodes are not labeled, the candidate set only

contains a single node type. Then at each step t , based on the par-

tially generated graph Gt , the generator д(·) generates Gt+1 by

predicting how to add an edge to the current graph Gt . Note that

the generator may add an edge between two nodes in the current

graph Gt or add a node from the candidate set C to the current

graph Gt and connect it with an existing node in Gt . Formally, we

formulate it as a reinforcement learning problem, which consists

of four elements: state, action, policy, and reward.

State: The state of the reinforcement learning environment at

step t is the partially generated graph Gt . The initial graph at the

first step can be either a random node from the candidate set C or

manually designed based on prior domain knowledge. For example,

for the dataset describing organic molecules, we can set the initial

graph as a single node labeled with carbon atom since any organic

compound contains carbon generally [28].

Action: The action at step t , denoted as at , is to generate the new
graphGt+1 based on the current graph Gt . Specifically, given the

current stateGt , the actionat is to add an edge toGt by determining

the starting node and the ending node of the edge. Note that the

starting node at ,star t can be any node from the current graph Gt
while the ending node at ,end is selected from the union of the

current graph Gt and the candidate set C excluding the selected

starting nodeat ,star t , denoted as (Gt
⋃
C)\at ,star t . Note that with

the predefined maximum action step and maximum node number,

we can control the termination of graph generation.

Policy: We employ graph neural networks to serve as the policy.

The policy determines the action at based on the stateGt . Specifi-

cally, the policy is the graph generator дθ (·), which takes Gt and C
as the input and outputs the probabilities of possible actions. With

the reward function, the generator дθ (·) can be trained via policy

gradient [35].

Reward: The reward for step t , denoted as Rt , is employed to

evaluate the action at step t , which consists of two parts. The first

part is the guidance from the trained GNNs f (·), which encourages

the generated graph to maximize the class score of class ci . By
feeding the generated graphs to f (·), we can obtain the predicted

probabilities for class ci and use them as the feedback to update

дθ (·). The second part encourages the generated graphs to be valid

in terms of certain graph rules. For example, for social network

datasets, it is may not allowed to add multiple edges between two

nodes. In addition, for chemical molecular datasets, the degree of

an atom cannot exceed its chemical valency. Note that for each

step, we include both intermediate rewards and overall rewards to

evaluate the action.

While we formulate the graph generation as a reinforcement

learning problem, it is noteworthy that our proposed XGNN is a

novel and general framework for interpreting GNNs at the model-

level. The graph generation part in this framework can be general-

ized to any suitable graph generation method, determined by the

dataset at hand and the GNNs to be interpreted.

3.3 Graph Generator
For step t , the graph generatorдθ (·) incorporates the partially gener-
ated graphGt and the candidate setC to predict the probabilities of

different actions, denoted as pt ,star t and pt ,end . Assume there are

nt nodes in Gt and k nodes in C , then both pt ,star t and pt ,end are

with nt + k dimensionality. Then the action at = (at ,star t ,at ,end )
is sampled from the probabilities pt = (pt ,star t ,pt ,end ). Next, we
can obtain the new graph Gt+1 based on the action at . Specifically,
in our generator, we first employ several graph convolutional layers

to aggregate neighborhood information and learn node features.

Mathematically, it can be written as

X̂ = GCNs(Gt ,C), (4)

where X̂ denotes the learnt node features. Note that the graph

Gt and the candidate set C are combined as the input of GCNs.

We merge all nodes in C to Gt without adding any edge and then

obtain the new node feature matrix and adjacency matrix. Then

Multilayer Perceptrons (MLPs) are used to predict the probabilities

of the starting node, pt ,star t and the action at ,star t is sampled

from this probabilty distribution. Mathematically, it can be written

as

pt ,star t = Softmax(MLPs(X̂ )), (5)

at ,star t ∼ pt ,star t ·mt ,star t , (6)

where · means element-wise product andmt ,star t is to mask out

all candidate nodes since the starting node can be only selected

from the current graph Gt . Let x̂star t denote the features of the
node selected by the start action at ,star t . Then conditioned on
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Figure 2: An Illustration of our graph generator for processing a single step. Different colors denote different types of node.
Given a graph with 4 nodes and a candidate set with 3 nodes, we first combine them together to obtain the feature matrix
and the adjacency matrix. Then we employ several GCN layers to aggregate and learn node features. Next, the first MLPs
predict a probability distribution from which we sample the starting node. Finally, the second MLPs predict the ending node
conditioned on the starting node. Note that the black crosses indicates masking out nodes.

