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Combining Deep Learning and Optimization for
Preventive Security-Constrained DC

Optimal Power Flow
Alexandre Velloso and Pascal Van Hentenryck , Member, IEEE

Abstract—The security-constrained optimal power flow
(SCOPF) is fundamental in power systems and connects the
automatic primary response (APR) of synchronized generators
with the short-term schedule. Every day, the SCOPF problem is
repeatedly solved for various inputs to determine robust schedules
given a set of contingencies. Unfortunately, the modeling of
APR within the SCOPF problem results in complex large-scale
mixed-integer programs, which are hard to solve. To address this
challenge, leveraging the wealth of available historical data, this
paper proposes a novel approach that combines deep learning and
robust optimization techniques. Unlike recent machine-learning
applications where the aim is to mitigate the computational
burden of exact solvers, the proposed method predicts directly
the SCOPF implementable solution. Feasibility is enforced in two
steps. First, during training, a Lagrangian dual method penalizes
violations of physical and operations constraints, which are
iteratively added as necessary to the machine-learning model by a
Column-and-Constraint-Generation Algorithm (CCGA). Second,
another different CCGA restores feasibility by finding the closest
feasible solution to the prediction. Experiments on large test cases
show that the method results in significant time reduction for
obtaining feasible solutions with an optimality gap below 0.1%.

Index Terms—Column and constraint generation,
decomposition methods, deep learning, neural network, primary
response, security-constrained optimal power flow.

NOMENCLATURE

This section introduces the main notation. Bold symbols are
used for matrices (uppercase) and vectors (lowercase). Addi-
tional symbols are either explained in the context or inter-
pretable by applying the following general rules: Symbols with
superscript “j,” or “k” denote new variables, parameters or sets
corresponding to the j-th, or k-th iteration of the associated
method. Symbols with superscript “∗” denote the optimal value
of the associated (iterating) variable. Symbols with superscript
“t′′ are associated with the data set for the t-th past solve. Dotted
symbols are associated with predictors for the corresponding
variable.
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Sets
E , Es Feasibility sets for variables associatedwith the nom-

inal state and contingent state s, respectively.
Fs Feasibility set for primary response variables under

contingent state s.
C, C Full set and subset of constraints.
G,L,N Sets of generators, transmission lines and buses, re-

spectively.
S, S Full set and subset of contingencies, respectively.
T , T Full set and subset of past solves, respectively.
U+, U− Subsets of line–contingent state pairs.
Ys Set of decision variables associated with automatic

primary response under contingent state s.

Parameters
α, ρ Learning rate and Lagragian dual step size.
β,β1,βc Parameters for selecting constraints.
γ Vector of parameters for primary response.
γi Parameter for primary response of generator i.
ε Tolerance for transmission line violation.
λ, λc Vectors for all Lagrangian multipliers and La-

grangian multipliers for constraint c.
ν, νc, ν̃c Vector for violations, violation for constraint c, and

median violation for c among past solves T .
A, B Line-bus and Generator-bus incidence matrices.
ω Vector of weights for deep neural network.
d Vector of nodal net loads.
e Vector of ones with appropriate dimension.
f Vector of line capacities.
g,g Vectors of lower and upper limits for generators.
gi Upper limit for generator i.
ĝ Vector of capacities for generators.
ĝi Capacity of generator i.
h(·) Piecewise linear generation costs.
K0 Matrix of power transfer distribution factors.
K1 Preprocessed matrix for flow limits.
k2,k3 Preprocessed vectors for flow limits.
r Vector of primary response limits of generators.
ri Element of r related to generator i, given by γiĝi.
S Angle-to-flow matrix.

Nominal-state-related decision variables and vectors
θ, f ,g Phase angles, line flows, and nominal generation.
gi Generation of generator i in nominal state.
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Contingent-state-related decision variables and vectors
θs Vector of phase angles under contingent state s.
τ+
s , τ

−
s Vectors of line violation under contingent state s.

φ, sφ Highest line violation and related contingent state.
φ̃ Median highest line violation among instances T .
fs Vector for line flows under contingent state s.
gs Vector for generation under contingent state s.
g′
s Provisional vector for gs.

gs,i Generation of generator i under contingent state s.
g′s,i Provisional variable for gs,i.
ns Global signal under contingent state s.
xs Binary vector indicating whether generators reached

g under contingency state s.
xs,i Element of xs corresponding to generator i.

I. INTRODUCTION

A. Motivation

POWER systems operations require constant equilibrium
between nodal loads and generation. At the scale of sec-

onds, this balance is achieved by Automatic Primary Response
(APR) mechanisms that govern the synchronized generators.
For longer time scales, ranging from a few minutes to hours
or even days ahead, this balance is obtained by solving math-
ematical optimization problems, as independent system opera-
tors seek consistent and efficient schedules satisfying complex
physical and operational constraints. The need to solve these
optimization problems in a timely manner is driving intense
research about new models and algorithms, both in industry
and academia. In this vein, this work aims at speeding up solu-
tion times of security-constrained optimal power flow (SCOPF)
problem [1]–[7] by combining deep learning and robust opti-
mization methods. The SCOPF is solved by operators every few
minutes for different sets of bus loads. The high penetration
of renewable sources of energy has increased the frequency
of these optimizations. The SCOPF problem considered in this
work links the APR to the very short-term schedule. It is also
relevant to mention that the SCOPF problem is directly or
indirectly present in many other power system applications,
including security-constrained unit commitment [8], transmis-
sion switching [9], and expansion planning [10]. Thus, a re-
duction in the computational burden would allow system oper-
ators to introduce important modeling improvements to many
applications.

