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Topology-Aware Graph Pooling Networks
Hongyang Gao*, Yi Liu*, and Shuiwang Ji, Senior Member, IEEE

Abstract—Pooling operations have shown to be effective on computer vision and natural language processing tasks. One challenge of
performing pooling operations on graph data is the lack of locality that is not well-defined on graphs. Previous studies used global ranking
methods to sample some of the important nodes, but most of them are not able to incorporate graph topology. In this work, we propose
the topology-aware pooling (TAP) layer that explicitly considers graph topology. Our TAP layer is a two-stage voting process that selects
more important nodes in a graph. It first performs local voting to generate scores for each node by attending each node to its neighboring
nodes. The scores are generated locally such that topology information is explicitly considered. In addition, graph topology is incorporated
in global voting to compute the importance score of each node globally in the entire graph. Altogether, the final ranking score for each
node is computed by combining its local and global voting scores. To encourage better graph connectivity in the sampled graph, we
propose to add a graph connectivity term to the computation of ranking scores. Results on graph classification tasks demonstrate that our
methods achieve consistently better performance than previous methods.

Index Terms—Deep learning, graph neural networks, graph pooling, graph topology
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1 INTRODUCTION

POOLING operations have been widely applied in various
fields [1], [2], [3], [4]. Pooling operations can effectively

reduce dimensional sizes [1], [5] and enlarge receptive
fields [6]. However, it is challenging to perform pooling
operations on graph data. In particular, there is no spa-
tial locality information or order information among the
nodes [7], [8], [9]. Some works try to overcome this limitation
with two categories; those are node clustering [7], [10] and
node sampling [11], [12]. Node clustering methods create
graphs with super-nodes. The adjacency matrix of the learned
graphs in node clustering methods is softly connected. These
methods suffer from the over-fitting problem and need
auxiliary link prediction tasks to stabilize the training [7].
The node sampling methods like top-k pooling [11], [12] rank
the nodes in a graph and sample top-k nodes to form the
sampled graph. It uses a small number of additional trainable
parameters and is shown to be more powerful [11]. However,
the top-k pooling layer does not explicitly incorporate the
topology information in a graph when computing ranking
scores, which may cause performance loss.

In this work, we propose a novel topology-aware pool-
ing (TAP) layer that explicitly encodes the topology infor-
mation when computing ranking scores. Our TAP layer
performs a two-stage voting process to examine both the
local and global importance of each node. We first perform
local voting and use dot product to compute similarity scores
between each node and its neighboring nodes. The average
similarity score of a node is used as its importance score
within a local neighborhood. In addition, we perform global
voting to weigh the importance of each node globally in
the entire graph. The final ranking score for each node is
the combination of its local and global voting scores. To
avoid isolated nodes problem in our TAP layer, we further
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propose a graph connectivity term for computing the ranking
scores of nodes. The graph connectivity term uses degree
information as a bias term to encourage the layer to select
highly connected nodes to form the sampled graph. Based on
the TAP layer, we develop topology-aware pooling networks
for network embedding learning. Experimental results on
graph classification tasks demonstrate that our proposed
networks with TAP layers consistently outperform previous
models. The comparison results between our TAP layer and
other pooling layers based on the same network architecture
demonstrate the effectiveness of our method compared to
other pooling methods.

2 BACKGROUND AND RELATED WORK

The pooling operations on graph data mainly include two
categories; those are node clustering and node sampling.
DIFFPOOL [7] realizes graph pooling operation by clustering
nodes into super-nodes. By learning an assignment matrix,
DIFFPOOL softly assigns each node to different clusters
in the new graph with specified probabilities. The pooling
operations under this category retain and encode all node
information into the new graph. One challenge of methods in
this category is that they may increase the risk of over-fitting
by training another network to learn the assignment matrix.
In addition, the new graph is mostly connected where each
edge value represents the strength of connectivity between
two nodes. The connectivity pattern in the new graph may
greatly differ from that of the original graph.

