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The R programming language is widely used in a variety of domains. It was designed to favor an interactive
style of programming with minimal syntactic and conceptual overhead. This design is well suited to data
analysis, but a bad fit for tools such as compilers or program analyzers. In particular, R has no type annotations,
and all operations are dynamically checked at runtime. The starting point for our work are the two questions:
what expressive power is needed to accurately type R code? and which type system is the R community willing to
adopt? Both questions are difficult to answer without actually experimenting with a type system. The goal of
this paper is to provide data that can feed into that design process. To this end, we perform a large corpus
analysis to gain insights in the degree of polymorphism exhibited by idiomatic R code and explore potential
benefits that the R community could accrue from a simple type system. As a starting point, we infer type
signatures for 25,215 functions from 412 packages among the most widely used open source R libraries. We
then conduct an evaluation on 8,694 clients of these packages, as well as on end-user code from the Kaggle
data science competition website.
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1 INTRODUCTION

Our community builds, improves, and reasons about programming languages. To make design
decisions that benefit users, we need to understand our target language as well as the real-world
needs it answers. Often, we can appeal to intuition, as many languages are intended for general
purpose programming tasks. Unfortunately, intuition may fail us when looking at domain-specific
languages designed for a particular group of users to solve specific needs. This is the case of the
data science language R.

R and its ancestor S were designed, implemented, and maintained by statisticians. Originally
they aimed to be glue languages for statistical routines written in Fortran. Over three decades
they became widely used across many fields for exploratory data analysis. Modern R is fascinating
as an object of study. It is a vectorized, dynamically typed, lazy functional language with limited
side-effects, extensive reflective facilities and retrofitted object-oriented programming support.

Many of the design decisions that gave us R were intended to foster an interactive and exploratory
programming style. These include, to name a few salient ones, the lack of type annotations, the
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ability to use syntactic shortcuts, and widespread conversion between data types. While these
choices have decreased the barrier to entry—many data science educational programs do not teach
R itself but simply introduce some of its key libraries—they also allow for errors to go undetected.

Retrofitting a type system to the R language would increase our assurance in the result of
data analysis, but this requires facing two challenges. First, it is unclear what would be the right
type system for a language as baroque as R. For example, one of the most popular data type, the
data.frame, is manipulated through reflective operations—a data frame is a table whose columns
can be added or removed on the fly. Second, but just as crucially, designing a type system that will
be adopted would require overcoming some prejudices and educating large numbers of users.

The goal of this paper is to gather data that can be used as input to the process of designing a
type system for R. To focus our work, we chose to limit the scope of investigation on the design of
a language for function type signatures. Thus, this paper will use the collected data to document
the signatures of user-defined functions. For this, we design a simple type language that matches
the R data types. We then extract call and return types from execution traces of a corpus of widely
used libraries, and finally synthesize type signatures. This allows us to see how far one can get
with a simple type language and identify limitations of our design. We validate the robustness of
the extracted type signatures by implementing a contract checker that weaves types around their
respective functions, and use end-user code and clients of the target packages for validation.

To sum up, we make the following contributions:

e We implemented scalable and robust tooling to automatically extract type signatures and
instrument R functions with checks based on their declared types.

e We carried out a corpus analysis of 412 widely used and maintained packages to synthesize
function type signatures and validated the robustness of the signatures against 160,379
programs that use those functions.

e We report on the appropriateness and usefulness of a simple type language for R.

e Our data and code are open source and publicly available.

2 BACKGROUND

This section introduces related work and gives a short primer on R.

2.1 Related Work

Dynamic programming languages such as Racket, JavaScript, PHP and Lua have been extended post
factum with static type systems. In each case, the type system was carefully engineered to match
the salient characteristics of its host language and to foster a particular programming style. For
example, Typed Racket emphasizes functional programming and migration from untyped to fully
typed code [Tobin-Hochstadt and Felleisen 2008], Hack [Verlaguet 2013] and TypeScript [Bierman
et al. 2014] focus on object-oriented features of PHP and JavaScript, respectively. They allow users
to mix typed and untyped code in a fine-grained manner. In the case of Lua [Maidl et al. 2014], the
type system tried to account for the myriad ways Lua programmers use tables. Other languages
adopted a mix of typed and untyped code by design. In Julia, type annotations are needed for
method dispatch and performance [Bezanson et al. 2018]. In Thorn, users could freely move between
typed and untyped code thanks to the addition of like types [Wrigstad et al. 2010]. Lastly C# is an
example of a statically typed language which added a dynamic type [Bierman et al. 2010].

But what if the design of the type system is unclear? Andreasen et al. [2016] propose a promising
approach called trace typing. With trace typing, a new type system can be prototyped and evaluated

! github.com/PRL-PRG/propagatr, github.com/PRL-PRG/contractr, data: doi.org/10.5281/zenodo.4091818, artifact: doi.org/
10.5281/zenodo.4037278
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by applying the type rule to execution traces of programs. While the approach has the limitation
of dynamic analysis techniques, namely that the results are only as good at the coverage of the
source code, it allows one to quickly test new design and quantify how much of a code base can be
type-checked. Other approaches that infer types for dynamic analysis include the work of Furr
et al. [2009] and An et al. [2011] for Ruby.

Recent work has gone into adding types to Python, the other eminent data science language.
Typilus is an interesting piece of recent work which explores using neural networks to infer types
for Python programs [Allamanis et al. 2020], and Python itself added support for type hints in
Python 3.5 [Python Team 2020]. There is no previous work on types for R. We take inspiration in
the aforementioned works but focus on adapting them to our target language.

2.2 The R Language

The R Project is a key tool for data analysis. At the heart of R is a vectorized, dynamic, lazy,
functional, object-oriented language with an unusual combination of features [Morandat et al.
2012]. R was designed by Thaka and Gentleman [1996] as a successor to S [Becker et al. 1988].

R’s main data type is the primitive vector. Vectors are explicitly constructed by the constructor
c(...), asin c(1L, 2L, 3L) which creates a vector of three integers. R has a builtin notion of
type that can be queried with the typeof function. Figure 1 lists all of the builtin types provided
by the language; these are the possible return values of typeof. There is no intrinsic notion of
subtyping in R, but in many contexts a logical will be coerced to integer, an integer will
be coerced to double, and a double will be coerced to complex. Some odd conversions occur in
corner cases, such as 1<"2" holds and c(1,2)[1.6] returns the first element of the vector, as
the double is converted to an integer. R does not distinguish between scalars and vectors (they
are all vectors), so typeof (5) == typeof(c(5)) == typeof(c(5,5)) == "double". All vectorized data
types are monomorphic, except 1ist which can hold values of any type, including list. For all
monomorphic data types, attempting to store a differently-typed value will cause a conversion:
Either the value is converted to the type of the vector, or vice versa.

All vectorized data types have a distinguished miss-
ing value denoted by NA (for “not available”). The type Vectors:

of NA is logical (typeof (NA)=="logical"), but NAin- logical vector of boolean values
habits every type: typeof (c(1,NA)[2]) == "double". integer vector of 32 bit integer values
R also has a NULL value. In data science, it is useful to dOUbie Vector °£ 64 bltlﬂoat:;g points

. P e . complex vector of complex values
have a notion of a npssmg observatlon R smc'e \(ec— character vector of strings values
tors are monomorphic there is a need for a missing -y vector of bytes
value to inhabit each primitive type. In a sense, NArep-  list vector of values of any type
resents a missing data point, whereas NULL represents _Scalars:
a missing data set. NULL singleton null value

X S4 inst: faS4cl
Over time, programmers have found the need for a mstance of a 5% ciass
closure function with its environment

richer type structure. R supports this with attributes.  .yironment mapping from symbol to value
One may think of attributes as an optional map from "~ Implementation:

names to values attached to any built in type. At-  special, builtin, symbol, pairlist, promise
tributes are used to encode various type structures, ~ 1language, char, ..., any, expression,

and they are queried with attributes. Using at- externalprt, bytecode, weakref
tributes, programmers can extend the set of types
by tagging data. For example, take the vector of
four values, x<-c(1, 2, 3,4) and attach attribute dim,
attr(x,"dim")<-c(2,2), to treat x as a 2x2 matrix.

