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ARTICLE INFO ABSTRACT

Keywords: Recent, widespread tree mortality in the western U.S. resulting from changes in climate, pathogens, insect ac-
Conifer tivity, and forest management practices has led to concerns for many ecologically and culturally important
Defense species. Within conifers, resin-based defenses have long been recognized as a primary defense mechanism against
Ter[,) enes a variety of insects and pathogens. Oleoresin produced by trees contain complex mixtures of terpenoids that have
Resin chemistry . . . .. . . . . .

Resin ducts numerous insecticidal and fungicidal properties. Research has also identified links between resin duct charac-

teristics and increased probability of survival during bark beetle outbreaks. Whitebark pine (Pinus albicaulis) is a
culturally significant high elevation species that provides numerous ecological services within subalpine and
alpine ecosystems. Whitebark pine has co-evolved with a suite of biotic and abiotic disturbances. Individual trees
allocate resources towards growth and resin-based defenses, making it a good candidate species to evaluate
growth and defense relationships and tradeoffs. In this study we compared constitutive resin chemistry, tree
growth and resin duct anatomy between similarly aged whitebark and lodgepole pine (P. contorta var latifolia)
growing in proximity within a disturbance-prone, mixed-conifer forest in northwestern Montana. These two host
species have varying degrees of historical exposure to mountain pine beetle. Our research yields four important
findings. First, we did not find evidence of a tradeoff between tree growth and tree defenses (resin duct
morphology and resin chemistry). This suggests that trees growing under favorable field conditions can expe-
rience high growth rates and still allocate ample resources towards defense. Second, we found that resin ducts
and constitutive mono- and sesqui- terpenes were not correlated in lodgepole pine while duct production and
area were positively related to constitutive monoterpenes, and duct size and area were positively related to
constitutive sesquiterpenes, in whitebark pine. The lack of distinct, consistent relationships between these
defensive features suggests that both whitebark and lodgepole pine trees present beetles with numerous, complex
combinations of resin-based defenses. Third, based on constitutive terpene profiles, bark beetles are more likely
to enter lodgepole pine but more likely to successfully elicit mass attacks in whitebark pine, which agrees with
beetle attack and success patterns observed in the field. Fourth, overstory competition, particularly by Engel-
mann spruce (Picea engelmannii), can influence tree defenses, specifically by reducing constitutive terpene
concentrations in lodgepole and whitebark pine. Competitive tree interactions could lead to altered bark beetle-
conifer interactions as host and nonhost species migrate in response to changing climate. Our results suggest that
strategies designed to support whitebark pine populations can benefit from better understanding interactions
among growth, competition and physical and chemical defenses in response to multiple disturbance.
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1. Introduction

Recent, large-scale tree mortality in the western U.S. resulting from
changes in climate, biotic stressors, and forest management practices
has led to concerns for many ecologically and culturally important
species (Mattson and Haack 1987, van Mantgem et al. 2004, van Man-
tgem and Stephenson 2007, Schwandt et al. 2010, Tomback and Achuff
2010, Roy et al. 2014). Given the ecological and economic implications
of large-scale mortality events, there is growing interest to better un-
derstand physiological strategies employed by trees in response to these
shifting disturbance regimes. However, identifying general trends is
complicated by the inherent complexity associated with tree defense
anatomy and chemistry, both of which vary across populations, in-
dividuals, and plant organs (Trowbridge 2014, Jamieson et al. 2017).
Large inter- and intra-specific variation in tree physiology and fluctu-
ating disturbance regimes complicates our ability to make generalized
assumptions (e.g., that tree mortality can be predicted based on a
particular suite of physiological attributes), which hinders development
of effective management solutions that account for complex species-
specific responses to biotic and abiotic processes.

Within conifers, resin-based defenses have long been recognized as a
primary defense mechanism against a variety of insects and pathogens
(Lewinsohn et al. 1991, Langenheim 1994, Phillips and Croteau 1999,
Trapp and Croteau 2001, Franceschi et al. 2005, Keeling and Bohlmann
2006). Oleoresin produced by trees contains complex mixtures of ter-
penoids (monoterpenes, sesquiterpenes and diterpenes) (Phillips and
Croteau 1999) that have numerous insecticidal and fungicidal properties
(Langenheim 1994, Raffa 2014, Trowbridge et al. 2016, Celedon and
Bohlmann 2019). Many of these compounds (e.g., monoterpenes) have
demonstrated linkages to insect behavior and physiology, from facili-
tating biosynthesis of communicative pheromones and influencing flight
orientation and/or host selection to disrupting the production of crucial
enzymes linked to insect growth and biological development (Seybold
et al. 2006, Borden et al. 2008, Raffa 2014, Celedon and Bohlmann
2019, Jones et al. 2019).

Resinous compounds are produced, stored, and mobilized within a
network of resin duct structures that are connected vertically and hor-
izontally throughout the tree, facilitating rapid mobilization of resins to
sites of injury or infection (Hood and Sala 2015, Celedon and Bohlmann
2019). Resin ducts are embedded within annual growth rings (secondary
xylem tissues), allowing retrospective quantification of tree carbon
allocation between growth and constitutive defenses (Kane and Kolb
2010, Ferrenberg et al. 2014, Ferrenberg et al. 2015, Hood and Sala
2015). Several studies have found relationships between resin duct
characteristics (e.g., number of ducts produced, duct size, area, density)
and increased probability of survival during bark beetle outbreaks (Kane
and Kolb 2010, Ferrenberg et al. 2014, Hood et al. 2015, Hood et al.
2016), drought (Gaylord et al. 2007, Gaylord et al. 2013, Gaylord et al.
2015), and wildfire (Hood et al. 2015, Hood et al. 2016, Slack et al.
2016, Sparks et al. 2017).

Resin duct anatomy is highly variable within and across species and
it is unclear as to which growth and defense characteristic(s) may in-
fluence survival under biotic and abiotic pressures. For instance, larger
resin ducts have been reported in ponderosa pine (Pinus ponderosa)
(Kane and Kolb 2010, Hood et al. 2015) and whitebark pine
(P. albicaulis) (Kichas et al. 2020) that persisted through beetle activity,
while the opposite (smaller resin ducts) was reported in surviving limber
pine (P. flexilis) (Ferrenberg et al. 2014). Zhao and Erbilgin (2019) re-
ported larger resin ducts for lodgepole pine (P. contorta var. latifolia) that
persisted through a bark beetle outbreak, while Ferrenberg et al. (2014)
did not detect any difference in duct size for surviving lodgepole. There
are also inconsistencies in the literature regarding other duct metrics.
For instance, Kichas et al. (2020) reported greater duct production and
duct density in whitebark pine that died during beetle outbreaks while
Kane and Kolb (2010) and Ferrenberg et al. (2014) reported greater
production and density in surviving ponderosa and limber pine. Tree
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growth is equally complex, with research demonstrating higher growth
in surviving trees relative to trees that died from bark beetle attack
(Ferrenberg et al. 2014, Hood et al. 2015), while other research has
found the opposite (greater relative growth in trees that died compared
to trees that survived) (Ferrenberg et al. 2014, Kichas et al. 2020) or no
trend at all (Kane and Kolb 2010). Such nuanced and species-specific
responses complicate our understanding of how these defensive fea-
tures function over diverse biogeographic gradients (Ferrenberg et al.
2014, Hood and Sala 2015, Kane et al. 2017, Kichas et al. 2020).