The node sampling methods mainly select a fixed number
k of the most important nodes to form a new graph. In
SortPool [12], the same feature of each node is used for
ranking and k nodes with the largest values in this feature
are selected to form the coarsened graph. Top-k pooling [11]
generates the ranking scores by using a trainable projection
vector that projects feature vectors of nodes into scalar values.
k nodes with the largest scalar values are selected to form the
coarsened graph. These methods involve none or a very small
number of extra trainable parameters, thereby avoiding the
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Fig. 1. An illustration of the proposed local voting. This graph contains four nodes, each of which has 2 features. Given the input graph, we first
compute similarity scores between every pair of connected nodes. In graph (b), we label each edge by the similarity score of its two end nodes. Then
we compute the local voting score of each node by averaging the similarity scores with its neighboring nodes. In graph (c), we label each node by its
local voting score and a bigger node indicates a higher score.

risk of over-fitting. However, these methods suffer from one
limitation that they do not explicitly consider the topology
information during pooling. Both SortPool and top-k pooling
rely on a global voting process but fail to consider local
topology information. In this work, we propose a pooling
operation that explicitly encodes topology information in
ranking scores, thereby leading to an improved operation.

3 TOPOLOGY-AWARE POOLING LAYERS AND NET-
WORKS

In this work, we propose the topology-aware pooling (TAP)
layer that encodes topology information in ranking scores for
node selection. We also propose a graph connectivity term in
the computation of ranking scores, which encourages better
graph connectivity in the coarsened graph. Based on our
TAP layer, we propose the topology-aware pooling networks
for graph representation learning.

3.1 Topology-Aware Pooling Layer

3.1.1 Graph Pooling via Node Sampling
Pooling operations are important for deep models on image
and NLP tasks that they help enlarge receptive fields and re-
duce computational cost. They are locality-based operations
that extract high-level features from local regions. When
generalizing GNNs and GCNs to graph structured data,
graph pooling is an important yet challenging topic. Recently,
two families of graph pooling methods are proposed. One
treats the graph pooling as a node clustering problem while
the other one treats graph pooling as a node sampling
problem. Both of them are developed to scale down the
size of node representations and learn new representations.
Formally, given a graph G = (A,H) with the adjacency
matrix A ∈ {0, 1}n×n and the feature matrix H ∈ Rn×d,
graph pooling produces a new graph G′ with k nodes. The
new graph G′ can be represented by its adjacency matrix
A′ ∈ {0, 1}k×k and feature matrix H ′ ∈ Rk×d. In this
work, we follow [11], [12] and treat the graph pooling as
a node sampling problem, which learns the importance of
different nodes in the original graph G and samples the
top k important nodes to form the new graph G′. Existing
methods [11], [12] generate node importance scores based
on a globally-shared projection vector that projects feature
vectors to scalars. Each scalar is an importance score indi-
cating the importance of the corresponding node. However,

these methods do not explicitly consider graph topology
information when performing graph pooling, thereby leading
to constrained network capability.

In this section, we propose the topology-aware pool-
ing (TAP) layer that performs nodes sampling by considering
the graph topology. Specifically, the node ranking score
is obtained from two voting processes: local voting and
global voting. For any node, the local voting computes its
importance based on the similarities with its neighboring
nodes, while the global voting evaluates its global importance
in the entire graph. Altogether, these two procedures are
jointly learned to sort all nodes in the original graph, and
then the top k nodes are selected to form the new graph.

3.1.2 Local Voting
Max pooling operations on grid-like data are performed in
local regions. Inspired by this, we propose the local voting
to measure node importance within a local region, which
explicitly incorporates graph topology and local information.
Specifically, we compute the similarity scores between each
node and its neighboring nodes. The score for a node i is
the mean value of the similarity scores with its neighboring
nodes. The resulting score for a node indicates the similarity
between this node and its neighboring nodes. If a node has a
high local voting score, it can highly represent a local graph
that consists of it and its neighboring nodes. Formally, given a
graph G = (A,H) with the adjacency matrix A ∈ Rn×n and
the feature matrix H ∈ Rn×d, the local voting is expressed as

R = HHT ∈ Rn×n,

R̂ = R ◦ (D̂−1Â) ∈ Rn×n,

yL = softmax(
1

n
R̂1n) ∈ Rn,

(1)

where Â = A+ I is used to add self-loops, D̂ is the diagonal
degree matrix with D̂ii =

∑
j Âij , ◦ denotes the element-

wise matrix multiplication operation, 1n ∈ Rn denotes a
n-dimensional vector with all ones, and softmax(·) denotes
an element-aware softmax operation.

Suppose H is a matrix with node features, denoted as
H={h1,h2, · · ·,hn}T . For node i, its feature is represented
as hi ∈ Rd. We first compute the similarity matrix R based
on node features. Specifically, for any node i and node j,
their similarity score rij is obtained by the dot product
between hi and hj . Since R contains similarity scores for
all node pairs in the graph, we perform an element-wise
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matrix multiplication between the similarity matrix R and
the normalized adjacency matrix D̂−1Â, resulting a matrix R̂
where similarity scores for non-connected nodes are all zeros.
To this end, each row vector r̂i in R̂ represents similarity
scores between the node i and its neighborhood. Next, for
the node i, we average its all similarity scores to indicate
its importance within its local neighbors. Finally, we apply
softmax function to obtain the final score vector, denoted as
yL = [yL1 , y

L
2 , · · ·, yLn ]T and

∑
i y

L
i = 1.

