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Abstract. Grassmann manifolds have been widely used to represent
the geometry of feature spaces in a variety of problems in medical imag-
ing and computer vision including but not limited to shape analysis,
action recognition, subspace clustering and motion segmentation. For
these problems, the features usually lie in a very high-dimensional Grass-
mann manifold and hence an appropriate dimensionality reduction tech-
nique is called for in order to curtail the computational burden. To this
end, the Principal Geodesic Analysis (PGA), a nonlinear extension of
the well known principal component analysis, is applicable as a general
tool to many Riemannian manifolds. In this paper, we propose a novel
framework for dimensionality reduction of data in Riemannian homo-
geneous spaces and then focus on the Grassman manifold which is an
example of a homogeneous space. Our framework explicitly exploits the
geometry of the homogeneous space yielding reduced dimensional nested
sub-manifolds that need not be geodesic submanifolds and thus are more
expressive. Specifically, we project points in a Grassmann manifold to an
embedded lower dimensional Grassmann manifold. A salient feature of
our method is that it leads to higher expressed variance compared to
PGA which we demonstrate via synthetic and real data experiments.

Keywords: Grassmann manifolds · Dimensionality reduction · Shape
analysis

1 Introduction

In medical imaging, non-Euclidean spaces are commonly used to model descrip-
tive features extracted from the raw data. For example, diffusion tensor imaging
(DTI) [5] uses symmetric positive-definite (SPD) matrices to characterize the
local diffusivity of the water molecules within each voxel of the DTI scan. The
ensemble average propagator (EAP) [6], which captures the distribution of the
diffusion of the water molecules in the tissue being imaged and is much more
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expressive than the diffusion tensors, can be parameterized as a point on a
Hilbert sphere which is a constant curvature manifold. Another example is the
Kendall’s shape space (Procrustes shape space) [18] which is a manifold used to
model shapes in computational anatomy. In the examples described above, the
dataset is a collection of DTI scans, EAP fields, or the shapes of a segmented
region of the brain. The data lie in a high-dimensional space: a DTI scan con-
tains hundreds of thousands of diffusion tensors (DTs), which are 3 × 3 SPD
matrices; an EAP field contains hundreds of thousands of EAPs and each EAP
can be represented as a high-dimensional probability vector; the shape of the
Corpus Callosum (which is used in our experiments) is represented by a several
hundreds of boundary points in R2. Thus, in these cases, dimensionality reduc-
tion techniques, if applied appropriately, can benefit the subsequent statistical
analysis.

Principal component analysis (PCA) is the simplest and most well-known
(unsupervised) dimensionality reduction technique for data in Rn. Using PCA,
the data in Rn is projected to a vector subspace of dimension k " n such
that maximal variance in the original data is captured in the projected data.
There are different generalizations of PCA to Riemannian manifolds. Authors
in [11] proposed an expression for exact PGA, but due to the computational
challenges they resorted to the tangent PCA (tPCA) approximation. Exact PGA
(EPGA) was later proposed by [23] which does not use the tPCA approximation.
However, EPGA is computationally expensive since it involves two non-linear
optimizations steps per iteration (projection to the geodesic submanifold and
finding the new geodesic direction such that the loss of information is minimized).
Authors in [7] improved upon EPGA by deriving the closed-form expressions
for the projection in the case of constant curvature manifolds, e.g. hyperspheres
and hyperbolic spaces. There are several other variants of PGA, see [3,15,16,26].
Instead of projecting data to a geodesic submanifold, one may also find a curve
on the manifold, called the principal curve [14] (this is a generalization of the
principal curve in the Euclidean space by [13]), to represent the data using a
lower dimensional submanifold.