Fig. 1. Builtin Types
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Another attribute that can be set is the class, which is one way to use R for object-oriented
programming. The class attribute can be queried with class, and it can be bound to a list of
class names: For instance, class(x)<-c("human", "friend") will set the class of x to be human and
friend. There are three object-orientation frameworks in R: S3, S4, and R5. The S3 object system
support single dispatch on the class of the first argument of a function, whereas the S4 object
system allows multiple dispatch. R5 allows for users to define objects in a more imperative style.
Some of the most widely used data types leverage attributes, e.g., data frames and matrices. A data
frame, for instance, is a list of vectors with a class and a column name attribute, and matrices are
vectors with a dims attribute.

R functions have a number of quirks. Arguments can be assigned arbitrary expressions as default
values; functions take variable numbers of parameters, and can be called positionally and nominally.
Consider this example:

f <- function(x,..., y=if(z==0) 1, z=0) { x + y + if(missing(...)) @ else c(...) }

This function has four formal parameters, x, dots, y and z. Parameter x can be bound positionally
or passed by name. The dots, . . ., is always positional. The remaining two parameters must be
passed by name as they are preceded by dots; y and z have default values, in the case of z this is
a constant, but y is bound to an expression that depends on z’s value (if z is not zero, y defaults
to NULL). The body of the function will add x and y to either 0 or the result of concatenating the
dots into a primitive vector. The function missing tests if a parameter was explicitly passed. The
following are some valid invocations of f:

> (1)
[1] 2 # a double vector, y is @, ... is missing
> (2, 3, x=1)
[1]1 4 5 # a double vector, y is @0, ... is 2, 3
> f(x=1, y=1)
[1] 2 # a double vector, y is 1, ... is missing
> f(x=1, z=1)
numeric(@) # a double vector of length @, y is NULL
> f(IL, 2L, y=1L)
[1] 4 # an integer vector, y is integer 1, ... is integer 2
> (1, y=c(1,2))
[11 1 2 # a double vetor, y is 1, 2, ... is missing

The above hints at polymorphism: f may return a vector of integers or of doubles of length equal
to the max length of its arguments.

3 ATYPE LANGUAGE FORR

In this section, we set out to propose a candidate design for a type language to describe the
signatures of R functions. The goal is not to propose a final design, but rather a starting point for
an iterative process.

Given the peculiarities of the language there are a number of design choices that need to be
reviewed and evaluated. It is not controversial to include types that cover the six kinds of primitive
vectors, furthermore environments and the distinguished null types are commonly used and must
be included. Environments are lists with reference semantics: mutating a value in an environment
is performed in-place. They are used to store variables and to escape from the copy-on-write
semantics of other data types. For simplicity, we omit some of the data types that closer to the
implementation of the language. Fig. 2 presents our type language.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 181. Publication date: November 2020.



Designing Types for R, Empirically 181:5

T 2= any top type A == T argumdentts
|  null null type I ot
env environment type vV oou= vector types
vp S[I vp
| S scalar type |  *S[] na vector types
v vec.tor type S == int integer
| TI|T union type h haract
| T nullable type : :b; ¢ erjsz;:
| (A1,... Ap) > T function type | 1gl logical
| list(T) list type | clx complex
| class({IDi,... IDy) class type | raw raw

Fig. 2. The R type language

Scalar. While R does not have scalar data types, there are cases where functions expect scalar
values, for example a conditional takes a single logical and will complain if more values are passed.
We considered tracking dimensions of data structures, but decided against it. Instead, the type
language differentiates between vectors of lenght 1 and vectors of any dimension. The primitive
types can be either vectors (e.g., int[]) or scalars (e.g., int). A vector can happen to be of length
1, which we handle with subtyping, shown later. Vectors are monomorphic, a vector of doubles
contains only doubles.

Missing. Each primitive type has its specific NA. Many built-in functions, especially those imple-
mented in C or Fortran, do not support NA values. It is thus advantageous to distinguish between
vectors that can and cannot contain missing values. In our experience, functions that expect scalar
values tend to not admit NAs, thus scalar types are treated as being NA-free. The type language
allows one to write “int[] to specify that a vector of integers may have NAs and int[] to say that
a vector must not have missing values. The type raw does not allow NAs, so “raw[] is NA-free. R
does not provide a built-in type testing mechanism, e.g., for the case of NA-free data types, it is
necessary to scan vectors to find out if they have missing values.

Nullable. The null type is inhabited by a singleton NULL value often used as a sentinel. Unlike in
some other lanugage, NULL is not the default value of uninitialized variables. R has different notion
for that (which we do not cover here). To capture common uses of NULL, the type language has a
nullable type, written ? T. Values of this type can be either values of type T or NULL.

Lists. Heterogeneous collections are implemented using lists. Lists and vectors are closely related:
a vector converts to a list with as.list, and lists to vectors with unlist (coercions may ensue).
The type language allows one to specify that a value is a list containing element of some type T,
written 1ist(T). R does not have built-in type tests for this purpose, to establish the type of a value
requires traversal and checking individual elements.

Class. R has three objects systems, code-named S3, S4 and R5. All of them operate by adding a
class attribute to values. The most widely used system by far is S3, which supports single dispatch
and multiple classes [Morandat et al. 2012]. The challenge from a type system point of view is
that a value (such as an integer 5L) could be attributed with a class. Code that performs dispatch
would use the class attribute while code that does not would view the value as an integer. The type
language focuses on the attribute, and will hide the underlying type of the value. While this seems
to match common usage, it does represent a loss of expressiveness. The type language also focuses
on S3, and we leave the other object systems for future work. S3 has no notion of inheritance, each
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value has a list of classes. The type language thus allows to write class(IDy,...,ID,) to denote
values tagged with the class names ID; to ID,,.

Union. We support untagged unions of types written Ty | ... | T,,. The elements of unions are not
disjoint, e.g., 1L is both an int, a int[] and a *int[].

Function. Functions signatures the form (A1, ...,A,) — T where each A; argument is either a
type T or dots (. . .), a variable length argument list. Moreover, a single function’s signature can be
the disjunction of a number of individual signatures.

Overall, the choice of type language follows the structure of values. The presence of NA-free data
types and scalars are two choices that must be validated in practice. Note that nullable types are
really just a special case of unions (i.e., ? T is shorthand for T | NULL).

3.1 Subtyping

R does not support the notion of subtyping between values, but we include a few simple rules in
our framework to capture widespread coercion. The conversions between primitive types give us a
starting point (e.g., an int is always accepted where a dbl is expected). Furthermore, the types
introduced above induce some the rules of Figure 3: an NA-free vector is a subtype of its NA-ful
equivalent, a value of type T is a subtype of a nullable T, a list is subtype of another list if their
elements are subtypes, and a scalar is a subtype of a vector of the same primitive type.

S[1 < *SI[]
T < ?T
list(T) <: list(T") iff T<T’
S < S[1
lgl <: int
int <: dbl
dbl <: clx

Fig. 3. Subtyping

3.2 Synthesizing Signatures

Later in this paper, we will introduce a tool to synthesize function type signatures from running R
code, wherein each invocation of a function will generate a trace representing the types of function
arguments and returns. These traces will be combined into an overall arrow type for the function,
and in order to keep these signatures compact we compact the traces into a single top-level arrow
with unions at each argument position. Thus, the shape of function signatures will be:

T T Toa | Tn) = T | | Tk

In other words, we take the union of the types occurring at individual argument positions rather
than an union of function types. Furthermore, we apply some transformation on the types to keep
the size of types in check. Figure 4 overviews the main simplification rules we adopted.

