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Abstract
A pseudo-edge graph of a convex polyhedron K is a 3-connected embedded graph
in K whose vertices coincide with those of K , whose edges are distance minimiz-
ing geodesics, and whose faces are convex. We construct a convex polyhedron K in
Euclidean 3-spacewith a pseudo-edge graphwith respect towhich K is not unfoldable.
The proof is based on a result of Pogorelov on convex caps with prescribed curvature,
and an unfoldability obstruction for almost flat convex caps due to Tarasov. Our exam-
ple, which has 340 vertices, significantly simplifies an earlier construction by Tarasov,
and confirms that Dürer’s conjecture does not hold for pseudo-edge unfoldings.

Keywords Edge unfolding · Dürer conjecture · Almost flat convex cap · Prescribed
curvature · Weighted spanning forest · Pseudo-edge graph · Isometric embedding
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1 Introduction

By a convex polyhedron in this work we mean the boundary of the convex hull of
finitely many points in Euclidean space R3 which do not all lie in a plane. A well-
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Fig. 1

known conjecture [8], attributed to the Renaissance painter Albrecht Dürer [9], states
that every convex polyhedron K is unfoldable, i.e., it may be cut along some spanning
tree of its edges and isometrically embedded into the plane R2. Here we study a
generalizationof this problem topseudo-edgesof K , i.e., distanceminimizinggeodesic
segments in K connecting pairs of its vertices (see Fig. 1 for an example of a pseudo-
edge which is not an actual edge). A pseudo-edge graph E of K is a 3-connected
embedded graph composed of pseudo-edges of K , with the same vertices as those
of K , and with faces which are convex in K , i.e., the interior angles of each face
of E are less than π . Cutting K along any spanning tree T of E yields a simply
connected compact surface KT which admits an isometric immersion or unfolding
uT : KT → R2. If uT is one-to-one for some T , then we say that K is unfoldablewith
respect to E . The main result of this paper is as follows:

Theorem 1.1 There exists a convex polyhedron K with 340 vertices and a pseudo-edge
graph with respect to which K is not unfoldable.

Thus one may say that Dürer’s conjecture does not hold in a purely intrinsic sense,
since it is not possible to distinguish a pseudo-edge from an actual edge by means of
local measurements within K . On the other hand, by Alexandrov’s isometric embed-
ding theorem [1], any convex polyhedron is determined up to a rigid motion by its
intrinsic metric. So edges do indeed exist intrinsically, although Alexandrov’s proof
is not constructive and does not specify their location. A more constructive approach
has been studied by Bobenko and Izmestiev [4] but that too does not yield a simple
characterization for the edges. In short, the edges of convex polyhedra are not well
understood from the point of view of isometric embeddings, and, in light of the above
theorem, it would now be even more remarkable if the conjecture holds.

Theorem 1.1, for a polyhedron with over 19,000 vertices, was first announced in
2008 in a highly original and hitherto unpublished manuscript by Alexey Tarasov
[24]. Although we do not understand all the details in that construction, since it is very
complex, we can confirm that Tarasov’s key ideas were correct, and utilize these in
this work. These notions, which will be described below, include the obstruction for
unfoldability of almost flat convex caps in Sect. 3, and the double spiral configuration
in Sect. 5.

The polyhedron K in Theorem 1.1 is obtained by arranging four congruent almost
flat convex caps over the faces of a regular tetrahedron. These caps have 84 interior
vertices eachwith prescribed curvature andprojection. They are constructed via a result
of Pogorelov on convex caps with prescribed curvature as we describe in Sect. 2. In
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Sect. 3 we study the pseudo-edges induced on a convex cap C by the edge graph G
of convex subdivisions of the polygon at the base of C . Then in Sect. 4 we describe a
necessary condition, due to Tarasov, for unfoldability ofC in terms of spanning forests
ofG. Next in Sect. 5 we construct a convex subdivision of an equilateral triangle which
satisfies Tarasov’s criterion. Consequently, sufficiently flat convex caps constructed
over this subdivision fail to be unfoldable with respect to the induced pseudo-edge
graph. Finally in Sect. 6 we assemble four such caps to construct K .

Our construction differs from Tarasov’s in the following respects. First, we use only
two spiral paths, as opposed to three, in the subdivision of the equilateral triangle men-
tioned above. Second, our double spiral configuration in the center of the triangle uses
far fewer vertices and thus is more transparent. Third, the corresponding convex caps
we construct have planar boundaries due to our use of Pogorelov’s theoremmentioned
above, whereas Tarasov applies instead a related result of Alexandrov for unbounded
polyhedrawhich does not yield precise control at the boundary of the cap. Fourth, since
our caps have planar boundaries, we require only four copies of them to assemble our
polyhedron, whereas Tarasov employs many more in a complex configuration.

The edge unfolding problem for convex polyhedra was first explicitly formulated
by Shephard [23] in 1975, and since then has been advertised in several sources, e.g.,
[6,8,12,16,20,26]. The conjecture that the answer is yes, i.e., all convex polyhedra are
unfoldable, appears to be first stated by Grünbaum [13] in 1991. The earliest known
examples of unfoldings of convex polyhedra were drawn by Dürer [9] in 1525, all
of which were nonoverlapping. Hence the unfolding problem or conjecture are often
associatedwith his name. Formore background, references, and a positive recent result
see [11] where it is shown that every convex polyhedron becomes unfoldable after
an affine transformation. See also O’Rourke [17,18] for other recent positive results
concerning unfoldability of certain convex caps. As far as we know, Theorem 1.1 is
the first hard evidence against Dürer’s conjecture.