PGA and its variants provided a dimensionality reduction technique for gen-
eral Riemannian manifolds. Nonetheless, different Riemannian manifolds pos-
sess different geometric structures, e.g. curvature and symmetry. Therefore, by
exploiting the geometry and/or other properties, one may design a more efficient
and better dimensionality reduction method for specific Riemannian manifolds.
For example, by utilizing the fact that Sq embedded inside Sp with q < p is a
geodesic submanifold of Sp, authors in [17] proposed a method called the prin-
cipal nested spheres to perform dimensionality reduction on Sp. By translating
the nested spheres, PGA on Sp can be seen as a special case of principal nested
spheres. Another example is that of the manifold of SPD matrices, Pn. In [12],
authors proposed to project data on Pn to Pm where m " n by designing a pro-
jection map from Pn to Pm that maximized the projected variance or inter-class
discrimination in the case of supervised dimensionality reduction. Although in
this case, Pm is not a geodesic submanifold of Pn which makes it different from



138 C.-H. Yang and B. C. Vemuri

PGA, such an algorithm has the ability to handle supervised dimensionality
reduction which PGA lacks. Indeed, considering only the geodesic submanifolds
is certainly not sufficient in many applications. In [9], authors consider nested
sequence of relations which lead to a nested sequence of submanifolds that are not
necessarily geodesic. This works for most submanifolds of the Euclidean space,
for example the n-sphere, as they are characterized by the set of solutions to some
equations. However, for manifolds other than Euclidean spaces and spheres, the
sequence of relations is not known and is probably nontrivial. Recently, Pen-
nec proposed the exponential barycentric subspace (EBS) as a generalization of
PGA [22]. A k-dimensional EBS is defined as the locus of weighted exponential
barycenters of (k+1) affinely independent reference points. The nested structure
of EBS can be achieved by adding or removing points. However, the choice of the
(k + 1) reference points can be computationally inefficient for high-dimensional
spaces. Additional analysis is required to mitigate this problem.

Motivated by the expressiveness of the nested representations as observed in
the earlier work described above, in this paper, we propose to develop a nested
structure for Riemannian homogeneous spaces (under some mild conditions).
Specifically, we will focus our attention on unsupervised and supervised dimen-
sionality reduction for data on the Grassmann manifold Gr(p, V ) which is a
homogeneous space of all p-dimensional linear subspaces of the vector space V
where 1 ≤ p ≤ dimV . We will assume that V is either Rn or Cn. In shape anal-
ysis, the space of planar shapes, i.e., shapes that are represented by k ordered
points in R2, is a complex projective space CP k−2 ∼= Gr(1,Ck−1). The number
of points k is usually a few hundred and dimension of the underlying manifold
Gr(1,Ck−1) is also large. Hence the core idea of our dimensionality reduction is
to approximate X ∈ Gr(p, V ) by X̂ ∈ Gr(p, Ṽ ) where dim Ṽ " dimV . Thus,
the main contributions of our work here are: (i) We propose a nested structure
for Riemannian homogeneous spaces (under some mild conditions) unifying the
recently proposed nested structures for spheres [17] and SPD manifolds [12]. (ii)
We present novel dimensionality reduction techniques based on the concept of
nested geometric structures for the Grassmann manifold case. (iii) Synthetic and
real data experiments demonstrate higher expressed variance captured by our
lower dimensional nested submanifold representation scheme.

The rest of the paper is organized as follows. In Sect. 2, we review the geom-
etry of the Grassmann manifold and present the nested structure of homoge-
neous spaces. Then, by using this nested structure, we describe algorithms for
our unsupervised and supervised dimensionality reduction techniques for data
on the Grassmann. In Sect. 3, we present experimental results. Finally, we draw
conclusions in Sect. 4.

2 Nested Grassmannians

We will first review the Riemannian geometry of the Grassmann manifold in
Sect. 2.1 and then the nested Grassmann model will be derived in Sect. 2.2. In
Sect. 2.3 and 2.4, we describe the unsupervised and supervised dimensionality
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reduction using the nested Grassmann model. In Sect. 2.5, we will present some
technical details required for implementation. A technique for the choosing the
dimension of the ‘reduced’ model is then presented in Sect. 2.6.