An important component influencing tree survival in the presence of
insect pressure is the chemical composition of the resin itself (Table S1)
(Duhl et al. 2013, Raffa 2014, Keefover-Ring et al. 2016). While many
species of conifers produce similar chemicals (e.g., a-pinene, limonene, f§
-myrcene), the relative composition and concentration of these com-
pounds vary considerably across taxa as well as with biological devel-
opment and local environment (Smith 2000, Moreira et al. 2014, Raffa
2014, Moreira et al. 2015, Moreira et al. 2016). This variability leads to
diverse and largely unknown interactions with insects and pathogens
that can facilitate significant change in forest composition and structure.
For instance, mountain pine beetle (Dendroctonus ponderosae) uses the
host monoterpene (—)-a-pinene as a precursor to the synthesis of its
aggregation pheromone (—)-trans-verbenol, (Pitman et al. 1968, Blom-
quist et al. 2010, Keeling 2016, Chiu et al. 2019) and $f -myrcene and &-3-
carene as synergists of flying beetles’ attraction to (—)-trans-verbenol
(Seybold et al. 2006, Borden et al. 2008). However, numerous other
terpenes exhibit insecticidal and fungicidal properties. For instance,
§-limonene is highly toxic to insects, and the phenolic phenylpropanoid
4-allylanisole (aka estragole) inhibits attraction to pheromones (Hayes
and Strom 1994, Joseph et al. 2001, Hofstetter et al. 2005). Some of
these compounds (e.g., a-pinene and f -pinene) also serve as indirect
defenses by attracting parasitoids of bark colonizers (Mizell et al. 1984,
Erbilgin and Raffa 2001, Seybold et al. 2006). Along with monoterpenes,
sesquiterpenes represent a significant component of constitutive oleo-
resin, yet their ecological role(s) in bark beetle-conifer interactions is
unknown. Sesquiterpenes have been shown to be highly active in other,
unrelated systems (Prasifka et al. 2015, Zhang et al. 2015, Zhang et al.
2018, Zhao et al. 2020), and they may influence resin viscosity (Keef-
over-Ring et al. 2016). However, there is currently no research
demonstrating the effects of sesquiterpenes on bark beetles or their
symbionts. Additionally, terpene diversity (a measure of relative
composition and abundance of compounds) may play an important role
in beetle-conifer interactions (Reid et al. 2017). A higher diversity of
compounds could theoretically provide trees with a greater phyto-
chemical arsenal in dealing with a variety of herbivores and pathogens.
However, it is unclear if there are any relationships between terpene
diversity, resin duct anatomy, and tree growth.

There are many interacting factors that could readily alter the
growth and defense strategies of trees. For instance, fire, drought, insect,
and pathogen activity have been found to influence defensive features
(resin flow, resin chemistry and resin duct anatomy) in conifers (Per-
rakis et al. 2011, Powell and Raffa 2011, Gaylord et al. 2015, Hood et al.
2015, Valor et al. 2017). Competition for resources has long been
recognized as an important factor mediating both growth and defense in
coniferous tree species (Coomes and Grubb 2000, Larocque et al. 2013)
and research has demonstrated increased diameter growth of remaining
trees in both natural and managed forest stands when near-tree
competition is reduced through various silviculture treatments (Keane
et al. 2007, Hood et al. 2016, Tepley et al. 2020). Yet, studies quanti-
fying the effects of competition on conifer defenses (duct anatomy and
resin chemistry) are surprisingly limited (Ormeno et al. 2007, Slack et al.
2017). Resin-based defenses are costly to manufacture and maintain,
and competition constrains cellular differentiation and biosynthesis of
secondary metabolites (Herms and Mattson 1992), altering allocation to
growth and defenses. In many ecosystems, biotic and abiotic distur-
bances drive forest structure and composition, creating a patchwork
mosaic of diverse species assemblages in various age classes (Baker
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2009). Western U.S. forests are prone to wildfire, insect herbivory and
pathogens, which can differentially modulate stand development
(Boone et al. 2013, de la Mata et al. 2017, Holtz and Schoettle 2018,
Howe et al. 2018). Competition within these forest stands likely in-
fluences how trees allocate resources between growth and investment in
physical and chemical defenses; however, this is an area of research that
is poorly explored. Indeed, we are aware of only three studies that have
investigated potential relationships between near-tree competition and
the anatomical (Slack et al. 2017) and chemical (Raffa and Berryman
1982, Ormeno et al. 2007) components of resin duct defenses.

Whitebark pine is a critical high-elevation species that provides
multiple ecological services within subalpine and alpine ecosystems
(Logan et al. 2010, Tomback et al. 2016a, Tomback et al. 2016b, Wagner
etal. 2018). However, there is growing concern that whitebark pine may
be largely extirpated from its current habitat over the next century due
to cumulative impacts of climate change, insect-related mortality,
changing fire regimes, increased competition from shade-tolerant spe-
cies, and the invasive exotic pathogen causing white pine blister rust
(Cronartium ribicola). These stressors, primarily blister rust, have greatly
reduced populations, by as much as 90% in some areas of the northern
Rocky Mountains (Keane and Arno 1993, Kendall and Keane 2000,
Shanahan et al. 2016, Amberson et al. 2018). In December 2020, the U.
S. Fish and Wildlife Service formally proposed whitebark pine as a
“threatened” species under the Endangered Species Act, which if
approved will require careful and adaptive management to sustain and
promote remaining populations. Better understanding the physiological
responses of whitebark pine to competition and disturbance could pro-
vide useful information for resource managers in developing conserva-
tion and restoration efforts. Some work has investigated the physical and
chemical defenses of whitebark pines in the Greater Yellowstone
Ecosystem (Raffa et al. 2013, Raffa et al. 2017, Mason et al. 2019), but
this represents only a portion of its overall range, precluding inference to
other forest types across a broader range of environments.

Lodgepole pine (Pinus contorta var. latifolia) is widely distributed
throughout western North America and sometimes co-occurs with
whitebark pine and other mountain conifers (Lotan and Critchfield
1990). In the Rocky Mountains, lodgepole pine grows in either mixed or
pure stands and is fire-adapted. Lodgepole pine has serotinous cones that
are held tightly together with resins and are released by heat from fire or
persistent hot dry conditions, after which its seeds are distributed by
wind (Anderson 2003). Although individual trees can be killed by fire,
the prolific release of seed following disturbance provides competitive
advantage, resulting in extensive distributions of dense lodgepole pine
forests. Lodgepole pine is also the primary host of mountain pine beetle
and experiences widespread mortality during outbreaks (Meddens et al.
2012).