Assuming that type sequences can be reordered freely, we rewrite types to minimize their size
by removing redundant types, types that are subsumed by subtyping, immutable lists, and replace
null types with nullables. Higher-order functions are conservatively treated as any — any.

It is noteworthy that by performing this compaction we are losing precision, and the synthesized
signatures will suggest combinations of argument types that were not observed.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 181. Publication date: November 2020.



Designing Types for R, Empirically 181:7

TI T = T
T T = T ifT <: T

list(T) | list(T") = list(T) ifT <: T

null | Si[]] ...Sull = “Silll ... Sall

Fig. 4. Simplification rules

4 ANALYSIS AND INSTRUMENTATION PIPELINE

For this paper, we have built tooling to (a) automate the extraction of raw type signatures from
execution traces, (b) infer type signatures from a set of raw types, and (c) validate the inferred
signatures by the means of contracts. Figure 5 shows an overview of this pipeline. This section
gives details of the main steps. The pipeline is run using GNU parallel [Tange et al. 2011] on Intel
Xeon 6140, 2.30GHz with 72 cores and 256GB of RAM.

Duration: 1h : 24! i 10h : 5h ; 5h

Extract package

: metadata :
Create CRAN - code size Extract

Infer

function type Validate inferred

mirror , - code coverage , raw type traces elanatures signatures
- reverse dependencies 9
code coverage
Packages: | 15K : 412 : 412 : 412 : running: 8,694
Code size: | 31.6M : 1.3M : running: 385K : N/A : running: 19.6M

Size: i package: 8 GB E packages: 1 GB i traces: 604 GB E types: 5SMB E N/A

Fig. 5. The Analysis Pipeline; I metadata has to be extracted for all CRAN packages.

4.1 Types from Traces

We implemented Typetracer, an automated tool for extracting types from execution traces of R
programs. The goal of this tool is to output a tuple (f, t1,.. ., t,, t) for each function call during
the execution of a program, where f is an identifier for a function, t; are type-level summaries of
the arguments and ¢ is a summary of the return value.

While seemingly simple, the details and their proverbial devil are surprisingly tricky to get right
at scale. Our implementation reuses R-dyntrace, an open source dynamic analysis framework for
R [Goel and Vitek 2019] which consists of an instrumented R Virtual Machine based on GNU-R
version 3.5.0. The framework exposes hooks in the interpreter to which user defined callbacks can
be attached. These hooks include function entry and exit, method dispatch for the S3 and S4 object
systems, the longjumps used by the interpreter to implement non-local exit, creation and forcing
of promises, variable definition, value creation, mutation and garbage collection.

Types. The type information output by the tool includes the type tag of each value. Internal types
are translated to names in the proposed type language. The next bit of information is the class,
an optional list of names that may be absent, and, in some cases, is implicit (i.e. the interpreter
blesses some values with the matrix and array classes even without attributes). Depending on
a value’s type, the tool collects further information: (a) for vectors, the presence of NA values, (b)
for lists, element types by a recursive traversal, and (c) for promises, an approximation of the
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expression type. To obtain these types, we make use of R’s C FFI and use low-level machinery to
collect information from the R run-time. Types are completed during post-processing, and rely on
the detailed information made available by these reflection mechanisms.

Promises. The fact that arguments are lazy (expressions are packed into promises and only
evaluated on first access) complicates information gathering. For example, some promises may
remain unevaluated, and it would be erroneous to force them as they may side-effect and change
program behavior. To deal with unevaluated arguments, we make an initial guess for each argument
at function entry and update the recorded type if the promise is forced.

Missing Arguments. Parameters which receive no values when the function is called are termed
missing (not to be confused with NA). This occurs when a function is called with too few arguments
and no default values are specified for those missing arguments. We record a missing type for
such arguments. There are two obvious ways to deal with missing arguments: type them as any or
type them as some unit type. We conservatively type them as any.

Non-local Returns. When a function exits with a longjump, there is no return value to speak of.
To ensure call traces are valid when a longjump occurs, we intercept the unwinding process and
record a special jumped return type for function returns that are skipped. As we cannot be sure of
the intended return value, these jumped values become any types.

Dots. Arguments that are part of a dots parameter (denoted . . .) are ignored. We do not attempt
to give dots a type.

Implementation Details. We primarily rely on eight callbacks: closure_entry, closure_exit,
builtin_entry, builtin_exit, special_entry, special_exit, promise_force_entry, and fi-
nally promise_force_exit. The function-related callbacks are used mainly for bookkeeping: the
analysis is notified that a construct has been entered by pushing the call onto a stack. The calls
themselves store a trace object that holds the type information. As R can perform single or multiple
dispatch on function arguments depending on their class, the relevant information is kept by the
_entry variants.

4.2 Checking Signatures with Contracts

One can validate a function’s type signature by checking that it is respected in all programs that
call the function. For this, we developed ContractR, an R package that decorates functions with
assertions. We use it to insert type checking code around functions. For speed, ContractR’s primary
logic is implemented in C++. It has been tested with GNU R-3.5.0 and hardened with a battery
of 400 test cases. An invocation of library(contractr) causes contracts to be injected. ContractR
scans all packages in the workspace and inserts contracts in functions for which type signatures are
available. Package load hooks are executed when new packages are loaded. ContractR automatically
removes contracts from all functions and restores them to their original state when it is unloaded.
The type signatures can be provided in an external file, thus avoiding the need to change the source
code of checked packages. Type declarations can also be written in comments using Roxygen2
annotations, using the @type tag:

#' @type <chr> => int
#' Q@export
file_size <- function(f) { ... }

The injected contracts check arguments with a simple tag check when possible. Some properties
require traversing data structures, such as the absence of NA. For union types, multiple checks may
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be needed, at worst one per member of the union. In order to retain the non-strict semantics of
R, the expression held in a promise is wrapped in a call to the type checker, and type checking
is delayed until the promise is forced. This leads to corner cases such that the type checking of a
function may happen after that function has returned. Return values require care as well. Functions
return the last expression they evaluate, thus a callback is added to the exit hook. Another wrinkle
is due to longjumps which causes active function calls on the stack to be discarded. When they are
discarded, their exit hooks are called but they do not have a return value to type-check. ContractR
deals with this problem by allocating a unique sentinel object which serves as the return value for
calls that are discarded. The exit hook does not call the type-checker if it see the sentinel.

5 PROJECT CORPUS

Our aim is to gather data with which we can validate our type language design. To that end, we
propose an experiment wherein we use Typetracer to synthesize types for some core corpus of
packages, and validate those types by using ContractR and installing contracts on core corpus
functions and running the client code of this corpus.

For this paper we have selected 412 packages consisting of 760.6K lines of R code and 534.4K
lines of native code (C/Fortran). Figure 6 shows these packages: the size of the dots reflects the
project’s size in lines of code including both R and native code?, the x-axis indicates the expression
code coverage as a percentage and the y-axis gives the number of reverse dependencies in on log
scale. Dotted lines indicate means. Packages with over 5K lines of code are annotated.
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Fig. 6. Corpus
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These packages come from the Comprehensive R Archive Network (CRAN?®), the largest reposi-
tory of R code with over 15.4K packages® containing over 19.6M and 12.2M lines of R and native
code respectively. Unlike other open code repositories such as GitHub, CRAN is a curated repository
where each submitted package must abide by a number of well-formedness rules that are auto-
matically checked to assess package quality. Notably, CRAN packages must have a set of runnable
example, test, and vignette code which showcase package functionality. The code is run by CRAN,
and only a successfully running package is admitted to the archive.

We have downloaded and installed all available CRAN packages. Out of the 15.4K packages, we
managed to install 13.5K. The main reason for this is that R-dyntrace (and, by extension, Typetracer)
is based on GNU-R 3.5.0 and some of the packages are not compatible with this version. Some
packages also require extra native dependencies which were not present on our servers.

