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Abstract—We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
With the advances of deep learning, current link prediction methods commonly compute features from subgraphs centered at two
neighboring nodes and use the features to predict the label of the link between these two nodes. In this formalism, a link prediction
problem is converted to a graph classification task. In order to extract fixed-size features for classification, graph pooling layers are
necessary in the deep learning model, thereby incurring information loss. To overcome this key limitation, we propose to seek a
radically different and novel path by making use of the line graphs in graph theory. In particular, each node in a line graph corresponds
to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node
classification problem in its corresponding line graph, instead of a graph classification task. Experimental results on fourteen datasets
from different applications demonstrate that our proposed method consistently outperforms the state-of-the-art methods, while it has

fewer parameters and high training efficiency.

Index Terms—Deep learning, graph analysis, link prediction, graph neural networks, line graphs.
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1 INTRODUCTION

INK prediction models are used to learn the distribution
L of links in graphs and predict the existence of potential
links [1], [2], [3], [4]. In many real-world applications, the
input data is represented as graphs, and link prediction
models can be applied to tasks like friend recommenda-
tion in social networks [5], product recommendation in e-
commerce [6], [7], [8], knowledge graph completion [9],
protein interaction analysis [10], and metabolic network
reconstruction [11].

To solve the link prediction problem, various heuristic
methods were proposed to measure the similarity between
two target nodes and predict the existence of link [12].
However, the heuristic functions in these methods are often
manually designed for a specific network, limiting their
applicability to diverse areas. For example, the number of
common neighbors [5] is employed as a first-order heuristic
function to predict the potential friendship relations in social
networks and achieves satisfactory performance. However,
this heuristic may not work well on protein-protein inter-
action networks, since two proteins sharing many common
neighbors may have a low probability of interacting [13].

Many heuristic methods have been proposed to solve
graph link prediction problems from different areas. How-
ever, there still exist challenges to select heuristic functions
given a new network. To tackle these challenges, the link
prediction model based on graph neural networks (SEAL)
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was proposed to learn heuristic functions from h—hop
neighborhood automatically [14]. This method achieved the
state-of-the-art performance on a variety of graphs. The
SEAL model extracts an h-hop enclosing subgraph centered
on the two target nodes and predicts the existence of link
based on the topology of enclosing subgraph. Therefore, the
link prediction task is converted to the graph classification
problem, where the model takes the enclosing subgraph
as inputs and predicts the existence of link between them.
Normally, graph neural networks [15] are employed to
learn features to represent the topology of the subgraph.
Therefore, graph pooling layers [16], [17], [18] are required
to compute a fixed-size feature vector from the whole graph
while some information may be lost in this operation. For
example, in sort pooling operations [15], only partial nodes
can be selected to represent the graph. In addition, a graph
neural network with pooling layers often requires more
training time to converge.

Although the SEAL works well in many types of graphs,
it still has some limitations, due to the usage of pooling op-
erations in the graph neural network. To solve the informa-
tion loss in pooling layers, we propose to learn the features
of the target link directly instead of extracting features from
the whole enclosing subgraph. Compared with extracting
features from the whole graph, learning node embedding
is more effective. Graph convolution layers [19], [20], [21],
[22] have shown promising performance for learning node
embeddings. However, graph convolution layers are not
effective enough to learn edge embeddings from graphs. To
address this issue, we propose to convert the original enclos-
ing subgraph into a corresponding line graph. Each node
in the line graph has a unique corresponding edge in the
original graph. In addition, the topology information can be
well preserved during the transformation. Therefore, graph
convolution layers can be directly applied to learn the node
embeddings in the line graph. The node embeddings in the
line graph are used as features for the edges in the original
graph to predict the existence of links. Therefore, the link
prediction task can be regarded as the node classification
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Fig. 1. lllustration of our proposed model based on line graph neural networks. The two target nodes in the graph are marked with double circles.
To predict the existence of the link, an h-hop enclosing subgraph centered on two target nodes is extracted. A node labeling function is employed
to assign the label for each node to represent the structural importance to the target link. To learn the feature of the target link, we transform the
enclosing subgraph into a corresponding line graph. The graph convolution networks are used to learn the feature that is employed to predict the

existence of link.

problem in our proposed framework. Our contributions can
be summarized as follows:

1) We analyze the limitations of exiting deep learning
based link prediction methods due to graph pool-
ing operations and envision the need to develop a
new method that do not have the information loss
problem.

2) We propose a line graph neural networks model for
the link prediction task, where the original graph
is transformed into a corresponding line graph to
enable efficient feature learning for the target link.

3) We conduct experiments on 14 datasets from dif-
ferent areas. Our proposed method can achieve
promising performance on different datasets and
outperform all baseline methods, including the pre-
vious state-of-the-art model.

4) Our proposed method can achieve promising per-
formance only with graph convolution layers, and
thus requires fewer parameters. In addition, the
neural network consisting of graph convolution lay-
ers converges significantly faster than the state-of-
the-art model.

2 RELATED WORK

Link prediction models can be grouped into three categories
— heuristic methods, embedding methods, and deep learn-
ing methods.