Our proposed local voting essentially encodes local infor-
mation from neighborhood and explicitly incorporates graph
topology information. The node with a higher score indicates
it has higher similarities with its neighbors and hence tends
to be more important. Typically, by scoring each node based
on local information, local voting achieves a similar objective
as the max pooling operation on images. Max pooling on grid-
like data keeps the most salient features within a local region.
Similarly, our local voting regulates local information and
encourages to select the most important nodes within a local
region when forming the new graph. Notably, our proposed
local voting considers both graph topology information
and node features. Node features are used to compute the
closeness between different nodes. In addition, we have
several ways to compute closeness between two vectors,
such as inner product, concatenation, and Gaussian function.
In this work, we choose to employ the inner product since
it has been proven as a simple yet effective solution [13].
In practice, we can employ learnable weights to make the
model more powerful. Specifically, we can add a learnable
weight matrix Wr to the computation of interaction matrix R
that R = HWrH

T . Figure 1 provides an illustration of our
proposed local voting operation.

3.1.3 Global Voting
For each node, local voting essentially shows its “local” role
within a local region. However, different from grid-like data
such as images, local neighborhood regions within graphs
are “overlapped”. We can not rely on local salient features
only to perform graph pooling. In this section, we introduce
our proposed global voting to evaluate “global” role for each
node. Intuitively, local voting shows the importance of a
node within its neighborhood, while global voting shows
how important its neighbor region (including itself) is in the
entire graph. Typically, the neighbor region of a node can be
treated as a sub-graph and the center of this sub-graph is
the node itself. Such a sub-graph may also carry important
information. For example, in a graph representing a protein,
atoms are nodes and bonds are edges. Then a sub-graph
contains an atom and its neighboring atoms. Certain sub-
graphs can represent vital units and indicate the functionality
of the entire protein. Hence, such information should be
captured in graph pooling. We propose global voting to
measure the importance of different subgraphs in the entire
graph. Formally, the global voting is express as

Ĥ = D̂−1ÂH ∈ Rn×n, yG = softmax(Ĥp) ∈ Rn, (2)

where p ∈ Rd is a trainable projection vector, and softmax(·)
denotes an element-aware softmax operation. We first aggre-
gate neighbor information for each node, through which the
new features of a node represent the information of its sub-
graph. After that, we perform the scalar projection p on the

structure-aggregated feature matrix Ĥ and obtain the score
vector yG. The projection vector p is learnable and shared
by all nodes in the graph [14]. In this way, the element yGi
in yG indicates the importance of node i and its sub-graph
based on the globally shared vector.

Note that the computation of global voting is similar to
the recently proposed SortPool [12] and top-k pooling [11].
However, we explicitly consider the topology information
to generate Ĥ while SortPool and top-k pooling may ignore
such information. Without topology information, the capacity
of networks is restricted and the functionalities of sub-graphs
may be neglected. Our proposed global voting measures
the node importance in a global manner and considers
both node features and graph topology information. As
GV samples nodes based on their similarity scores with
a shared projection vector, it may be argued that GV can
reduce the diversity in original graphs. Existing work such
as SortPool [12], top-k pooling [11], and SAGPool [15] may
also suffer from this issue. Fortunately, in this work, we do
not use GV solely, but combine LV as a two-stage voting
process as the final pooling strategy. Apparently, LV samples
nodes based on local importance scores, and the diversity
of original graphs can be successfully preserved. Hence,
we reach a trade-off that GV helps measure the global
importance and LV preserves topology information as well as
diversity. Experimental studies in Sec. 4.5 also show that the
removal of either LV or GV leads to performance reduction.
This essentially reveals the effectiveness of combining LV and
GV as a two-stage voting process as introduced in Sec. 3.1.4.
In addition, we study graph representation learning in this
work. Hence, the main objective is to sample important nodes
to compute the graph representation vector. Filtering out less
important nodes is similar to a denoising process, which is
more important than preserving diversity in original graphs.