We defined two criteria for including a package into the corpus: (1) the package must have
runnable code that covers a significant part of the package source code from which type signatures
could be inferred, and (2) the package must have some reverse dependencies that will allow us
to evaluate the inferred types, using the runnable code from these dependencies. The concrete
thresholds used were: at least 65% of expression coverage and at minimum 5 reverse dependencies.
The code coverage was computed for each package using Covr’, the R code coverage R tool. The
reverse package dependencies were extracted from the package metadata using built-in functions.

The 412 selected packages contain 385.8K lines of runnable code in examples (98.9K), tests (258K)
and vignettes (28.9K). Running this code results on average in 80.8% package code coverage (the
average for all of CRAN is 65.6%). Together, there is 18.8K (on average 45.5, median 12; CRAN
average is 12.8, median 2) reverse dependencies with 11.2M runnable lines of code resulting in
45.9% coverage (on average) of the corpus packages. Together there are 38.2K defined R functions
(17.4K are from the packages’ public APIs). 11.8K are S3 functions, either S3 generics or S3 methods.
Packages in the corpus define 81 S3 classes.

User Code. To represent end-user code in the corpus, we turned to Kaggle, an online platform for
data science and machine learning. The website allows people to share data science competitions and
data analysis problems together with data for which users try to find the best solution (something
like a repository of hackathon or datathon code). The solutions, called kernels, are then posted
on Kaggle either as plain scripts or as notebooks. One of the most popular competitions is about
predicting passenger survival on Titanic® with 2,890 kernels in R (over 1/4 of all available R kernels)
which we used for our corpus.

Unlike CRAN, Kaggle is not a curated repository and therefore there are no guarantees about
the quality of the code. After downloading all of the 2,890 kernels and extracting the R code from
the various formats,” we found that 1,079 were whole-file duplicates (37.3%). From the resulting
1,811 kernels, 1,019 failed to execute. Next to various runtime exceptions, common problems were
missing libraries (no longer available for R 3.5), parse errors, and misspelled package names. The
final set contains 792 kernels with 33.7K lines of R code. The Kaggle kernels are used for additional
validation of the inferred types.

Type Usage. During execution, 3,147 different types were observed. Classes are the most common
types, accounting for roughly 31% of types of arguments. The most common classes are matrices
(12%), data. frames (7.5%), formulas (2%), factors (2%), and tibbles (2%). Roughly 25% of classes are

Shttp://cran.r-project.org

4CRAN receives about 6 new package submissions a day [Ligges [n. d.]]
Shttps://github.com/r-lib/covr

Shttps://www.kaggle.com/c/titanic

"We use rmarkdown to convert from notebooks to R.
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part of R’s base libraries, the others are user-defined. Scalars and vectors are the next most common
kind, making up 41% of remaining types. with scalars making up 28% of types and vectors 12%.
Nulls and lists follow at 8% and 7% respectively, and the vararg type makes up 6% of arguments.
This all totals up to over 90% of types. Table 1 reports on the 10 most frequent types occurring in
the corpus. The first row of the table reads: the dbl type occurs in 12,298 (11.24%) argument types,
and accounts for over 12 million (20.3%) of the types observed by Typetracer’s dynamic analysis.

Table 1. Top types of arguments in R

Type Args % of Args Observations % of Obs.
dbl 12,298 11.24 12,152,787 20.3
1gl 9,366 8.7 6,650,294 11.1
null 8,799 8.0 2,187,611 3.7
chr 8,727 8.0 2,564,207 4.3
dbl[] 7,190 6.6 4,934,773 8.2
ce 6,611 6.0 6,075,874 10.1
any 6,120 5.6 339,299 0.6
chr[] 4,325 4.0 1,060,466 1.8
class({matrix) 4,152 3.8 2,805,718 4.7
class(data.frame) 2,608 2.4 352,655 0.6

6 EVALUATION

We ran Typetracer on the test, example, and vignette code of the aforementioned corpus of 412
packages and successfully inferred types for 25,215 functions. Table 2 illustrates the process with
ten representative signatures. Many of the features of our type language are represented here, and
some signatures are telling of the function’s behavior. For example, consider decrypt_envelope:
the first three parameters of the function are byte arrays, and the fourth argument is an RSA
key, used to decrypt some of the inputs, and the output of the function is another byte array. As
another example, consider Traverse: according to the function documentation, it takes the root
of a tree and traverses it in an order specified by the second argument. We see that reflected in
the type, where the first argument has type class(Node, R6) and the second argument had type
chr[1], representing the traversal order.

Table 2. Select Type Signatures

Function Type Signature

dplyr::group_indices (class(data.frame),...) — int[]

moments: :all.cumulants (class(matrix) | dbl[]) — class(matrix) | dbl[]
diptest::dip (dbl[],chr | 1gl,1gl,dbl) — class{dip) | dbl
stabledist::cospi2 (dbl[]) — dbl[]

matrixcalc::matrix.power (class({matrix),dbl) — class(matrix)
data.tree::Traverse (class(Node,R6), chr[], any, any) — list(any)
openssl: :decrypt_envelope ( raw[], raw[], raw[], class(key, rsa),any) — raw[]
dbplyr::set_win_current_group (7 chr[]) — 7 chr[]

openssl: :sha256 (raw[],? raw[]) — raw[]

forecast::initparam (7dbl, any, any, any, chr, chr, 1gl, dbl[], dbl[], any) — dbl]]
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This section attempts to evaluate how well the proposed type language is able to describe the
actual type signatures of functions. For this we focus on how often there is a single type for a
particular argument; this is because union types and any are less accurate (and would likely require
a more refined notion of subtyping or parametric polymorphism). Then, we evaluate how robust
the inferred signatures are by checking that they remain valid for other inputs. Lastly, we try to
see if the current proposal would be useful to programmers by allowing them to remove ad hoc
checks and providing useful documentation.

6.1 Expressiveness

The first part of our evaluation attempts to shed light on how good a fit our proposed type language
is with respect to common programming patterns occurring in widely used R libraries.
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Fig. 7. Size of unions

First we look at the share of monomorphic arguments and function signatures. Monomorphic
in this context means that the type is not relying on any or including a union. The import of
monomorphism in this context is that it means our type language can accurately capture an
argument’s type or a function’s signature. We get to that number in two steps. Fig. 7 shows the
number of inferred argument types and their size (in terms of members of the union). The figure
shows that most functions do not require a union at all (83.1% of arguments do not have a union),
and only 2.5% of positions have unions with more than three members.

Table 3. Singleton Type Categories

Types Parameter # % Cumulative %
scalar 35064 33.33 33.33
class 24256 23.06 56.39
vector 13025 12.38 68.77
9142  8.69 77.46
null 7694  7.31 84.77
any 7614  7.24 92.01
list 3558  3.38 95.39
“vector 2923 2.78 98.17
function 1427  1.36 99.52
environment 500 0.48 100.00

Table 3 provides a breakdown of types occurring in arguments without a union. Scalar, class
and vector are the most common type categories. The shaded rows correspond to polymorphic
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types. When an argument’s type is inferred to be null, we say that the argument is polymorphic
due to a limitation in our analysis: In R, it is common for programmers to include default values
for arguments, and in many cases this value happens to be NULL. Our type analysis will report a
null type for these arguments if they are never passed a value during testing. We interpret these
instances of null as polymorphic to capture that we cannot be sure of the actual type.

Removing the aforementioned instances of polymorphism gives us 68.9 K (60.4%) monomorphic
positions in a corpus of 114 K parameters. With close to 60% of monomorphic argument or return
values, it is fair to say that even a simple type language provides significant benefits.

o
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Fig. 8. Function Polymorphism

If we look at the numbers from the point of view of functions and count how many of their
arguments are polymorphic, we observe that 58.0% (14.2 K) functions are monomorphic. The
remaining 42.0% (10.3 K) have at least one union or polymorphic parameter or return type. Figure 8
shows the distribution of functions against the number of polymorphic arguments. Finally, we
count that 38 out of the 412 packages export only monomorphic functions.