Heuristic Methods: The key idea of heuristic methods is
to compute the similarity score from the neighborhood of
two target nodes. Based on the maximum hop of neigh-
bors used in the computation procedure, heuristic meth-
ods can be categorized into three groups, including first-
order, second-order, and high-order heuristics. Common
neighbors and preferential attachment [12] are typical first-
order heuristics since only one-hop neighbors are employed
to compute the similarity. Second-order heuristic methods
that involve two-hop neighbors include Adamic-Adar [5]
and resource allocation [12], [23]. In addition, high-order
heuristics, including Katz [24], rooted PageRank [25], and
SimRank [26] were proposed to compute the similarity score
between a pair of nodes using the whole graph. High-order
heuristic methods can often achieve better performance than
low-order heuristics but require more computation cost.
Since many heuristic methods were proposed to handle
different graphs, selecting a favorable heuristic method be-
comes a challenging problem.

Embedding Methods: The similarity between two target
nodes can also be calculated based on node embeddings
[27]. Therefore, embedding methods that can learn the fea-
tures of nodes from graph topology were also employed
to solve the link prediction task, and typical methods along
this line include matrix factorization [6] and stochastic block
[10] etc. Recently, inspired by world embedding methods
in natural language processing tasks, recent advances such
as deepwalk [28], LINE [29], and node2vec [30] were pro-
posed to learn node embedding via the skip-gram method.
Deepwalk generates random walks for each vertex with
a given length and picks the next visited node uniformly
from the neighbors of the current node. Later on, the
skip-gram method is employed to learn node embeddings
from the generated node sequence. Variational graph auto-
encoder (GAE) [31] is proposed to learn the node embed-
ding through graph convolution neural networks to recon-
struct the graph topology. The node embedding methods
can learn informative features from the graph and thus
achieve satisfactory performance for the link prediction task.
However, the performance of link node embedding methods
can be affected if the graph becomes very sparse.

Deep Learning: To overcome the limitations of heuristic
methods, deep learning based methods were proposed to
learn the distribution of links from the graph automat-
ically [14], [32], [33]. Weisfeiler-Lehman Neural Machine
was proposed to predict the existence of a link using a
fully-connected neural network based on a fixed-size en-
closing subgraph centered on the two target nodes [32].
To predict the existence of a link from a general enclosing
subgraph, SEAL [14] converts the link prediction task to a
graph classification problem and solve it using graph neural
networks. Due to the promising learning ability of graph
neural networks, the SEAL model achieves the state-of-the-
art performance for the link prediction problem. Later on, a
multi-scale link model was also proposed to extend SEAL
to achieve better performance on plain graphs [33].

3 THE PROPOSED METHODS
3.1 Problem Formulation

In the link prediction task, we are often given a network
represented as an undirected graph G = (V,E) which
consists of a set of vertices V = {v1,vq,...,v,} and a set
of links £ C V' x V. The graph can also be represented by
the adjacency matrix A. If there exists a link between vertex
i and j, then A; ; = 1 and A; ; = 0 otherwise. The goal of
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link prediction is to predict potential or missing links that
may appear in a foreseeable future.

3.2 Overall Framework

Deep learning based link prediction models were proposed
to learn the link distribution from the existing links and
determine whether a link exists between two target nodes
in the graph. For example, when we predict if there exists a
link between two users in a social network, the number of
mutual friends is commonly considered as a main criterion.
If two users share many mutual friends, they are more likely
to be connected. In this sense, if the 1-hop subgraph induced
from two target nodes are densely connected, we will have
higher chances to observe a link between them. Considering
the variation of networks from different areas, deep learning
based methods were proposed to learn the topology feature
of subgraphs automatically and predict the existence of links
[14]. In particular, the deep learning based link prediction
models generally consist of the following three components:

1) Enclosing subgraph extraction: The existence of a
potential link can be determined by the topology of
a local enclosing subgraph centered on two target
nodes. To seek a balance between computation cost
and prediction performance, an h—hop enclosing
subgraph is extracted for learning features and pre-
dicting the existence of potential links.

2) Node labeling: Given an enclosing subgraph, we
are required to identify the role of each node in
the graph before learning features and predict the
existence of the link. That is, we need to identify
the target nodes and mark the structural importance
of other nodes. A favorable labeling function is of
great importance for the further feature learning
procedure.

3) Feature learning and link prediction: The output of
node labeling function can be used as the attribute
of each node in the graph. The attribute can indicate
the structural importance of the link to be predicted.
Graph neural networks are commonly employed to
learn features from the given enclosing subgraph,
which can be further used to predict the existence
of a link.

In this work, we propose line graph neural networks
for the link prediction task. Our proposed model can be
illustrated in Figure 1. Following the general framework of
deep learning based link prediction models, we extract an
h-hop enclosing subgraph centered on two target nodes and
assign each node with a label that can represent the struc-
tural importance to the target link. The key contribution of
our proposed method is the feature learning component. In
the previous state-of-the-art model, graph convolution and
graph pooling layers are employed to obtain a fixed-size
feature vector to predict the existence of the link considering
the scale variation of different graphs. Since this graph
pooling layer is employed in the state-of-the-art model,
only part of graph information can be preserved for further
prediction. To overcome the limitations of the SEAL method,
we propose to convert the enclosing subgraph to a line
graph where each node corresponds to a unique link in the

(A) Original Graph

(B) Line Graph

Fig. 2. lllustration of the line graph transformation procedure. Each node
in the line graph corresponds to a unique edge in the original graph and
is marked with the name of two end nodes.

original graph. The feature of the link can be learned directly
using the entire input from line graph representation. Thus
the proposed method can greatly improve the performance
of the link prediction.

