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Abstract. In this paper, we present a novel generalization of the
Volterra Series, which can be viewed as a higher-order convolution, to
manifold-valued functions. A special case of the manifold-valued Volterra
Series (MVVS) gives us a natural extension of the ordinary convolution to
manifold-valued functions that we call, the manifold-valued convolution
(MVC). We prove that these generalizations preserve the equivariance
properties of the Euclidean Volterra Series and the traditional convo-
lution operator. We present novel deep network architectures using the
MVVS and the MVC operations which are then validated via two experi-
ments. These include, (i) movement disorder classification from diffusion
magnetic resonance images (dMRI), and (ii) fiber orientation distribu-
tion function (fODF) reconstruction from compressed sensed dMRIs. In
both the experiments, MVVS and MVC networks outperform the state-
of-the-art.
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1 Introduction

Theory. In the recent past, there has been a surge in medical imaging and
computer vision research to develop deep neural networks(DNNs) that can cope
with manifold-valued data e.g., the manifold of (n × n) symmetric positive-
definite (SPD) matrices, Pn, the special orthogonal group, SO(n), the Grassmann
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manifold, Gr(p, n), and the n-sphere, Sn. At the outset, it will be useful to
categorize two types of problems concerning data in non-Euclidean spaces. These
are: (i) data that are samples of functions defined on smooth manifolds, i.e.
f : M → R and (ii) data that are samples of manifold-valued functions whose
domain is Euclidean i.e., f : Zd → M where M is a Riemannian manifold and Zd

is a Euclidean sample lattice. In this paper we address the problem of developing
DNNs for the data type defined in (ii).

For methods suited to data in category (i) described above, we refer the
reader to a recent survey [5]. In the context of data described in (ii) above,
authors in [15] presented a DNN that consists of layers which explicitly utilize
the structure of SPD matrices. In [16] authors presented a DNN for classification
of hand-crafted features residing in a Grassmann manifold. However, the above
architectures do not attempt to develop a counterpart of the classical convo-
lutional layer in the traditional convolutional neural network (CNN) which is
viewed as one of the key components to the success of CNNs. Besides convolu-
tional layers, batch normalization is also a useful trick used in CNNs to smooth
the loss surface, and authors in [6] recently proposed such a technique for data
in the manifold of SPD matrices. In this paper, we focus our attention to data
represented on a grid where each grid point is associated with a value in a man-
ifold, M , with known geometry, i.e., f : Zd → M . The lack of a consistent
framework for designing DNN architectures for data residing in a general Rie-
mannian manifold was partly due to the fact that unlike for functions defined on
manifolds, there was no natural analog of the convolution operation for manifold-
valued functions until recently. In [24] authors defined the weighted Fréchet mean
(wFM) [23] as an analog to the classical (Euclidean space) convolution operation
for manifold-valued data and recently, the use of wFM operation to build a CNN
for manifold-valued data was pioneered by authors of [7,8]. Note that although
their definition of wFM as a “plug-in” operation for convolutions is valid for any
Riemannian manifold, the convexity constraints in the definition used for wFM
restricts the range of values of the wFM leading to model capacity limitations of
their network.

In this paper, we propose the idea that for complete Riemannian manifolds, it
is possible to map the manifold-valued data points within a convolution window
defined over the manifold-valued image to the tangent space anchored at the FM
of these points using the Riemannian Log map. Then, perform the linear com-
bination operation in the tangent space (which is isomorphic to the Euclidean
space) and map it back to the manifold using the Riemannian Expmap. We pro-
vide the details of this operation called the manifold-valued convolution (MVC)
in the next section. To increase the expressiveness and hence the capacity of the
network, we introduce the novel concept of higher order manifold-valued con-
volutions via Volterra series representation [26]. The traditional convolution is
indeed the first order term of the Volterra Series, which will be briefly reviewed
in Sect. 2. In [18], authors empirically showed that replacing a convolution filter
with a higher order Volterra series filter increased model accuracy. The Volterra
Series was also used recently to design DNNs for data in category (i) [3]. In this
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paper, we generalize the Volterra Series for real-valued functions to manifold-
valued functions and call it the manifold-valued Volterra Series (MVVS). We
show that the MVVS (MVC) is equivariant to translation in the domain which
allows for weight sharing. The MVVS (MVC) can be used as an alternative to
the wFM-based convolutions presented in [7,8] and we call the network based on
MVVS (MVC) the MVVS (MVC)-Net. In addition to the translation equivari-
ance, the MVC is also equivariant to the isometry group actions admitted by the
manifold. This latter equivariance however does not hold for the MVVS. Hence,
by considering only the first-order term of the MVVS, we lose some expressive-
ness, but we gain the isometry equivariance and computational efficiency. Note
that the MVC and the wFM-based convolution are different by construction and
a key difference is that for wFM the associated weights need to be positive while
such restriction is not required by the MVC. In practice, this restriction limits
the output of a wFM layer to the convex cone of the input data points and hence
greatly reduces the capacity of the network.