6.1.1 Discussion. A number of lessons can be drawn from the data we have gathered.

NAs. Our data supports making the presence of NAs explicit. Only 2923 (or 2.78%) of arguments
are marked as possibly having NAs, thus the overwhelming majority of types appear to be NA-free.
In practice, programmers check for them and sanitize them if they are present. Consider the binom
package for computing confidence intervals and its binom.profile function. This attached code
snippet highlights a data sanitization pattern: the programmer first binds the vectors into a matrix,
then finds rows where both columns are not NA, extracts non-NA values and stores them into x and
n respectively.

binom.profile <- function(x, n, conf.level=0.9, maxsteps=50, ...) {
xn <- cbind(x = x, n = n)
ok <- lis.na(xn[, 1]) & !is.na(xn[, 21)
x <- xn[ok, "x"]
n <- xn[ok, "n"]
# ...
}

Scalars. The data also suggests that programmers often use scalars, and do dimensionality
checks on their data. In our data 25,064 (or 33.33%) of the arguments are scalar types. While not
completely surprising, this is a rather large number. Consider the hankel.matrix function, it takes
two arguments and checks that n is int, that x is a vector, and also, indirectly, that n is a a scalar
(this comes from the fact that it is used in the guard of a conditional which fails if n is not a scalar).
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hankel.matrix <- function( n, x ) {
### n = a positive integer value for the order of the Hankel matrix
### x = an order 2 * n + 1 vector of numeric values
if ( n!= trunc( n ) ) stop( "argument n ix not an integer" )
if ( !is.vector( x ) ) stop( "argument x is not a vector" )
m <- length( x )
if ( m<n) stop( "length of argument x is less than n" )
# ...
}

Nullables. The number of argument which may be NULL is 5057 (or 4.44%). This is a relatively
small number of occurrences, but it is worth expressing the potential for the presence of NULL as
these would likely inhibit optimizations.

Higher-Order Functions. Typetracer assigns the type class(function) to function values. The
number of positions that receive a function (possibly as part of a union) is 1,705, which is just 1.51%
of all the positions for which we infer types. Given the small number of occurrences, it is not worth
complicating the inferred types with a complete signature for these functions.

Structs. While experimenting with various design, we consider adding a struct type to capture
lists with named elements that can be accessed with the $ operators. We ended up discarding those
types as they grew large and were often only representative of the example data being manipulated.
Consider function cv.model, its argument x is observed to be of class(aov, 1m) or class(1m).
Internally, linear models are represented as lists with named elements. The pollution is illustrated
by the lines after the function definition, where the data(sweetpotato) expression loads a sample
data set to test the function. The fields of sweetpotato will be recorded when cv.model is called.

cv.model <- function(x) {
suma2 <- sum(x$residual”2)
gl <- x$df.residual
promedio <- mean(x$fitted.values)
return(sqrt(suma2/gl)*100/promedio)
3

data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
cv.model (model)

Objects. While we record classes, our analysis does not deal with method dispatch. R has multiple
disparate object systems called S3, S4, and R5. The class attribute is used by these systems to
dispatch methods. S3 does single dispatch, S4 does multiple dispatch, and R5 supports imperative
objects. The mechanics of S4 dispatch are more complex than for S3, and users can define their own
class hierarchies that we would need to incorporate in our type analysis and contract checking
frameworks. We found limited use of S4 during our analysis. Coming up with a type system that
accounts for all of these factors and consolidates multiple object-orientation frameworks in a single
language design is an interesting problem in and of itself, one we leave for future work.

Matrices. Matrices are instances of the eponymous class, representing 10.71% of all classes
occurring in types. They have a dims attribute indicating dimensions, and while not codified in the
language semantics, many internal functions coerce vectors to matrices automatically. For example,
the rowWeightedMeans function calculates the weighted means of rows. The programmer added a
type check for x.
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rowWeightedMeans <- function(x, w=NULL, rows=NULL, cols=NULL, na.rm=FALSE, ...) {
if (lis.matrix(x)) .Defunct(msg = sprintf("'x' should be a matrix.)
# ...

3

Data Frames. One of the most popular classes in R is the data. frame class, making up 8.15% of
observed classes. Data frames and the derivative tibble and data. table types underpin much of
the idiomatic usage of R. One way to deal with data frames is through the struct type, with a named
field for each column of the data frame, but as mentioned previously structs introduced undue
noise. Further complicating data frames is that many functions built to operate on them operate
in a name-agnostic way. For instance, the tidyverse package ecosystem allows programmers to
pass column names to functions which operate on their data frames. In base R, typical data frame
use is to use string column names to select rows from the frame (unless only a single column
is of interest, wherein the $ syntax is appropriate). In sum, data frames are a popular class of R
values, and have spawned many derivative data types, such as tibbles and data tables. We include a
class(data.frame) type to cover most use-cases, and we leave a richer type for future work on a
full fledged object-oriented type system.

6.2 Robustness

We now ask how robust are the inferred types? To measure this, we conducted another large-scale
experiment: for each package in the corpus, using the inferred type signatures as contracts we ran
all of the CRAN reverse dependencies for that package. In total we ran 8,694 unique packages and
recorded 98,105,161 total assertions. Overall, we found that only 1.98% of contract assertions failed.
The limit on number of arguments (we record only 20) accounted for 0.07% failed assertions. We
found that 97.60% of parameter types and 87.70% of function types never failed. The number of
immaculate function types increases to 89.70% if we discount S3 object method dispatch. Overall,
these numbers are promising, and suggest that the type signatures are indeed robust.

We break down the failed assertions by type in Table 4. Accounting for 36.36% of assertion failures
are cases where a dbl[] is passed where a class{matrix) is expected. Considering these types, we
might imagine them to be compatible, as a vector is just a one-dimensional matrix. However, not
allowing this coercion was a deliberate design decision, as coercion of this kind is ad hoc at best,
and unfortunately not a practice codified in the language. For example, if the vector has length n,
should it be a 1 X n or n X 1 dimensional matrix?

In a similar vein, another popular failing assertion is checking if a dbl[] has type int[], another
case of commonly performed coercion. We did not include these types of coercions in our type
annotation framework as programmers cannot rely on them, and it is not always the case that the
coercions are safe to perform.

The second row of the table is exemplary of a pattern where vectors are passed when scalars are
expected. In these cases, the functions exhibiting these assertion failures were under-tested, and
can operate just as well on vectors of values. As an example, this failure occurred in functions from
the lubridate package which provides date/time functionality. Many functions, e.g., date_decimal
and make_datetime turn doubles into class(POSIXct,POSIXt) (which are dates in R), and they
can easily operate on vectors of doubles, producing lists of dates.

Finally, we point out that assertion failures of, e.g., class(data.frame) values being passed
to class(data.frame, tbl, tbl_df) arguments and class(xml_node) values being passed to an
argument expecting other XML-like classes are related to our simplified take on class types. Our
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Table 4. Top contract failures

Passed Arg Type Occurrences % Total ~ Cumul. %
dbl[] class(matrix) 705,036 36.36 36.36
dbl[] dbl 189,800 9.79 46.15
chr class(bignum) | raw[] 100,100 5.16 51.31
class(simpleError, error, condition) class(data.frame)|class(matrix) | 78,197 4.03 55.34
class(randomForest) | dbl[]
class(data.frame) class(data.frame, tbl, tbl_df) 58,809 3.03 58.37
class(matrix) class(timeSeries) 53,482 2.76 61.13
dbl[] int[] 33,350 1.72 62.85
dbl class(data.frame) 32261 1.66 64.52
dbl[] class(data.frame) 31361 1.62 66.13
class(xml_node) class(xml_document, xml_node) | 30,330 1.56 67.70

class(xml_missing) | class(xml_nodeset)

type language does not encode user-defined subtyping and coercion, which could help address
these mismatches.