3.1.4 Graph Pooling Layer
The local voting measures the local similarities between each
node and its neighborhood, and the global voting captures
the importance of different neighbor regions in the entire
graph. Altogether, we combine these two to measure the
importance of different nodes so that topology information
is explicitly considered. Specifically, the final sorting vector y
is computed as the summation of yL and yG. Then based on
the sorting vector y, we rearrange the order of all the nodes
in the original graph and sample the top k important nodes
to form a new graph. Formally, our proposed TAP layer can
be expressed as

y = yL + yG ∈ Rn, idx = rank(y, k) ∈ Rk,

H ′ = Hidx, : ∈ Rk×d, A′ = Aidx, idx ∈ Rk×k,
(3)

where k is a pre-defined number indicating the number of
nodes in the output graph, rank(y, k) is the operation for
node sampling, which returns the indexes of top-k values in
y. The idx is a list of indexes indicating the selected nodes.
Hidx, : is a row-aware extractor on feature matrix to obtain
the feature matrix H ′ for the new graph. Aidx, idx produces
the new adjacency matrix based on the node connections
in the original graph. With the ranking procedure, only the
top-k important nodes are selected according to the values in
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Fig. 2. An illustration of the topology-aware pooling network. ⊕ denotes the concatenation operation of feature vectors. Each node in the input graph
contains three features. We use a GCN layer to transform the feature vectors into low-dimensional representations. We stack two blocks, each of
which consists of a GCN layer and a TAP layer. A global reduction operation such as max-pooling is applied to the outputs of the first GCN layer and
TAP layers. The resulting feature vectors are concatenated and fed into the final multi-layer perceptron for prediction.

y. Then the new feature matrix H ′ and adjacency matrix A′

are obtained following the extraction process. Notably, our
TAP layer introduces negligibly additional parameters, since
the only used parameters include the linear transformation
matrix Wr and the projection vector p.

Note that the sorting vector y can be obtained by
using more sophisticated strategies. One solution could be
imposing a trainable scalar α on yG such that y = yL+αyG

in Eq. 3. By doing this, the network is forced to learn the
relative importance of GV compared with LV in TAP layers.
There may exist other solutions to obtain y for different
research purposes. However, the main contribution of the
work is to investigate the effectiveness of graph pooling
as a two-stage voting process, and experimental studies in
Sec. 4.5 demonstrate both LV and GV make contributions to
prediction performance. Hence, this work moves an initial
and critical step to study such two-stage voting process, and
we leave other alternative strategies as future work.

3.2 Graph Connectivity Term

Our proposed TAP layer computes the ranking scores by
using similarity scores between nodes in the graph, thereby
regarding topology information in the graph. However, the
coarsened graph generated by the TAP layer may suffer from
the problem of isolated nodes. In sparsely connected graphs,
some nodes have a very small number of neighboring nodes
or even only themselves. Suppose node i only connects
to itself. The local voting score of node i is the similarity
score to itself, which may result in high local voting scores,
thereby generating high ranking scores in the graph. The
resulting graph can be very sparsely connected, which
completely loses the original graph structure. In the extreme
situation, the coarsened graph can contain only isolated
nodes without any connectivity. This can inevitably hurt the
model performance.

To overcome the limitation of TAP layer and encourage
better connectivity in the selected graph, we propose to add a
graph connectivity term to the computation of ranking scores.
To this end, we use node degrees as an indicator for graph
connectivity and add degree values to their ranking scores
such that densely-connected nodes are preferred during
nodes selection. By using the node degree as the graph
connectivity term, the ranking score of node i is computed
as

si = yi + λ
di
n
, (4)

where yi is the ranking score achieved in Eq. (3) of node
i, di is the degree of node i, and λ is a hyper-parameter
that sets the importance of the graph connectivity term to
the computation of ranking scores. The graph connectivity
term can overcome the limitation of the TAP layer. The
computation of ranking scores now considers nodes degrees
and gives rise to better connectivity in the resulting graph. A
better connected coarsened graph is expected to retain more
graph structure information, thereby leading to better model
performance.

3.3 Topology-Aware Pooling Networks
Based on our proposed TAP layer, we build a family of
networks known as topology-aware pooling networks (TAP-
Nets) for graph classification tasks. In TAPNets, we firstly
apply a graph embedding layer to produce low-dimensional
representations of nodes in the graph, which helps to deal
with some datasets with very high-dimensional input feature
vectors. Here, we use a GCN layer [16] for node embedding.
After the embedding layer, we stack several blocks, each
of which consists of a GCN layer for high-level feature
extraction and a TAP layer for graph coarsening. In the
ith TAP layer, we use a hyper-parameter k(i) to control the
number of nodes in the sampled graph. We feed the output
feature matrices of the graph embedding layer and TAP
layers to a classifier.