We compared growth and resin duct structures between similarly
sized lodgepole pine, the most frequent host of mountain pine beetle
(Meddens et al. 2012), and whitebark pine, a historically less-exposed
host undergoing increased pressure with warming climate (Logan
et al. 2010) growing in close proximity within a disturbance-prone,
mixed-conifer forest in northwestern Montana. We analyzed tree
growth, resin duct morphology, and constitutive phloem chemistry to
investigate three questions: 1) Are there correlations among tree
growth, resin duct anatomy, and resin chemistry? 2) How do
constitutive resin chemistry and growth vs. defense relationships
compare between whitebark and lodgepole pine? 3) Does the
abundance and diversity of overstory and understory competition
influence resin chemistry for either species? For question 1, we
predicted H;) trees with greater growth rates and trees producing more
numerous and larger resin ducts would have higher concentrations (ug /
g of tissue) and diversity of mono- and sesqui- terpenes. We also pre-
dicted Hy) trees with greater relative duct area (% annual ring allocated
to resin duct structures) would have greater concentrations and diversity
of mono- and sesqui- terpenes. For question 2, we hypothesized Hg)
whitebark produce a greater abundance of constitutive monoterpenes
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known to positively influence bark beetle behavior (such as a-pinene,
f-myrcene, and &§-3-carene) whereas lodgepole produce a greater
abundance of compounds known to influence host-recognition (princi-
pally p-phellandrene, which has been found to be a primary compound
that mountain pine beetle utilize in its selection of host trees (Huber
et al. 2000, Miller and Borden 2000)). We also predicted H4) lodgepole
pine has greater relative growth rates than whitebark pine and produces
larger resin ducts with a greater annual investment in resin duct struc-
tures (increased relative duct area). We suspect that beetle preference
for lodgepole pine has selected for more robust constitutive defenses
than whitebark pine and that this combination of increased growth and
favorable duct anatomy will correspond with a greater abundance and
diversity of mono- and sesqui- terpenes compared to whitebark pine. For
question 3, we predicted Hs) increased competition (greater abundance
and diversity of neighboring overstory and understory vegetation) re-
sults in decreased concentrations and diversity of mono- and sesqui-
terpenes. We expect that moderately dense, mixed-conifer forest stands
of relatively young age comprise a nitrogen-limited system, and as
competition increases nutrient availability declines, limiting overall
production of primary and secondary metabolites.

2. Methods
2.1. Site description

Data were collected at a high-elevation site on the western slopes of
the Mission Range on the Flathead Indian Reservation during the sum-
mers of 2016 and 2017 as part of a larger fire-history reconstruction for
the Confederated Salish and Kootenai Tribes (CSKT; Fig. 1) (Kichas et al.
2020). The study site is located at approximately latitude: 47.776026,
longitude: —113.971389, with an average elevation of 1,916 m. Over-
story species include whitebark pine and lodgepole pine, with smaller
components of subalpine fir (Abies lasiocarpa) and Engelmann spruce
(Picea engelmannii). Understory species consist primarily of grouse
whortleberry ~ (Vaccinium  scoparium),  common  huckleberry
(V. membranaceum), dwarf huckleberry (V. cespitosum), bear grass
(Xerophyllum tenax), smooth woodrush (Luzula hitchcockii) and menzie-
sia (Mengziesia ferruginea). Mean annual temperatures at the site are
generally cool, with average temperatures ranging from 1° to 6° C with a
20- to 70-day frost-free period. Annual precipitation averages 140 cm,
which occurs primarily as snowfall from November to March. Soils are of
the Halloway series, consisting of gravelly silt loam and are moderately
drained. Lodgepole pine and whitebark pine are codominant at this site,
with lodgepole pine comprising 39% of sampled trees (519 of 1320
trees) and whitebark pine representing 36% of surveyed individuals
(476 of 1320 trees). The remaining 25% consists of subalpine fir (187
trees; 14%), Engelmann spruce (126 trees; 10%), western larch (Larix
occidentalis; 9 trees; <1%) and Douglas-fir (Pseudotsuga menziesii; 4 trees;
<1%). Mortality is also prevalent, with approximately 86% of whitebark
trees and 45% of lodgepole pine trees sampled for the fire history study
being dead with evidence of bark beetle activity (such as blue staining in
retrieved increment cores and/or bark beetle galleries on the bole of
sampled individuals). Evidence of disturbance legacies, including
wildfires and insect / pathogen outbreaks are common across the sample
plots. The broader region has a recent history of documented bark beetle
activity in the 1930s, 1960s-1980s and 2002-2009 (Arno and Hoff
1989, Kipfmueller and Swetnam 2002, Buotte et al. 2017, van de Gevel
et al. 2017). This portion of the Mission Range is also characterized by
mixed- and lethal-severity fire regimes, resulting in a complex mosaic of
establishment (CSKT 2000, 2007). White pine blister rust is evident,
having been introduced to this region of the Rocky Mountains circa 1950
(Samman et al. 2003, Geils et al. 2010).

2.2. Field sampling

As part of the CSKT fire-history reconstruction project, a 200 m grid
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Fig. 1. Map of sampled trees: 30 whitebark pine (white) and 30 lodgepole pine (orange) from a high elevation, mixed-conifer stand in the Mission Range (~4.5 km
east of Flathead Lake) on the Flathead Indian Reservation in northwestern Montana. Yellow triangles indicate permanent demography plots that were established in
2016 as part of a larger fire-history study for the Confederated Salish and Kootenai Tribes. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

was overlain across the study area using a combination of remote
sensing and field surveying for optimal placement (Fig. 1). This gridded
sampling design captured much of the topographic and vegetative
variability across the site, providing for an accurate assessment of
disturbance legacies and microsite differences in forest structure and
stand composition. Within the 200 m grid, individual plots (hereafter
“macroplots”) were located 200 m apart with a total of 34 plots,
covering approximately 88 ha (Fig. 1).

Each macroplot was spatially referenced and plot centers were
permanently marked and tagged. From the macroplot center, four 10 m
wide, 100 m long belt transects were established in each cardinal di-
rection (north, south, east, and west; Fig. S1). The closest ten trees
within each 100 m transect were sampled (to a maximum distance of
100 m) with a diameter threshold of 15 cm diameter at breast height
(DBH) (Heyerdahl et al., 2014). Data collected for each tree at each
macroplot included species, condition (live or dead), DBH, canopy base
height, crown class (dominant, codominant, intermediate, or sup-
pressed), tree height, and evidence of fire. We collected increment cores
from 40 sample trees per macroplot near the base of each tree (at or
below 15 cm from the root collar) using Haglof 4.3 mm diameter
increment borers. A 25 m? circular microplot was also established
around plot center to estimate percent cover of understory species
(Fig. S1).