2 Convex Caps with Prescribed Boundary and Curvature

A (polyhedral) convex cap C ⊂ R3 is a topological disk which lies on a convex
polyhedron and whose boundary ∂C lies in a plane H , while its interior C \ ∂C is
disjoint from H . The normal cone Np(C) of C at an interior point p is the convex
cone generated by all outward normal vectors to support planes of C at p. The unit
normal cone N p(C) is the collection of unit vectors in Np(C). The curvature of C at
p is defined as

κ(p) = κC (p) := σ(N p(C)),

where σ denotes the area measure in the unit sphere S2. Let π : R3 → R2 denote the
projection into the first two coordinates. A set X ⊂ R3 is a terrain over R2 provided
that π is one-to-one on X , and X ⊂ R2 × [0,∞). A convex polygon P is the convex
hull of finitelymany points inR2 which do not all lie on a line.We say that a convex cap
C is over P provided that C is a terrain overR2 and ∂C = ∂P . We need the following
result of Pogorelov [21, Lem. 1, p. 65], see also Pak’s lecture notes [20, Thm. 35.7].
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Lemma 2.1 (Pogorelov [21]). Let P be a convex polygon, pi , i = 1, . . . , n, be points
in the interior of P, and βi > 0 with

∑
i βi < 2π . Then there exists a unique convex

cap C over P with interior vertices vi such that π(vi ) = pi , and κ(vi ) = βi .

A convex subdivision of a convex polygon P is a subdivision of P into finitelymany
convex polygons each of whose vertices either lies in the interior of P or coincides
with a vertex of P (we assume that the interior angles of P at all its vertices are less
than π ). If G is the (edge) graph of a convex subdivision of P , then by an interior
vertex pi of G we mean a vertex of G which lies in the interior of P . We assume that
the angles of incident edges of G at pi are all less than π . We say that G is weighted
if to each of its interior vertices there is associated a number αi > 0 with

∑
i αi = 1.

Let the total curvature κ(C) of a convex cap C be the sum of the curvatures of its
interior vertices. Lemma 2.1 immediately yields:

Corollary 2.2 Let P be a convex polygon, and G be the weighted graph of a convex
subdivision of P, with interior vertices pi and weights αi . Then for any 0 < β < 2π
there exists a convex cap Cβ over P with interior vertices vi such that π(vi ) = pi and
κ(vi ) = βi := αiβ. In particular κ(Cβ) = β.

3 Pseudo-Edge Unfoldings of Almost Flat Convex Caps

In this section we fix P , G, and αi to be as in Corollary 2.2, and aim to study the
corresponding convex capsCβ for small β. In particular we will show thatG gives rise
to a unique pseudo-edge graph G ofCβ (Proposition 3.4) and study the corresponding
unfoldings of Cβ in relation to P (Proposition 3.5).

3.1 The Induced Pseudo-Edge Graph of Cˇ

First we check that as β → 0, Cβ → P . More precisely, if dβ denotes the intrinsic
distance in Cβ , then we have:

Lemma 3.1 As β → 0, dβ(x, y) → |π(x) − π(y)|, for all x, y ∈ Cβ .

Proof As β → 0, the maximum height of Cβ goes to zero. If not, there exists a
sequence βk → 0 such that the maximum height of Ck := Cβk is bounded below by
h > 0. So, after refining the subsequence Ck further, we may assume that for some
i , the height of the vertex vki of Ck which projects onto pi is bounded below by h.
Let o be the point of height h above pi , and C ′ be the convex cap formed by line
segments connecting o to points of ∂P . Since C ′ lies below Ck , every support plane
of C ′ at an interior vertex is parallel to a support plane of Ck at an interior vertex. So
κ(Ck) ≥ κ(C ′) > 0, which is the desired contradiction since κ(Ck) = βk → 0.

Now let L be the line segment connecting π(x), π(y), and L be the corresponding
curve in Cβ connecting x , y, such that π(L) = L . Then dβ(x, y) ≤ length(L). But
L is the graph of a convex function over L which converges to 0. Thus length(L) →
length(L) = |π(x)−π(y)|. So the limit of dβ(x, y) is not bigger than |π(x)−π(y)|.
On the other hand dβ(x, y) ≥ |x− y| ≥ |π(x)−π(y)|. So dβ(x, y) → |π(x)−π(y)|.


�
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A polyhedral disk D is a topological disk composed of a finite number of convex
polygons identified along their edges. We say that D is flat if the total angle at each of
its interior vertices is 2π . An isometric immersion f : D → R2 is a locally one-to-one
continuous map which preserves distances between points on each face of D. If f is
one-to-one everywhere, then we say that it is an isometric embedding.

Lemma 3.2 Let D be a flat polyhedral disk. Suppose that the total angle at each of
the boundary vertices of D is less than 2π . Then there exists an isometric immersion
D → R2.