2.1 The Riemannian Geometry of Grassmann Manifolds

For the sake of simplicity, we assume V = Rn. For the case of V = Cn, the
results hold by replacing real matrices with complex matrices, MT with the
conjugate transposeMH , and the orthogonal group O(n) with the unitary group
U(n). The Grassmann manifold Gr(p, n) := Gr(p,Rn) is the space of all p-
dimensional subspaces in Rn. The dimension of Gr(p, n) is p(n−p). In this paper,
for elements X ∈ Gr(p, n), we write X = span(X) where, X = [x1, . . . ,xp] is
an orthonormal basis (o.n.b) for X . The Stiefel manifold St(p, n) is the space
of all orthonormal p-frames in Rn. Let O(n) := St(n, n) be the set of n × n
orthogonal matrices. The Stiefel manifold can be identified as a homogeneous
space St(p, n) ∼= O(n)/O(n − p) and so is the Grassmann manifold Gr(p, n) ∼=
St(p, n)/O(p) ∼= O(n)/(O(n)×O(n− p)) [10]. There are other ways to represent
the Grassmann manifolds, see [19, Table 2] and we choose this particular one as
it is the most widely used and easy to interpret. Since St(p, n) is a submanifold
of Rn×p, a natural Riemannian metric for St(p, n) is induced from the Euclidean
metric on Rn×p, i.e. for U ,V ∈ TX St(p, n), 〈U ,V 〉X = tr(UTV ). The canonical
Riemannian metric on the Grassmann manifold is then inherited from the metric
on St(p, n) as it is invariant to the left multiplication by elements of O(n) [1,10].
We now state a few important geometric concepts that are relevant to our work.

With the canonical metric on the Grassmann manifolds, the geodesic can
be expressed in closed form. Let X = span(X) ∈ Gr(p, n) where X ∈ St(p, n)
and H be an n × p matrix. The geodesic γ(t) with γ(0) = X and γ′(0) =
H is given by γX ,H (t) = span(XV cosΣt + U sinΣt) where, UΣV T is the
compact singular value decomposition of H [10, Theorem 2.3]. The exponential
map at X is a map from TXGr(p, n) to Gr(p, n) defined by ExpXH = γX ,H (1) =
span(XV cosΣ+U sinΣ). If XTY is invertible, the geodesic distance between
X = span(X) and Y = span(Y ) is given by d2g(X ,Y) = trΘ2 =

∑p
i=1 θ2i where

(I −XXT )Y (XTY )−1 = UΣV T , U ∈ St(p, n), V ∈ O(p), and Θ = tan−1 Σ.
The diagonal entries θ1, . . . , θk of Θ are known as the principal angles.

2.2 Embedding of Gr(p,m) in Gr(p, n)

Let X = span(X) ∈ Gr(p,m), X ∈ St(p,m). The map ι : Gr(p,m) → Gr(p, n),

for m < n, defined by, ι(X ) = span
([

X
0(n−m)×p

])
is an embedding and it is

easy to check that this embedding is isometric [25, Eq. (8)]. However, for the
dimensionality reduction problem, the above embedding is insufficient as it is
not flexible enough to encompass other possible embeddings. To design flexi-
ble embeddings, we propose a general framework for Riemannian homogeneous
spaces M ∼= G/H e.g., the Grassmann manifold, see Fig. 1. Note that in Fig. 1,
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Fig. 1. Commutative diagram
of the induced embedding for
homogeneous spaces.

Fig. 2. Illustration of the embedding of
Gr(p,m) in Gr(p, n) parameterized by A ∈
St(m,n) and B ∈ Rn×p such that ATB = 0.

we impose the following mild conditions: (i) the groups Gm and Gm+1 are of
the same “type”, i.e., Gm = GL(m) or Gm = O(m), and so are Hm and Hm+1,
and (ii) the diagram commutes.