In addition to the number of failed contract checks, we were interested in how many functions
had a parameter where a contract check failed, and overall we found this to be the case in 12.29%
of functions. To subdivide this number, we discounted functions that were performing S3 dispatch,
as they exhibit user-defined polymorphism which we do not handle. Removing those functions, we
see that the proportion of functions with failed contract checks falls to 10.30%. These remaining
functions were under-tested, as calls to these functions represent only 2.73% of recorded calls
during Typetracer’s run on the core corpus to infer types.

Turning our attention now to arguments, we found that only 2.40% of argument types failed.
Table 4 showed the runtime occurrences, but that data alone does not tell the full story, as some
failures may be overrepresented if, e.g., a failing contract assertion was in a loop. We were interested
in knowing for each of the most common violations in Table 4, how many different arguments
had that type, and how many of those exhibited the contract failure in question. Table 5 breaks
down the failed assertions by type, folding away multiple identical failed contract assertions for
the same parameter position. The first row of this table reads: a value of type db1[] was passed to
15 different function parameters expecting a class{matrix), of which there are 1522 in total: 18
(1.18%) of these class{matrix)-typed parameters were passed dbl[] values.

We see that even though the double vector and matrix issue was wildly prevalent in the dynamic
contract evaluation numbers, the number of actual function argument types that were violated
is very small. The story is similar with the double and integer coercion we mentioned earlier:
it represents many dynamic contract failures, but very few of the int[]-typed arguments have
their contracts violated by dbl[J-typed values. Row six is interesting: we see that rather often
arguments expecting class(timeSeries) data are passed class(matrix) values. These are all
from the timeSeries package, whose functions often accept matrices and vectors, converting them
to time series in an ad hoc manner. Note that the code coverage of the timeSeries tests, examples,
and vignettes package code is only 58%, which is one possible explanation for these contract failures:
the types that Typetracer generates are only as good as the test code its run on.

Table 6 presents data on the most frequently violated contracts amongst the most frequently
occurring argument types. We selected argument types which were in the 90th percentile of
argument type occurrences, computed the most frequent type signature violations among them,
and reported the most frequently violated contracts together with the type of the value that violated
that contract. The first row of the table reads: 31 function arguments with int[] type are passed
dbl[] values instead, and 624 arguments have int[] type, representing a failure rate of 4.97%.
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Table 5. Results from Table 4, broken down by occurrences of the expected type as a parameter type

# Arg Types
Passed Arg Type Failed Total % Failure
dbl[] class(matrix) 18 1522 1.18
dbl[] dbl 66 5865 1.13
chr class(bignum) | raw[] 1 3 33.33
class(simpleError, error, condition) class(data.frame) |class(matrix) | 2 2 100
class(randomForest) | dbl[]
class(data.frame) class(data.frame, tbl, tbl_df) 23 196 11.73
class(matrix) class(timeSeries) 21 39 53.85
dbl[] int[] 31 624 4.97
dbl class(data.frame) 2 1025 0.20
dbl[] class(data.frame) 6 1025 0.59
class(xml_node) class(xml_missing) | class(xml_nodeset) | 1 1 100

class(xml_document, xml_node)

Table 6. Highest failure rate among popular argument types, for argument signatures whose frequency is in
the 90th percentile.

Passed  Arg Type  # Args Failed # Args with Type % Failure

dbl[] int[] 31 624 4.97
dbl int 21 519 4.05
chr[] chr | null 10 256 391
*1gll] 1gl[] 8 219 3.65
~1gl 1gl[] 5 219 2.28

Table 7. Highest failure rate among popular argument types, for argument signatures whose frequency is in
the 80th percentile.

# Arg Types

Passed Arg Type Failed Total % Failure
class(matrix) class(timeSeries) 21 39 35.90
dbl[] class(timeSeries) 21 39 35.90
class(data.frame) class(timeSeries) 14 39 35.90
class(dtplyr_step_first, dtplyr_step) class(data.frame) | 10 45 22.22

class(data.frame, grouped_df, tbl, tbl_df) |

class(data.frame, tbl, tbl_df)
chr raw 6 31 19.35

Had we failed to capture some key usage pattern of R with our type annotation framework,
we would likely see it here. For example, consider Table 7, which was obtained identically to
Table 6 except selecting arguments in the 80th percentile instead. The most frequent argument
type violation pattern in that of class{matrix), dbl[], and class(data.frame) values passed to
arguments expecting class(timeSeries). This occurs in 35.90% of such arguments, and represents
cases where tests did not adequately cover all valid function inputs. Separate from the issue of
testing, we can capture this behavior with user-defined subtyping or coercion, as the data types
which were passed are readily convertible to class(timeSeries).

In sum, we believe that this evaluation shows that the type signatures we generate from traces
are quite good. Only 1.98% of contract assertions failed at runtime, representing failures in as
few as 2.40% of argument types. Even though 10.30% of functions had at least one argument type
involved in a failing contract check, these functions are under-tested, representing only 2.73% of
calls observed while inferring types.
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6.2.1 Other Observations. We drew a number of other observations from the contract assertion
failure data.

First, we were curious about how many null-typed values flowed into non-nullable arguments,
and we found that they accounted for 6.46% of contract assertion failures in 141 functions. We
manually inspected some of the offending functions and observed three main patterns.

First, we found that many of these errors occurred in arguments that have a NULL default value.
This would be the case when the programmer only tested the function by passing values to these
null-by-default arguments, and clients of the package make use of the default. As an example, we
observed a contract assertion failure when inner and labels were NULL in the following function:

nlme: :nfGroupedData <- function (formula, data = NULL, order.groups = TRUE,
FUN = function(x) max(x, na.rm = TRUE), outer = NULL, inner = NULL,
labels = NULL, units = NULL) {
# ...

b

The other two patterns are for arguments with no default value, where either the call results in
an error (perhaps explicitly handled by the programmer), or results in valid function behavior that
was untested by the original package designer. Here, the first case can be explained by a lack of
testing, and the second case is explained by programmers not fully understanding R’s language
semantics. For example, we observed this kind of error in the following function:

BBmisc: :convertIntegers <- function (x) {
if (is.integer(x))
return(x)
if (length(x) == OL || (is.atomic(x) && all(is.na(x))))
return(as.integer(x))
# ...

b

Here, if x is NULL, the second branch of the conditional will be triggered (as in R, length(NULL) == @),
and the function will return as.integer(NULL), which curiously returns integer(0), a zero-length
vector of integers (one might expect it to return the integer NA value, or error).

Next, we analyzed how often vectors were passed to arguments expecting scalars. We found that
12.73% of dynamic contract assertion failures were of this type, and these errors were present in
114 functions. Besides an outright error, this kind of contract assertion failure might indicate that a
function was not well-tested, in that it was only ever tested with unit-length vectors being passed
to an argument which is intended to have a vector type. Further, these errors may reveal functions
that were not designed with a vector-typed argument in mind, but can in fact handle vectors of
values (in R, most functions that can accept scalars can also accept vectors). As an example, consider
the function BBmisc: : strrepeat, which takes a string and repeats it a specified number of times:

BBmisc: :strrepeat <- function (x, n, sep = "") {
paste@(rep.int(x, n), collapse = sep)
}

BBmisc: :strrepeat("a", 3) # => "aaa"
BBmisc: :strrepeat(c("a", "b"), 3) # => "ababab"

This function was only ever tested with unit-length vectors passed to x, even though technically
it can handle longer vectors, as per the two sample calls above. This could be attributed to poor
quality testing, or misunderstanding language semantics (e.g., misunderstanding the semantics of
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paste@ and rep.int), but we found other instances of type errors where the functions really ought
to have been tested with the offending type, for instance:

combinat: :permn <- function (x, fun = NULL, ...) {
if (is.numeric(x) && length(x) == 1 & x > 0@ && trunc(x) == x)
x <- seq(x)
# ...
3

As per the documentation, this function is intended to take a vector, and generate all permutations
of elements in that vector. If given a scalar integer n, it will generate all permutations for the list
[1,2, ..., n]. Interestingly, the function was only tested by passing an integer, and not ever with a
vector (even though, presumably, that is the main utility of the function).