In TAPNets, we use a multi-layer perceptron as the classi-
fier. We first transform network outputs to a one-dimensional
vector. Global max and average pooling operations are two
popular ways for the transformation, which reduce the
spatial size of feature matrices to 1. Recently, [17] proposed
to use the summation function that results in promising
performances. In TAPNets, we concatenate transformation
output vectors produced by the global pooling operations
using max, averaging, and summation, respectively. The
resulting feature vector is fed into the classifier. Figure 2
illustrates a sample TAPNet with two blocks.

3.4 Auxiliary Link Prediction Objective
Multi-task learning has shown to be effective across various
machine learning tasks [7], [20]. It can leverage useful
information in multiple related tasks, thereby leading to
better generalization and performance. In this section, we
propose to add an auxiliary link prediction objective during
training by using a by-product of our TAP layer. In Eq. (1),
we compute the similarity scores R between every pair of
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TABLE 1
Comparisons between TAPNets and other models in terms of graph classification accuracy (%) on social network datasets including COLLAB,

IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K and REDDIT-MULTI12K datasets.

COLLAB IMDB-B IMDB-M RDT-B RDT-M5K RDT-M12K
# graphs 5000 1000 1500 2000 4999 11929
# nodes 74.5 19.8 13.0 429.6 508.5 391.4
# classes 3 2 3 2 5 11
WL [18] 78.9 ± 1.9 73.8 ± 3.9 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 44.4 ± 2.1
PSCN [19] 72.6 ± 2.2 71.0 ± 2.2 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 41.3 ± 0.8
DGCNN [12] 73.8 70.0 47.8 - - 41.8
DIFFPOOL [7] 75.5 - - - - 47.1
g-U-Net [11] 77.5 ± 2.1 75.4 ± 3.0 51.8 ± 3.7 85.5 ± 1.3 48.2 ± 0.8 44.5 ± 0.6
GIN [17] 80.6 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 -
TAPNet (ours) 84.9 ± 1.8 79.9 ± 4.5 56.2 ± 3.1 94.6 ± 1.8 57.3 ± 1.5 49.4 ± 1.7

nodes in the graph. By applying an element-wise softmax(·)
on R, we can obtain a link probability matrix R̃ ∈ Rn×n with
each element r̃ij measures the likelihood of a link between
node i and node j in the graph. With the adjacency matrix
A, we compute the auxiliary link prediction loss as

lossaux =
1

n2

n∑
i=1

n∑
j=1

f
(
R̃ij , Aij

)
, (5)

where f(·, ·) is a loss function that computes the distance
between the link probability matrix R̃ and the adjacency
matrix A.

Note that the adjacency matrix used as the link prediction
objective is directly derived from the original graph. Since
the TAP layer extracts a sub-graph from the original one,
the connectivity between two nodes in the sampled graph
is the same as that in the original graph. This means
the adjacency matrices in deeper networks are still using
the original graph structure. Compared to auxiliary link
prediction in DiffPool [7] that uses the learned adjacency
matrix as objective, our method uses the original links,
thereby providing more accurate information. This can also
be clearly observed in the experimental studies in Sections 4.2
and 4.3.

4 EXPERIMENTAL STUDIES

In this section, we evaluate our methods and networks on
graph classification tasks using bioinformatics and social net-
work datasets. We conduct ablation experiments to evaluate
the contributions of the TAP layer and each term in it to the
overall network performance.

4.1 Experimental Setup
We evaluate our methods using social network datasets and
bioinformatics datasets. They share the same experimental
setups except for minor differences. The node features in
social network networks are created using one-hot encodings
of node degrees. The nodes in bioinformatics have categorical
features. We use the TAPNet proposed in Section 3.3 that
consists of one GCN layer and three blocks. The first GCN
layer is used to learn low-dimensional representations of
nodes in the graph. Each block is composed of one GCN
layer and one TAP layer. All GCN and TAP layers output
48 feature maps. We use Leaky ReLU [23] with a slop of