2.3. Field sampling — Terpene composition

From the larger sample of stand-level demographic data, we identi-
fied 30 pairs of live whitebark and lodgepole pines for this analysis. To

control for microsite variability and visible differences in ontogeny we
paired trees based on size (+3 cm DBH) and distance (<15 m apart). In
June 2018, individual trees were relocated in the field, across the pre-
viously established macroplots. To assess the potential influence of
overstory competition on constitutive resin chemistry, we recorded
additional information, including species and DBH for all live and dead
trees (>1 cm DBH) within five meters of each subject and for all trees
(>5 cm DBH) to a distance of ten meters (Fig. S2). For understory
competition, we identified species and estimated percent cover within a
5.6 m diameter microplot around each subject tree. We collected phloem
tissue of approximately 1.5 cm width and 5 cm length for all 60 in-
dividuals. Tissue samples were immediately placed in glass vials on dry
ice and were transported to Montana State University for storage in a
—80° C freezer within 24 h of collection. After the phloem tissues were
collected, we retrieved one additional increment core at DBH using 4.3
mm diameter borers within approximately 5 cm from the phloem sam-
pling location.

2.4. Increment core analysis

Increment cores were air-dried and processed using standard
dendrochronological techniques (Stokes and Smiley 1996). We
measured ring widths to the nearest 0.001 mm using a Velmex
measuring stage interfaced with the recording software Measure J2X
(Voortech Consulting 2005). We crossdated tree ring series visually and
graphically using ring-width patterns and frost rings (LaMarche and
Hirschboeck 1984). Crossdating was facilitated using site-specific
chronologies from ring-width measurements, which were compiled as



N.E. Kichas et al.

part of a previous study (Kichas et al. 2020) and statistically checked
using COFECHA (Holmes et al. 1986, Grissino-Mayer 2001).

Individual tree cores were scanned at high resolution (1200 d.p.i.) on
an Epson V550 flatbed scanner and resin duct features were measured
using the program ImageJ (version 1.46r, National Institutes of Health,
Bethesda, MD, USA). All resin ducts were measured to the nearest 1 x
10”7 mm? using the ellipse tool and the calendar year in which they
formed was documented. For defense metrics we followed the methods
outlined by Hood and Sala (2015) and collected five measurements,
including three non-standardized measures of resin duct size (mean size
of all resin ducts per annual ring; mm2), duct production (number of
ducts year’l), and total duct area (sum of resin duct size: mm? year’l),
and two measures standardized to tree growth, duct density (number of
resin ducts mm 2 year_l) and relative duct area (% annual ring).

2.5. Analysis of monoterpenes and sesquiterpenes

Following the methods of Trowbridge et al. (2019), phloem tissues
were finely chopped (exact weights between ~ 0.2 and 0.3 g) and placed
into 2-mL glass vials along with 1 mL of GC-grade n-hexane (Fisher
Scientific) containing 0.1 pL mL-1 (+)-fenchone (Sigma-Aldrich) as an
internal standard. Samples were then agitated for 24 h, after which 100
uL of the solution from each sample was transferred into micro-inserts in
small mouth clear GC vials and capped with PTFE liners (Alltech Asso-
ciates, Deerfield, IL). Chemical analysis was then performed using gas
chromatography-mass spectrometry (GC-MS). Monoterpenes and ses-
quiterpenes were identified by comparing retention times of known
standards and mass spectra using the NIST library and MSD Chemstation
software. Concentrations for each compound were calculated using five-
point calibration curves with injections of known amounts of pure
standards and the internal standard, fenchone. When pure standards
were unavailable, standard curves for (-)-a-pinene, terpinolene, bornyl
acetate, and caryophyllene were used for monoterpenes, oxygenated
monoterpenes, monoterpene esters and sesquiterpenes, respectively. For
unidentified compounds, putative NIST IDs were used when match
quality was greater than 80.

2.6. Data analysis

All analyses were conducted using R (v. 3.5.0) (R Development Core
Team 2008). We used Wilcoxson paired t-tests, linear regression, cor-
relation, and multivariate analyses of variance to investigate relation-
ships in growth and defense anatomy, as well as constitutive resin
chemistry, across lodgepole and whitebark pine pairs. We evaluated
significance using one-tailed tests for a priori expectations described in
the Introduction (e.g., higher concentrations of terpenes, greater duct
size, greater duct production, etc.) and two-tailed tests for all other tests
using o = 0.05.

It is currently unclear how long resin ducts in conifers remain bio-
logically active and contribute to constitutive and induced resin chem-
istry (Trapp and Croteau 2001). As such, we measured growth and
defense metrics over the full record (1914-2018) as well as over the
most recent 20-years (1998-2018), and 5-years (2013-2018) prior to
sampling. We applied a Bonferroni correction factor (¢ = 0.05/3 =
0.017) for all growth periods to account for multiple comparisons across
similar growth intervals. From the raw tree ring width data we used the
dplR package (v. 1.7.1) (Bunn 2008) to calculate cross-sectional basal
area increments (BAI; mm? year’l) as an approximate indicator of
volumetric growth over time (Biondi and Qeadan 2008).

For mono- and sesqui- terpenes, we standardized concentrations by
phloem mass (g) to calculate absolute concentration (pg / g phloem) for
each compound. We then summed the concentrations for all identified
compounds to obtain total concentration (41 identified monoterpenes
and 39 identified sesquiterpenes). For individual compounds, we
calculated the relative concentration of each as percent of the total
concentration. A one-way Welch’s ANOVA was used to test for a species
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effect on total mono- and sesqui- terpenes, followed by a Tukey’s honest
significant difference test (HSD) post-hoc to identify pairwise differences
between species. Due to non-normally distributed data, mono- and
sesqui- terpene amounts were either square root or log-transformed for
these analyses. Mono- and sesqui- terpene diversity was calculated as the
Shannon diversity index (H’), a measure of within-sample diversity. We
also used non-metric multidimensional scaling (NMDS) to explore
mono- and sesqui- terpene dissimilarity between the two species (Kenkel
and Orloci 1986, Dixon 2003). Dissimilarity for the NMDS ordination
was calculated using the betadisper function in the vegan package (v.
2.5-6) in R (Dixon 2003).

To assess the role of competition we summed basal area (m?) for each
species of competitor and for all trees sampled around each focal tree to
a maximum distance of 10 m (Fig. S2). From these data we calculated
stand density index (SDI) (Reineke 1933) for each tree and developed
generalized linear models to assess whether local competition and/or
canopy position, influence constitutive levels of mono- and sesqui- ter-
penes and/or growth and resin duct anatomy. All models were
compared using Akaike information criterion (AIC) (Burnham et al.
2010).

3. Results
3.1. Relationship between constitutive resin chemistry and resin ducts

Whitebark and lodgepole pines at our study site were similar in terms
of size (diameter and height), age, and growth (Table 1). In general, tree
size, tree growth, and resin duct properties correlated poorly with
constitutive mono- and sesqui- terpenes in both species. However, across
the full time-series (1914-2018) resin duct area was positively corre-
lated with monoterpenes (r = 0.44, p = 0.0152) and sesquiterpenes (r =
0.44, p = 0.0150) in whitebark pine only (Table 2). This held true for
whitebark pine duct area and sesquiterpenes over the 20-years prior to
sampling (r = 0.48, p = 0.0079) but not over the 5-years prior to sam-
pling (Table S2). Whitebark pine resin duct size also tended to be
correlated positively with sesquiterpenes across the full record (r = 0.41,
p =0.0127; Table 2) and over the 20-years prior to sampling (r = 0.45, p
= 0.0069) but not over the 5-years prior to sampling (Table S2).