B. Contextualization and Related Work

The SCOPF problem determines a least-cost pre-contingency
generator dispatch that allows for feasible points of operation
for a set of contingencies, e.g., individual failures of main
lines and/or generators. The SCOPF problem may refer to the
corrective case [5] where re-scheduling is deemed possible and
to the preventive case where no re-dispatch occurs [3], [6], [11],
i.e., the system must be able to achieve a feasible steady-state
point without a new schedule. A valuable review of the SCOPF
problem and solution methods is available in [4]. Interesting
discussions about credible contingencies, reserve requirements,

security criteria, and regulation for reserves can be found in [2],
[6], [12] and the references therein. Without loss of generality,
the N − 1 security criterion for generators is adopted in this
paper, i.e., the system must operate under the loss of any single
generator.
The SCOPF is a nonlinear and nonconvex problem based on

the AC optimal power flow (OPF) equations. Extensive reviews
can be found in [13] and [14]. The DC formulation of the
SCOPF has been widely used in both academia and industry [2],
[3], [6], [7]. Interesting discussions regarding the quality of
approximations and relaxations of the OPF problem can be
found in [15]–[18]. The DC-SCOPF can also be used to improve
AC-SCOPF approaches [19]. It is not within the scope of this
work to discuss the quality of aforementioned approximations
or relaxations to the optimal power flow. Instead, this research
offers a new approach that improves current industry practices,
which is still strongly based on DC-SCOPF.
The APR of synchronized generators is essential for stability.

These generators respond automatically to frequency variations,
caused by power imbalances for instance, by adjusting their
power outputs until frequency is normalized and the power
balance is restored. Unfortunately, the APR deployment, which
is bounded by generators limits only, may result in transmission
line overloads [6], [11], [20]. Therefore, this work co-optimizes
the APR of synchronized generators within the (preventive)
SCOPF problem. Even though the APR behavior is nonlinear,
linear approximations are used in practice [21]. In [6], [7], [11],
[22], [23], the APR is modeled by a single variable representing
frequency drop (or power loss) for each contingency state and
by a participation factor for each generator.
The preventive DC-SCOPF problem with APR is referred to

as the SCOPF problem for conciseness in this paper. It admits an
exact extensive formulation (with all variables and constraints
for nominal state and contingency states) as a mixed-integer
linear program (MILP) [6], [11]. Nevertheless, this formulation
is generally very large because the APR constraints require
binary variables for each generator and for each contingency
state to determine whether generators are producing according
to the linear response model or are at their limits [6], [11]. Thus,
the number of binary variables increases quadratically with the
number of generators, which makes the extensive form of the
SCOPF impractical. Better modeling strategies and decomposi-
tion schemes are required.
The robust optimization framework has been widely applied

in power systems due to its interesting tradeoff between mod-
eling capability and tractability. See [24] for a review of ro-
bust optimization applications in power systems. The SCOPF
problem can be modeled as a two-stage robust optimization
or adaptive robust optimization (ARO) and tackled by two
main decomposition methods: Benders decomposition [25] and
the column-and-constraint-generation algorithm (CCGA) [26].
Both approaches rely on iterative procedures that solve amaster
problem and subproblems. The master problem is basically the
nominal OPF problem with additional cuts/constraints and vari-
ables representing feasibility or optimality information on the
subproblems. Whereas Benders decomposition provides dual
information about the subproblems through valid cuts restricting
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the master problem, the CCGA adds primal contraints and
variables from the subproblems to the master problem.
Unfortunately, the SCOPF problem is not suitable for a tra-

ditional Benders decomposition since the subproblems are non-
convex due to the APR constraints (which feature binary vari-
ables). Despite such challenges, inspired by [25], an interesting
heuristic method was proposed in [6] but it does not guarantee
optimality. In contrast, the CCGA algorithm proposed in [11]
is an exact solution method which was used to produce optimal
solutions to power networkwithmore than 2000 buses. Notwith-
standing aforementioned contributions, both approaches still
require significant computational effort to obtain near-optimal
solutions.
Machine learning (ML) approaches have been advocated to

address the computational burden associated with the hard and
repetitive optimization problems in the power sector, given the
large amounts of historical data (i.e., past solutions). Initial at-
tempts date back to the early 1990s, when, for example, artificial
neural networks were applied to predict the on/off decisions of
generators for an unit commitment problem [27], [28]. More
recently, ML was used to identify partial warm-start solutions
and/or constraints that can be omitted, and to determine affine
subspaces where the optimal solution is likely to lie [29]. Artifi-
cial neural network and decision tree regression were also used
to learn sets of high-priority lines to consider for transmission
switching [30], while the k-nearest neighbors approachwas used
to select previously optimized topologies directly fromdata [31].
As for the security and reliability aspects of the network, the
security-boundary detection wasmodeled with a neural network
to simplify stability constraints for the optimal power flow [32],
while decision trees were applied to determine security bound-
aries (regions) for controllable variables for a coupled natural gas
and electricity system [33]. Machine learning was also applied
for identifying the relevant sets of active constraints for the OPF
problem [34].
Unlike these applications, where themain purpose ofmachine

learning is to enhance the solver performance by classifying
sets, eliminating constraints, and/or by modeling specific parts
of the problems, the machine-learning approach in [35] directly
predicts the generator dispatch for the OPF by combining deep
learning and Lagrangian duality. This approach produces sig-
nificant computational gains but is not directly applicable to
the SCOPF problem which features an impractical number of
variables and constraints. This work remedies this limitation.