Applications. To demonstrate the performance of the MVVS (MVC)-Net, we
test the proposed network on classification and reconstruction problems encoun-
tered in diffusion magnetic resonance image (dMRI) processing. In the context of
classification, we apply MVVS and MVC networks to classify dMRI brain scans
of patients with movement disorders from controls. In the context of reconstruc-
tion, we will reconstruct the fiber orientation distribution function (fODF) field
[29] from highly undersampled dMRI data. There is a vast body of literature
on fODF reconstruction from dMRI data and we refer the reader to a recent
comprehensive survey [11] and references therein. Here, we limit ourselves to the
review of DNNs for fODF reconstruction from compressed sensed dMRI data.
Recently, authors in [27] proposed a novel deep spherical U-Net for the fODF
reconstruction but did not enforce non-negativity constraint on the reconstructed
fODFs. They represent the fODF in terms of the spherical harmonics (SH) and
the reconstruction thus involves estimating the SH coefficients. In [20,21] 3D-
CNN networks were explored for fODF reconstruction, but these networks do not
guarantee the non-negativity of the reconstructed fODFs. We choose to use the
square-root parametrization of the fODF which maps fODFs to a hypersphere.
Since all operations in our network are intrinsic, the output is automatically a
valid (non-negative) fODF. In fODF reconstruction networks, we would like to
point out a distinction between inter -voxel models and intra-voxel models. We
define inter-voxel models as combining (macro-structural) features between vox-
els in the brain, while intra-voxel models extract (micro-structural) features from
within each voxel. Prior work in [27] focused primarily on building intra-voxel
models. The primary novelty of the architecture we present here is a layer which
acts as an inter-voxel model. We expected and have found empirically that com-
bining intra- and inter-voxel models within one network significantly improves
performance over using just one of the two. Thus the empirical results presented
here should be viewed as complementary to prior work [27] on intra-voxel fODF
reconstruction.
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Contributions. Thus, the main contributions of our work in this paper are: (i)
We define the manifold-valued Volterra Series representation for general (com-
plete) Riemannian manifolds and prove that the MVVS is equivariant to trans-
lation. Additionally, we prove that the MVC, which is the first-order term of the
MVVS, is equivariant to isometry group actions admitted by the manifold. (ii)
We present a DNN architecture based on MVVS (MVC), called MVVS(MVC)-
Net, for any complete Riemannian manifold. (iii) Further, we experimentally
demonstrate the performance of the MVVS (MVC)-Net on dMRI classification
and fODF reconstruction problems along with comparisons to the state-of-the-
art (SOTA). Our results demonstrate significant improvement in accuracy and
time efficiency over the SOTA.

The rest of this paper is organized as follows. In Sect. 2, we review background
material in Riemannian geometry and the Euclidean Volterra Series. In Sect. 3,
we present a novel generalization, the MVVS, of the Volterra Series to manifold-
valued functions and prove its equivariance properties. Then, we present a DNN
architecture based on MVVS, called the MVVS-Net. In Sect. 4, we present the
experimental results and draw conclusions in Sect. 5.

2 Preliminary

In this section, we review some basic material from Riemannian geometry that
is necessary in our work and the Volterra Series expansion of nonlinear func-
tions. We briefly review how the Volterra Series is utilized in the deep learning
literature as a higher order alternative to the convolution in CNNs.

Riemannian Geometry. Let (M, g) be a d-dimensional complete Riemannian
manifold. The tangent space at p ∈ M is denoted TpM , which is a d-dimensional
vector space. For p ∈ M and v ∈ TpM , the geodesic emanating from p with initial
direction v is denoted by γv(t) where γv(0) = p and γ′

v = v. The Exponential
map Expp : D(p) ⊂ TpM → M is defined by Expp(v) = γv(1) where D(p) =
{v ∈ TpM : γv(1) is defined and γv(t) is a minimizing geodesic for 0 < t < 1}.
The exponential map is a diffeomorphism from D(p) to its image, and its inverse
is denoted Logp = Exp−1

p . These two maps will be of fundamental importance
for the construction of the MVVS which will be discussed subsequently.