Proof The angle condition along ∂D ensures that each point of D has a neighborhood
which may be isometrically embedded intoR2. Since D is simply connected, a family
of these local maps may be joined to produce the desired global map, e.g., see the
proof of [10, Lem. 2.2] for further details. 
�

By a geodesic in Cβ we mean the image of a continuous map γ : [a, b] → Cβ such
that length[γ ] = dβ(γ (a), γ (b)). For any set X ⊂ R2, and r > 0, Ur (X) denotes the
(open) set of points in R2 which are within a distance < r of X . Further we set

δ := min dist(pi p j , pk) (1)

where pi , p j range over all pairs of adjacent vertices of G, so pi p j indicates an edge
of G (viewed as a line segment in R2), and pk ranges over vertices different from pi
and p j . Hence δ > 0. By sufficiently small, or simply small, throughout this work we
mean all nonzero values smaller than some positive constant. More explicitly, we say
that some property holds for β sufficiently small, provided that there exists a constant
β0 > 0 such that the property holds for all 0 < β ≤ β0.

Lemma 3.3 If β is sufficiently small, then to each edge e of G there corresponds
a unique geodesic e of Cβ whose end points project into the endpoints of e, and
π(e) ⊂ Uδ(e).

Proof Let x , y ∈ Cβ be points which project into the end points of e, and 
 be a
geodesic inCβ connecting x and y. By Lemma 3.1, length(
) → |π(x)−π(y)|. Thus,
for 0 < β ≤ β0(e), π(
) ⊂ Uδ(e). We claim that 
 is unique. To this end suppose,
towards a contradiction, that there exists another geodesic 
′ in Cβ connecting x and
y, which is different from 
. Then again we have π(
′) ⊂ Uδ(e), since by definition
our geodesics are length minimizing, and so length(
′) = dβ(x, y) = length(
). Let
V ⊂ Cβ be the region with π(V ) = Uδ(e). Then 
, 
′ ⊂ V . Since 
 �= 
′ and V
is simply connected, there exists a simply connected domain D ⊂ V bounded by a
pair of subsegments 
0 and 
′

0 of 
 and 
′ respectively. Note that, by our choice of
δ, see (1), V does not contain any vertices of Cβ other than x and y. Thus D does not
contain any vertices in its interior. So D admits an isometric immersion f : D → R2

by Lemma 3.2. But, since isometries preserve geodesics, f maps 
0 and 
′
0 to straight

line segments (which have the same end points). Hence f (
0) = f (
′
0). In particular

f is not locally injective at the points of ∂D where 
0 and 
′
0 meet, which is the

desired contradiction. So 
 is indeed unique. Finally, setting 0 < β ≤ min β0(e), as
e ranges over all edges of G, completes the proof. 
�
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A convex polygon X in Cβ is a region bounded by a simple closed curve composed
of a finite number of geodesics meeting at angles which are less than π with respect
to the interior of X . A convex subdivision of Cβ is a subdivision into finitely many
convex polygons whose interiors contain no vertices of Cβ , and whose vertices are
vertices of Cβ . A pseudo-edge graph of Cβ is the edge graph of a convex subdivision.
By Lemma 3.3, for β sufficiently small, there exists a unique pseudo-edge graph G of
Cβ such that π(G) ⊂ Uδ(G). Let GT be the (canonical) triangulation of G given by
connecting the center of mass of each nontriangular face of G to its vertices. Again by
Lemma 3.3, there exists a unique triangulation GT of G such that π(GT ) ⊂ Uδ(GT )

and the vertices of GT project onto the vertices of GT . For any triangle � of GT , let
� be the triangle of GT whose vertices project onto the vertices of �. We will refer
to � simply as a triangle of G, and call � the corresponding triangle of G. Note that,
by Lemma 3.2, there exists an isometric embedding u� : � → R2 for each triangle
� of G.

Proposition 3.4 For β sufficiently small, there exists a canonical homeomorphism
f : P → Cβ such that (i) f is the identity on ∂P, (ii) f (G) = G, and (iii) u� ◦ f is
an affine map on each triangle � of G. Furthermore, f converges to the identity map
on P as β → 0.

Proof For any vertex p of GT let f (p) := π−1(p) ∩ Cβ . We define a mapping
g� : � → �′ := u�(�) as follows. For any x ∈ �, let (x1, x2, x3) be the barycentric
coordinates of x with respect to the vertices v1, v2, v3 of �. Let g�(x) be the point
of �′ whose barycentric coordinates with respect to the vertices v′

i := u� ◦ π−1(vi )

of �′ are (x1, x2, x3). Finally set f (x) := u−1
� (g�(x)), where � is a triangle of GT

which contains x . Since Cβ converges to P , as β → 0, it follows that f converges to
the identity map on P . 
�

3.2 Cut Forests and Unfoldings of Cˇ

A tree is a connected graph without cycles. A subgraph F of G is called a cut forest if
(i) F is a collection of disjoint trees which contain all the vertices of G in the interior
of P , and (ii) each tree of F contains exactly one vertex of ∂P; see the middle diagram
in Fig. 2. By Lemma 3.3, to each cut forest F of G there corresponds a unique cut
forest F of G, assuming β is small. Let Cβ,F be the surface obtained from Cβ by
cutting it along F , i.e., take the disjoint collection of the faces of G and glue them
together pairwise along all their common edges which do not belong to F .