3.3 Line Graph Neural Networks

Line Graph Space Transformation In order to predict the
existence of a link, graph neural networks are employed
to learn features from a given enclosing subgraph Gf}hw,
where Gf}l)w is an h-hop enclosing subgraph centered on
two target nodes v; and vy, and each node in the enclosing
subgraph is associated with a label that can indicate the
structural importance to the target link. Different enclosing
subgraphs commonly contain a different number of nodes.
To extract a fixed-size feature vector for the further predic-
tion, we will lose some information during the procedure.
To overcome this challenge, we propose to convert the
enclosing subgraph to the line graph, which represents the
adjacencies between edges of the original graph. Thus, the
feature of the link to be predicted can be learned directly
in the line graph representation using graph convolution
neural networks.

The line graph L(G) of a given undirected graph G is
proposed to represent the adjacencies between edges of G
[34], [35]. The definition of line graph L(G) can be defined
as follows.

Definition 1. The edges in the original graph G are consid-
ered as nodes in the line graph L(G). Two nodes in L(G)
are connected if and only if the two corresponding links
share the same node.

An example of the line graph transformation procedure is
illustrated in Figure 2. The original undirected graph G
contains four nodes and five edges. Therefore, the line graph
L(G) contains five nodes. The node (a — b) and (a — ¢) in
the line graph are connected since the corresponding edges
in the original graph G share a common node a based on
the definition of the line graph.

Based on the definition of the line graph, we can obtain
the following property of L(G): Given a graph G with m nodes
and n edges, the number of nodes of the line graph L(G) equals
to n. The number of edges in L(G) is 3 >°i", d? — n, where d;
is the degree of node i in graph G.

This property guarantees that learning features in the
line graph space will not increase the computation complex-
ity significantly. In additional, converting a graph G to line
graph L(G) only costs linear time complexity [36], [37].
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Node Label Transformation An enclosing subgraph can
be converted into the corresponding line graph through
transformation. However, this procedure can only transform
the topology of a given graph. Each node in the enclosing
subgraph also contains a label I € R generated by labeling
function as node attributes that can represent the structural
importance. During the transformation procedure, edges in
the original graph are represented as nodes in the line graph.
The label [ is only assigned for nodes in the original graph.
To transfer the node label from the original graph directly, a
transformation function is required to convert the node label
to edge attribute. Thus the edge attribute can be assigned
directly as the node attribute in the line graph. In this work,
we propose to generate the edge attribute from the node
label through the following function:

l(w v2) = concate(min(f;(v1), fi(v2)), max(fi(v1), fi(v2))),

)
where fi(-) is the node labeling function, v; and v, are the
two end nodes of the edge, and concate(-) represents the
concatenation operation for the two inputs. Since we only
consider undirected graph link prediction in this work, the
attribute of edge (v1,v2) and (v2,v1) should be the same.
It is easy to prove that the edge attribute generated by
equation (1) is consistent when switching the end nodes. In
addition, the structural importance information of the node
can be well preserved in the function.

The proposed method in equation (1) can well address
the edge attribute transformation in plain graphs. In some
cases, graphs are commonly provided with node attributes.
For example, in citation networks, the node attribute de-
scribing a summary of the paper can be provided in the
graph. For attributed graphs, node attributes also play an
important role in the link prediction task. Therefore, the
edge attribute transformation function should be gener-
alized to deal with attributed graph. Following the edge
attribute transformation function in equation (1), we can
concatenate the original node attribute with the node label
as the edge attribute. But the edge attribute will not be
consistent when we switch the order of two end nodes in the
undirected graph. To overcome this limitation, we propose
to deal with the original node attribute and node label in
different ways by:

Ly ,vs) = concate(min(fi(v1), fi(v2)), max(fi(v1), fi(v2)), Xo, +Xo,),

@
where X, and X, are the original attribute of node v;
and vy. We propose to combine the node attribute using
summation operation, which can guarantee the invariance
of edge attributes when switching the end nodes. The gener-
ated edge attribute /,, ,2) can be used as the node attribute
directly in the line graph. Therefore, the link prediction task
is converted to a node classification problem which can be
solved by graph convolution neural networks.

Feature Learning by Graph Neural Networks With re-
cent progress in graph neural networks, learning the graph
feature becomes a favorable solution that has been explored
in various graph analytical tasks [17], [18], [20]. In this work,
we employ graph convolution neural networks to learn the
node embedding in the line graph, which can represent an
edge in the original graph. Thus, the node embedding in the

4

line graph can be used to predict whether a potential link is
likely to exist in the network.

Given a line graph representation of the enclosing sub-
graph L(G", ,,), the node embedding of (v;,v;) in the k-th
layer of the graph convolution neural network is indicated

as Z((Z:),Uj). Then the embedding of (v;,v;) in the (k 4 1)-th
layer is given by:

k+1 k k

((Uivvj)) - (Z((qu),vj) +5 Z Zc(l ))W(k)v ®)

AN (w;,0))

where Ny, .., is the set of neighbors of node (v;,v;) in the
line graph, W) is the weight matrix for the k-th layer, 3
is a normalization coefficient. The input for the first layer of
graph convolution neural network is set to node attribute
in the line graph as Z?w v;) = l(w1,02)- We then consider the
link prediction task as a i)inary classification problem and
train the neural network by minimizing the cross-entropy
loss for all potential links as:

Lop=—Y (ylog(m) + (1 —y)log(l — p)),
IEL,

(4)

where L, is the set of target links to be predicted, p; is the
probability that the link [ exists in the graph, and y; € {0, 1}
is the label of a target link that indicating whether the link
exists or not.