C. Contributions

The paper assumes the existence of historical SCOPF data,
i.e., pairs of inputs and outputs [29]–[31], [34], [35]. The
proposed approach uses a deep neural network (DNN) to ap-
proximate the mapping between loads and optimal generator
dispatches. To capture the physical, operational, and APR con-
straints, the paper applies the Lagrangian dual scheme of [35]
that penalizes constraint violations at training time.Moreover, to
ensure computational tractability, the training process, labeled
as CCGA-DNN, mimics a dedicated CCGA algorithm that
iteratively adds new constraints for a few critical contingencies.

In these constraints, an approximation for the post-contingency
generation is adopted to keep the size of the DNN small.
The resulting DNN provides high-quality approximations to
the SCOPF in milliseconds and can be used to seed another
dedicated CCGA to find the nearest feasible solution to the
prediction. The resulting approach may bring two orders of
magnitude improvement in efficiency compared to the original
CCGA algorithm.
In summary, the contributions can be summarized as follows:

i) a novel DNN that maps a load profile onto a high-quality
approximation of the SCOPF problem, ii) a new training proce-
dure, the CCGA-DNN, that mimics a CCGA, where the master
optimization problem is replaced by a DNN prediction, iii)
an approximation for the post-contingency generation which
keeps the DNN size small, and iv) a dedicated CCGA algorithm
seeded with the DNN evaluation to obtain high-quality feasible
solutions fast. Of particular interest is the tight combination of
machine learning and optimization proposed by the approach.

D. Paper Organization

This paper is organized as follows. Section II introduces
the SCOPF problem. Section III presents the properties of
the SCOPF problem and the CCGA for SCOPF. Section IV
introduces the deep learning models in stepwise refinements.
Section V describes the CCGA for feasibility recovery. Sec-
tion VI reports the case studies and the numerical experiments,
and Section VII discusses extensions and limitations. Finally,
Section VIII concludes the paper.

II. THE SCOPF PROBLEM

A. The Power Flow Constraints

The SCOPF formulation uses traditional security-constrained
DC power flow constraints over the vectors for generation g,
flows f , and phase anglesθ. Inmatrix notations, these constraints
are represented as follows:

Af +Bg = d (1)

f = Sθ (2)

− f ≤ f ≤ f (3)

g ≤ g ≤ g (4)

Afs +Bgs = d ∀s ∈ S (5)

fs = Sθs ∀s ∈ S (6)

− f ≤ fs ≤ f ∀s ∈ S (7)

g ≤ gs ≤ g ∀s ∈ S. (8)

Equations (1)–(4) model the DC power flow in pre-contingency
state and capture the nodal power balance (1), Kirchhoff’s sec-
ond law (2), transmission line limits (3), and generator limits (4).
Analogously, equations (5)–(8) model the power flow for each
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post-contingency state s. The bounds g in (4) and (8) may be
different from capacity ĝ due to commitment and/or operational
constraints.

B. Automatic Primary Response

The APR is modeled as in [6], [7], [11]: under contingent
state s, a global variable ns is used to mimic the level of system
response required for adjusting the power imbalance. The APR
of generator i under contingency s, gs,i − gi, is proportional to
its capacity ĝi and to the parameter γi associated with the droop
coefficient, i.e.,

gs,i = min{gi + nsγi ĝi, gi} ∀i ∈ G, ∀s ∈ S, i '= s (9)

gs,s = 0 ∀s ∈ S. (10)

The condition i '= s in (9) and the rest of this paper indicates that
a constraint does not apply to generator s under the contingency
s. i.e., the contingent state where this generator is offline.
Equations (9)–(10) are nonconvex and can be linearized by

introducing binary variables xs,i to denote whether generator i
in contingency s is not at its limit, i.e.,

|gs,i − gi − nsγiĝi| ≤ gi(1− xs,i) ∀i ∈ G, s ∈ S, i '= s (11)

gi + nsγi ĝi ≥ gi(1− xs,i) ∀i ∈ G, s ∈ S, i '= s (12)

gs,i ≥ gi(1− xs,i) ∀i ∈ G, s ∈ S, i '= s (13)

ns ∈ [0, 1] ∀s ∈ S (14)

xs,i ∈ {0, 1} ∀i ∈ G, s ∈ S (15)

gs,s = 0 ∀s ∈ S. (16)

C. Extensive Formulation for the SCOPF Problem

The extensive formulation for the SCOPF problem using
variables for generation, flows, and phase angles is as follows:

min
θ,f ,g,[θs,fs,gs,ns,xs]s∈S

h(g) (17)

s.t.: (1)− (4) (18)

(5)− (16) ∀s ∈ S. (19)

Using power transfer distribution factors (PTDF), constraints
(1)–(8) can be replaced by the following constraints:

e)g = e)d (20)

|K0(d−Bg)| ≤ f (21)