By Lemma 3.2 there exists an isometric immersion, or unfolding map u : Cβ,F →
R2. We assume that u fixes a designated edge e0 of ∂Cβ , and locally maps Cβ,F to
the same side of e0 where P lies. Let cov : Cβ,F → Cβ be the natural covering map
which sends each face of Cβ,F to the corresponding face of Cβ , and f : P → Cβ be
the homeomorphism given by Proposition 3.4. Then

ψ := u ◦ cov−1 ◦ f (2)
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P

G F

C ′
β, F

Fig. 2

is a multivalued mapping P → C ′
β,F := u(Cβ,F ). Since f converges to the identity

map on P , it follows that ψ also converges to the identity on P as β → 0. Note that
ψ is single valued on P \ F and is one-to-one on the interior of each face 
 of G. But
ψ is doubly valued for points in the interior of each edge of F (where a cut occurs).
Furthermore, if x is a vertex of F , then the cardinality of ψ(x) is equal to the degree
of x in F (see Fig. 2). For any point x ∈ P , we set

x ′ := ψ(x).

So x ′ in general indicates a set of points, not a single point. Whenever we state that x ′
satisfies some property, we mean that each element of x ′ satisfies that property.

Note thatψ induces a natural single-valuedmapψ
 on each face
 ofG as follows.
Let 
′ indicate the face of C ′

β,F corresponding to 
, i.e., the closure of ψ(int(
)).
Then we obtain a homeomorphism ψ
 between 
 and 
′, by setting ψ
 := ψ on
int(
) and extending the map continuously to the boundary of 
. For any x ∈ 
, let

x ′

 := ψ
(x)

denote the corresponding (single) point of 
′. Since ψ converges to the identity on P ,
it follows that, as β → 0, x ′


 → x for all faces
 ofG which contain x . In other words,
ψ
 converges pointwise to the identity map id
 on 
. Thus, as ψ
 is continuous and

 is compact, we conclude that

ψ
 → id
 uniformly as β → 0 (3)

for all faces 
 of G. Next note that for every point x in the interior of a triangle � of

 we have

ψ
(x) = ψ(x) = u ◦ cov−1 ◦ f (x) = u ◦ f (x) = u� ◦ f (x).

Also recall that, by Proposition 3.4, u� ◦ f is an affine map. Thus

ψ
 is an affine map on each triangle � ⊂ 
. (4)

These properties of ψ
 yield that:
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Proposition 3.5 For every ε > 0, there exists β0(ε) > 0 such that for all 0 < β ≤
β0(ε), x ∈ P, and faces 
 of G which contain x,

|x − x ′

| ≤ ε. (5)

Furthermore, for any pair of points x, y which both lie in the same triangle � ⊂ 
,

|(x − y) − (x ′

 − y′


)| ≤ ε|x − y|. (6)

Proof The inequality (5) follows immediately from (3). To see (6), note that by (4)
ψ
 may be extended to an affine mapping from R2 to R2, and thus be written as �+ c
for a linear transformation � : R2 → R2 and some fixed vector c ∈ R2. Thus

x ′

 − y′


 = ψ
(x) − ψ
(y) = �(x − y).

If x = y, (6) already holds. Otherwise, we may set z := (x − y)/|x − y| and divide
the left hand side of (6) by |x − y| to obtain

|(x − y) − (x ′

 − y′


)|
|x − y| =

∣
∣
∣
∣
x − y

|x − y| − �

(
x − y

|x − y|
)∣

∣
∣
∣ = |z − �(z)|.

Finally note that sinceψ
 → id
, �must converge to the identitymap on any compact
subset of R2. In particular, we may choose β0(ε) so small that |z − �(z)| ≤ ε for all
unit vectors z ∈ S1, which completes the proof. 
�

4 Tarasov’s Monotonicity Condition

As in the last section, let P be a convex polygon, G be the graph of a fixed convex
subdivision of P with weights αi , and Cβ be the corresponding convex cap over P
given by Corollary 2.2. Here we describe Tarasov’s obstruction for unfoldability of
Cβ with respect to the induced pseudo-edge graph G given by Proposition 3.4.

By an edge of G wemean the line segment connecting a pair of adjacent vertices of
G, and a point of G is any point of an edge of G. We say a pair of points are adjacent
if they belong to the same edge. A path 
 in G is a sequence of points, each adjacent
to the next, all of which are vertices except possibly the initial point. We say that 


is simple if the sequence of line segments determined by its consecutive points forms
a non-self-intersecting curve. If F is a cut forest of G, then each point p of F may
be joined to ∂P with a unique simple path 
p in F , which we call the ancestral path
of p. This induces a partial ordering on points of F as follows: we write y � x , for
x , y ∈ F and say that y is a descendant of x or x is an ancestor of y, if x ∈ 
y . In
particular note that x � x . If y � x and x �= y then we say y is a strict descendant of
x , or x is a strict ancestor of y, and write x � y. Furthermore, we adopt the following
convention: for any x ∈ F , we write i � x provided that pi � x , where pi denote the
vertices of G.
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Fig. 3

pi

p∗
i

ci

For any point x ∈ G, we define the center of rotation of x as the center of mass of
its descendant vertices with respect to the weights αi :

cx := α−1
x

∑

i�x

αi pi , where αx :=
∑

i�x

αi .

Roughly speaking, cx is the limit, as β → 0, of the pivot point about which x rotates
(in different directions) to generate (the elements of) x ′ defined in the last section (see
Note 4.3).

Every interior vertex pi of G has a unique adjacent vertex p∗
i in F which is its

parent or first strict ancestor which is a vertex. We also refer to pi as a child of p∗
i .