0.01 to activate the outputs of GCN layers. The three TAP
layers in the networks select numbers of nodes that are
proportional to the nodes in the graph. Similar to existing
studies [7], [11], [15] that use fixed sampling rates or numbers,
we use the rates of 0.8, 0.6, and 0.4 in three TAP layers,
respectively. We use larger rates for early TAP layers such that
the following GCN layers can extract redundant information
from neighborhood. However, the last TAP layer is followed
by a global reduction operation for obtaining the graph
representation vector. Hence, we use a relatively smaller rate
to exclude the noise induced by less important nodes. We use
λ = 0.1 to control the importance of the graph connectivity
term in the computation of ranking scores. Dropout [24]
is applied to the input feature matrices of GCN and TAP
layers with keep rate of 0.7. We use a two-layer feed-forward
network as the network classifier. Dropout with keep rate
of 0.8 is applied to input features of two layers. We use
ReLU activation function on the output of the first layer
on DD, PTC, MUTAG, COLLAB, REDDIT-MULTI5K, and
REDDIT-MULTI12K datasets. We use ELU [25] for other
datasets. We train our networks using Adam optimizer [26]
with a learning rate of 0.001. To avoid over-fitting, we use L2

regularization with λ = 0.0008. All models are trained using
one NVIDIA GeForce RTX 2080 Ti GPU.

We compare our method with several state-of-the-art
baselines. Weisfeiler-Lehman subtree kernel (WL) [18] is
treated as the most effective kernel method for graph repre-
sentation learning. PSCN [19] learns node representations
from neighborhood and uses a canonical node ordering for
graph representations. DGCNN [12] applies several GCN
layers and proposes SortPool to perform graph pooling
by sorting and selecting nodes. DiffPool [7] is developed
based on GraphSage [27] and proposes a hierarchical pooling
technique, which learns to perform node clustering to build
the new graph. g-U-Net [11] proposes top-k pooling that
employs a projection vector to compute the rank score for
each node. The graph topology is not considered when
computing rank scores. SAGPool [15] is similar to top-
k pooling and encodes topology information. The graph
connectivity issue is not tackled in SAGPool. GIN [17] is
the graph isomorphism network, whose representational
power is shown to be similar to the power of the WL test.
EigenPool [21] is another node-clustering method that is
based on graph Fourier transform and utilizes local structures
when performing node clustering. HaarPool [22] employs
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TABLE 2
Comparisons between TAPNets and other models in terms of graph classification accuracy (%) on bioinformatics datasets including DD, PTC,

MUTAG, and PROTEINS datasets.

DD PTC MUTAG PROTEINS
# graphs 1178 344 188 1113
# nodes 284.3 25.5 17.9 39.1
# classes 2 2 2 2
WL [18] 78.3 ± 0.6 59.9 ± 4.3 90.4 ± 5.7 75.0 ± 3.1
PSCN [19] 76.3 ± 2.6 60.0 ± 4.8 92.6 ± 4.2 75.9 ± 2.8
DGCNN [12] 79.4 ± 0.9 58.6 ± 2.4 85.8 ± 1.7 75.5 ± 0.9
SAGPool [15] 76.5 - - 71.9
DIFFPOOL [7] 80.6 - - 76.3
g-U-Net [11] 82.4 ± 2.9 64.7 ± 6.8 87.2 ± 7.8 77.6 ± 2.6
GIN [17] 82.0 ± 2.7 64.6 ± 7.0 90.0 ± 8.8 76.2 ± 2.8
EigenPool [21] 0.786 - 0.801 0.766
HaarPool [22] - - 90.0 ± 3.6 80.4 ± 1.8
TAPNet (ours) 84.6 ± 3.5 73.4 ± 5.8 93.8 ± 6.0 80.8 ± 4.5

Haar basis and the compressive Haar transforms to generate
a sparse characterization of the input graph while preserving
structure information.

4.2 Graph Classification Results on Social Network
Datasets
We conduct experiments on graph classification tasks to
evaluate our proposed methods and TAPNets. We use 6
social network datasets; those are COLLAB, IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI5K and
REDDIT-MULTI12K [28] datasets. Note that REDDIT datasets
are popular large datasets used for network embedding
learning in terms of graph size and number of graphs [7],
[17]. Since there is no feature for nodes in social networks,
we create node features by following the practices in [17].
In particular, we use one-hot encodings of node degrees
as feature vectors for nodes in social network datasets.
On these datasets, we perform 10-fold cross-validation as
in [12] with 9 folds for training and 1 fold for testing.
To ensure fair comparisons, we do not use the auxiliary
link prediction objective in these experiments. We compare
our TAPNets with other state-of-the-art models in terms of
graph classification accuracy. The comparison results are
summarized in Table 1. We can observe from the results that
our TAPNets significantly outperform previous best models
on most social network datasets by margins of 4.3%, 4.8%,
3.9%, 2.2%, and 2.3% on COLLAB, IMDB-BINARY, IMDB-
MULTI, REDDIT-BINARY, and REDDIT-MULTI12K datasets,
respectively. The promising performances, especially on large
datasets such as REDDIT, demonstrate the effectiveness of
our methods. Note that the superior performances over g-
U-Net [11] show that our TAP layer can produce better-
coarsened graph than that using the top-k pooling layer.