The Riemannian metric g induces a distance between any two points
p ∈ M and q ∈ M given by dg(p, q) = inf{

∫ 1
0

√
g(γ′

p,q(t), γ′
p,q(t))dt: for all

γp,q}. Let x1, . . . , xn ∈ M . The Fréchet mean (FM) of x1, . . . , xn is x̄ =
argminm∈M

∑n
i=1 d

2
g(xi,m). This is a generalization of the mean of points in

a vector space. For the existence and uniqueness of the FM we refer the reader
to [1]. Very briefly, the FM is unique if x1, . . . , xN lie in a open ball of radius rcvx,
where rcvx is the convexity radius of M [13]. This is often the case in practice
and in all our experiments presented subsequently.

For a Riemannian manifold, a metric-preserving diffeomorphism is an isom-
etry. For a smooth map f : M → M , a desired property would be the isometry
equivariance, i.e. φ ◦ f = f ◦ φ where φ is an isometry map. Another similar
concept is the isometry invariance, i.e. f ◦ φ = f .
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Volterra Series. As is well-known, the traditional convolution is linear
shift-invariant. A non-linear shift-invariant system can be approximated by
the Volterra Series [26], which is given by h(x) =

∑N
n=1

∫
· · ·

∫
g(τ1, . . . , τn)∏n

i=1 f(x − τi)dτi, where g is the Volterra kernel. For the case of N = 1,
h(x) =

∫
g(τ)f(x − τ)dτ = (g $ f)(x) is the usual convolution.

3 Manifold-Valued Volterra Series and Convolution

Fig. 1. Manifold-valued convolution operation within a window.

We now present a novel extension of the Volterra series to manifold-valued func-
tions. We show the first order approximation of the proposed MVVS gives a
natural extension of the convolution operation to manifold-valued functions.
Further, we show that this MVC is equivariant to the isometry group action
admitted by the manifold and discuss how to use the MVVS/MVC as basic
building blocks to design efficient networks for different tasks.

3.1 Manifold-Valued Volterra Series

For manifold-valued data, we can define an analog of the traditional Volterra
series. Let ' be the Hadamard product, i.e. x1 ' x2 = [x11x21, . . . , x1nx2n]
and

⊙k
i=1 xi =

[ ∏k
i=1 xi1, . . . ,

∏k
i=1 xin

]
. Hadamard product depends on the

tangent vector representation and we use the coordinates induced by the Log
maps, which are given for the sphere and SPD manifold in Sect. 3.3. Then the
MVVS is defined as follows.

Definition 1. Let (M, g) be a complete Riemannian manifold and f : Zd → M
be a function defined on Zd. Let {w(j) : (Zd)j → R} be a collection of kernels.
Then

MV V S(f,w(1), . . . , w(N))(y) :=

Expm(y)

(
N∑

j=1

∑

z1,...,zj

w(j)(z1 − y, . . . , zj − y)
j⊙

i=1

Logm(y)f(zi)

)
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for y ∈ Zd where m(y) = FM(f(z)) where z ranges over the support of the
Volterra masks w(j) centered at y.

Note that the FM is computed locally in each window centered at the point y.
The most prominent feature of the convolution in Euclidean spaces is transla-
tion equivariance (in the domain), which allows weight sharing. Similar to the
equivariance to translations (in the domain) of the Volterra series in Euclidean
space, the following theorem states that MVVS possesses a similar property.

Theorem 1 (Equivariance to Translation). Let h = MVVS(f,
w(1), . . . , w(N)), then ht = MVVS(ft, w(1), . . . , w(N)) for all t ∈ Zd, where,
ft(z) = f(z − t) and ht(y) = h(y − t).