A cut forest F of G is called monotone (in the sense of Tarasov), if for every interior
vertex pi of G we have

〈p∗
i − pi , pi − ci 〉 ≥ 0, where ci := cpi . (7)

In other words, p∗
i must lie in the set 〈x − pi , pi − ci 〉 ≥ 0, which forms a half-plane

when ci �= pi ; see Fig. 3. So, if ci �= pi and 0 ≤ �p∗
i pi ci ≤ π denotes the angle

between the vectors p∗
i − pi and ci − pi , then we have

�p∗
i pi ci ≥ π/2. (8)

In particular, every parent must be further away from the center of rotation of its child
than the child is:

|p∗
i − ci | > |pi − ci |. (9)

Hence the term “monotone”. Note that (8) is equivalent to (7) whenever ci �= pi ;
however, (9) is a strictly weaker notion. Below we will primarily use the form (8) of
the monotonicity condition. Some other notions of monotonicity have been studied
recently by O’Rourke [17,18], and Lubiw and O’Rourke [15] for cut forests of convex
polyhedral disks. One of these notions, called radial monotonicity, will be invoked in
Sect. 5.2 below as it is somewhat related to (8). See [11] for yet another monotonicity
notion in the context of unfoldings.

Recall that C ′
β,F is the image of the unfolding map u : Cβ,F → R2. We say that

C ′
β,F is simple, if and only if u is injective. IfC ′

β,F is simple for some cut forest F ofG,

we say that Cβ is unfoldable with respect to G. If G admits no monotone cut forests,
then we say that G is non-monotone. The rest of this section is devoted to establishing
the following result which parallels [24, Thm. 1]. Recall that by sufficiently small
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S1

S2

S3
p1

p2

p3 U ′′

x ′
L x ′

R

U

�� ′

xx ′′
2,L x ′′

2,R

p′′
1

p′′
2

p′′
3

β1

β2

β3

Fig. 4

throughout the paper, as we stated in Sect. 3, we mean for all values smaller than some
constant.

Theorem 4.1 If G is non-monotone, then Cβ is not unfoldable with respect to G, for
β sufficiently small.

We prove the above theorem via the same general approach indicated in [24],
although we correct a number of errors or ambiguities, provide more details, and
make many simplifications. Fix a cut forest F of G. If x ∈ F is not a vertex, x ′
consists of precisely two elements: x ′

R and x ′
L defined as follows. Orient the edge e of

F containing x from the child to the parent vertex. Then we can distinguish the faces

R , 
L of G which lie to the right and left of e respectively. We set

x ′
R := x ′


R
and x ′

L := x ′

L

.

Let J be the π/2-clockwise rotation about the origin of R2, and set

c̃x := x + J (x ′
R − x ′

L)

βx
, where βx := αxβ =

∑

i�x

βi . (10)

The next observation parallels [24, Lem. 1].

Lemma 4.2 For every x ∈ F, c̃x → cx , as β → 0.

Proof Let Fx := {y ∈ F | y � x}, and 
 be a polygonal Jordan curve in P which
encloses Fx and intersects F only at x ; see the left diagram in Fig. 4. Then
′ := ψ(
)

is a polygonal path connecting x ′
R and x ′

L . Let U be the region bounded by 
 which
contains Fx , and Si ⊂ U be simple polygonal paths which connect each pi � x to x
without intersecting each other and
; see themiddle diagram in Fig. 4.We are going to
reindex Si and pi as follows.Letσ be a circle centered at x with sufficiently small radius
so that it intersects 
 only twice, and each Si only once. Orient σ counterclockwise,
reindex Si , from i = 1, . . . , k, in order that they intersect σ ∩U , and then reindex pi
accordingly.

Now let S := ⋃
i Si be the resulting spanning tree for vertices ofU . Then S := f (S)

is a tree on U := f (U ). Let US denote the topological disk obtained by cutting U
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along S, covS : US → U be the corresponding covering map, uS : US → R2 be an
unfolding given by Lemma 3.2, and define the multivalued mapping θ : U → R2 by

θ := uS ◦ cov−1
S ◦ f .

Comparing this definition with that of ψ given by (2) shows that 
′′ := θ(
) is
congruent to 
′ := ψ(
). Indeed 
′, 
′′ are determined, up to a translation, by the
edge lengths of 
 and its interior angles with respect to U . So we may assume that

′′ = 
′ (by choosing uS appropriately, or composing it with an isometry ofR2 which
caries 
′′ to 
′). Now note that θ converges to the identity map on U , just as ψ does
by Proposition 3.5. Thus, if we set x ′′ := θ(x), then x ′′ → x , as β → 0.

Each pi inU has a single image p′′
i under θ , while there are two images of x under

θ corresponding to each Si , which are denoted by x ′′
i,L and x ′′

i,R ; see the right diagram
in Fig. 4. These may be defined similar to the way we defined x ′

L and x ′
R , by extending

S to a triangulation of U . We claim that

c̃x = α−1
x

∑

i�x

αi p̃i , where p̃i := x + J (x ′′
i,R − x ′′

i,L)

βi
. (11)

Indeed, since
′′ = 
′, and due to our reindexing of Si , we have x ′
L = x ′′

1,L , x
′
R = x ′′

k,R ,

and x ′′
i,R = x ′′

i+1,L , for 1 ≤ i ≤ k − 1. Thus, since βi = βαi = βxα
−1
x αi ,

x ′
R − x ′

L =
∑

i�x

(x ′′
i,R − x ′′

i,L) =
∑

i�x

βi J (x − p̃i )

= J

(

βx x −
∑

i�x

βi p̃i

)

= βx J (x − c̃x ).