(4) (22)

e)gs = e)d ∀s ∈ S (23)

|K0(d−Bgs)| ≤ f ∀s ∈ S (24)

(8) ∀s ∈ S. (25)

Constraints (20)–(25) that involve the PTDF matrix K0 are
from [36]. The total demand balance for the nominal and con-
tingent states are enforced by (20) and (23) respectively. In
constraints (21) and (24), the PTDF matrix translates the power
injected by each generator at its bus into its contribution to the
flow of each line. These constraints also bound the flows from
above and below. Observe that g and gs are the only variables
in this formulation.
For conciseness, denote the power flow constraints (20)–(22)

and (23)–(25) by g ∈ E and gs ∈ Es respectively. Similarly,
denote the APR constraints (11)–(16) by Ys = [g,gs,xs, ns] ∈
Fs. The extensive SCOPF formulation then becomes

min
g,[gs,xs,ns]s∈S

h(g) (26)

s.t.: g ∈ E (27)

gs ∈ Es ∀s ∈ S (28)

Ys ∈ Fs ∀s ∈ S. (29)

Note that the number of binary variables above grows quadrat-
ically with the number of generators. Hence, solving (26)–(29)
becomes impractical for large-scale systems.

III. SCOPF PROPERTIES AND CCGA

This section introduces key properties of the SCOPF problem
and summarizes the CCGA proposed in [11]. These properties
are necessary for the CCGA and the ML models. The CCGA
is a decomposition scheme that serves both as a benchmark for
evaluation and is used as part of the feasibility recovery scheme
proposed in Section V.
Property 1: For s ∈ S, given values g∗ and n∗

s for g and
ns, there exists a unique value g∗

s for gs that can be computed
directly using constraints (11)–(16).
Property 2: Consider s ∈ S and a value g∗ for g. If there

exists a value n∗
s for ns that admits a feasible solution to

constraints (11)–(16) and (23), then this value n∗
s is unique and

can be computed by a simple bisection method [11].
Property 2 holds since, for a given g∗, each component of gs

is continuous and monotone with respect to ns. Hence the value
n∗
s and its associated vector g∗

s that satisfy constraint (23) can
be found by a simple bisection search over ns.

Property 3: Constraint (24) can be formulated as

K1gs + k2 ≥ 0 (30)

K1gs + k3 ≥ 0, (31)

using matrix operations to obtainK1, k2, and k3.
Note that each row ofK1 and each element of k2 and k3 are

associated with a specific transmission line. Therefore, for each
s ∈ S and for each line, the (positive and negative) violation
of the thermal limit of the line can be obtained by inspecting
(30)–(31) for the proposed value g(∗)

s .

A. The Column and Constraint Generation Algorithm

The CCGA, which relies on the above properties, alternates
between solving a master problem to obtain a nominal schedule
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g and a bisection method to obtain the state variables of each
contingency. The master problem is specified as follows:

min
g,[g′

s]s∈S ,[xs,ns]s∈S
h(g) (32)

s.t.: g ∈ E (33)
g′
s − g ≤ r ∀s ∈ S (34)

(8), (23), (16) ∀s ∈ S (35)
Ys ∈ Fs ∀s ∈ S (36)

Kl
1g

′
s + kl

2 ≥ 0 ∀(l, s) ∈ U+ (37)

Kl
1g

′
s + kl

3 ≥ 0 ∀(l, s) ∈ U−. (38)

Constraints (32)–(38) uses variables g′
s to denote a “guess” for

the post-contingency generation: the actual vector gs is not
determined by the master problem but by the aforementioned
bisection method. Constraint (33) enforces the nominal state
constraints. Constraint (34) imposes a valid bound for post-
contingency generation. For all contingencies, constraint (35)
enforces the generation capacity (8), total demand satisfaction
(23), and the absence of generation for a failed generator (16).
The APR is enforced “on-demand” in (36) for a reduced set of
contingent states S. Initially, S = ∅. Inequalities (37)–(38) are
also the “on-demand” versions of (30)–(31) for (a few) pairs of
transmission lines and contingencies. Initially, U+ and U− are
empty sets.
The CCGA algorithm is specified in Algorithm 1. At iter-

ation j, the master problem (32)–(38) computes gj . The bi-
section method then determines the contingent state variables
[gj

s,x
j
s, n

j
s]s∈S . The vectors τ+

s and τ−
s of positive numbers

represent the positive and negative violations of transmission
lines for contingent state s: they are calculated for all s ∈ S by
inspecting constraints (30)–(31) for [gj

s]s∈S . The algorithm then
computes the highest single line violationφ amongall contingent
states and uses sφ to denote the contingent state associated with
φ. The pairs lines/contingencies featuring violations above a
predefined threshold β are added to the master problem by
updating sets U+ and U−. Likewise, sφ is added to S. As a
result, the variables and APR constraints associated with sφ
are added to the master problem during the next iteration. The
CCGA terminates when φ < ε, where ε is the tolerance for line
violation. The master problem is a MILP due to constraints (36)
and the number of binary variables (at each iteration) is quadratic
in the size of S.

The following result from [11] ensures the correctness of
CCGA: It shows that a solution to the master problem produces
a nominal generation for which there exists a solution to each
contingency that satisfies the APR and total demand constraints.
Since the CCGA adds at least one violated line constraint and,
possibly, a set of violatedAPRconstraints for one contingency to
the master problem at each iteration, it is guaranteed to converge
after a finite number of iterations.
Theorem 1: For each solution g∗ to the master problem, there

exist valuesn∗
s andg

∗
s that satisfy the demand constraint e)g∗

s =
e)d and the APR constraints (11)–(16) for each contingency s.