Resin duct production was positively correlated with monoterpenes
in whitebark pine (r = 0.43, p = 0.0095) across the full time-series but
showed no relationship in lodgepole pine (Table 2). We did not detect
relationships between constitutive mono- and sesqui- terpenes and resin
duct density, relative duct area, growth (BAI), or tree size (DBH) for
either species (Table 2).

3.2. Chemical composition of constitutive resin in trees

Whitebark pine contained 31% greater abundance (ug / g of sample
tissue) of constitutive monoterpenes (p = 0.0193; Fig. 2A) and 68%

Table 1

Mensuration data (mean + S.E.) for 30 whitebark pine (P. albicaulis) and 30
lodgepole pine (P. contorta var. latifolia) sampled at a high elevation montane
site on the Flathead Indian Reservation in northwestern Montana.

Pinus albicaulis Pinus contorta

Age (years) 92.2 (+£2.11) 88.6 (£1.78)
DBH (cm) 24.2 (+0.81) 24.5 (+£0.84)
Height (m) 20.2 (+1.31) 21 (+1.3)

Live Crown Ratio (%) 73 (+0.02) 74 (+0.02)
Aspect (°) 188.5 (+13.02) 177.1 (£12.48)

BAI (cm? year™1)

Duct Production (no. year ')

Duct Size (mm?)

Duct Area (mm2 year’l)

Duct Density (no. mm 2 year™ 1)
Relative Duct Area (% annual ring)

523.7 (£50.11)
3.2 (£0.16)
0.021 (£0.001)
0.038 (£0.002)
0.85 (£0.1)
0.92 (£0.05)

486.7 (+42.55)
2.9 (£0.1)
0.024 (£0.001)
0.039 (£0.002)
0.78 (£0.08)
1.03 (+0.06)

Note: DBH = diameter at breast height; BAI = basal area increment
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Table 2

Spearman correlation coefficients of mono- and sesqui- terpene concentrations
(ug / g fresh weight) with tree ring growth and resin duct anatomical mea-
surements in whitebark (P. albicaulis) and lodgepole pine (P. contorta var. lat-
ifolia). Correlations were conducted on metrics averaged over the full time series
(1914-2018).

Monoterpenes Sesquiterpenes

Pinus Pinus Pinus Pinus

albicaulus contorta albicaulus contorta
DBH 0.13 0.19 0.28 0.21
Growth (BAI) 0.18 0.24 0.24 0.1
Duct Production 0.43 -0.1 0.23 -0.18
Duct Size 0.26 0.34 0.41 0.18
Duct Area 0.44 0.28 0.44 0.06
Duct Density 0.35 -0.18 -0.06 -0.2
Relative Duct 0.33 -0.13 0.003 -0.22

Area

Note: Bold values indicate significant correlations (p < 0.017). DBH = diameter
at breast height; BAI = basal area increment.

greater abundance of constitutive sesquiterpenes (p < 0.0001; Fig. 2B)
compared to lodgepole pine. The diversity (H’) of constitutive mono-
terpenes did not differ significantly between whitebark and lodgepole
pine (Fig. S3A). Unlike monoterpenes, constitutive sesquiterpene di-
versity was greater in whitebark pine compared to lodgepole pine (p <
0.0001; Fig. S3B). Generally, mono- and sesqui- terpene diversity was
unrelated to tree growth and resin duct anatomy. However, in whitebark
pine, monoterpene diversity was positively related to resin duct pro-
duction over the full 104-year record (r = 0.43, p = 0.0092; Table S3).

We identified 22 monoterpenes that differed considerably across the
two species (Fig. 3A, Table S4). Specifically, we found 5.96x greater
(-)-a-pinene, 8.2x greater (+)-a-pinene, 4.5x greater  -myrcene, and
2.5x greater (+)-p -pinene in whitebark pine (Table S4). Whitebark also
had greater quantities of § -ocimene (92.8x higher), y-terpinene (3.4x
higher), anisole (9.9x higher), a-longipinene (7.7x higher), p-cymene
(36.2x higher), cis- p -terpineol (5x higher), 3-carene (3x higher), and
two unidentified monoterpenes: MTP 6 (6x higher) and MTP 9 (4.3x
higher; Table S4). In contrast, lodgepole pine exhibited greater con-
centrations of a-phellandrene (6.8x higher), § -phellandrene (1.4x
higher), dill ether (32.4x higher), (+)-linalool (1.8x higher), and an
unidentified monoterpene (MTP 3; 1.7x higher). There were also more
nuanced differences regarding some compounds. For instance, lodge-
pole pine contained greater concentrations of (-)-sabinene (4.8x
higher), while whitebark contained 15.7x more of the stereoisomer
(+)-sabinene (Table S4). Similarly, whitebark contained 4.8x more of
(-)-6-limonene, while lodgepole contained 5.7x more of the stereoiso-
mer (+)-5-limonene (Fig. 3A, Table S4). Lodgepole pine also produced
more of the phenolic phenylpropanoid 4-allylanisole (10.1x higher)
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than whitebark pine (Fig. 3A, Table S4).

We identified 33 sesquiterpenes that were significantly different
between whitebark and lodgepole pine (Fig. 3B, Table S4). Whitebark
pine contained greater quantities (raw concentrations and percent
composition) for 73% of these, while lodgepole pine contained greater
quantities of a-cadinol (1.5x higher), and seven unknown sesquiterpenes
(SQT 4, SQT 6, SQT 8, SQT 9, SQT 11, SQT 14, SQT 15) (Fig. 3B,
Table S4).

3.3. Relationships between tree growth and resin ducts in whitebark and
lodgepole pine

Overall, the variables describing growth and resin duct properties
were similar between the two species (Table 1). Tree size (DBH), height,
and growth (BAI) were similar as was resin duct production, duct area,
duct density, and relative duct area. However, across the full time series
(1914-2018) lodgepole pines produced 10% larger resin ducts on
average relative to whitebark pine (p = 0.0033; Fig. 4).

Unstandardized resin duct metrics (size, area, and production)
correlated positively with growth (BAI) for both species, while stan-
dardized duct metrics (duct density and relative duct area) correlated
negatively with growth. Specifically, resin duct production showed a
strong positive correlation with growth for whitebark pine (r = 0.59, p
= 0.0007; Fig. S4A) but not for lodgepole pine (Table 3). Resin duct size
and growth were positively correlated for both whitebark pine (r = 0.52,
p = 0.0034) and lodgepole pine (r = 0.56, p = 0.0014; Fig. S4B). Simi-
larly, resin duct area and growth were strongly, positively correlated for
whitebark (r = 0.71, p < 0.00001) and lodgepole (r = 0.55, p = 0.0016;
Table 3, Fig. S4C). In contrast, resin duct density and growth were
negatively correlated for whitebark pine (r = -0.36, p = 0.0539) and
lodgepole pine (r = -0.55, p = 0.0019; Table 3, Figure S4D). Relative
duct area was also negatively correlated with growth for whitebark pine
(r = -0.6, p = 0.0005) and lodgepole pine (r = -0.61, p = 0.0004;
Table 3, Fig. S4E).