The idea is to define an embedding ι̃ : Gm → Gm+1. This embedding ι̃,
together with the submersion π : Gm → Gm/Hm and the identification map
f : Gm/Hm → Mm, induces an embedding ι : Mm → Mm+1 provided that
the diagram commutes. For the Grassmann manifolds, Gm = O(m) and Hm =
O(m)×O(m− p). We consider the embedding ι̃m : O(m) → O(m+1) given by,

ι̃m(O) = GS
(
R

[
O a
bT c

])
(1)

where O ∈ O(m), R ∈ O(m + 1), a, b ∈ Rm, c ∈ R, c *= bTO−1a, and GS(·)
is the Gram-Schmidt process. Hence the induced embedding ιm : Gr(p,m) →
Gr(p,m+ 1) is given by,

ιm(X ) = span
(
R

[
X
bT

])
= span(R̃X + vbT ),

where b ∈ Rp, R ∈ O(m+1), R̃ contains the first m columns of R (which means
R̃ ∈ St(m,m + 1)), v is the last column of R, and X = span(X) ∈ Gr(p,m).
It is easy to see that for R = I and b = 0, this gives the natural embedding
described at the beginning of this section.

Proposition 1. If b = 0, then ιm is an isometric embedding.

Proof. Let X̃ = R̃X and Ỹ = R̃Y . We first compute the principal angles
between span(X̃) and span(Ỹ ). Since R̃ ∈ St(m,m + 1), we have (I −
X̃X̃

T
)Ỹ (X̃

T
Ỹ )−1 = R̃(I − XXT )Y (XTY )−1. Hence the principal angles

between span(X̃) and span(Ỹ ) are the same as those of span(X) and span(Y ).
By the Myers-Steenrod theorem [21, Theorem 1], ιm is an isometric embedding.

With the embedding ιm, we can construct the corresponding projection πm :
Gr(p,m+ 1) → Gr(p,m) using the following proposition.
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Proposition 2. The projection πm : Gr(p,m+1) → Gr(p,m) corresponding to
ιm is given by πm(X ) = span(R̃

T
X).

Proof. First, let Y = span(Y ) ∈ Gr(p,m) and X = span(X) ∈ Gr(p,m+ 1) be
such that X = span(R̃Y + vbT ). Then XL = R̃Y + vbT for some L ∈ GL(p).
Therefore, Y = R̃

T
(XL−vbT ) = R̃

T
XL and Y = span(Y ) = span(R̃

T
XL) =

span(R̃
T
X). Hence, the projection is given by πm(X ) = span(R̃

T
X). This

completes the proof. !
The nested relation can be extended inductively and we refer to this construction
as the nested Grassmann structure:

Gr(p,m)
ιm
↪→ Gr(p,m+ 1)

ιm+1
↪→ . . .

ιn−2
↪→ Gr(p, n − 1)

ιn−1
↪→ Gr(p, n).

Thus the embedding from Gr(p,m) into Gr(p, n) can be constructed inductively
by ι := ιn−1 ◦ . . . ◦ ιm−1 ◦ ιm and similarly for the corresponding projection. The
explicit forms of the embedding and the projection are given in the following
proposition.

Proposition 3. The embedding of Gr(p,m) into Gr(p, n) for m < n is given
by ιA ,B (X ) = span(AX + B) where A ∈ St(m,n) and B ∈ Rn×p such that
ATB = 0. The corresponding projection from Gr(p, n) to Gr(p,m) is given by
πA = span(ATX).

Proof. By the definition, ι := ιn−1 ◦ . . . ◦ ιm−1 ◦ ιm and thus the embedding
ι : Gr(p,m) → Gr(p, n) can be simplified as

ιA,B(X ) = span




(

n−1∏

i=m

Ri

)
X +

n−1∑

i=m

(
n−1∏

j=i+1

Rj

)
vib

T
i



 = span(AX +B)

where Ri ∈ St(i, i + 1), vi is such that [Ri vi] ∈ O(i + 1), bi ∈ Rp, A =
Rn−1Rn−2 . . .Rm ∈ St(m,n), and B =

∑n−1
i=m

( ∏n−1
j=i+1 Rj

)
vib

T
i is an n × p

matrix. It is easy to see that ATB = 0. Similar to Proposition 2, the projection
πA : Gr(p, n) → Gr(p,m) is then given by πA (X ) = span(ATX). This completes
the proof. !
From Proposition 1, if B = 0 then ιA is an isometric embedding. Hence, our
nested Grassmann structure is more flexible than PGA as it allows one to project
the data onto a non-geodesic submanifold. An illustration is shown in Fig. 2.