4.3 Graph Classification Results on Bioinformatics
Datasets
To fully evaluate our methods, we conduct experiments
on graph classification tasks using 4 bioinformatics datasets;
those are DD [29] , PTC [30] , MUTAG [31] , and PROTEINS
[32] [17] datasets. Notably, nodes in bioinformatics datasets
have categorical features. In these experiments, we do not

TABLE 3
Comparisons between different pooling operations based on the same
TAPNet architecture in terms of the graph classification accuracy (%) on

PTC, IMDB-MULTI, and REDDIT-BINARY datasets.

Model PTC IMDB-M RDT-B
Netdiff 70.9±5.3 54.9±2.7 92.1±1.6
Netsort 70.6±6.2 54.8±2.8 92.3±1.9
Nettop-k 71.5±7.2 55.2±3.0 92.8±2.0
TAPNet 73.4±5.8 56.2±3.1 94.6±1.8

use the auxiliary link prediction objective. We compare
our TAPNets with other state-of-the-art models in terms
of graph classification accuracy without using the auxiliary
link prediction term in loss function. The comparison results
are summarized in Table 2. We can observe from the results
that our TAPNets achieve significantly better results than
other models by margins of 2.2%, 8.7%, 3.8%, and 0.4% on
DD, PTC, MUTAG, and PROTEINS datasets, respectively.
Notably, some bioinformatics datasets such as PTC and
MUTAG are much smaller than social network datasets in
terms of number of graphs and number of nodes in graphs.
The promising results on these small datasets demonstrate
that our methods can achieve good generalization and
performances without the risk of over-fitting. Also, the
superior performances over SAGPool on DD and PROTEINS
datasets demonstrate that our methods can better capture
the topology information.

TABLE 4
Comparisons among TAPNets with and without TAP layers, TAPNet

without local voting term (LV), TAPNet without global voting term (GV),
TAPNet without graph connection term (GCT), and TAPNet with auxiliary

link prediction objective (AUX) in terms of the graph classification
accuracy (%) on PTC, IMDB-MULTI, and REDDIT-BINARY datasets.

Model PTC IMDB-M RDT-B
TAPNet w/o TAP 70.6±6.2 52.1±3.6 91.0±2.4
TAPNet w/o LV 72.1±6.0 55.3±4.2 93.2±3.1
TAPNet w/o GV 72.7±6.2 55.6±3.8 94.1±2.7
TAPNet w/o GCT 73.1±6.8 55.8±3.6 94.2±2.4
TAPNet 73.4±5.8 56.2±3.1 94.6±1.8
TAPNet w AUX 73.7±5.7 56.4±2.9 94.8±1.6
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(a) Input graph (b) Graph by TAP w/o GCT (c) Graph by TAP

Fig. 3. Visualization of coarsened graphs by TAP and TAP w/o GCT. Here, GCT denotes the graph connection term. Based on the input graph (a), the
pooling layers select 6 nodes to form new graphs. The nodes that are not selected are colored black. The new graph in (b) generated by TAP w/o GCT
is sparsely connected. The one generated by TAP in (c) is shown to be better connected.

4.4 Comparison with Other Graph Pooling Layers
It may be argued that our TAPNets achieve promising results
by employing superior networks. In this section, we conduct
experiments on the same TAPNet architecture to compare
our TAP layer with other graph pooling layers; those are
DIFFPOOL, SortPool, and top-k pooling layers. We denote
the networks with the TAPNet architecture while using these
pooling layers as Netdiff, Netsort, and Nettop-k, respectively.
We evaluate them on PTC, IMDB-MULTI, and REDDIT-
BINARY datasets and summarize the results in Table 3. Note
that these models use the same experimental setups to ensure
fair comparisons. The results demonstrate the superior
performance of our proposed TAP layer compared with
other pooling layers using the same network architecture.