the selected node, we employ the second MLPs to compute the

probability distribution of the ending node pt ,end from which we

sample the ending node action at ,end . Note that since the starting
node and the ending node cannot be the same, we apply a mask

mt ,end to mask out the node selected by at ,star t . Mathematically,

it can be written as

pt ,end = Softmax(MLPs([X̂ , x̂star t ])), (7)

at ,end ∼ pt ,end ·mt ,end , (8)

where [·, ·] denotes broadcasting and concatenation. In addition,

mt ,end is the mask consisting of all 1s except the position indicating

at ,star t . Note that the same graph generator дθ (·) is shared by

different time steps, and our generator is capable to incorporate

graphs with variable sizes.

We illustrate our graph generator in Figure 2 where we show

the graph generation procedure for one step. The current graphGt
consists of 4 nodes and the candidate set has 3 available nodes. They

are combined together to serve as the input of the graph generator.

The embeddings of candidate nodes are concatenated to the feature

matrix of Gt while the adjacency matrix of Gt is expanded accord-

ingly. Then multiple graph convolutional layers are employed to

learn features for all nodes. With the first MLPs, we obtain the prob-

abilities of selecting different nodes as the starting node, and from

which we sample the node 1 as the starting node. Then based on the

features of node 1 and all node features, the second MLPs predict

the ending node. We sample from the probabilities and select the

node 7 as the ending node, which corresponds to the red node in

the candidate set. Finally, a new graph is obtained by including a

red node and connecting it with node 1.

3.4 Training the Graph Generator
The graph generator is trained to generate specific graphs that can

maximize the class score of class ci and be valid to graph rules. Since

such guidance is not differentiable, we employ policy gradient [35]

to train the generator. According to [21, 42], the loss function for

the action at at step t can be mathematically written as

Lд = −Rt (LCE (pt ,star t ,at ,star t ) + LCE (pt ,end ,at ,end )), (9)

where LCE (·, ·) denotes the cross entropy loss and Rt means the

reward function for step t . Intuitively, the reward Rt indicates

whether at has a large chance to generate graph with high class

score of class ci and being valid. Hence, the reward Rt consists of
two parts. The first part Rt ,f is the feedback from the trained model

f (·) and the second part Rt ,r is from the graph rules. Specifically,

for step t , the reward Rt ,f contains both an intermediate reward

and a final graph reward for graph Gt+1 that

Rt ,f = Rt ,f (Gt+1) + λ1

∑m
i=1 Rt ,f (Rollout(Gt+1))

m
, (10)

where λ1 is a hyper-parameter, and the first term is the intermediate

reward which can be obtained by feedingGt+1 to the trained GNNs

f (·) and checking the predicted probability for class ci . Mathemati-

cally, it can be computed as

Rt ,f (Gt+1) = p(f (Gt+1) = ci ) − 1/ℓ, (11)

where ℓ denotes the number of possible classes for f (·). In addition,

the second term in Equation (10) is the final graph reward forGt+1
which can be obtained by performing Rollout [42]m times on the

intermediate graph Gt+1. Each time, a final graph is generated

based on Gt+1 until termination and then evaluated by f (·) using
Equation (11). Then the evaluations form final graphs are averaged

to serve as the final graph reward. Overall, Rt ,f is positive when

the obtained graph tends to yield high score for class ci , and vice

versa.

In addition, the reward Rt ,r is obtained from graphs rules and

is employed to encourage the generated graphs to be valid and

human-intelligible. The first rule we employ is that only one edge is



Algorithm 1 The algorithm of our proposed XGNN.

1: Given the trained GNNs for graph classification, denoted as

f (·), we try to interpret it and set the target class as ci .
2: Let C define the candidate node set and д(·) mean our graph

generator. We predefine the maximum generation step as Smax
and the number of Rollout asm.

3: Define the initial graph as G1.