The proof follows trivially from the definition of the MVVS through a change
of variables and hence we will skip it here. For N = 1, we write the MVVS as
MVC(f, w)(y) = Expm

( ∑
z∈Zd w(z − y)Logmf(z)

)
which gives us a natural

generalization of convolution to manifold-valued functions. An illustration of the
MVC operations are depicted in Fig. 1. In this work, we also consider the second-
order MVVS as a more expressive alternative to the MVC. In the situation
with only finite observations at the grid points z1, . . . , zn ∈ Zd, i.e. we have
xi = f(zi), w(1)

i = w(1)(zi), and w(2)
i = w(2)(zi) for i = 1, . . . , n, we write

MVC({xi}ni=1, {wi}ni=1) = Expm

( ∑n
i=1 wiLogmxi

)
and

MV V S({xi}ni=1, {w(1)
i }ni=1, {w(2)

i,j }1≤i,j≤n) =

Expx̄

(
n∑

i=1

w(1)
i Logx̄xi +

∑

i,j

w(2)
i,j Logx̄xi " Logx̄xj

)
.

The MVC and the MVVS can be used to generalize CNN and its variants to
manifold-valued data. Due to the symmetry of the Hadamard product, we can
assume w(2)

i,j = 0 for i > j to reduce the number of parameters.
Besides the translation equivariance in the domain, the Euclidean convolution

is also equivariant to the translation in the range. The translation equivariance
in the range leads to, for example, the invariance to changes in brightness by
a constant. For the case of MVC, the range (of the input function) is however
the manifold M and hence the analogous result would be the equivariance to
isometry group action admitted by the manifold. The following theorem states
that the proposed MVC is equivariant to the isometry group action admitted by
the manifold M . From the proof, it is also obvious that this equivariance is not
satisfied by the MVVS for N > 1.

Theorem 2. The MVC is equivariant to the isometry group action admitted by
M , i.e. φ ◦ MVC(f, w) = MVC(φ ◦ f, w) where φ : M → M is an isometry.

Proof. The proof relies on the fact that the exponential map commutes with
the isometry, i.e., φ ◦ Expp = Expφ(p) ◦ dφp [19, Prop. 5.9]. Therefore, when
the inverse of Expp exists, Logφ(p) = dφp ◦ Logp ◦ φ−1. By the invariance of
the intrinsic distance metric, the FM is equivariant to the isometry. Since the
MVC is a composition of the exponential map, the log map, and the FM, it is
equivariant to the isometry group action.
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3.2 Manifold-Valued Deep Network Based on MVVS/MVC

The key components of a CNN are the convolutional layers, the non-linear
activation function, and the full-connected (FC) layer. To build an analogous
manifold-valued deep network, we need equivalent operations in the context of
manifold-valued inputs. We propose to replace the convolution by the MVVS.
For the non-linear activation function, the most widely used one is ReLU and we
suggest a similar operation called the tangent ReLU (tReLU), which is defined
as follows. For x1, . . . , xn ∈ M , tReLU(xi) = Expx̄(ReLU(Logx̄(xi))) where x̄ is
the FM of x1, . . . , xn and ReLU(x) = max(x, 0) is applied component-wise to its
argument. Note that a similar operation was proposed by [9] but they restricted
it to the hyperbolic spaces while ours is valid for general complete Riemannian
manifolds. Finally, to design a deep network that is invariant to isometry group
actions, we need the FC layers to be invariant to the isometry (since the MVC
layers are equivariant to the isometry by Theorem 2). In this work, we consider
the invariant FC layer proposed in [8] which is constructed by first transforming
xi to di = dg(xi, x̄) and then feeding the di’s to the usual FC layers. Replacing
the MVC with the MVVS, we have a higher order manifold-valued deep network.

Another concern is the extra parameters, i.e. the weights, required by the
MVVS compared to the MVC. Note that for a fixed filter size d the number of
weights in the MVC is d2 and for the second-order MVVS is d2 + d2(d2 + 1)/2
which is a substantial increase. A way to mitigate this problem is to assume that
the kernel w(2)(z1, z2) is separable, that is, w(2)(z1, z2) = w1(z1)w2(z2). Under
this assumption, the number of weights is 3d2, which is in the same order as the
MVC. The separability of the kernel is assumed in all of our experiments.

We like to emphasize that the proposed MVC/MVVS and the tReLU opera-
tions are substitutions for the Euclidean space convolution and the ReLU oper-
ations respectively. In the next section, we present closed form Riemannian Exp
and Log operations for the manifolds we use in the experiments.

3.3 The Cases of Sn and SPD(n)

Here we specify concrete versions of the building blocks (Exp and Log maps)
presented above for particular application domains in dMRI processing. We will
tackle two fundamental problems in dMRI processing using this framework: 1)
diffusion tensor imaging classification and 2) fODF reconstruction from severely
undersampled data.