Finally, we were curious to see what patterns of errors occurred in arguments expecting classes.
Overall we found that 81.44% of assertion failures were on arguments which were expecting a class
in some way (51.13% of assertion failures were on monomorphic arguments expecting a class, the
remainder on polymorphic arguments with at least one option being a class).

There are two broad divisions which account for most of the class-related contract asser-
tion failures that are not outright errors. First, we observe a class of errors related to classes
being passed to arguments expecting a different, yet convertible class. For instance, we observed
class(data.frame) values being passed to arguments expecting tibbles or data.tables (data frames
have a straightforward conversion to these classes). Second, we observe a class of errors related
more to coercion between simple data types and classes. As an example, consider the aforemen-
tioned assertion failures in the timeSeries package, and as a further example we found many
instances of class(matrix), class(data.frame), and vectors being passed to arguments expect-
ing class(array), a generalization of matrices.

6.2.2 Kaggle. To further validate our inferred types, we repeated the experiment discussed in this
section on end-user R code found on the Kaggle competition website.

By-and-large, this evaluation did not reveal any new insights, with the contract assertion failure
patterns being repeated from the reverse dependencies. Overall, we observed that 2.14% of all
contract assertions failed while running Kaggle code. If we remove assertion failures related to our
simplifying assumption that function types will not have more than 20 arguments, that number
drops to a mere 0.42%. In all, 15.98% functions had at least one contract failure. There were 19,038,496
assertions in total, on 970 functions.

Table 8. Top contract failures in Kaggle kernels

Passed Arg Type Occurrences % Total ~ Cumulative %

class(data.table, data.frame) class(matrix) 20002 28.15 28.15

class(factor) ~chr[] 18344 25.81 53.96

class(factor) chr[] 7519 10.58 64.54

chr[] list(int[]) | .. | 5385 7.58 72.12
list(class(formula, quosure))

class(ixforeach, iter) class(dataframeiter, iter) | .. | 4139 5.82 77.94

class(iforeach, iter)

To mirror our analysis of contract assertions on the reverse dependencies of our corpus, we
show in Table 8 the most frequently failing contract in Kaggle. While we don’t see many overlap-
ping entries per se, the assertions exhibit similar patterns. For instance, data tables (which have
class(data.table, data.frame)) are often passed to arguments expecting a class(matrix). Data
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Table 9. Highest failure rate among popular argument types in Kaggle, for argument signatures whose
frequency is in the 90th percentile.

Passed Arg Type # Args Failed # Args with Type % Failure
chr[] chr 12 304 0.04
class(factor) chr[] 7 199 0.04
dbl[] chr[] 6 199 0.03
*chr[] chr[] 4 199 0.02
int chr 5 304 0.02

tables are essentially serve the same purpose as data frames and tibbles. As it happens, data tables
can be coerced to matrices if their elements are unityped, and programmers will often interchange
the two, as is the case here. One function producing many of these errors is the following:

class::knn <- function (train, test, cl, k =1, 1 = @, prob = FALSE, use.all = TRUE) {
train <- as.matrix(train)
test <- as.matrix(test)

}

We see that class: :knn coerces its first two arguments to matrices. On the topic of coercion, rows
two and three of Table are interesting as they depict factors being passed to arguments expecting
character vectors. class(factor) typed values are known as factors in R, and they are stored as a
vector of integer values corresponding to a set of character values, and their purpose is to allow
for R to quickly deal with categorized data. Factors can be readily converted to characters when
needed, as evidenced by these assertion failures.

Another interesting entry in Table 8 is the fifth row, where a class(ixforeach, iter) is being
passed to an argument expecting a long union of classes, each of the form class(_, iter). This
is likely an instance where the user defined their own class, ixforeach, and wanted to use the
iterators package (the user called iterator::iter with a class(ixforeach), and it gained the
class iter on return). As mentioned, accounting for object-orientation in the type system is beyond
the scope of this work, and such an inclusion would allow us to better type situations like this.

Table 9 mirrors Table 6 in showing contract violations on the most frequently occurring argument
types. Here, our manual analysis has revealed similar failure patterns. In the case of vectors being
passed to scalars, we find functions which can take vectors but were only tested with scalars (e.g.,
stringr::str_to_upper which converts a vector of characters to upper case, and dplyr::anti_join,
which can join by a vector of column names but was only ever tested with a scalar). We also see
possibly-NA character vectors being passed to NA-free character vectors. These assertion failures
arise from a lack of testing: the offending functions are str_trim, str_sub, and str_replace_all
from the stringr package. These functions are actually wrappers for other functions which have
the correct argument type (* chr[]).

6.2.3 Discussion. Overall, the analysis discussed in this section has revealed two broad categories
of contract assertion failures: those related to coercion, and those related to a class hierarchy. Our
type system does not account for coercion as coercion in R is ad hoc at best, and it is implemented on
a function-by-function basis, even in the core R packages. As for errors related to a class hierarchy,
we aim to tackle this in future work, as designing a full fledged object-oriented type system for a
language like R is outside of the scope of this work.
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6.3 Usefulness of the Type Checking Framework

There are a number of ways to check the types of function parameters in R. The default and most
common way?® is to use the stopifnot function from the R base package. It takes a number of R
expressions which should all evaluate to TRUE, otherwise a runtime exception is thrown with a
message quoting the failed expression. For example, the following code checks whether a given
parameter x is a scalar string:

stopifnot(is.character(x), length(x) == 1L, !is.na(x))

Beyond stopifnot, there are 4 packages in CRAN? that focus on runtime assertions: assertive,
ensurer, assertr, and assertthat. assertive and ensurer have not been updated since 2016 and 2015
respectively, and assertr is used by only 2 other packages and currently focuses on checking
properties of data frames. Only assertthat is maintained and used (with 211 reverse dependencies).
The advantage of assertthat over the R default is that it provides much better error messages.

One way to assess the usefulness of our type checking framework is to see how many existing
user-defined type checks can be replaced by ContractR. To measure this, we extracted all calls to
stopifnot and assertthat assertions, and checked which among them could either be completely
replaced by ContractR, or at least partially simplified by removing a portion of an assertion
expression. Partial simplification is useful, as a common pattern in this ad hoc type checking is that
the first part of the assertion checks the value’s type, while the rest checks more detailed properties.
In the example above, the whole expression could be replaced by a chr type check.

Out of the 412 packages, 153 use runtime assertions. Altogether, there are 1,995 assertions in 1,264
functions. Among these, ContractR can replace 1,005 (50.4%) assertion calls across 114 packages and
688 functions. Furthermore, an additional 1,223 (61.3%) asserts in 125 packages and 859 functions
could have been simplified.

Checking the type of function parameters is not something that is seen often in the R code. In
the whole of CRAN, there are only 32.3K asserts in 15.9K functions defined in 2.4K packages. One
may speculate that this is the case due to the verbosity and inconvenience of the existing assertion
tools. Our system can infer type annotations for existing functions automatically. This can remove
or partially remove over 61.3% of existing assertions.

7 DISCUSSION

Throughout this paper, we employed the following strategy to consolidate types: We collected all
of the traces observed for a function, and combined them into a single function type, where the
type for each argument position was made up of a union of all the observed types at that position.
We then simplified these unions using the rules presented in Section 4. We call this an arrow of
unions. We will elaborate on some of the design decisions that went into developing this method.