Proof: By (8) and (34), g′s,i ≤ min {gi, gi + γiĝi} for each i
and s, where g′s,i is the i-th element ofg′

s.Whenns = 0,gs = g,
except forgs,s = 0.Whenns = 1,gs,i = min {gi, gi + γiĝi} ≥
g′s,i for each i and s, with i '= s. Since, by (23), g′

s meets

Algorithm 1: CCGA.
1: Initialization: j ← 0,S ← ∅, U+ ← ∅, U− ← ∅
2: for j = 0, 1, . . . do
3: solve (32)–(36) to obtain gj

4: nj
s ← apply the bisection method on all s ∈ S

5: gj
s ← enforce (11)–(16) on all s ∈ S

6: τ−
s , τ

+
s ← get the line violations of gj

s using
(30)–(31) for all s ∈ S

7: φ ← compute the highest line violation among all
s ∈ S

8: sφ ← select the contingent state associated with φ
9: S ← S ∪ {sφ}
10: U+ ← U+ ∪ { (l, s) | τ+

s [l] > β}
11: U− ← U− ∪ { (l, s) | τ−

s [l] > β}
12: BREAK if φ ≤ ε.
13: end for

the global demand, then e)gs ≥ e)g′
s = e)d when ns = 1.

By the monotonicity and continuity of gs,i with respect to ns

(for a given gi), there is a value n∗
s (associated with g∗

s) that
satisfies the demand constraint in (23) and preserves the APR
constraints. !

IV. DEEP NEURAL NETWORKS FOR SCOPF

This section describes the use of supervised learning to obtain
DNNs that map a load vector into a solution of the SCOPF
problem. A DNN consists of many layers, where the input for
each layer is typically the output of the previous layer [37]. This
work uses fully-connected DNNs.

A. Specification of the Learning Problem

For didactic purposes, the specification of the learning prob-
lem uses the extensive formulation (26)–(29). The training data
is a collection of instances of the form

{dt;gt, [gt
s, n

t
s,x

t
s]s∈S}t∈T

where (gt, [gt
s, n

t
s,x

t
s]s∈S) is the optimal solution (ground truth)

to the SCOPF problem for input dt. The DNN is a para-
metric function O[ω](·) whose parameters are the network ω:
It maps a load vector d into an approximation O[ω](d) =
{ġ, [ṅs, ẋs, ġs]s∈S} of the optimal solution to the SCOPF prob-
lem for load d. The goal of the machine-learning training to find
the optimal weights ω∗, i.e.,

ω∗ = arg minω
∑

t∈T
Lt

0(ġ
t) +

∑

s∈S
Lt

s(ġ
t
s, ẋ

t
s, ṅ

t
s) (39)

s.t.: O[ω](dt) = (ġt, [ġt
s, ṅ

t
s, ẋ

t
s]) ∀t ∈ T (40)

ġt ∈ Et ∀t ∈ T (41)

ġt
s ∈ Et

s ∀t ∈ T , ∀s ∈ S (42)

Ẏt
s ∈ F t

s ∀t ∈ T , ∀s ∈ S (43)
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Fig. 1. BaselineModel: Each layer is fully connected with softplus activation.
White box on the left corresponds to input tensor (demand), dark, colored, boxes
correspond to output layers. Loss component is shown as a white rectangle
connected with the output layer by a dashed arrow.

where the loss functions are defined as

Lt
0(ġ

t) = ||gt − ġt||2

Lt
s(ġ

t
s, ẋ

t
s, ṅ

t
s) = ||gt

s − ġt
s||2 + ||xt

s − ẋt
s||2 + ||nt

s − ṅt
s||2

andminimize the distance between the prediction and the ground
truth. There are twodifficulties in this learning problem: the large
number of scenarios, variables, and constraints, and the satis-
faction of constraints (41)–(43). This section examines possible
approaches.

B. The Baseline Model

The baselinemodel is a parsimoniousMLapproach that disre-
gards constraints (41)–(43) and predicts the nominal generation
only, i.e.,

ω∗ = arg minω
∑

t∈T
Lt

0(ġ
t)

s.t.: O[ω](dt) = (ġt) ∀t ∈ T .

It uses a DDN model with linear layers interspersed with non-
linear layers that use the softplus activation function. The sizes
of the input and output of each layer are linearly proportional to
|N | and |G|. A high-level algebraic description of layers of the
DNN follows:

li = π(Wili−1 + bi), for each layer li

l1 = π(W1d+ b1).

The elements of vector ω are rearranged as matrices Wi and
vector of biases bi. Note that the demand vector d is the input
for the first layer. The symbol π denotes a nonlinear activation
function. The baseline model is represented in Fig. 1.
Unfortunately, training the baseline model tends to produce

predictors violating the problem constraints [34], [35].

C. A Lagrangian Dual Model for Nominal Constraints

The DNN model of this section extends the baseline model.
While not directly used in the results, it constitutes a relevant
didactic step in the construction of the final ML model of
Section IV-D.