Diffusion Tensor Image Classification. Diffusion tensor imaging (DTI) is a
simple and popular model in dMRI processing. Diffusion tensors (DTs) are 3×3
SPD matrices [4]. A dMRI scan processed using the DTI model will output a
3D field of DTs f : Z3 → SPD(3). Closed form expressions of the Riemannian
Log and Exp maps for the SPD(3) manifold with the GL(n)-invariant metric
are given by

ExpY (X) = Y 1/2 exp(Y −1/2XY −1/2)Y 1/2 and LogY (X) = Y 1/2 log(Y −1/2XY −1/2)Y 1/2

where exp, log are the matrix exponential and logarithmic maps, respectively.
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fODF Reconstruction. Accurate reconstruction of the fODF from under-
sampled S(k, q) data has the potential to significantly accelerate dMRI acquisi-
tion. Here we present a framework for achieving this. Our fODF reconstruction
method performs convolutions on the unit hypersphere Sn. The closed form
expressions for the Log and Exp maps on the sphere are given by the following
expression, where U = X − 〈X,Y 〉Y [28].

ExpY (X) = cos(‖X‖)Y + sin(‖X‖) X
‖X‖ and LogY (X) = U cos−1(〈X,Y 〉)/〈U,U〉

4 Experiments

In this section we present several real data experiments demonstrating the per-
formances of MVC-net and MVVS-net respectively.

4.1 Parkinson’s Disease vs. Controls Classification

We now present an application of the MVC-Net and the MVVS-Net to the prob-
lem of classification of Parkinson’s disease (PD) patients vs controls. The dataset
consists of dMRI scans acquired from 355 PD patients and 356 controls. The
acquisition parameters were, # of gradient directions = 64, b = 0, 1000 s/mm2,
repetition time = 7748 ms, echo time = 86 ms, field of view = (224, 224) mm,
slice thickness of 2mm, matrix size of (112, 112).

Table 1. Comparison results for PD vs. Controls
classification.

Model Non-linearity # params. time (s) Accuracy
/ sample Test

accuracy
(60/40)

Test
accuracy
(90/10)

MVVS-net tReLU ∼23K ∼0.34 0.966 0.973
MVC-net tReLU ∼14K ∼0.13 0.942 0.973
DTI-ManifoldNet [7] None ∼30K ∼0.3 0.934 0.948
ODF-ManifoldNet [7] tReLU ∼153K ∼0.02 0.941 0.942
ResNet-34 [14] ReLU ∼30M ∼0.008 0.708 0.713
CapsuleNet [25] ReLU ∼30M ∼0.009 0.618 0.622

From each of these dMRIs,
12 regions of interest (ROIs)
– six on each hemisphere of
the brain – in the sensorimo-
tor tract are segmented by regis-
tering to the sensorimotor area
tract template (SMATT) [2].
These tracts are known to be
affected by PD. For this experi-
ment, we adopt the most widely
used representation of dMRI in the clinic namely, the DTI and also to demon-
strate that our methods work well for the SPD manifold. DTs are 3 × 3 SPD
matrices [4]. Each of the ROIs (12 in total) contain 26 voxels. For each patient
(control), all the ROIs are concatenated together to form a 12× 26× 3× 3 input
tensor to the network. The output is a binary class label specifying whether the
input image came from a PD or control.

Architecture. The MVC-Net architecture is obtained from the traditional
CNN by replacing the convolution operations with MVC (and MVVS) oper-
ations and the ReLU with tReLU. For this experiment, the MVC-net consists
of five MVC+ tReLU layers. Each of the MVC (MVVS) layers has a window
size of 4 and a stride of 1. We use the closed form exponential and log maps for
the SPD(n) manifold presented in Sect. 3.3.
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Fig. 2. Left: HCP sample patch from centrum
semiovale ground truth/gold standard fODF.
Right: Network reconstruction from 7% sam-
pled data. Zoomed-in figures display a partic-
ularly hard crossing-fiber ROI.

Experimental Results. In this
experiment on PD vs. Control clas-
sification from DTI brain scans,
we compared the performance of
MVC-Net and MVVS-Net with
several deep net architectures includ-
ing the ManifoldNet [7,8] the
ResNet-34 architecture [14] and a
CapsuleNet architecture [25] with
dynamic routing. To perform the
comparison, we applied each of the
aforementioned deep net architec-
tures to the above described dif-
fusion tensor image data sets. For
the ResNET-34 and CapsuleNet,
we vectorize the diffusion tensors as
these networks are applicable only
to vector space data.