4: for step t in Smax do
5: Merge the current graph Gt and the candidate set C .
6: Obtain the action at from the generator д(·) that at =

(at ,star t ,at ,end ) with Equation (4-8).

7: Obtain the new graph Gt+1 based on at .
8: Evaluate Gt+1 with Equation (10-12) and obtain Rt .
9: Update the generator д(·) with Equation (9).

10: if Rt < 0 then roll back and set Gt+1 = Gt .

11: end if
12: end for

allowed to be added between any two nodes. Second, the generated

graph cannot contain more nodes than the predefined maximum

node number. In addition, we incorporate dataset-specific rules to

guide the graph generation. For example, in a chemical dataset,

each node represents an atom so that its degree cannot exceed

the valency of the corresponding atom. When any of these rules

is violated, a negative reward will be applied for Rt ,r . Finally, by
combining the Rt ,f and Rt ,r , we can obtain the reward for step t
that

Rt = Rt ,f (Gt+1) + λ1

∑m
i=1 Rt ,f (Rollout(Gt+1))

m
+ λ2Rt ,r , (12)

where λ1 and λ2 are hyper-parameters. We illustrate the training

procedure in Algorithm 1. Note that we roll back the graphGt+1 to

Gt when the action at is evaluated as not promising that Rt < 0.

4 EXPERIMENTAL STUDIES
4.1 Dataset and Experimental Setup
We evaluate our proposed XGNN on both synthetic and real-world

datasets. We report the summary statistics of these datasets in Ta-

ble 1. Since there is no existing work investigating model-level

interpretations of GNNs, we have no baseline to compare with.

Note that existing studies [4, 40] only focus on interpreting GNNs

at example-level while ignoring the model-level explanations. Com-

paring with them is not expected since these example-level and

model-level are two totally different interpretation directions.

Synthetic dataset: Since our XGNN generates model-level expla-

nations for Deep GNNs, we build a synthetic dataset, known as

Is_Acyclic, where the ground truth explanations are available. The

graphs are labeled based on if there is any cycle existing in the

graph. The graphs are obtained using Networkx software pack-

age [15]. The first class refers to cyclic graphs, including grid-like

graphs, cycle graphs, wheel graphs, and circular ladder graphs. The

second class denotes acyclic graphs, containing star-like graphs,

binary tree graphs, path graphs and full rary tree graphs [34]. Note

that all nodes in this dataset are unlabeled and we focus on investi-

gating the ability of GNNs to capture graph structures.

Real-world dataset: We conduct experiments on the real-world

Table 1: Statistics and properties of datasets. Note that the
edge number and node number are averaged numbers.

Dataset Classes # of Edges # of Nodes Accuracy

Is_Acyclic 2 30.04 28.46 0.978

MUTAG 2 19.79 17.93 0.963

dataset MUTAG. The MUTAG dataset contains graphs represent-

ing chemical compounds where nodes represent different atoms

and edges represent chemical bonds. The graphs are labeled into

two different classes according to their mutagenic effect on a bac-

terium [6]. Each node is labeled based on its type of atom and there

are seven possible atom types: Carbon, Nitrogen, Oxygen, Fluorine,

Iodine, Chlorine, Bromine. Note that the edge labels are ignored for

simplicity. For this dataset, we investigate the ability of GNNs to

capture both graph structures and node labels.

Graph classification models: We train graph classification mod-

els using these datasets and then try to explain these models. These

models share a similar pipeline that first learns node features using

multiple layers of GCNs, then obtain graph level embeddings by

averaging all node features, and finally employs fully-connected

layers to perform graph classification. For the synthetic dataset

Is_Acyclic, we use the node degrees as the initial features for all

nodes. Then we apply two layers of GCNs with output dimensions

equal to 8, 16 respectively and perform global averaging to obtain

the graph representations. Finally, we employ one fully-connected

layer as the classifier. Meanwhile, for the real-world dataset MU-

TAG, since all nodes are labeled, we employ the corresponding

one-hot representations as the initial node features. Then we em-

ploy three layers of GCNs with output dimensions equal to 32, 48,

64 respectively and average all node features. The final classifier

contains two fully-connected layers in which the hidden dimension

is set to 32. Note that for all GCN layers, we apply the GCN version

shown in Equation (1). In addition, we employ Sigmoid as the non-

linear function in GCNs for dataset Is_Acyclic while we use Relu for

dataset MUTAG. These models are implemented using Pytorch [27]

and trained using Adam optimizer [18]. The training accuracies of

these models are reported in Table 1, which show that the models

we try to interpret are models with reasonable performance.