Applying J to the far left and right sides of the last expression yields (11). Next note
that, since �x ′′

i,L p
′′
i x

′′
i,R = βi , elementary trigonometry yields that

p′′
i = x ′′

i,M + J (x ′′
i,R − x ′′

i,L)

2 tan(βi/2)
, where x ′′

i,M = x ′′
i,L + x ′′

i,R

2
;

see Fig. 5. Thus we have

p̃i − pi = (x ′′
i,M − p′′

i )(1 − 2 tan(βi/2)/βi ) + (x − x ′′
i,M ) + (p′′

i − pi ).

Since the right hand side vanishes, asβ → 0, it follows that p̃i → pi , and consequently
c̃x → cx as desired. 
�

Note 4.3 Let Rp,θ : R2 → R2 denote the clockwise rotation about the point p by the
angle θ . As we discussed in the proof of Lemma 4.2, x ′′

i,R = Rp′′
i ,βi

(x ′′
i,L). So, since

p′′
i → pi , as β → 0,
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Fig. 5

p′′
i

βi

x ′′
i,L

x ′′
i,R

x ′′
i,M

S′′
i,R

S′′
i,L

x ′
R = Rp′′

1 ,β1
◦ · · · ◦ Rp′′

k ,βk
(x ′

L) → Rp1,β1 ◦ · · · ◦ Rpk ,βk (x
′
L) = Rpx ,θx (x

′
L),

for some px ∈ R2 and θx ∈ [0, 2π). It is known that [19, Lem. 1], as β → 0,
θ → ∑k

i=1 βi = ∑
i�x βi = βx , and

px → β−1
x

k∑

i=1

βi pi = α−1
x

∑

i�x

αi pi = cx .

So cx is the limit of the cumulative pivot point of descendant vertices of x , which is
the justification for the term “center of rotation”. See also [5] for a study of unfoldings
of flat regions of convex polyhedra.

Proof of Theorem 4.1 Fix a cut forest F of G. Then there exists an interior vertex pi
of G which does not satisfy (7) and will be fixed henceforth. Let 
R and 
L be faces
of G which lie to the right and left of the oriented edge pi p∗

i respectively, see Fig. 6.
We will show that, for β sufficiently small (i.e. 0 < β ≤ β0(F)), a point of 
′

R lies
in the interior of 
′

L . So C ′
β,F is not simple. Since G admits only finitely many cut

forests, this will complete the proof (once we let β be smaller than the minimum value
of β0(F) as F ranges over all cut forests of G). To start, fix λ > 0 so small that

〈
p∗
i − pi , pi − ci

〉 ≤ −λ|p∗
i − pi |. (12)

Let x be an interior point of pi p∗
i such that

|x − pi | ≤ λ/2, (13)

and note that x does not depend on β. Next set

y := x + βx J (x − cx ), r := βxλ/2,

and let D be the disk of radius r centered at y. We will show that for β small:
|y′ − x ′

R | < r , and D ⊂ 
L . Thus x ′
R ∈ int(D′) ⊂ int(
′

L), as desired.
By the triangle inequality,

|y′ − x ′
R | ≤ |(x ′

R − x ′
L) − (y − x)| + |(y − x) − (y′ − x ′

L)|.
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Fig. 6

pi

p∗
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pi p∗
i

x

y
D

cx
�L

�R

By Lemma 4.2 we may choose β so small that |̃cx − cx | < λ/4. Then, by (10),

|(x ′
R − x ′

L) − (y − x)| = |βx J (x − c̃x ) − βx J (x − cx )| = βx |̃cx − cx | < βxλ/4.

Set η := diam(P). Note that, as x lies in the interior of pi p∗
i , we may choose β so

small that y lies in the triangle� of
L which rests on pi p∗
i . Thus, by Proposition 3.5,

we can make sure that

|(y − x) − (y′ − x ′
L)| ≤ (λ/(4η))|y − x | = (λ/(4η))βx |x − cx | ≤ βxλ/4,

since cx ∈ P and therefore |x − cx | ≤ η. The last three displayed expressions yield
that |y′ − x ′

R | < βxλ/2 = r , as claimed.
As β → 0, we have y → x and r → 0. Thus, for β small, D ⊂ 
R ∪ 
L . Since y

lies on the left side of the oriented line pi p∗
i passing through pi and p∗

i , it follows that
y ∈ 
L . So it remains to check that dist(y, pi p∗

i ) ≥ r . By definition, cx = cpi = ci .
Thus, by (12) and (13),

〈x − cx , p
∗
i − pi 〉 = 〈x − pi , p

∗
i − pi 〉 + 〈pi − ci , p

∗
i − pi 〉 ≤ −(λ/2)|p∗

i − pi |.