We train our MVC-net architec-
ture for 200 epochs using the cross-
entropy loss and an Adam opti-
mizer with the learning rate set to 0.005. We report two different results for
each architecture. One is obtained on a 90/10 training to test split. Since the
results for the top performing architectures in this category were all high, we
also report a more challenging 60/40 training to test split to obtain more differ-
entiation between the methods.

As is evident from the Table 1, MVC-net and MVVS-Net outperform all other
methods on both training and test accuracy while simultaneously keeping the
lowest parameter count. MVVS-net either is equal (90/10 split) or outperforms
(60/40 split) MVC-net, as expected from the increased model capacity of the
MVVS. The inference speeds under-perform ResNet-34 and CapsuleNet, but
these architectures utilize operations that were optimized heavily for inference
speed over the years. Further, in terms of the possible application domain of
automated PD diagnosis, the inference speeds we have achieved are more than
sufficient in practice.

4.2 fODF Reconstruction

In this experiment, we consider the problem of reconstructing fODFs from com-
pressed sensed (CS) dMRI data. Specifically, given sub-Nyquist sampled (com-
pressed sensed in the 6-dimensional (k,q) Fourier space) dMRI data, we seek to
reconstruct a field of fODF that characterize the diffusional properties of tissue
being imaged. The goal of the network will be to learn the highly non-linear
mapping between an under-sampled (aliased) reconstruction of the fODF field
to the fully-sampled reconstruction of the fODF field.
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The fODF can be obtained from fully sampled data using a constrained
spherical deconvolution [29]. The fODF is a real-valued positive function on the
sphere f : S2 → R+ and after normalization can be represented as a square-
root density, i.e. a point on the unit Hilbert sphere. For sampled fODFs, this
representation reduces to a point on the unit hypersphere, Sn−1. This unit hyper-
sphere representation will be used in the inter-voxel layers, while the sampled
f : S2 → R+ representation will be used in the intra-voxel layers, leveraging a
recent architecture introduced in [10]. that will be elaborated on below. For the
inter-voxel layers, we will use MVC and MVVS convolution layers on the unit
hypersphere manifold, with closed form expressions for the Exp and Log maps
respectively as presented in Sect. 3.3.

Data Description. We test our fODF reconstruction network on real data from
the Human Connectome Project (HCP) [31]. Since the HCP data is acquired
with extremely dense sampling, we consider the fODF reconstructions from these
HCP scans as the ground truth/gold standard. fODFs in this case are generated
using MSMT-CSD [17]. implemented in themrtrix3 library [30] which guarantees
positivity of the fODF amplitudes. fODFs are represented by sampling on a
consistent spherical grid consisting of 768 points in the Healpix sampling [12].

For under-sampling, we apply an inverse power-law under-sampling scheme
(see [22]) in the (k,q) space, which is the data acquisition space.

The training data sets consist of pairs of aliased (under-sampled) and ground-
truth (fully sampled) fODF field reconstructions. The goal of the network is to
learn to reconstruct the fully sampled fODF field from the input aliased fODF
field reconstruction. Due to limited computational resources, in this experiment,
we only consider patches of size 21 × 21 in a slice, i.e., one training sample is
a pair consisting of an under-sampled 21 × 21 patch reconstruction and a fully
sampled reconstruction of the same patch. This patch-based approach is quite
common in CS-based reconstruction algorithms.

For the real data, we extract the 21 × 21 voxel ROI from a large subset of
HCP scans (432 in total) in the centrum semiovale where projection, commis-
sural and association tracts cross and pose a great challenge for under-sampled
reconstruction. We use 40 random samples for testing and train on the remaining
392 samples.

Fig. 3. Comparison results on dMRI fODF reconstruction. The
number in parenthesis indicates the sampling rate of the under-
sampled reconstruction input.