Graph generators: For both datasets, our graph generators share

the same structure. Our generator first employs a fully-connected

layer to map node features to the dimension of 8. Then three layers

of GCNs are employed with output dimensions equal to 16, 24, 32

respectively. The first MLPs consist of two fully-connected layers

with the hidden dimension equal to 16 and a ReLU6 non-linear

function. The second MLPs also have two fully-connected layers

that the hidden dimension is set to 24 and ReLU6 is applied. The

initial features for input graphs are the same as mentioned above.

For dataset Is_Acyclic, we set λ1 = 1, λ2 = 1, and Rt ,r = −1 if

the generated graph violates any graph rule. For dataset MUTAG,

we set λ1 = 1, λ2 = 2, and the total reward Rt = −1 if the gener-

ated graph violates any graph rule. In addition, we perform rollout

m = 10 times each step to obtain final graph rewards. The models

are implemented using Pytorch [27] and trained using Adam op-

timizer [18] with β1 = 0.9 and β2 = 0.999. The learning rate for

graph generator training is set to 0.01.



p=0.7544 p=0.9993 p=0.9992 p=0.9999p=0.9998

p=0.9634p=0.9760p=0.9965p=0.9985p=0.9999

Max node: 3 Max node: 4 Max node: 5 Max node: 6 Max node: 7

Figure 3: Experimental results for the synthetic dataset Is_Acyclic. Each row shows our explanations for a certain class that
the first row corresponds to the class cyclic while the second row explains the class acyclic. In each row, from left to right, we
report the generated graphs with increasing maximum node number limits. In addition, we feed each generated graph to the
pre-trained GCNs and report the predicted probability for the corresponding class.

4.2 Experimental Results on Synthetic Data
We first conduct experiments on the synthetic dataset Is_Acyclic

where the ground truth is available. As shown in Table 1, the trained

GNN classifier can reach a promising performance. Since the dataset

is manually and synthetically built based on if the graph contains

any circle, we can check if the trained GNN classifier makes pre-

dictions in such a way. We explain the model with our proposed

XGNN and report the generated interpretations in Figure 3. We

show the explanations for the class “cyclic” in the first row and

the results for the class “acyclic” in the second row. In addition,

we also report different generated explanations by setting different

maximum graph node limits.

First, by comparing the graphs generated for different classes,

we can easily conclude the difference that the explanations for

the class “cyclic” always contain circles while the results for the

class “acyclic” have no circle at all. Second, to verify whether our

explanations can maximize the class probability for a certain class,

as shown in Equation (2), we feed each generated graph to the

trained GNN classifier and report the predicted probability for the

corresponding class. The results show that our generated graph

patterns can consistently yield high predicted probabilities. Note

that even though the graph obtained for the class “cyclic” with

maximum node number equal to 3 only leads to p = 0.7544, it is

still the highest probability for all possible graphs with 3 nodes.

Finally, based on these results, we can understand what patterns

can maximize the predicted probabilities for different classes. In our

results, we know the trained GNN classifier very likely distinguishes

different classes by detecting circular structures, which is consistent

with our expectations. Hence, such explanations help understand

and trust the model, and increase the trustworthiness of this model

to be used as a circular graph detector. In addition, it is noteworthy

that our generated graphs are easier to analyze compared with the

graphs in the datasets. Our generated graphs have significantly

fewer numbers of nodes and simpler structures, and yield higher

predicted probabilities while the graphs from the dataset have an

average of 28 nodes and 30 edges, as shown in Table 1.

4.3 Experimental Results on Real-World Data
We also evaluate our proposed XGNN using real-world data. For

dataset MUTAG, there is no ground truth for the interpretations.