Algorithm 2: Lagrangian Dual Model (T ,C, α, ρ, λ0, ω0).
1: j ← 0.
2: for j = 0, 1, . . . do
3: for k = 0, 1, . . . do
4: Sample minibatch: Tk ⊂ T
5: for t ∈ Tk do
6: Compute O[ωj ](dt) = ġt and Lt

0(ġ
t)

7: Compute νtc(ġ
t) ∀c ∈ C

8: end for
9: ωj ← ωj − α

∇ωj [
∑

t∈T (L
t
0(ġ

t) +
∑

c∈C λcνtc(ġ
t))]

10: end for
11: λj+1

c ← λj
c + ρ ν̃c ∀c ∈ (41)

12: ωj+1 ← ωj

13: end for

This section expands the baselinemodel to include constraints
on the nominal state (41). Constraints (42)–(43) on the contin-
gency cases are not considered in the model. To capture physical
and operational constraints, the training of the DNN adopts the
Lagrangian dual approach from [35].
The Lagrangian dual approach relies on the concept of con-

straint violations. The violations of a constraint f(x) = 0 is
given by |f(x)|, while the violations of f(x) ≥ 0 are specified
by max(0,−f(x)). Although these expressions are not differ-
entiable, they admit subgradients. Let C represent the set of
nominal constraints and νc(g) be the violations of constraint
c for generation dispatch g. The Lagrangian dual approach
introduces a term λcνtc(g

t) in the objective function for each
c ∈ C and each t ∈ T , where λc is a Lagrangian multiplier. The
optimization problem then becomes

LR(λ) = min
ω

∑

t∈T
(Lt

0(ġ
t) +

∑

c∈C

λcν
t
c(ġ

t)) (44)

s.t. O[ω](dt) = (ġt) ∀t ∈ T (45)

and the Lagrangian dual is simply

LD = max
λ

LR(λ). (46)

Problem (46) is solved by iterating between training for weights
ω and updating the Lagrangian multipliers. Iteration j uses La-
grangian multiplier λj and solves LR(λj) to obtain the optimal
weights ωj . It then updates the Lagrangian multipliers using
the constraint violations. The overall scheme is presented in
Algorithm 2. Lines 3–10 train weights ωj for a fixed vector
of Lagrangian multipliers λj , using minibatches and a stochas-
tic gradient descent method with learning rate α. For each
minibatch, the algorithm computes the predictions (line 6), the
constraint violations (line 7), and updates the weights (line 9).
Lines 2–13 describe the solving of Lagrangian dual. It computes
the Lagrangian relaxation described previously and updates the
Lagrangian multipliers in line 11 using the median violation ν̃c
for each nominal constraint c.
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D. CCGA-DNN Model

This section presents the final ML model, the CCGA-DNN,
which mimics a CCGA algorithm. In particular, the CCGA-
DNN combines the Lagrangian dual model of Section IV-C
with an outer loop that adds constraints for the contingent states
on-demand. Observe first that a direct Lagrangian dual approach
to the SCOPF would require an outer loop to add predictors
[ġs, ẋs, ṅs]s∈S and constraints (42)–(43) for selected contin-
gency states s. Unfortunately, the addition of new predictors
structurally modifies the DNN output O[ω](·) and induces a
considerable increase in the DNN size.
The key ideas to overcome this difficulty are the following:
1) The CCGA-DNNmimics the CCGA and replaces the out-

put of themaster problemby the predictionsO[ωj ](dt), ∀t
at iteration j;

2) As is typical in robust optimization scheme, the CCGA-
DNNonly selects a small number of contingent states to be
penalized in the DNN (master problem) at each iteration;

3) The CCGA-DNN replaces constraints (43) by constraints
of the form

ġts,i = max{0,min{ġti + ṅt
sγi ĝi , gi}}, (47)

where constraints (47) are not differentiable but admit
subgradients and hence can be dualized in the objective
function. In this setting, ṅt

s is obtained by the bisection
method on the prediction ġt obtained in previous iteration.

It is interesting to highlight that point (3) allows for penalizing
contingent state constraints while avoiding adding predictors for
these states in the DNN.
The CCGA-DNN is summarized in Algorithm 3 and depicted

in Fig. 2. It is initialized in line 1 with the set of constraints C
encompassing the nominal constraints (41) only and Lagrangian
multipliers set to zero. Thus, the first iteration of the main loop
(lines 3–28) returns DNN weights equivalent to those of the
baselinemodel. At each iteration j, the training loop (lines 5–12)
produces updated weights ωj . Next, a post-training loop (lines
13–20) applies the bisection method to find ṅt

s for all t and
APR constraints (11)–(16) to obtain ġt

s (lines 15–16). These
values are then used to compute the nominal violations (line
17), and the highest line violation φt among all states (line 18),
as well as its associated contingent state stφ. The post-training
loop also increases the element of the counter vectorp associated
with stφ whenever the highest violation φt at iteration t is above
tolerance ε (line 19). Then, in the main loop, contingency states
with high frequencies of violated lines S′ are identified (line 21)
using a threshold β1. The algorithm terminates whenS′ is empty
and the median relative violations for the nominal constraints in
(41) are within the tolerances βc (line 22). Otherwise, the set
of constraints C is updated with constraints (30)–(31) and (47)
for the added contingent states S′ \ S (line 23). The Lagrangian
multipliers for nominal constraints are updated in line 24. The
multipliers for the additional constraints (30)–(31) (s ∈ S′) are
initialized in line 25. Finally, the multipliers for constraints
(30)–(31) (s ∈ S) are all updated with φ̃ (line 27), where φ̃ is
the median φt among all φt for t ∈ T . Note that the process
of updating Lagrangian multipliers for (30)–(31) (s ∈ S) is

Fig. 2. Flowchart for CCGA-DNN (Algorithm 3).