Connection with Learning on Original Graphs The key
idea of our proposed method is to learn edge features from
the enclosing subgraph and predict the existence of edge
using the features. In this work, the feature of edge e =
(v1, v2) is learned based on attributes of two end nodes as:

fe = g(fi(v1), fi(v2)),

where f, is the edge feature, g(-) is the graph neural
network function. Although graph convolutional layers are
performed on the line graph, it still has connections with
the same operation on the original graph. We use the first
layer graph convolution layer as an example to illustrate
this relationship. We reformulate the equation (3) as:

Zlwry = Urwzy + B D D laraz

d1ENy1 d2 €N

+ 83 Y lasan)W.(6)

d3€Ny2 da€Ngs

©)

The graph convolution operation learns embedding for
each node by aggregating node embedding from its 1—hop
neighbors. It can be seen from equation (6) that the graph
convolution on the line graph can aggregate the node em-
bedding from 2—hop neighbors. In the line graph transfor-
mation procedure, each node attribute is derived from two
corresponding node attributes. That is, the attribute of each
node in the line graph contains attributes from two nodes
in the original graph. Therefore, aggregating information
from 1 — hop neighbors is equivalent to performing the
same operation on 2—hop neighbors. It also shows that
learning node embedding through graph convolution in the
line graph is more efficient than that in the original graph in
terms of neighbor embedding aggregation.
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3.4 The Proposed Algorithm

In this section, we provide a detailed description of the
three components for our proposed framework. There is
no strict restriction for the three steps. The given enclosing
subgraph extraction and graph topology labeling function
in this section can work well for most networks.

Enclosing Subgraph Extraction The existence of the
link between two nodes can be determined by the graph
topology centered on them. In general, we can achieve better
performance when more topology information is involved.
However, it will incur more computation cost. To seek a
balance between performance and computation cost, we
predict the existence of the link between node v; and v;
using 2—hop enclosing subgraph as:

G%vi,v]‘) = {U| min(d(v, 1)2‘), d(U7 vj) < 2)}7 (7)

where d(v,v;) is the shortest path/geodesic distance be-
tween v and v;.

Node Labeling Given an enclosing subgraph, we only
know the topology of the graph. Before we learn features
of the target link, we need to identify the role of each node
in the graph through a labeling function. The node labeling
function must satisfy the following criteria: (1) Identifying
the two target nodes. (2) Provide the structural importance
of each node to the target nodes. In this work, we employ
an effective node labeling function proposed by [14] as:

filw) = Lmin(d(v, v1), d(v, v2))+(ds /2)[(ds /2)+(ds) %211,

®)
where d, = d(v,v1) + d(v,v2), (ds/2) and (ds%2) are
the integer quotient and remainder of d divided by 2,
respectively. In addition, the two target nodes v; and vy
are assigned with label 1 as f;(v;) = 1 and f;(v2) = 1. For
any node v satisfying d(v,v1) = o0 or d(v,va2) = o0, it will
be assigned with label 0 as f;(v) = 0. The node labeling
function provides a label fij(-) € R. In practice, the node
label is represented as a one-hot vector. As discussed above,
the edge is represented as an order invariant pair. The edge
feature pair is represented as a concatenation of two one-hot
vectors. Algorithm 1 shows the link prediction procedure
using our proposed framework.

Algorithm 1 Link Prediction Model Based on Line Graph
Neural Networks

Input: Target link (v, v2), Graph G
Output: Prediction result

Extract h—hop enclosing subgraph G

h
(v1,v2)

Apply node labeling function (8) to G?vl_w)

Generate edge attribute using equation (1) or (2)
Transform G?th) to line graph L(G?vhw))
Apply graph neural networks to extract node embed-

dings on L(G! ) to predict the existence of link

(v1,v2)

4 EXPERIMENTS

In this section, we evaluate our proposed method on 14
different datasets for the link prediction task. Two eval-
uation metrics, including area under the curve (AUC)
and average precision (AP) are employed in this work

TABLE 1
Summary of datasets used in our experiments. The number of node,
link, average node degree, and graph type are provided for each

dataset.
Name | #Nodes #Links Degree Type
BUP 105 441 8.4 Political Blogs
C.ele 297 2148 14.46 Biology
USAir 332 2126 12.81 Transportation
SMG 1024 4916 9.6 Co-authorship
EML 1133 5451 9.62 Shared Emails
NSC 1461 2742 3.75 Co-authorship
YST 2284 6646 5.82 Biology
Power 4941 6594 2.669 Power Network
KHN 3772 12718 6.74 Co-authorship
ADV 5155 39285 15.24 Social Network
GRQ 5241 14484 5.53 Co-authorship
LDG 8324 41532 9.98 Co-authorship
HPD 8756 32331  7.38 Biology
ZWL 6651 54182 16.29 Co-authorship

to measure the performance of different models. The
code and dataset used in this work are available at
https:/ /github.com/divelab/LGLP.