Since all nodes are labeled as different types of atoms, we investi-

gate whether the trained GNN classifier can capture both graph

structures and node labels. We interpret the trained GNN with

our proposed method and report selected results in Figure 4 and

Figure 5. Note that the generated graphs may not represent real

chemical compounds because, for simplicity, we only incorporate a

simple chemical rule that the degree of an atom cannot exceed its

maximum chemical valency. In addition, since nodes are labeled,

we can set the initial graphs as different types of atoms.

We first set the initial graph as a single carbon atom and report

the results in Figure 4, since generally, any organic compound con-

tains carbon [28]. The first row reports explanations for the class

“non-mutagenic” while the second row shows the results for the

class “mutagenic”. We report the generated graphs with different

node limits and the GNN predicted probabilities. For the class “mu-

tagenic”, we can observe that carbon circles and NO2 are some

common patterns, and this is consistent with the chemical fact that

carbon rings and NO2 chemical groups are mutagenic [6]. Such

observations indicate that the trained GNN classifier may capture

these key graph patterns to make predictions. In addition, for the

class “non-mutagenic”, we observe the atom Chlorine is widely

existing in the generated graphs and the combination of Chlorine,

Bromine, and Fluorine always leads to “non-mutagenic” predic-

tions. By analyzing such explanations, we can better understand

the trained GNN model.

We also explore different initial graphs and report the results

in Figure 5. We fix the maximum node limit as 5 and generate

explanations for the class “mutagenic”. First, no matter how we

set the initial graph, our proposed method can always find graph
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Figure 4: Experimental results for the MUTAG dataset. The first row reports the explanations for the class non-mutagenic
while the second row shows results for the class mutagenic. Note that different node colors denote different types of atoms
and the legend is shown at the bottom of the figure. All graphs are generated with the initial graph as a single Carbon atom.
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Figure 5: Experimental results for the MUTAG dataset. We fix the maximum node number limit as 5 and explore different
initial graphs. Note that all graphs are generated for explaining the mutagenic class. For each generated graph, we show its
predicted probability and corresponding initial graph at the bottom.

patterns maximizing the predicted probability of class “mutagenic”.

For the first 5 graphs, which means the initial graph is set to a

single node of Carbon, Nitrogen, Oxygen, Iodine, or Fluorine, some

generated graphs still have common patterns like carbon circle and

NO2 chemical groups. Our observations further confirm that these

key patterns are captured by the trained GNNs. In addition, we

notice that the generator can still produce graphs with Chlorine

which are predicted as “mutagenic”, which is contrary to our con-

clusion above. If all graphs with Chlorine should be identified as

“non-mutagenic”, such explanations show the limitations of trained

GNNs. Then these generated explanations can provide guidance

for improving the trained GNNs, for example, we may place more

emphasis on the graphs Chlorine when training the GNNs. Further-

more, the generated explanations may also be used to retrain and

improve the GNN models to correctly capture our desired patterns.

Overall, the experimental results show that our proposed interpre-

tation method XGNN can help verify, understand, and even help

improve the trained GNN models.

5 CONCLUSIONS
Graphs neural networks are widely studied recently and have

shown great performance for multiple graph tasks. However, graph

models are still treated as black-boxes and hence cannot be fully

trustable. It raises the need of investigating the interpretation tech-

niques for graph neural networks. It is still a less explored area

where existing methods only focus on example-level explanations

for graph models. However, none of the existing work investigates

the model-level interpretations of graph models which is more gen-

eral and high-level. Hence, in this work, we propose a novel method,

XGNN, to interpret graph models in the model-level. Specifically,

we propose to find graph patterns that can maximize a certain pre-

diction via graph generation. We formulate it as a reinforcement

learning problem and generate graph pattern iteratively. We train

a graph generator and for each step, it predicts how to add an edge

into the current graph. In addition, we incorporate several graph

rules to encourage the generated graphs to be valid and human-

intelligible. Finally, we conduct experiments on both synthetic and

real-world datasets to demonstrate the effectiveness of our pro-

posed XGNN. Experimental results show that the generated graphs

help discover what patterns will maximize a certain prediction

of the trained GNNs. The generated explanations help verify and

better understand if the trained GNNs make a prediction in our ex-

pected way. Furthermore, our results also show that the generated

explanations can help improve the trained models.
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