TABLE I
INSTANCE SIZE FOR THE SCOPF PROBLEM (26)–(29) AFTER PRESOLVE

different and much stricter than that for nominal constraints in
line 24.

V. FEASIBILITY RECOVERY

The training step produces a set of weights ω∗ and the as-
sociated DNN produces, almost instantly, a dispatch prediction
ġ = O[ω∗](d) for an input load vector d. However, the pre-
diction ġ may violate the nominal and contingency constraints.
To restore feasibility, this paper proposes a feasibility-recovery
CCGA, denoted by FR-CCGA, that finds the feasible solution
closest to ġ. The FR-CCGA scheme also follows Algorithm 1,
except for a modification in the master problem. The master
problem for FR-CCGA is similar to (32)–(38) but it uses a
different objective function, i.e.,

min
g,[g′

s]s∈S ,[xs,ns]s∈S
||ġ − g|| (48)

s.t.: (33)–(38) ∀ S, S, U+, U−. (49)

Note that ġ is a constant vector in FR-CCGA.
While CCGA and FR-CCGA are similar decomposition

schemes in nature, featuring the same rationale for adding con-
straints and variables (linear and binaries) to respective master
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Algorithm 3: CCGA-DNN (T , α, ρ, β1, βc, ε).

1: C ← {(41)}, S ← ∅, λ0 ← 0, ω0 ← 0
2: Create a counter vector p of size |S|
3: for j = 0, 1, . . . do
4: p ← 0
5: for k = 0, 1, . . . do
6: Sample minibatch: Tk ⊂ T
7: for t ∈ Tk do
8: Compute O[ωj ](dt) = ġt and Lt

0(ġ
t)

9: Compute νtc(ġ
t), ∀c ∈ C

10: end for
11: ωj ← ωj − α∇ωj [

∑
t∈T (L

t
0(ġ

t) +∑
c∈C λcνtc(ġ

t))]
12: end for
13: for t ∈ T do
14: ġt ← O[ωj ](dt)
15: ṅt

s ← bisection method, ∀s ∈ S
16: ġt

s ← enforce (11)–(16), ∀s ∈ S
17: Compute νtc(ġ

t), ∀c ∈ (41)
18: Compute φt and identify stφ
19: if φt > ε then increase (stφ)-th element of p

by 1
20: end for
21: S′ ← {s |p[s] / |T | > β1}
22: BREAK if S′ ≡ ∅ and ν̃c ≤ βc, ∀c ∈ (41).
23: C ← C ∪ {(30)− (31), (47), ∀s ∈ (S′ \ S)}
24: λj+1

c ← λj
c + ρ ν̃c ∀c ∈ (41)

25: λ
j+1
(30), λ

j+1
(31) ← 0, ∀s ∈ (S′ \ S)

26: S ← S ∪ S′

27: λ
j+1
(30), λ

j+1
(31) ← λ

j
(30), λ

j
(31) + ρ φ̃, ∀s ∈ S

28: end for

problems, FR-CCGA is significantly faster because O[ω∗](d)
is often close to feasibility, which results in fewer iterations.

VI. COMPUTATIONAL EXPERIMENTS

A. Data

The test cases are based on modified versions of 3 traditional
benchmark system topologies from [38], namely, the 118-IEEE,
the 1354-PEG (PEGASE) system, and the 1888-RTE system.
Table I reports the size of each system topology (numbers of
generators, lines, and buses) and the number of constraints
and variables for a single instance of the SCOPF problem for
each benchmark. As can be seen, the larger system topologies
encompass thousands of lines and buses, resulting in an ex-
tensive formulation for the SCOPF problem (26)–(29) (after
Gurobi’s presolve) with hundreds of thousands of constraints
and variables, and with dozens of thousands of binary variables.
For each topology, training and testing data are given by

the inputs and solutions of many instances that are constructed
as follows. For each instance, the net demand of each bus
has a deterministic component and a random component. The
deterministic component varies across instances from 82% of

TABLE II
NETWORK ARCHITECTURE

the nominal net load to near-infeasibility values by small in-
crements of 0.002%. The random component for each bus of
each instance is independently anduniformlydistributed ranging
from -0.5% to 0.5% of the corresponding nominal nodal net
load. For each system topology, thousands of instances were
generated for training and testing, namely, 14 000 instances for
118-IEEE, 10 000 instances for 1354-PEG, and 14 000 instances
for 1888-RTE. For each topology, the training set T is composed
by 70% of the instances, selected randomly.
Algorithm 1 was applied to tackle these instances for a max-

imum line violation of ε = 0.05 MW and an optimality gap
of 0.25%. This algorithm was implemented in Julia 0.6.4 with
the JuMP modeling package using Gurobi 8.1.1 as a backbone
solver. The task of solving these instances was performed by
multiple nodes of the PACE cluster at Georgia Institute of
Technology. It is relevant to highlight that CPU times for this
task were not stored or used for time comparisons in this work.