4.1

In this work, we perform our proposed line graph link
prediction (LGLP) model on 14 different datasets, including
BUP, C.ele, HPD, YST, SMG, NSC, KHN, GRQ, LDG, ZWL,
USAir, EML, Power, and ADV! [38], [39]. To demonstrate
that our proposed method can work well in different areas,
14 datasets are collected from 6 areas. In addition, graphs
in different scales, including the number of nodes and links,
are used in the experiments. The details of the datasets are
shown in Table 1.

In this work, we compare our proposed method with
three high-order heuristic methods including Katz [24],
PageRank (PR) [25], SimRank (SR) [26]. In addition, graph
embedding method node2vec (N2V) [40], variational graph
auto-encoder (GAE) [31], and the state-of-the-art method
SEAL [14] are selected as baseline methods. To explore the
performance of line graph neural network, we add another
baseline method using neural relational inference (NRI) [41]
to learn the target link embedding.

Datatsets and Baseline Models

4.2 Experimental Setup

To assess the performance of our proposed method, we
randomly select 50% of existing links as positive training
samples, and the rest are used as positive test samples.
In addition, the same number of non-existed links are
randomly selected from the graph as negative samples for
training and testing. To demonstrate the effectiveness of our
proposed method with a different number of training sam-
ples, we also select 80% training links for the experiments.

The parameters of baseline methods are tuned to achieve
the best performance on datasets. The damping factor in
Katz method is set to 0.001. The damping factor in PageRank
is set to 0.85. The constant factor in the SimRank is set to
0.8. The dimension of node embedding for node2vec is set
to 128.

1. https:/ /noesis.ikor.org/datasets /link-prediction
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TABLE 2
AUC comparison with baseline methods (80% training links).

Model BUP C.ele USAir SMG EML NSC YST

Katz | 87.10(£2.73) 84.84(%2.05) 92.01(£0.88) 86.09(£1.06) 88.45(£0.68) 98.00(£0.31) 80.56(%£0.78)
PR 90.13(+2.45)  89.14(4+1.35)  93.74(+1.01)  89.13(+0.90) 89.46(+0.63) 98.05(+£0.29)  81.40(40.75)
SR 85.47(4£2.75)  75.65(£2.24)  79.21(£1.50) 78.39(£1.14)  86.90(£0.71)  97.19(+£0.48)  73.93(+0.95)
N2V 80.25(+5.55) 80.08(£1.52) 85.40(+0.96) 78.30(+1.22) 83.06(+1.42) 96.23(+£0.95) 77.07(+0.36)
GAE | 90.16(+1.65) 83.73(+0.75) 91.80(+0.86) 85.88(+0.90) 86.78(+1.07) 98.83(+0.33)  77.07(+0.36)
SEAL 03.32(+0.84)  87.44(%1.21) 95.21(£0.77)  91.53(40.46)  92.01(£0.38)  99.55(40.01)  82.07(+0.96)
NRI 94.77(+£0.60)  90.13(4+0.82)  96.44(+0.38)  91.18(40.35) 91.83(£0.30)  99.80(40.01)  91.63(£0.25)
LGLP 95.24(40.53) 90.16(+0.76) 97.44(40.32) 92.53(4+0.29)  92.03(40.28) 99.82(40.01) 91.97(40.12)
Model Power KHN ADV LDG HPD GRQ ZWL

Katz 59.59(£1.51) 84.60(£0.79) 92.13(£0.21) 92.96(£0.19) 85.47(£0.35) 89.81(£0.59) 96.42(E£0.12)
PR 59.88(+1.51) 88.43(+£0.80) 92.78(40.18) 94.46(+0.19) 87.19(+0.34) 89.98(+£0.57)  97.20(+0.12)
SR 70.18(+0.75)  79.55(£0.90)  86.18(4£0.22)  90.95(+0.14)  81.73(+£0.37) 89.81(£0.58)  95.97(40.16)
N2V 70.37(+1.15)  82.21(£1.19) 77.70(+0.83) 91.88(+0.56) 79.61(+1.14) 91.33(+£0.53)  94.38(40.51)
GAE | 69.84(£0.96) 84.37(£0.39) 90.55(+0.23) 93.84(+0.21) 85.21(£0.45) 91.15(+0.45)  95.46(+0.30)
SEAL | 81.37(£0.93) 92.69(+0.14) 95.07(+0.13)  96.44(+0.13)  92.26(£0.09) 97.10(+0.12)  97.46(+0.02)
NRI 82.15(+0.50)  92.63(£0.11)  94.53(£0.10)  96.49(+0.08)  91.63(£0.08) 97.21(£0.11)  97.44(£0.01)
LGLP | 8217(+0.57)  93.30(+0.09)  95.40(+0.10)  96.70(+0.07)  92.58(+0.08)  97.68(+0.10)  97.76(+0.01)

TABLE 3
AP comparison with baseline methods (80% training links).