Architecture. As
explained previ-
ously, the net-
work consists of
two components:
an intra-voxel com-
ponent which oper-
ates individually
inside each voxel
and an inter-voxel
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component which combines features across voxels. The inter-voxel component
consists of a series of MVC → tReLU or MVVS → tReLU blocks. The input
to these blocks is a H ×W ×C ×N tensor representing a patch within a slice of
the dMRI scan, where N is the number of sample points of the fODF spherical
function and C the number of channels. For example, in the real data experi-
ments, we have an initial input size of 21× 21× 1× 768. The intra-voxel model
needs to process the data within voxels, i.e., the individual fODFs. We design
and implement a novel intra-voxel layer using a spherical convolution layer that
we denote by SphereConv presented in the recent DeepSphere paper [10]. This
layer represent the spherical signal of the fODF as a graph with node weights
equal to the fODF value at the sample points, and applies spectral graph convo-
lutions to transform the signal. There are approximate rotational equivariance
guarantees for SphereConv that fit the fODF reconstruction problem well.
We would like to stress that the choice of intra-voxel layer is orthogonal to the
novelty of this work, namely the inter-voxel MVC and MVVS convolutions.

In summary, the inter-voxel component combines features between voxels by
using the MVC layer, while the intra-voxel component shares weights between
all voxels but has the capacity to learn within the voxel. We found that apply-
ing the inter-voxel layers first, followed by intra-voxel layers later gives optimal
performance. With these details in mind, we used the following architecture for
real data fODF reconstruction.

MVVS(1, 8) → MVVS(8, 16) → MVVS(16, 32) → MVVS(32, 32) → 7 × (SphereConv)

where, MVVS(Ci, Co) represents an MVVS layer with Ci input and Co output
channels respectively. All layers use a kernel size of 3 and a stride of 1. The
SphereConv layers have feature channels 32 → 64 → 128 → 256 → 256 →
128 → 48 → 1 and use a U-net style architecture, i.e., with channel concatenation
between encoder and decoder layers. All MVVS and SphereConv layers are
followed by a tReLU and ReLU operation respectively. Results for the same
architecture but using MVC layers instead of MVVS are also presented. For
training, the Adam optimizer with an initial learning rate of 0.03 is used. We
use an MSE function weighted by the fractional anisotropy of the undersampled
ground truth image as the reconstruction loss function during training. This
FA-weighted MSE encourages the network to focus more on reconstruction of
highly anisotropic voxels which in some cases was found to improve visual results
substantially. It is possible that this loss could give low weight to crossing fiber
voxels (which will appear as low FA regions), but no visual degradation was
observed in these regions.

Experimental Results. We quantitatively measure the model performance
using mean-angular error (MAE) and baseline normalized MSE (bNMSE). The
MAE is computed for only crossing fiber voxels using the method presented in
the experiments of [27]. In summary, a threshold of 0.1 of the largest peak is
used to eliminate spurious fibers, and all corresponding two-peak voxels from
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the network output and ground truth are compared using the angular error
in degrees. The bNMSE is defined as MSE(Fg, Fo)/MSE(Fg, Fi), where Fg, Fo

and Fi are the ground truth fODF, the network output and the under-sampled
(aliased) fODF respectively. Thus the bNMSE compares the accuracy of the
network output to the accuracy of the baseline method (MSMT-CSD in this
case), where lower values indicate more improvement relative to the baseline
method. This metric was used in place of MSE(Fg, Fo) to allow more robust
comparisons with competing methods, given that results reported in competing
methods were most likely obtained from different ROIs and hence difficult to
compare to without knowing the precise ROI localization, thus a direct MSE
comparison may bias results.

All models are trained for 1000 epochs on a single Quadro RTX 6000 GPU
(about 64 h total training time). Figure 3 reports the results for HCP data exper-
iments. As evident, for all sampling rates, our method outperforms other deep
learning and the baseline (MSMT-CSD) methods in terms of both MAE and
bNMSE. Visualization results shown in Fig. 2 are similarly compelling. The
zoomed in area shows a difficult crossing fiber pattern which the network has
reconstructed quite well. These results constitute improvements that can reduce
dMRI scan acquisition time by orders of magnitude while retaining image qual-
ity. Moreover, from an ablation view point, we see that the MVC layers (the
inter-voxel component) improves accuracy substantially over just the intra-voxel
SphereConv layers, and MVVS further improves the accuracy. Note that our
chosen intra-voxel layer actually performs worse in all cases than the intra-voxel
layer presented in [27]. This suggests that further improvements could be made
by combining our novel inter-voxel MVVS/MVS layers with [27] which will be
explored in our future work.

5 Conclusion

In this paper, we presented a novel higher order CNN for manifold-valued images.
We defined the the analog of the traditional convolutions for manifold-valued
images and proved powerful equivariance properties. Finally, we presented exper-
iments demonstrating the superior performance of the MVC (MVVS)-Net in
comparison to other SOTA methods on important problems in dMRI.
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