Connections to Other Nested Structures. The nested homogeneous spaces
proposed in this work (see Fig. 1) is actually a unifying framework for the nested
spheres [17] and the nested SPD manifolds [12]. Since the n-sphere can be identi-
fied with a homogeneous space Sn−1 ∼= O(n)/O(n− 1), with the embedding (1),
the induced embedding of Sn−1 into Sn is

ι(x) = GS
(
R

[
x
b

])
=

1√
1 + b2

R

[
x
b

]
= R

[
sin(r)x
cos(r)

]
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where x ∈ Sn−1, b ∈ R, and r = cos−1
(

b√
1+b2

)
. This is precisely the nested

sphere proposed in [17, Eq. (2)]. For the SPD manifold Pn
∼= GL(n)/O(n),

a carefully chosen embedding of GL(n) into GL(n + 1) gives the nested SPD
manifolds in [12].

2.3 Unsupervised Dimensionality Reduction

We can now apply the nested Grassmann (NG) structure to the problem of
unsupervised dimensionality reduction. Suppose that we are given the points,
X1, . . . ,XN ∈ Gr(p, n). We would like to have lower dimensional representations
in Gr(p,m) for X1, . . . ,XN with m " n. The desired projection map πA that
we seek is obtained by the minimizing the reconstruction error, i.e. Lu(A,B) =
1
N

∑N
i=1 d

2(Xi, X̂i) where d is a distance metric on Gr(p, n). It is clear that Lu has
a O(m)-symmetry in the first argument, i.e. Lu(AO,B) = Lu(A,B) for O ∈
O(m). Hence, the optimization is performed over the space St(m,n)/O(m) ∼=
Gr(m,n) when optimizing with respect to this particular loss function. Now
we can apply the Riemannian gradient descent algorithm [10] to obtain A and
B by optimizing Lu(A,B) over span(A) ∈ Gr(m,n) and B ∈ Rn×p such that
ATB = 0. Note that the restriction ATB = 0 simply means that the columns of
B are in the nullspace of AT , denoted N(AT ). Hence in practice this restriction
can be handled as follows: For arbitrary B̃ ∈ Rn×p, project B̃ on to N(AT ), i.e.
B = PN(AT )B̃ where PN(AT ) = I −AAT is the projection from Rn to N(AT ).
Thus, the loss function can be written as

Lu(A,B) =
1
N

N∑

i=1

d2(span(Xi), span(AATXi + (I − AAT )B))

and it is optimized over Gr(m,n) × Rn×p.

2.4 Supervised Dimensionality Reduction

If in addition to X1, . . . ,XN ∈ Gr(p, n), we are given the associated labels
y1, . . . , yN ∈ {1, . . . , k}, then we would like to utilize this extra information
to sharpen the result of dimensionality reduction. Specifically, we expect that
after reducing the dimension, points from the same class are still close to each
other while points from different classes are well separated. We use an affinity
function a :Gr(p, n) × Gr(p, n) → R to encode the structure of the data as sug-
gested by [12, Sect 3.1, Eq. (14)–(16)]. The desired projection map πA that we
seek is obtained by the minimizing the following loss function

Ls(A) =
1
N2

N∑

i,j=1

a(Xi,Xj)d2(span(ATXi), span(ATXj))

where d is a distance metric on Gr(p,m). Note that if the distance metric d has
O(m)-symmetry, e.g. the geodesic distance, so does Ls. In this case the optimiza-
tion can be done on St(m,n)/O(m) ∼= Gr(m,n). Otherwise it is on St(m,n). This
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supervised dimensionality reduction is termed as, supervised nested Grassmann
(sNG).