Model BUP C.ele USAir SMG EML NSC YST

Katz 85.94(£3.46) 85.94(E£3.46) 93.51(£0.79) 87.68(£0.90) 90.54(£0.53) 98.02(£0.43) 85.76(£0.64)
PR 89.53(£3.11)  87.96(+1.69)  94.30(£1.27) 91.07(£0.59) 91.01(£0.67) 98.08(+£0.34)  86.34(+0.72)
SR 81.10(£3.31)  66.43(£2.39) 69.80(£1.99) 70.39(£1.67) 87.24(£0.84) 96.55(£1.14)  77.56(£1.09)
N2V 81.47(£4.48) 77.98(+1.54) 82.53(£1.12)  77.01(£1.79) 83.08(£1.36) 96.81(£0.86)  78.48(+1.03)
GAE | 89.26(£2.10) 82.53(+1.51) 93.41(+0.67) 85.95(+£0.67) 88.73(£0.92) 98.93(+0.31)  82.65(+0.86)
SEAL 93.58(£0.68)  86.49(+1.08) 95.46(+0.59) 91.90(4+0.31)  91.93(£0.31) 99.51(£0.01)  91.85(+0.20)
NRI 94.88(+0.50)  89.58(40.65) 96.68(+0.31)  91.23(4+0.26)  92.28(+0.28)  99.80(40.01)  92.57(+0.23)
LGLP 95.46(+0.43) 89.70(40.53) 97.37(+0.25)  92.92(+0.21)  92.61(+0.23) 99.82(+0.01) 92.98(40.10)
Model Power KHN ADV LDG HPD GRQ ZWL

Katz 74.29(£0.83) 88.27(£0.32) 93.72(£0.16) 94.91(+0.27) 89.52(£0.32) 93.08(£0.29) 97.08(%£0.09)
PR 74.74(£0.81)  92.17(£0.24)  94.03(£0.24)  96.26(£0.22)  91.01(£0.23)  93.18(£0.34)  97.69(+0.08)
SR 70.69(+0.67) 77.16(+£0.81)  83.31(40.35) 88.71(+0.79)  84.16(+0.42) 92.97(+£0.31)  95.44(40.15)
N2V | 76.55(+0.75) 83.26(+0.79) 79.02(+0.65) 92.12(+0.50) 80.57(+0.81)  93.92(+0.31)  93.82(+0.39)
GAE | 75.04(+£0.87) 87.52(+1.17) 90.87(+0.26) 95.24(+0.19) 86.62(£0.39) 93.78(+0.33)  95.79(+0.27)
SEAL | 83.91(+0.83) 93.40(+0.13) 95.18(+0.12)  96.55(+0.11)  93.41(+0.09) 97.86(+0.11)  97.54(+0.02)
NRI 83.90(+0.52)  93.52(£1.21) 94.73(4+0.11)  96.86(+0.07) 92.81(+0.08) 97.76(+£0.11)  97.59(40.01)
LGLP | 84.78(+£0.53)  94.14(+0.09)  95.72(+£0.08)  96.86(+0.06)  93.65(+0.08)  98.14(+0.10)  97.91(+0.01)

For the SEAL framework, we employ the same setting
as the original paper [14]. The 2 — hop enclosing subgraph
is extracted for the SEAL framework, and the labeling
function is the same as equation (8) in this work. Three
graph convolution layers are employed to compute node
embeddings, and the sort pooling [15] is used to generate
a fixed-size feature vector for the enclosing subgraph. The
output feature map for three graph convolution layers is set
to 32. The ratio of the sort pooling layer is set to 0.6. Two
1-D convolution layers with the number of output channels
as 16 and 32, and two fully connected layers are employed
as a classifier to predict the existence of a link. The SEAL
model is trained for 50 epochs on each dataset.

To guarantee the comparison between our proposed
method and SEAL model is fair, we employ the same graph
neural network architecture to compute node embeddings
in the line graph. It is worth noting that our proposed
method does not employ graph pooling and 1-D convo-
lution layers. Therefore, the number of parameters in our
proposed method is much fewer than that in the SEAL
model. Our proposed method is trained for 15 epochs on
each dataset.

4.3 Results and Analysis

Plain Graph Link Prediction We perform our proposed
method and baseline methods on 14 datasets to compare
the performance of each model. We randomly split each
dataset into training and testing dataset for ten times. The
averaged AUC and standard deviations using 80% training
links are shown in Table 2. The results in terms of AP are
shown in Table 3. It can be seen from results that heuristic
methods cannot achieve satisfactory performance on all
datasets since the heuristic function is manually designed
thus cannot handle different cases. We find that the state-
of-the-art model SEAL always outperforms all heuristic
methods and embedding methods since it can learn the
distribution of links automatically from datasets. The NRI
method can outperform the SEAL method and the results
also show that learn the embedding of target link directly is
better than learning graph embedding. Our proposed LGLP
model can consistently achieve better performance than all
baseline methods, including SEAL and NRI in terms of
two evaluation metrics. It shows that our proposed method
can learn better features to represent the target link for
prediction in line graph space. In addition, our proposed
method is more stable than other baseline methods.
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TABLE 4
AUC comparison with baseline methods (50% training links).