So

cos(�cx xp
∗
i ) = −〈x − cx , p∗

i − pi 〉
|x − cx ||p∗

i − pi | ≥ λ/2

|x − cx | = βxλ/2

βx |x − cx | = r

|y − x | ,

which yields dist(y, pi p∗
i ) = sin(�yxp∗

i )|y − x | = cos(�cx xp∗
i )|y − x | ≥ r , and

completes the proof. 
�

5 A Non-Monotone Convex Subdivision of the Equilateral Triangle

A convex subdivision of a convex polygon is weighted if the corresponding graph
G is weighted, as defined in Sect. 3. Further the subdivision, or its graph G, is non-
monotone provided that G admits no monotone cut forests, as defined in Sect. 4. In
this section we show:
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Fig. 7 a

cb

Theorem 5.1 The equilateral triangle admits a non-monotone weighted convex sub-
division with 84 interior vertices.

Earlier Tarasov [24] had constructed a non-monotone subdivision of the equilateral
triangle with over 500 vertices. Here we simplify that construction as follows.

5.1 Coordinates andWeights

The edge graph G of our subdivision is illustrated in Fig. 7, and a larger depiction
of the subgraph of G spanned by its vertices in the interior of the triangle appears
in Fig. 8. We call this subgraph the square. We assume that the triangle has vertices
a := (0, 140

√
3 − 85), b := (−140,−85), and c := (140,−85). The square is

symmetric with respect to reflection through o := (0, 0) and has 84 vertices. We label
half of these vertices by pi , i = 1, . . . , 42, as shown in Fig. 8. The coordinates of these
points are listed in Table 1, as well as in an accompanyingMathematica notebook [2]
that we have provided. The other vertices of the square are the reflection of pi , and
will be denoted by p−i := −pi . We assume that p±1 have equal weights, and the
weights of all other vertices are arbitrarily small.

5.2 Main Properties

As in [17], we say a path 
 = (v1, . . . , vn) of G is radially monotone with respect to
a point x provided that

�(vi+1, vi , x) ≥ π/2 (14)

for i = 1, . . . , n − 1. We say a path in G is maximal if it ends on the boundary of G.
Our subdivision has been designed so that it has two important features, as expressed
in the following lemmas and illustrated in Fig. 10.
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Lemma 5.2 Let 
 be a path in G which originates at p1 and is radially monotone with
respect to p1. Then 
 must be a subpath of

(p1, p�, p�+1, . . . , p21, p22, p−24, p24, p25, p26, p28, p29, p30, p−42, p−41, q),

(15)
where � = 2, 10, or 15, and q is a vertex of the triangle.

Proof The only vertices of G which are adjacent to p1 are p�, where � = 2, 10, or 15;
see the left diagram in Fig. 9. Thus the second vertex of 
 must be p�. Suppose that
� = 2. Other than p1, the only vertices adjacent to p2 are p18 and p3. One quickly
checks that �(p3, p2, p1) ≥ π/2 while �(p18, p2, p1) < π/2. Thus p3 (or p�+1) is
the only choice for the next vertex of 
. Similarly, to complete the proof, it suffices to
check that, if we denote the vertices of the proposed path (15) by vi , i = 1, . . . , n, then
vi+1 is the only vertex w adjacent to vi such that �(w, vi , p1) ≥ π/2. Finally, once
the path reaches a vertex of the triangle, then it cannot be extended further, since the
angles of the triangle are all obtuse. We omit the computations since they are trivial,
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Table 1

1 : (25.5,0) 2 : (23.1,−0.1) 3 : (23.1,−1.1) 4 : (23.3,−2.1) 5 : (23.9,−2.9)

6 : (24.7,−3.5) 7 : (25.6,−3.9) 8 : (26.6,−4.1) 9 : (27.6,−4) 10: (28.5,−3.7)

11 : (29.4,−3.2) 12 : (30.2,−2.6) 13 : (30.8,−1.8) 14 : (31.3,−0.9) 15 : (31.9,0.8)

16 : (32.4,6.7) 17 : (28.9,11.9) 18 : (23.2,14.7) 19 : (16.9,14.8) 20 : (11,12.6)

21 : (6.1,8.7) 22 : (2.5,3.5) 23 : (2.4,−2.5) 24 : (−2.3,−5) 25 : (−2.9,−7.5)

26 : (−4,−7) 27 : (7.2,−12.4) 28 : (−12.3,−23) 29 : (−21.3,−37.6) 30 : (−24.5,−41.7)

31 : (−7.3,−40.4) 32 : (4.6,−40.3) 33 : (13.5,−40.7) 34 : (21,−41.3) 35 : (33,−42.8)

36 : (44.9,−44.9) 37 : (40,−2.5) 38 : (40,7.6) 39 : (40.6,15.8) 40 :(41.6,26.3)

41 : (44.9,44.9) 42 : (27.5,42.1)

15

-24

24

22

10

2
1 15

24

25 27

9

16
21

o

10

25
26

Fig. 9

and refer the reader instead to the accompanying Mathematica notebook [2], where
all the computations have been recorded. 
�

Lemma 5.3 Let 
 be a maximal path in G which originates at p24 and is radially
monotone with respect to o. Then


 = (p24, p25, p27, p9, p10, . . . , p15, . . . ).

In particular 
 contains p15.

Proof As in the proof of Lemma 5.2, one may easily check that the only possible
choice for the successor of p24 in 
, which would satisfy (14), is p25. Similarly, one
may recover all other vertices as well; see the right diagram in Fig. 9. This involves a
series of trivial computations which are included in the accompanying Mathematica
notebook [2]. 
�

5.3 Proof of Theorem 5.1

We claim that the subdivision generated by the weighted graph G described above is
non-monotone. Assume, towards a contradiction, that G admits a monotone cut forest
F (as defined in Sect. 3.2). Then each vertex pi of the square part of G has a (unique)
ancestral path in F , which we denote by 
i . Recall that the final vertex of 
i must be
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Fig. 10

a vertex of the triangle, while all other vertices, which we call the interior vertices of

i , lie in the interior of the triangle, or the square part.