Arguably, the primary issue with the arrow of unions strategy is that of a loss of precision,
as relationships between argument and return types can be obscured. For example, consider a
function with two unique call traces, (chr) — chr and (dbl) — dbl. The arrow of union strategy
results in a combined type of (chr | dbl) — chr | dbl for the function, which hides the (potential)
relationship between the argument and return type.

One solution to this is simply to convert each call trace into an arrow type, and generate a union
of arrow types as the overall type for the function, dubbed the basic union of arrows strategy. This
would lead to the type (chr) — chr | (dbl) — dbl for the aforementioned function. Unfortunately,
this leads to a significant blow-up in the size of types, and makes many types unreadable due to the

887.6% of all runtime checks in the whole of CRAN
9Packages are available on the CRAN website: https://cran.r-project.org/web/packages/
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myriad ways in which we combine the primitive types, as recall that, e.g., scalars and vectors are not
the same type, and we see many types of the form (chr) — dbl | (chr[]) — dbl | ("chr[]) — dbl.
When comparing this consolidation strategy against the one employed throughout the paper, we
find that the types using this strategy are much larger, with 14,057 (55.06%) functions having at
least one top-level union. We observed 93,229 independent arrow types using this strategy.

Another option is to employ a hybrid approach, wherein we perform the union of arrow types
after grouping them together by return type (to further simplify, we also combine some primitive
return types together, such as dbl and db1[]). While this has the advantage of reducing most of the
blow-up of the previous approach, it suffers particularly when functions return classes, as our type
system does not allow us to effectively consolidate class types. This strategy would reduce arrow
types {(chr) — dbl, {(chr[]) — dbl, and ("chr[]) — dbl into the function type (chr[]) — dbl.
Comparing again to the strategy employed throughout the paper, we find 5,317 (20.82%) functions
to have a union of arrows, and we found 38,650 independent arrow types. We additionally find that
38,650 (26.14%) of arrow types have at least one polymorphic argument.

These findings are summarized in Figure 9, which shows a breakdown of the number of top-
level alternatives in the function types obtained with both of these strategies: The term “top-level
alternative” signifies an arrow type in the union of arrows, e.g., (chr) — chr and (dbl) — dbl are
top-level alternatives in the type (chr) — chr | (dbl) — dbl. We see that the hybrid approach
greatly increases the number of functions with no union of arrows at the function level, where 92%
of functions only have one or two top-level alternatives. Also, nearly 5% of function types obtained
with the basic union of arrows strategy have over 9 top-level alternatives.

-80%

20K+

15K+ -60%
)
_5 Merge Strategy
E 10K+ -40% Basic
Z Hybrid
3+

5K |:h -20%
04 [L[LELI:I—D—I:I_I:I_[L -0%
i 2 3 4 5 6 7 8 9 9

# Top-level alternatives

Fig. 9. Comparison of top-level function type counts across different merge strategies.

To connect this discussion with actual R types, we show what the types of the correlation
function from the agricolae would be when using each of these strategies. agricolae: : correlation
obtains the coefficients of correlation and p-value between all variables of some input data table,
using a method of the user’s choosing. It returns the correlation matrix and the p-value (a double)
together in a list. We refer the reader to Figure 10, where we see that the hybrid approach produces
a much smaller type, with only two arrow types in the top-level union. Moreover, we see that no
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real precision is lost when further reducing the function type to a pure arrow of unions, as the two
top-level alternatives in the type obtained with the hybrid approach are not very informative.

Table 10. Types of agricolae: :correlation with different type merge strategies.

Merge Strategy ~ Function Type

Union of Arrows (dbl[], dbl1[], chr,chr) — null |
(int[],dbl[], chr,chr) — null|
(class(data.frame), null, chr[],chr) — list(class(matrix) | dbl) |
(class(data.frame), null, chr,chr) — list(class(matrix) | dbl) |
(dbl[], class(data.frame), chr[],chr) — list(class(matrix) | dbl) |
(dbl[], class(data.frame), chr,chr) — list(class(matrix) | dbl)

Hybrid (dbl[], dbl[], chr,chr) — null |
(class(data.frame) | dbl[],? class(data.frame), chr[],chr) — list(class(matrix) | dbl)

Arrow of Unions (class(data.frame) | dbl[],? dbl[] | class(data.frame), chr[],chr) — ? list(class(matrix) | dbl)

In contrast, there are real cases where a meaningful loss of precision occurs. Consider instead
the rename function from the dplyr package, with types shown in Figure 11. This function takes a
data frame and renames selected columns. We see that the types are the same with both the union
of arrows and hybrid approach (with only three unique function signatures observed), and can
glean from these types that dplyr: :rename produces a data frame of the same class as the input.
This information is lost in the arrow-of-unions merge strategy. That said, once the type language is
extend with proper user-defined type hierarchies, the arrow of unions type will be much smaller
and more informative (as data frames, grouped tibbles, and tibbles are all related types).

Table 11. Types of dplyr: :rename with different type merge strategies.

Merge Strategy ~ Function Type

Union of Arrows (class(data.frame),...) — class(data.frame) |
(class(data.frame, grouped_df,tbl, tbl_df),...) — class(data.frame, grouped_df,tbl, tbl_df) |
(class(data.frame, tbl,tbl_df),...) — class(data.frame, tbl, tbl_df)

Hybrid (class(data.frame),...) — class(data.frame) |
(class(data.frame, grouped_df, tbl, tbl_df),...) — class(data.frame, grouped_df, tbl, tbl_df) |
(class(data.frame, tbl,tbl_df),...) — class(data.frame, tbl,tbl_df)

Arrow of Unions (class(data.frame) | class(data.frame, tbl, tbl_df) | class(data.frame, grouped_ df,tbl, tbl_df),...) —
class(data.frame) | class(data.frame, tbl, tbl_df) | class(data.frame, grouped_df, tbl,tbl_df)

Finally, we want to briefly discuss types for base package functions (in R, functions like +, -, and
vector access are part of the base package). These functions coerce mismatched arguments in an ad
hoc manner, with no real defined semantics. Further, functions like + often act on values based on
their type (according to typeof), and ignore the class, unless a package extended + to dispatch on
the class. This leads to incredibly large inferred signatures for these functions. Even after counting
out traces related to S3 and S4 dispatch, the type of + using the hybrid approach has 29 top-level
alternatives, 22 of which have a class-typed argument. We don’t believe this type to be particularly
useful to a programmer, but a compiler might find it quite useful, as it can determine the type of
the return value of a function given the types of its arguments.

8 CONCLUSION

Retrofitting a type system for the interactive and exploratory programming style of R is hard:
The language is poorly specified and builds upon an eclectic mix of features such as laziness,
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reflection, dynamic evaluation and ad-hoc object systems. Our intent is to eventually propose a
type system for inclusion in the language, but we are aware that for any changes to be accepted by
the community, they must have clear benefits without endangering backwards compatibility. As
a step towards this, we focus on a simpler problem: instead of an entire type system, we limited
the scope of our investigation to ascribing types to function signatures. To this end, we designed a
simple type language which found a compromise between simplicity and usefulness by focusing on
the most widely used features of R. We presented Typetracer, a tool for inferring types for function
signatures from runnable code, and ContractR, an easy-to-use package for R which allows users to
specify function type signatures and have function arguments checked for compliance at runtime.

We evaluated our design by running Typetracer on a corpus of 412 of the most widely used
R packages on CRAN, inferring signatures for exported functions, and testing those inferred
signatures on the 8,694 reverse dependencies of the corpus. Overall, we found that our simple
design fits quite well with the existing language: Nearly 80% of functions are either monomorphic
or have only one single polymorphic argument. When we tested the types inferred by Typetracer
during our evaluation, we found that only 1.98% of contract assertions failed. Furthermore, we
found that our type language and contract checking framework would be useful to programmers,
eliminate or otherwise simplify 61.3% of existing type checks and assertions in user code. In sum,
we believe that our simple type language design is a solid foundation for the eventual type system
for R.
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