2.5 Choice of the Distance d

The loss functions Lu and Ls depend on the choice of the distance d : Gr(p, n)×
Gr(p, n) → R≥0. Besides the geodesic distance, there are many widely used dis-
tances on the Grassmann manifold, see for example [10, p. 337] and [25, Table 2].
In this work, we use two different distance metrics: (1) the geodesic distance dg
and (2) the projection distance, which is also called the chordal distance in [25]
and the projection F -norm in [10]. The geodesic distance was defined in Sect. 2.1
and the projection distance is defined as follows. For X ,Y ∈ Gr(p, n), denote the
projection matrices onto X and Y by PX and PY respectively. Then, the distance
between X and Y is given by dp(X ,Y) = ‖PX − PY‖F /

√
2 =

( ∑p
i=1 sin

2 θi
)1/2

where θ1, . . . , θp are the principal angles of X and Y. If X = span(X), then
PX = X(XTX)−1XT . It is also easy to see the projection distance has O(n)-
symmetry. We choose the projection distance mainly for its computational effi-
ciency as it involves only matrix multiplication which has a time complexity
O(n2) while the geodesic distance requires SVD which has a time complexity of
O(n3).

2.6 Analysis of Principal Nested Grassmanns

In practice, we might not have prior knowledge about m. So one can choose p <
m1 < . . . < mk < n and construct a sequence of Grassmann manifolds. Then,
for each nested Grassmann, we compute the percentage of variance explained.
Suppose X1 = span(X1), . . . ,XN = span(XN ) ∈ Gr(p, n) and Ai and Bi are
obtained for Gr(p,mi) from the algorithm described in the previous section. The
percentage of variance explained in Gr(p,mi) is given by the ratio of variance
of the X̂j ’s where X̂j = span(AT

i Xj) and the variance of the Xj ’s. The desired
dimension m can be chosen according to the desired percentage of variance
explained somewhat similar to the way one chooses the number of principal
components.

3 Experiments

In this section, we will demonstrate the performance of the proposed dimension-
ality reduction technique, i.e. NG and sNG, via experiments on synthetic and
real data. The implementation1 is based on the python library pymanopt [24]
and we use the conjugate gradient descent algorithm for the optimization (with
default parameters in pymanopt). The optimization was performed on a desktop
with 3.6GHz Intel i7 processors and took about 30 s to converge.

1 The code is available at https://github.com/cvgmi/NestedGrassmann.
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3.1 Synthetic Data

In this subsection, we compare the performance of the projection and the
geodesic distances respectively. The questions we will answer are the following:
(1) From Sect. 2.5, we see that using projection distance is more efficient than
using the geodesic distance. But how do they perform compared to each other
under varying dimension n and variance level σ2? (2) Is our method of dimen-
sionality reduction better than PGA? Under what conditions does our method
outperform PGA?

Comparison of Projection and Geodesic Distances. The procedure we
used to generate random points on Gr(p, n) for the synthetic experiments is the
following. First, we generate N points from a uniform distribution on St(p,m)
[8, Ch. 2.5], generate A from the uniform distribution on St(m,n), and generate
B as an n × p matrix with i.i.d entries from N(0, 0.1). Then we compute X̃i =
span(AXi + (I − AAT )B) ∈ Gr(p, n). Finally, we compute Xi = ExpX̃i

(σU i),
where U i = Ũ i/‖Ũ i‖ and Ũ i ∈ TX̃i

Gr(p, n), to include some perturbation.

Fig. 3. Comparison of the NG repre-
sentations based on the projection and
geodesic distances using the ratio of
expressed variance.

Fig. 4. Comparison of NG and PGA
algorithms via percentage of explained
variance.

This experiment involves comparing the performance of the NG representa-
tion in terms of the ratio of the variance explained, under different levels of data
variance. In this experiment, we set N = 50, n = 10, m = 3, and p = 1 and σ is
ranging from 1 to 10. The results are averaged over 100 repetitions and are shown
in Fig. 3. From these results, we can see that the ratios of variance explained for
the projection distance and the geodesic distance are indistinguishable but the
one using projection distance is much faster than the one using the geodesic
distance. The reason is that when two points on the Grassmann manifold are
close, the geodesic distance can be well-approximated by the projection distance.
When the algorithm converges, the original point Xi and the reconstructed point
X̂i should be close and the geodesic distance can thus be well-approximated by
the projection distance. Therefore, for the experiments in the next section, we
use the projection distance for the sake of efficiency.
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Table 1. The percentage of explained
variance by PGA and NG representations
respectively.

m̃ (dim. of submanifold)

2 4 6 8 10

NG 33.12% 50.49% 59.98% 67.85% 73.77%

PGA 16.36% 29.41% 40.81% 50.63% 59.29%

Fig. 5. Example Corpus Callosi shapes
from three distinct age groups, each
depicted using the boundary point sets.