Model BUP C.ele USAir SMG EML NSC YST

Katz | 81.61(£3.40) 79.99(£0.59) 88.91(£0.39) 80.65(£0.58) 84.16(£0.64) 95.99(+0.62) 77.28(£0.37)
PR 84.07(+3.39)  84.95(+0.58)  90.57(4+0.39)  84.59(+0.45) 85.43(+£0.63) 96.06(+£0.60)  77.90(+3.69)
SR 80.98(43.03)  76.05(£0.80)  81.09(£0.59)  75.28(£0.74)  83.05(+£0.64) 95.59(+£0.68)  73.71(+0.41)
N2V 80.94(+2.65) 75.53(£1.23) 84.63(+1.58) 73.50(+1.22) 80.15(+£1.26) 94.20(£1.25)  73.62(+0.74)
GAE | 82.31(+1.34) 80.34(+0.76) 89.71(+0.63) 84.36(+0.71)  82.04(+0.55) 97.79(+0.57)  80.06(+0.59)
SEAL 85.10(£0.82)  81.23(%1.52) 93.23(£1.46) 86.56(%0.53) 85.83(£0.46) 99.07(40.02)  85.56(+0.28)
NRI 87.88(+0.69)  83.62(£0.95) 94.59(+0.82) 88.53(4+0.48) 86.53(+£0.37) 99.28(40.01)  87.42(+0.26)
LGLP 88.57(40.52) 84.60(40.82) 95.18(40.33) 89.54(4+0.36)  86.77(+0.26) 99.33(40.01) 87.63(40.15)
Model Power KHN ADV LDG HPD GRQ ZWL

Katz 57.34(£0.51) 78.99(£0.20) 90.04(£0.17) 88.61(£0.19) 81.60(£0.12) 82.50(£0.21) 93.72(%£0.06)
PR 57.34(+0.52)  82.34(£0.21)  90.97(+0.15)  90.50(+0.19)  83.15(+0.17)  82.64(4+0.22)  95.11(0.09)
SR 56.16(+0.45) 75.87(£0.19) 84.87(40.14) 87.95(+0.14) 78.88(+0.22) 82.68(£0.24)  94.00(%0.10)
N2V 55.40(+0.84)  78.53(£0.72)  74.67(+0.98) 88.82(+0.44) 75.84(+1.03) 84.24(£0.35) 92.06(+0.61)
GAE | 56.75(£1.93) 82.65(£0.38) 90.12(+0.17) 89.95(+£0.23) 83.71(£0.34)  83.18(+0.44)  94.14(+0.23)
SEAL | 65.80(£1.10) 87.43(4+0.17) 92.75(+0.14) 92.98(+0.16) 88.05(+0.10)  90.07(+0.15)  94.94(+0.02)
NRI 66.94(+0.61)  88.17(£0.16)  92.86(£0.12)  92.80(+0.13)  88.07(£0.09)  90.75(£0.12)  95.10(%0.01)
LGLP | 66.94(+0.60) 88.88(+0.13)  93.28(+0.10)  93.43(+0.11)  88.65(+0.09) 91.31(+0.11)  95.51(+0.01)

TABLE 5
AP comparison with baseline methods (50% training links).

Model BUP C.ele USAir SMG EML NSC YST

Katz 85.94(£2.03) 83.99(£0.79) 93.51(£0.35) 87.68(£0.79) 80.54(£0.31) 98.02(£0.53) 81.63(£0.41)
PR 89.53(+2.58)  87.96(+0.86)  94.30(£0.49) 91.07(£0.69) 91.01(£0.52) 98.08(+£0.59)  82.08(+0.46)
SR 81.09(£2.57) 66.43(£1.17) 69.78(£0.84) 70.39(£0.96) 87.24(£0.52) 96.55(£0.75)  76.02(+0.49)
N2V 76.05(£3.20) 73.37(£1.23) 81.03(£1.18)  73.32(+1.34) 81.12(40.92) 95.32(£1.08) 76.61(+0.94)
GAE | 81.30(£2.14)  79.75(4£0.92)  91.00(+0.59) 84.96(+0.68) 84.58(+£1.59) 98.20(4+0.37)  81.35(+0.68)
SEAL | 84.17(+0.62) 83.94(+1.31) 94.31(+1.13) 86.76(+0.41) 87.45(+0.41)  99.09(+0.02)  86.45(+0.25)
NRI 87.99(+0.58)  83.72(£0.92) 94.72(4+0.73)  89.02(+0.34)  88.33(+0.36)  99.30(£0.01)  88.84(40.23)
LGLP 89.03(+0.41) 84.80(40.63) 94.89(+0.33)  90.23(+0.26)  88.49(+0.23) 99.38(+0.01) 89.22(40.13)
Model Power KHN ADV LDG HPD GRQ ZWL

Katz 57.63(£0.51) 83.04(£0.38) 91.76(£0.15) 91.57(+0.17) 85.73(£0.89) 86.59(£0.20) 95.12(F£0.05)
PR 57.61(+£0.56)  87.18(+£0.26)  92.43(£0.17) 93.53(£0.14)  87.20(£0.15)  86.73(£0.20)  96.24(40.05)
SR 56.19(+0.49)  75.87(+£0.66) 83.22(4+0.20) 88.11(+0.25) 81.07(+0.18) 86.27(£0.20)  94.26(40.11)
N2V | 60.46(+£0.86) 80.60(+0.74)  76.70(+0.82)  89.57(+0.64) 77.66(+0.54) 88.70(+0.26)  91.61(+0.49)
GAE | 60.50(£2.26) 85.29(4+0.34)  90.60(+0.16) 92.63(+£0.16) 85.60(£0.28)  88.15(+0.29)  94.95(+0.18)
SEAL | 68.67(+£0.98) 90.37(+0.16) 93.52(+0.13)  94.33(+0.15)  90.25(+0.10)  92.80(+0.12)  95.88(+0.02)
NRI 68.53(+0.52)  90.42(£0.13)  93.34(40.11)  94.24(+0.12)  89.92(+0.09) 92.41(£0.11)  95.83(40.01)
LGLP | 69.41(£0.50) 90.83(+0.11)  93.82(£0.10)  94.63(£0.10)  90.34(£0.09)  93.01(+0.10)  96.19(+0.01)