Tree size (DBH) was positively correlated with growth (BAI) for both
lodgepole (r = 0.69, p < 0.0001) and whitebark pine (r = 0.77, p <
0.0001; Table 3). In whitebark pine, tree size was also positively
correlated with resin duct production (r = 0.39, p = 0.0352), duct size (r
= 0.46, p = 0.0098), and duct area (r = 0.56, p = 0.0014; Table 3). Tree
size was negatively correlated with resin duct density in whitebark pine
(r =-3.7, p = 0.04215) and relative duct area in lodgepole (r = -0.45, p
= 0.01179) and whitebark pine (r = —-0.58, p = 0.0008; Table 3).

3.4. Relationship of overstory competition and constitutive resin chemistry

Stand density index (SDI) was not correlated with tree size, tree
growth, nor resin duct metrics for both species (Table 4). SDI was also
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Fig. 2. Comparison of total constitutive concentrations (ug / g fresh weight) of monoterpenes (A) and sesquiterpenes (B) across 30 whitebark pine (P. albicaulis) and

30 lodgepole pine (P. contorta).
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Fig. 3. Non-metric multidimensional scaling (NMDS) ordination plot of the first and second dimensions for the A) monoterpene and B) sesquiterpene profiles of 30
whitebark pine and 30 lodgepole pine trees. Ellipses represent a 99% confidence interval for each species. Important individual monoterpenes are overlain with the
relative magnitude of the arrows corresponding to their respective importance in the ordination.
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4. Comparison of resin duct size across the full time series (1914-2018).

not correlated with constitutive mono- nor sesqui- terpenes for lodge-
pole pine (Table 4). However, in whitebark pine there was a significant
negative correlation between monoterpenes and SDI (r = -0.38, p =
0.0179; Table 4), indicating monoterpene concentrations declined with
increasing stand density.

Lodgepole pine basal area comprised approximately 55% of near-
tree competition (average DBH = 24.8 cm + 0.77), followed by white-
bark pine (25%, average DBH = 15.3 cm + 0.8), subalpine fir (12%,
average DBH = 14.5 cm =+ 1), Engelmann spruce (5%, average DBH =
19.3 cm =+ 1.9), and Douglas-fir (3%, average DBH = 22.7 cm + 4.7).
Engelmann spruce was consistently in the top performing models pre-
dicting constitutive monoterpenes as a function of near-tree competition
(Table 5). In addition, constitutive mono- and sesqui- terpene concen-
trations in whitebark pine were negatively affected by near-tree
competition with Engelmann spruce (p = 0.0227) while no relation-
ships were found for lodgepole pine (Table S5). Generally, constitutive
levels of monoterpenes in whitebark pine decreased with increasing
Engelmann spruce basal area.
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Table 3
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Spearman correlation coefficients of tree ring growth and resin duct anatomical measurements of Pinus contorta and Pinus albicaulis. Correlations were conducted on

metrics averaged over the full time series (1914-2018).

Pinus albicaulis DBH Growth (BAI) Duct Production Duct Size Duct Area Duct Density Relative Duct Area
Growth (BAI) 0.77

Duct Production 0.39 0.59

Duct Size 0.46 0.52 0.11

Duct Area 0.56 0.71 0.63 0.84

Duct Density -0.37 -0.36 0.36 -0.48 -0.17

Relative Duct Area -0.58 -0.6 0.01 -0.34 -0.24 -0.85
Pinus contorta

Growth (BAI) 0.69

Duct Production 0.12 0.08

Duct Size 0.25 0.56 -0.06

Duct Area 0.24 0.55 0.36 0.9

Duct Density -0.35 -0.55 0.25 -0.62 -0.45

Relative Duct Area -0.45 -0.61 0.14 -0.32 -0.22 0.87

Note: Bold values indicate significant correlations (p < 0.05). DBH = diameter at breast height; BAI = basal area increment.

Table 4

Spearman correlation coefficients of stand density (Reineke’s Stand Density
Index; SDI), tree size (DBH), tree ring growth (BAI), and resin duct anatomical
measurements for whitebark (P. albicaulis) and lodgepole pine (P. contorta var.
latifolia). Correlations were conducted on metrics averaged over the full time
series (1914-2018).

Stand Density Index (SDI)

Pinus albicaulis Pinus contorta

Monoterpene concentration -0.38 0.09
Sesquiterpene concentration -0.29 -0.24
Monoterpene Diversity (H’) -0.26 0.16
Sesquiterpene Diversity (H’) -0.24 -0.34
DBH -0.05 -0.09
Growth (BAI) -0.05 -0.28
Duct Production 0.01 -0.05
Duct Size -0.17 -0.33
Duct Area -0.15 -0.33
Duct Density -0.05 0.35
Relative Duct Area -0.22 0.28

Note: Bold values indicate significant correlations (p < 0.05). DBH = diameter at
breast height; BAI = basal area increment.

Table 5

Generalized linear models predicting constitutive monoterpenes as a function of
overstory competition. Log likelihood reflects the probability of the data given
the model, while K represents the relative number of sample parameters for each
model. Top five models are shown as well as intercept-only model for reference.
(1) indicates a positive coefficient in the model while (|) indicates a negative
coefficient.

Model AlICc AAIC  LogL K

1. SPC (1) + PIEN (]) + PSME (1) + PICO (1)  1159.6  0.00 -570.39 6
+ [PIEN * SPC] (}) + [PICO * SPC] ()

2. SPC (1) + PIEN (1) + PSME ({) + [PIEN * 1160.7  1.12 57357 4
SPC] (1)

3. SPC (1) + PIEN (1) + [PIEN * SPC] (1) 1161.3  1.69 -575.09 3

4.SPC (1) + PIEN () + PSME (1) + PICO (1)  1161.3 1.75 -569.87 7
+ [PIEN * SPC] (}) + [PSME * SPC] (l) +
[PICO * SPC] (})

5. SPC (1) + PIEN (1) + PSME (}) + PICO (1)  1161.8 2.21 -570.10 7
+ ABLA () + [PIEN * SPC] (}) + [PICO *
SPC1 (1)

6. Intercept-Only Model 1168.8 9.2 -582.28 1

Abbreviations: SPC (species), PIEN (Engelmann spruce competitors), PSME
(Douglas-fir competitors), PICO (lodgepole pine competitors), ABLA (subalpine
fir competitors).