First note that 
1 and 
−1 must share an interior vertex. If not, then p−1 cannot
be a descendant of any interior vertex of 
1. Consequently, the center of rotation of
each interior vertex of 
1 remains arbitrarily close to p1, since all vertices of G other
than p±1 have arbitrarily small weights by assumption. It follows then (via condition
(8)) that 
1 is almost radially monotone with respect to p1, i.e., vertices of 
1 satisfy
condition (14) for x = p1 and π/2 − ε, for arbitrarily small ε > 0. Thus 
1 must be
radially monotone with respect to p1, since there are only finitely many paths in G,
and by convexity there exist radially monotone paths, with respect to any given point,
which emanate from any given vertex of G. So, by Lemma 5.2, 
1 contains p±24. By
symmetry, 
−1 must contain these vertices as well, since the interior vertices of 
−1
are the reflections of interior vertices of 
1. So 
1 and 
−1 must join at some interior
vertex.

Let pm be the first (interior) vertex where 
1 and 
−1 join. Then, as we described
above, the subpath of 
1 from p1 to pm will be radially monotone with respect to p1.
So, by Lemma 5.2, it must be a (proper) subpath of (15). Similarly, by symmetry, the
subpath of 
−1 from p−1 to pm must be the reflection of a subpath of (15). Hence
the only possibilities are: m = 24 or m = −24. After a reflection, we may assume
that m = 24; see Fig. 10. Then p1 and p−1 are both descendants of p24; therefore,
the center of rotation of any vertex of 
24 is arbitrarily close to the center of mass of
p1 and p−1, which is o. So 
24 is radially monotone with respect to o. Consequently,
by Lemma 5.3, 
24 contains p15. But 
24 is a subpath of 
1, which already passes
through p15 prior to reaching p24. Thus 
1 contains a cycle, which is the desired
contradiction, and completes the proof of Theorem 5.1.

Theorem 5.1 together with Theorem 4.1 now immediately yields:

Corollary 5.4 There exists a convex cap C over the equilateral triangle with 84 inte-
rior vertices and a pseudo-edge graph with respect to which C is not unfoldable.
Furthermore, the total curvature of C may be arbitrarily small.
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6 Proof of Theorem 1.1

We need only one more observation. A simple arc 
 in a topological space X is the
image of a continuous mapping γ : [a, b] → X , which is one-to-one on (a, b). We
say 
 is a loop provided that γ (a) = γ (b). The following basic fact is also used in [3]
to construct examples of un-unfoldable polyhedra. We omit the proof since it is fairly
trivial (e.g. it follows by considering the different combinations).

Lemma 6.1 Let E ⊂ S2 be an embedded graph which is isomorphic to the edge graph
of a tetrahedron. Suppose there exists a simple arc 
i in each face 
i of E whose end
points are distinct vertices of 
i , and whose interior lies in the interior of 
i . Then

 := ⋃

i 
i contains a loop.

Now we are ready to prove the main result of this work:

Proof of Theorem 1.1 Let C be the convex cap over the equilateral triangle given by
Corollary 5.4. By Lemma 3.1 we may assume that the curvature κ(C) is so small
that the total angles of C at each of its boundary vertices is less than 2π/3. Let
Ci , i = 1, . . . , 4, be congruent copies of C positioned over the faces of a regular
tetrahedron, K := ⋃

i Ci , and E be the union of the pseudo-edges Ei of Ci . Since Ci

have 84 interior vertices each, K has 340 vertices. We claim that K is not unfoldable
with respect to E . To see this suppose that T is a spanning tree of E , and let Fi be
the closure of the restriction of T to the interior of Ci . If each Fi contains an arc
connecting a pair of boundary vertices of Ci , then, by Lemma 6.1, T must contain a
loop (or a cycle) which is not possible. Thus Fj must form a spanning forest of E j for
some 1 ≤ j ≤ 4. Consequently, by Corollary 5.4, the unfolding of C j with respect
to Fj is not simple. Hence the unfolding of K with respect to T is not simple, which
completes the proof. 
�
Note 6.2 The obvious question at the conclusion of this work is whether the above
construction may yield a counterexample to (the original form of) Dürer’s conjecture.
The answer would depend onwhether the partition of the equilateral triangle in Sect. 5,
or some variation of it, can be lifted to a convex cap, i.e., whether there exists a convex
cap over the equilateral triangle whose edges (not only vertices) project onto the edges
of the partition. If so, these caps would generate an edge un-unfoldable polyhedron
when assembled on the faces of a tetrahedron, as described above. It is well known that
not every convex partition of a convex polygon can be lifted [7, p. 56]. A necessary and
sufficient condition, called theMaxwell–Cremona correspondence [14,22,25], is that
the edges of the subdivision admit an equilibrium stress, which can be expressed as a
system of linear equations. Thus, to produce a counterexample to Dürer’s conjecture
(if one exists) it would suffice to find a non-monotone subdivision of the equilateral
triangle which satisfies these equations. Alternatively, if no such subdivision exists,
then that would yield more evidence in support of the conjecture.
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