To demonstrate our proposed method can still achieve
satisfactory performance with limited training samples, we
conduct experiments on all datasets using 50% training
links. The averaged AUC and AP are shown in Table 4 and
Table 5, respectively. It can be seen from the results that our
proposed method outperforms all baseline methods signifi-
cantly on most datasets. We find that our proposed method
can still perform well, even using 50% training links. The
AUC and AP are close to that of using 80% training links. To
better illustrate the performance of our proposed method,
we extracted the output of penultimate fully connected layer
as the feature of each edge and visualize edge features using
t-distributed stochastic neighbor embedding (¢-SNE) [42].
The visualization results are shown in Figure 5. We show
the visualization on EML, ADV, HPD, and GRQ datasets
for 20% test edges. Positive links are marked as green, and
negative links are marked as cyan. It can be seen from the
results that features learned from our proposed model can
be easily classified.

In the experiments, we dynamically take 30%, 40%, 50%,
60%, 70%, and 80% of all the links in G as the training set
and the rest as the test set, respectively. We conduct exper-
iments with different training percentages and describe the

TABLE 6
Comparison on Cora dataset using plain graph and attributed graph
(50% training links).

Attribute Plain
AUC AP AUC AP
SEAL | 7533 77.69 7995 8291
LGLP | 81.45 81.99 79.96 83.30

AUC results in Figure 4. The AUC value of our proposed
method is marked with a sold line, and other baseline
methods are marked with dashed lines in different colors. It
can be seen from the results that our proposed method can
outperform all baseline methods with different percentages
of the training data. In addition, the performance of our
proposed method is not sensitive to the number of training
samples.

Attributed Graph Link Prediction We also conduct ex-
periments on attributed graphs. Since the heuristic method
can only be applied to plain graphs, we mainly focus on the
comparison between our proposed method and SEAL. In
the SEAL framework, the attribute is concatenated with the
node label as the input for graph neural networks. In this
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Fig. 3. Training loss and test AUC comparison between our proposed LGLP and SEAL method. The training loss and testing AUC on BUP, C.ele,
EML, and SMG dataset. The training loss and testing AUC of LGLP are marked with blue and orange solid lines. Those of SEAL are marked with

blue, orange dashed lines.

work, we propose a new function to combine the node label
and node attributes. We perform the experiment on Cora
dataset [43] that contains 2,708 nodes and 5,429 links. Each
node in the Cora dataset is associated with an attribute vec-
tor in 1433 dimensions. We conduct the experiments without
node attribute first, and then involve the node attributes to
analyze the performance. The results are shown in Table 6.
We can find both AUC and AP decrease after using node
attributes as input in the SEAL model. In our proposed
method, the performance does not change significantly. It
shows that our proposed method can work well for both
plain and attributed graphs.

Convergence Speed Analysis Our proposed method can
learn features for the target link directly in the line graph.
Therefore, only graph convolution layers are required to
extract features. In the SEAL model, the procedure is com-
pleted in the original graph and thus requires graph con-
volution and pooling layers to achieve this goal. Compared
with the SEAL model, our proposed method contains fewer
parameters and converges faster. To analyze the converg-
ing speed of two models, we run the models on different
datasets and collect the loss and test AUC value for each
epoch. The result is shown in Figure 3. The loss and AUC

of our proposed method are marked with solid lines. Those
of the SEAL model are marked with dashed lines. It can be
seen from the results that our proposed model can converge
faster than the SEAL. Only 10 to 15 epochs are required
to achieve the best performance for our proposed method.
It takes 50 epochs for SEAL to converge. Therefore, our
proposed method saves training time and requires fewer
model parameters.

5 CONCLUSION

In this work, we propose a novel link prediction model
based on line graph neural networks. Graph neural net-
works have achieved promising performance for the link
prediction task. To deal with graphs in different scales,
graph pooling layers are employed to extract a fixed-size
feature vector in predicting the existence of a link. How-
ever, valuable information can be ignored in the pooling
operation. In addition, graph neural networks with pooling
layers commonly require more training time to converge.
To overcome these limitations, we propose to transform the
original input graph into line graph and thus the feature of
the target link can be learned directly in the line graph with-
out pooling operation. Experimental results on 14 datasets
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Fig. 4. AUC comparison on all datasets for Katz, PR, SR, SEAL, and LGLP using different percent of training links. On each dataset, we take 30%,
40%, 50%, 60%, 70%, and 80% of all the links in G as the training set. Our proposed method LGLP is marked with solid line and all baseline
methods are marked with dashed lines in different colors.

from different areas demonstrate that our proposed method
can outperform all baseline methods, including the state-
of-the-art models. In addition, our proposed method can
converge faster than the state-of-the-art model significantly.
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