Comparison of NG and PGA. Now we compare our NG representation to
PGA. Similar to the previous experiment, we set N = 50, n = 30, m = 20,
p = 2, and σ = 0.1 and apply the same procedure to generate synthetic data.
There is a subtle difference between PGA and NG, that is, in order to project
the points on Gr(p, n) = Gr(2, 30) to a m̃-dimensional submanifold, for PGA we
need to choose m̃ principal components and for NG we need to project them to
Gr(2, m̃/2 + 2) (since dimGr(2, m̃/2 + 2) = m̃). The results are averaged over
100 repetitions and are shown in Table 1.

From Table 1, we can see that our method outperforms PGA by virtue of
the fact that it is able to capture a larger amount of variance contained in the
data. Next, we will investigate the conditions under which our method and PGA
perform equally well and when our method outperforms PGA. To answer this
question, we set N = 50, n = 10, m = 5, p = 2, and σ is ranging from 0.01 to
2. We then apply PGA and NG to reduce the dimension to 2 (i.e. choosing 2
principal components in PGA and project to Gr(2, 3) in NG). The results are
averaged over 100 repetitions and are shown in Fig. 4. We can see that when the
variance is small, our method produces almost the same result as PGA, whereas,
our method is significantly better for the large data variance case. Note that when
the variance in the data is small, i.e. the data are tightly clustered around the
FM and PGA captures the essence of the data well. However, the requirement
in PGA on the geodesic submanifold to pass through the anchor point, namely
the FM, is not meaningful for data with large variance as explained through the
following simple example. Consider, a few data points spread out on the equator
of a sphere. The FM in this case is likely to be the north pole of the sphere if
we restrict ourselves to the upper hemisphere. Thus, the geodesic submanifold
computed by PGA will pass through this FM. However, what is more meaningful
is a submanifold corresponding to the equator, which is what a nested spheres
representation [17] in this case yields. In similar vein, for data with large variance
on a Grassmann manifold, our NG representation will yield a more meaningful
representation than PGA.

3.2 Application to Planar Shape Analysis

We now apply our method to planar (2-dimensional) shape analysis. A planar
shape σ can be represented as an ordered set of k > 2 points in R2, called
k-ads. Here we assume that these k points are not all identical. The space of all
planar shapes (after removing the effect of translations, rotations, and scaling)
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Table 2. Percentage of explained vari-
ance by PGA and NG representations
respectively.

m

1 5 10 15 20

NG 26.38% 68.56% 84.18% 90.63% 94.04%

PGA 7.33% 43.74% 73.48% 76.63% 79.9%

Table 3. Classification accuracies and
explained variances for sPGA and sNG.

Accuracy Explained Var.

gKNN 33.33% N/A

gKNN + sPGA 38.89% 3.27%

gKNN + sNG 66.67% 98.7%

gKNN + PGA 30.56% 46.61%

gKNN + NG 30.56% 84.28%

is denoted by Σk
2 = (Rk×2/Sim(2)) \ {0} where Sim(2) is the group of similarity

transformations of R2, i.e. if g ∈ Sim(2), then g · x = sRx + t for some s > 0,
R ∈ O(2), and t ∈ R2. {0} is excluded because we assume the k points are
not all identical. It was shown in [18] that Σk

2 is a smooth manifold and, when
equipped with the Procrustean metric, is isometric to the complex projective
space CP k−2 equipped with the Fubini-Study metric which is a special case of
the complex Grassmannians, i.e. CP k−2 ∼= Gr(1,Ck−1). In practice, we need to
preprocess the k-ads as follows to make it lie in Gr(1,Ck−1). Let X be the k× 2
matrix containing the k points in R2. First, the effect of translation is removed
by subtracting the first point. Then all these points are mapped to the complex
vector space and take the span of the resulting vector to remove the effect of
rotation and scaling.