4.5 Ablation Studies
We investigate the contributions of TAP layer and its
components in ranking score computation; those are the
local voting term (LV), the global voting term (GV)and the
graph connectivity term (GCT). We remove TAP layers from
TAPNet which we denote as TAPNet w/o TAP. To explore
the contributions of terms in ranking scores computation, we
separately remove LVs, GVs and GCTs from all TAP layers in
TAPNets. We denote the resulting models as TAPNet w/o LV,
TAPNet w/o GV and TAPNet w/o GCT, respectively. In
addition, we add the auxiliary link prediction objective as
described in Section 3.4 in training. We denote the TAPNet
using auxiliary training objective as TAPNet w AUX. We
evaluate these models on three datasets; those are PTC,
IMDB-MULTI, and REDDIT-BINARY datasets.

The comparison results on these datasets are summarized
in Table 4. The results show that TAPNets outperform
TAPNets w/o TAP by margins of 2.8%, 4.1%, and 3.5% on
PTC, IMDB-MULTI, and REDDIT-BINARY datasets, respec-
tively. The better results of TAPNet over TAPNet w/o SST

TABLE 5
Comparisons among TAPNets with and without TAP layers, and TAPNet

without local voting and global voting (LV&GV) in terms of the graph
classification accuracy (%), and the number of parameters on

REDDIT-BINARY dataset.

Model Accuracy #Params Ratio
TAPNet w/o TAP 91.0±2.4 323,666 0.00%
TAPNet w/o LV&GV 91.5±1.7 323,666 0.00%
TAPNet 94.6±1.8 331,090 2.29%

and TAPNet w/o GCT show the contributions of LVs,
GVs, and GCTs to performances. It can be observed that
TAPNet w AUX achieves better performances than TAPNet,
which shows the effectiveness of the auxiliary link prediction
objective. To fully study the impact of GCT on TAP layer,
we visualize the coarsened graphs generated by TAP and
TAP without GCT (denoted as TAP w/o GCT). We select a
graph from PTC dataset and illustrate outcome graphs in
Figure 3. We can observe from the figure that TAP produces
a better-connected graph than that by TAP w/o GCT.

4.6 Parameter Study of TAP
Since TAP layer employs linear transformation to compute
ranking scores, it involves extra trainable parameters to the
overall network. Here, we conduct experiments to study
the number of parameters in TAPNet. We remove the extra
trainable parameters from TAP layers in two ways; those
are removing TAP layers from the TAPNet and removing
similarity score terms LV and GV from TAP layers. We
denote the resulting two networks as TAPNet w/o TAP and
TAPNet w/o LV&GV, respectively. The comparison results
on REDDIT-BINARY dataset is summarized in Table 5. We
can see from the results that TAP layers only need 2.29%
additional trainable parameters. We believe the negligible
usage of extra parameters will not increase the risk of over-
fitting but can bring 3.6% and 3.1% performance improve-
ment over TAPNet w/o TAP and TAPNet w/o LV&GV on
REDDIT-BINARY dataset. Also, the promising performances
of TAPNets on small datasets like PTC and MUTAG in
Table 2 show that TAP layers will not significantly increase
the number of trainable parameters or cause the over-fitting.

4.7 Performance Study of λ
In Section 3.2, we propose to add the graph connectivity term
to improve the graph connectivity in the coarsened graph. It
can be seen that λ is an influential hyper-parameter in TAP.
We study the impacts of different λ values and select λ values
from the range of 0.01, 0.1, 1.0, 10.0, and 100.0. We evaluate
TAPNets using different λ values on PTC, IMDB-MULTI,
and REDDIT-BINARY datasets. The results are shown in
Figure 4. We can observe that the best performances on three
datasets are achieved with λ = 0.1. When λ becomes larger,
the performances of TAPNet models decrease. This indicates
that the graph connectivity term is a plus term for generating
reasonable ranking scores but it should not overwhelm the
similarity score term that encodes the topology information
in ranking scores.
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Fig. 4. Comparison results of TAPNets using different λ values in TAP
layers. We report graph classification accuracies on PTC, IMDB-BINARY,
and REDDIT-BINARY datasets.

5 CONCLUSIONS

In this work, we propose a novel topology-aware pool-
ing (TAP) layer that explicitly encodes the topology infor-
mation. A TAP layer performs a two-stage voting process
that includes the local voting and global voting. The local
voting attends each node to its neighboring nodes and uses
the average similarity score with its neighboring nodes
as its local importance score. The global voting employs
a projection vector to compute a similarity score for each
node as its global importance score. Then the final ranking
score for a node is the combination of its local and global
voting scores. Based on the TAP layer, we develop topology-
aware pooling networks (TAPNets) for graph representation
learning. Experimental results on graph classification tasks
demonstrate TAPNets achieve the best performance, and
ablation studies reveals the contributions of our TAP layers.
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