4. Discussion

Our 104-year record comparing growth and defense characteristics
within and between whitebark and lodgepole pine yields four important
findings. First, we did not find evidence of a tradeoff between tree
growth and tree defenses (resin duct morphology and resin chemistry;
Table 2, S2). This suggests that trees growing under favorable field
conditions can experience high growth rates and be well defended.
Second, we found that resin duct size, production, and area are not
related to constitutive mono- and sesqui- terpene concentrations in
lodgepole pine, whereas resin duct production and area were positively
related to constitutive monoterpenes, and resin duct size and area were
positively related to constitutive sesquiterpenes, in whitebark pine
(Table 2, S2). The lack of distinct, universal relationships between these
defensive features presents beetles with numerous and unpredictable
combinations of resin-based defenses, particularly from its historical
host, lodgepole pine (Mason et al. 2019, Howe et al. 2020). Third, based
on constitutive terpene profiles, bark beetles are more likely to enter
lodgepole pine but more likely to successfully elicit mass attacks in
whitebark pine, which agrees with beetle attack and success patterns in
the field (Fig. 3) (Bentz et al. 2015). Fourth, overstory competition,
particularly by Engelmann spruce, can influence tree defenses, specif-
ically constitutive terpene concentrations (Table 5, S5). Competitive
tree interactions could lead to altered bark beetle-conifer interactions as
host and nonhost species migrate in response to changing climate. This is
particularly relevant within montane environments, where climate-
related tree species migration could occur more rapidly (elevational
range shifts over hundreds of meters) compared to flatter regions (lat-
itudinal range shifts over hundreds of kilometers).

Overall, relationships between growth and defense in lodgepole and
whitebark pine were relatively similar (Table 3). Counter to our hy-
pothesis (H;), we did not find evidence to suggest that trees producing
more and larger resin ducts also have higher concentrations and di-
versity of mono- and sesqui- terpenes. In contrast, whitebark pine trees
produced smaller resin ducts structures than lodgepole pine (Fig. 4) but
also had greater constitutive levels of mono- and sesqui- terpenes
(Fig. 2). These findings differ from results in the Greater Yellowstone
Ecosystem reporting greater duct production and greater levels of
constitutive monoterpenes and diterpenes in lodgepole pine than
whitebark pine but are similar in both showing higher sesquiterpenes in
whitebark pine (Fig. S3) (Raffa et al. 2013, Raffa et al. 2017, Mason et al.
2019). In addition, resin duct area positively correlated with constitu-
tive mono- and sesqui- terpenes for whitebark pine, but not in lodgepole
pine, suggesting that whitebark pines with increased resin duct area also
have greater concentrations of constitutive mono- and sesqui- terpenes
(Table 2, S2). This is supported by research demonstrating that, in some
species, increased resin duct area is positively related to resin flow
(Hood and Sala 2015, Yi et al. 2021). Duct area also correlated strongly
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with tree size (DBH) and growth (BAI) in whitebark pine (Table 3),
which could assist managers in the identification of candidate trees for
silvicultural treatments and/or seed collection efforts (Table 3). Counter
to our hypothesis (Hy) relative duct area was not related to constitutive
mono- and sesqui- terpene concentrations for either species (Table 2).
Lodgepole pine had greater relative duct area than whitebark pine but
lower levels of constitutive mono- and sesqui- terpenes (Fig. 2). In
addition, sesquiterpene diversity was lower in lodgepole pine than
whitebark pine while we did not detect significant difference in mono-
terpene diversity between the two species (Fig. S3).

Interestingly, we did not detect significant tradeoffs in the allocation
of resources between tree growth and investment in resin duct structures
and constitutive mono- and sesqui- terpenes. Rather, we found generally
positive relationships between tree size and growth versus unstandard-
ized resin duct metrics and constitutive mono- and sesqui- terpenes
(Table 2, S2). This likely reflects the highly variable site quality of
natural forest stands rather than an absence of within-plant allocation
posited by Herms and Mattson (1992). That is, within-plant allocation
patterns do not necessarily scale up to between-plant inverse relation-
ships (and may even be reversed) at the landscape scale (Howe et al.
2020). This view has some support, as Waring and Pitman (1985),
Bleiker et al. (2005), Knapp et al. (2013), Williams et al. (2018) and
Keen et al. (2020) found that fast-growing trees were most likely to
survive bark beetle outbreaks. However, other research has demon-
strated the opposite, whereby slower growing trees were more likely to
persist through increased beetle activity (de la Mata et al. 2017, Reed
and Hood 2020). Investment in plant growth and defense is nuanced and
changes across geographic environments and microclimates, as well as
with plant ontogeny, stand dynamics and seasonality. Given the
numerous physiological mechanisms modulating tree growth and the
expression of defensive features, more research is needed to better un-
derstand if and how these relationships differ across broader ecological
and temporal scales.

We interpret the lack of clear relationships among tree growth, resin
duct morphology and resin chemistry as part of complex evolutionary
processes shaping bark beetle-host interactions. While mountain pine
beetles have evolved to exploit chemical signatures in the identification
and colonization of individuals, trees present bark beetles with innu-
merable permutations of physical and chemical defenses (Mason et al.
2019). A beetle cannot readily predict resin duct architecture during
host identification and colonization. Thus, trees with well-developed
resin duct defenses have an advantage of enduring bark beetle attack.
This is supported by research demonstrating the importance of resin
duct anatomy in surviving beetle activity for a variety of conifers
(Vazquez-Gonzalez et al. 2020). For instance, Kichas et al. (2020) found
that whitebark pine that persisted through stand-level beetle activity
produced fewer but larger resin ducts with greater resin duct area and
greater relative duct area than whitebark pine that died. Similar results
have been reported for lodgepole pine (Ferrenberg et al. 2014, Zhao and
Erbilgin 2019), ponderosa pine (Kane and Kolb 2010, Hood et al. 2015),
limber pine (Ferrenberg et al. 2014, Bentz et al. 2017), maritime pine
(P. pinaster) (Zas et al. 2014), foxtail pine (P. balfouriana) and Great
Basin bristlecone pine (P. flexilis) (Bentz et al. 2017). Likewise, the
composition and quantities of resin chemistry, both constitutive and
induced, can mediate tree survival from bark beetles (Raffa et al. 2005,
Zhao et al. 2011, Erbilgin et al. 2017). There is also evidence to suggest
that insect activity can shape growth and resin-based defenses directly in
lodgepole pine (Zhao et al. 2019) and ponderosa pine (de la Mata et al.
2017). However, the myriad interacting factors influencing tree defenses
complicates our ability to generalize relationships across species or
make assumptions about resin duct characteristics and beetle in-
teractions. More work is needed to understand the many biotic and
abiotic processes modulating tree growth and development of resin-
based defenses, specifically relating to climate, stand dynamics, and
disturbance histories.
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4.1. Constitutive resin chemistry

We found clear species-level differences in the composition of mono-
and sesqui- terpenes between whitebark and lodgepole pine (Fig. 3,
Table S4). These differences relate to mountain pine beetle behavior and
attack success and largely agree with other research (Raffa et al. 2013,
Raffa et al. 2017). In support of Hz, whitebark pine produced greater
quantities of compounds known to enhance beetle success, including
(-)-a-pinene, which beetles use as precursor for the biosynthesis of their
aggregation pheromone, (-)-trans-verbenol (Blomquist et al. 2010,
Keeling 2016). Whitebark also produced more p-myrcene, which
mountain pine beetles utilize as synergists for pheromone attraction
(Borden et al. 2008). While lodgepole pine produced less of these
compounds we found significantly greater levels of a—phellandrene and
B—phellandrene, which mountain pine beetles exploit for host recogni-
tion. Lodgepole pine also produced more compounds that inhibit beetle
fitness, including (+)-8-limonene, which is highly toxic to mountain
pine beetles, and 4-allylanisole (aka estragole), which inhibits attraction
to pheromones (Hayes and Strom 1994). Thus, despite having fewer
exploitable compounds for pheromone production and enhancement,
the increased concentration of compounds important for host recogni-
tion likely results in mountain pine beetles identifying lodgepole pines
for colonization over co-occurring whitebark pine under endemic beetle
activity. However, under mass attack and outbreak scenarios, beetles are
more likely to succeed when colonizing whitebark pine trees. As beetle
activity is projected to increase with increasing temperatures, particu-
larly at higher elevations, the implications for whitebark pine mortality
are concerning and may warrant management actions to mitigate po-
tential loss of this important species.