OASIS Corpus Callosum Data Experiment. The OASIS database [20] is a pub-
licly available database that contains T1-MR brain scans of subjects of age rang-
ing from 18 to 96. In particular, it includes subjects that are clinically diagnosed
with mild to moderate Alzheimer’s disease. We further classify them into three
groups: young (aged between 10 and 40), middle-aged (aged between 40 and 70),
and old (aged above 70). For demonstration, we randomly choose 4 brain scans
within each decade, totalling 36 brain scans. From each scan, the Corpus Callo-
sum (CC) region is segmented and 250 points are taken on the boundary of the
CC region. See Fig. 5 for samples of the segmented corpus callosi. In this case,
the shape space is Σ248

2
∼= CP 248 ∼= Gr(1,C249). Results are shown in Table 2.

Note that in Table 2, m is the dimension of the submanifold, i.e. for NG, we
project to Gr(1,Cm+1) and for PGA, we take first m principal components.

Since the data are divided into three groups (young, middle-aged, and old),
we can apply the sNG described in Sect. 2.4 to reduce the dimension. The purpose
of this experiment is not to demonstrate state-of-the-art classification accuracy
for this dataset. Instead, our goal here is to demonstrate that the proposed nested
Grassmann representation in a supervised setting is much more discriminative
than the competition, namely the supervised PGA. Hence, we choose a naive
and impoverished classifier such as the geodesic kNN (gKNN) to highlight the
aforementioned discriminative power of the nested Grassmann over PGA.

For comparison, the PGA can be easily extended to supervised PGA (sPGA)
by first diffeomorphically mapping all the data to the tangent space anchored at
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the FM and then performing supervised PCA [2,4] on the tangent space. In this
demonstration, we apply a gKNN classifier with k = 5 to the data before and
after reducing the dimension (with and without supervision). Specifically, the
classification here is using a leave-one-out technique, i.e. the prediction of Xj is
determined by the geodesic k nearest neighbors of the Xi’s excluding Xj . In this
experiment, we choose m = 10, i.e. Gr(1,C249) → Gr(1,C11) (for PGA/sPGA,
the number of principal components would be m = 10). The results are shown
in Table 3. These results are in accordance with our expectation since in both
sNG and sPGA, we seek a projection that minimizes the within-group variance
while maximizing the between-group variance. However, as we observed earlier,
the constraint of requiring the geodesic submanifold to pass through the FM is
not well suited for this dataset which has a large variance across the data. This
accounts for why the sNG exhibits far superior performance compared to sPGA
in accuracy as well as in explained variance.

4 Conclusion

In this work, we proposed a nested structure for homogeneous spaces and applied
this structure to the dimensionality reduction problems of data in Grassmann
manifolds. We also discuss how this nested structure served as a generalization of
other existing nested structures for spheres and the manifold of SPD matrices.
Specifically, we showed that a lower dimensional Grassmann manifold can be
embedded into a higher dimensional Grassmann manifold and via this embed-
ding we constructed a sequence of nested Grassmann manifolds. Compared to the
PGA, which is designed for general Riemannian manifolds, the proposed method
can capture a higher percentage of data variance after reducing the dimension-
ality. This is primarily because our method unlike the PGA does not require
the reduced dimensional submanifold to be a geodesic submanifold. To sum up,
the nested Grassmann structure allows us to fit the data to a larger class of
submanifolds than PGA. We also proposed a supervised dimensionality reduc-
tion technique which simultaneously differentiates data classes while reducing
dimensionality. Efficacy of our method was demonstrated on the OASIS Corpus
Callosi data for dimensionality reduction and classification. We showed that our
method outperforms the widely used PGA significantly.
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