We found some evidence for our hypothesis (H4) as lodgepole pine
produced larger resin ducts with greater relative duct area compared to
whitebark pine; however, counter to our hypothesis, lodgepole pine had
lower levels of constitutive terpenes (Figs. 2, 4). We do not interpret the
lack of relationship between resin duct anatomy and constitutive resin
chemistry in lodgepole pine as an indication that lodgepole pine are any
less defended against bark beetles than whitebark pine. There are many
factors, such as climate, soil quality, tree size / age, stand dynamics, and
disturbance histories, that can influence tree physiology and defense
anatomy in conifers. For instance, the chemical composition of oleoresin
can change dramatically when trees are exposed to fungi vectored by
bark beetles (Keefover-Ring et al. 2016). Notably, our results only
pertain to constitutive chemical defenses. While there is a growing body
of literature investigating constitutive and inducible defenses, more
work is needed to better understand the relationship of constitutive and
inducible defenses within and across species, as well as ecological im-
plications of these relationships (Howe et al. 2020). In addition, the
potential ecological roles of sesquiterpenes in beetle-conifer-microbial
interactions are unknown. Sesquiterpenes can play a role in cold toler-
ance in some plants (Zhao et al. 2020), which is consistent with their
higher abundance in the high elevation whitebark pine, but again such a
function has not been tested in pines. More work is needed to understand
how these compounds vary across species and environments and what
functions they may serve in conifer defense.

4.2. Influence of competition on tree defense

Trees sampled for this study were relatively young (90 year mean
age) (Reed et al. 2018) and growing in a moderately dense lodgepole
pine-dominant, mixed-conifer forest stand in the northern Rocky
Mountains. We hypothesized that competition in this setting would
reduce nutrient availability, limiting the overall capacity for trees to
produce primary and secondary metabolites. We found some support for
this hypothesis (Hs), as stand density (SDI) was negatively correlated
with constitutive monoterpene concentrations for whitebark pine
(Table 4). Also, the frequency of relationships having a negative
although statistically insignificant relationships suggests that additional
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studies into whether increased competition reduces growth and defense
in whitebark and lodgepole pine is warranted. Future studies providing
greater spatial and temporal resolution and more explicitly directed
design may reveal ecologically meaningful insights into the role of local
competition.

We did not detect notable influence of inter- or intra- specific
competition on constitutive terpene abundance or diversity (Table S5).
However, we did find evidence that Engelmann spruce interacts with
whitebark pine, resulting in decreased monoterpene concentrations
with increasing Engelmann spruce presence (Table 5, S5). This trend
was observed in whitebark pine despite Engelmann spruce occupying a
small percentage of local competition (5%). In addition, Engelmann
spruce was a comparatively strong predictor of constitutive mono-
terpenes in whitebark pine compared to other competitors (Table 5).
This merits further investigation because as climate warms and different
tree species migrate along elevational and/or latitudinal gradients they
may increasingly encounter species, such as Engelmann spruce, that
could negatively influence their defenses. This could have important
implications for management and conservation efforts, particularly
given projected increases in both temperature and mountain pine beetle
activity in the western U.S. over the next century (Bentz et al. 2016,
Buotte et al. 2016, 2017).

Whether these effects are attributable to the microsites where
Engelmann spruce resides or to more nuanced direct and indirect effects
of Engelmann spruce ecology (e.g., changes in soil characteristics
through litter deposition, root exudates, and unique microbial assem-
blages) remains unclear. It is also possible that other tree-level factors,
such as tree height and canopy vigor, could influence these relation-
ships, as taller trees with more photosynthetically active canopies may
be superior competitors for light and limiting nutrients. While we only
assessed diameter and species information for competitor trees, we
recommend that future studies investigating the role of competition on
conifer defenses also consider other aspects of tree growth and function.
Understanding the degree to which competition and/or differences in
site characteristics influence constitutive and induced resin-based de-
fenses will enable managers to modify prescriptions to better achieve
desired objectives.

4.3. Conclusions

We found differences in whitebark and lodgepole pine growth and
physical / chemical defenses that have important implications for bark
beetle behavior and forest management. Importantly, we did not detect
tradeoffs between tree growth and constitutive resin-based defenses,
indicating that trees at this site are both growing fast and well defended.
Second, tree growth, resin duct architecture, and resin chemistry are
largely unrelated. The lack of relationships between these different
factors presents beetles with many permutations of resin-based defenses
that can address the multitude of contexts under which attacks occur.
Third, whitebark pine contains greater levels of constitutive compounds
known to enhance bark beetle behavior and success, while lodgepole
pine contains greater concentrations of compounds known to increase
host recognition. Lastly, our record suggests that interspecific competi-
tion, particularly with Engelmann spruce, can influence constitutive
resin chemistry. This may in turn increase susceptibility to mountain
pine beetle, yielding unexpected challenges in whitebark pine conser-
vation and restoration efforts.

These results have several important implications. From the
perspective of a bark beetle, whitebark pine appear more chemically
conducive for reproductive success while lodgepole pine are more
identifiable as potential hosts. Under endemic scenarios mountain pine
beetle persist in low numbers, colonizing stressed individuals with
depleted defense systems. However, during outbreak conditions, beetle
populations can overwhelm defenses of vigorous, well-defended trees.
As such, even the healthiest whitebark pine growing within this mixed-
conifer setting may be vulnerable to beetle-induced mortality. However,
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conifers have co-evolved with insects and have developed complex
defensive strategies in response to these pressures. Resin duct architec-
ture can facilitate oleoresin production and mobilization in ways that
are not readily perceptible to beetles. The lack of clear relationships
between these various defensive features reflects the complexity of the
biophysical relationships connecting them. In addition, local competi-
tion and species-specific interactions may further influence growth and
defense characteristics, leading to unpredictable outcomes as species
migrate in response to a warming climate.

Changing forest conditions are confronting managers with increas-
ingly limited options for preserving and promoting whitebark pine
populations. Many management prescriptions rely on superficial per-
formance indicators (primarily growth) that fail to account for the
important role of physical and chemical defenses in moderating distur-
bance interactions. Few studies have investigated patterns of growth and
defense using multiple proxies (resin duct anatomy and resin chemistry),
so there is a need to expand this research to a broader range of species
and environments.
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