B. Network Architecture and Training Aspects

Both the baseline model and the CCGA-DNN model use
the same network architecture, displayed in Table II, where all
layers are fully-connected and the nonlinear softplus activation
function is applied. The sizes of inputs and outputs of the
DNN layers are parameterized in terms of number of buses and
generators, thereby varying among system topologies. As can be
seen, the size of the input for the initial layer (|N |) is consistent
with the cardinality ofd, while the size of output of the last layer
(|G|) matches the cardinality of g.
Algorithm 3 was applied for training with ε set to 1 MW, β1

to 5%, βc to 1.5 · 10−2, and ρ to 105. The inner training loop
of Algorithm 3 (lines 5–12) is executed 1.5 · 105 times with
a learning rate α varying from 10−4 to 10−10. Note that the
first iteration of Algorithm 3 returns the weights of the baseline
model, while the final iteration return the weights of the CCGA-
DNN.
The DNN models were implemented using PyTorch package

with Python 3.0 and the training was performed using NVidia
Tesla V100 GPUs and 2 GHz Intel Cores. The use of GPUs is
paramount in this task since it allows for the faster computation
of multiple parallel processes. In the following, for conciseness,
the baseline model is denoted by Mb and the CCGA-DNN by
Mccga.

Table III presents a training summary. As expected, the Mb

requires lower training times (last column), below 12 hours,
for all topologies. This is consistent with the higher number of
iterations (column 3) of the Mccga, which incrementally adds
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TABLE III
TRAINING SUMMARY

Fig. 3. Prediction ofMccga for selected generators of the 1354-PEG System.

TABLE IV
PREDICTION MEAN ABSOLUTE ERRORS (%)

Lagrangian penalty terms for contingent states. Even though all
contingencies are eligible to be added to theMccga, the results
(column 4) show that adding only a few contingent states (to set
S) is sufficient to “protect” against all contingent states. This
result is typical in robust optimization applications.

C. Prediction Quality

Accurate predictions were obtained for all DNN models and
topologies. Figure 3 illustrates how Mccga can learn complex
generator patterns arising in the 1354-PEG system. Table IV
reports the mean absolute errors for predictions ġt, segmented
by generation range. As expected, the predictions are relatively
more accurate for larger generation labels. This happens because
the loss function is parameterized in terms of total error and
not relative error. It can also be observed that Mb achieves a
slightly better overall accuracy which is expected since it is the
less constrained model.
Table V reports selected indicators of violations: the relative

violation ν(20) of the total load constraint and the relative viola-
tionRLVof the lines associatedwithφ. The results reportmedian
values, as well as lower and upper bounds for intervals that
capture 95% of the instances. Both models achieve the desired
tolerance of βc = 1.5 · 10−2 for ν(20) (the tolerance βc does not
apply to RLV). ModelMccga produces lower overall violations

TABLE V
SELECTED INDICATORS OF VIOLATION ACROSS INSTANCES (%)

ν(20) – Net load constraint violation divided by total load.
RLV – Relative violation for line associated with φ.

TABLE VI
CPU TIME COMPARISON

and has a major effect on RLV. As an example, Mccga predic-
tions are quasi-feasible for 1354-PEG for all contingencies: For
95% of instances t ∈ T , the relative violation of the single most
violated line (among all lines and contingencies in instance t) is
below 0.117%.

D. Comparison With Benchmarks

The previous sections reported on the accuracy of the predic-
tors. This section shows howFR-CCGA leverages the predictors
to find near-optimal feasible primal solutions. More precisely,
experiments involving 200 randomly selected instances for each
system topology compare in terms of cost, number of iterations,
and CPU time, benchmark approaches with FR-CCGA which
is seeded with Mb (labeled as FR-Mb) or Mccga (labeled as
FR-Mccga). Two benchmark approaches are used for compar-
ison: the CCGA (Algorithm 1) and the CCGA-H. The latter
is the application of Algorithm 1 to an heuristic version of
SCOPF, where the binary variables in xs are set to 1. Thus,
it assumes the APR is always in the linear phase of response
(note that this is the typical outcome for most generators under
most contingencies). TheCCGA-H, therefore, is amuch simpler
version of theCCGA,where themaster problem at each iteration
is a linear program.
Each instance for each approachwas solvedwith the same tol-

erances used for training and under the samehardware condition,
on a laptop Dell XPS 13 9380 featuring a i7-8565 U processor
at 1.8 GHz and 16 GB of RAM. Respective algorithms were
implemented in Julia 0.6.4 with JuMP modeling package using
Gurobi 8.1.1 as the primary solver. Tables VI, VII, and VIII
summarize the experiments.
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TABLE VII
ITERATIONS UNTIL CONVERGENCE

TABLE VIII
COST INCREASE OVER CCGA (%)

Table VI reports statistics for computation times. The CCGA
has the worst overall performance. The CCGA-H performs well
in all systems, even though it is one order of magnitude slower
than both FR-Mb and FR-Mccga for the 118-IEEE. For the
1354-PEG system, the most challenging network by far, the FR-
Mccga performs significantly better than its counterparts. The
FR-Mccga is also more robust than the FR-Mb. The excellent
performance of the FR-Mccga relates to the near-feasibility of
its associated DNN prediction, as discussed in Section VI-C.
This proximity to feasibility results in very few iterations of the
feasibility recovery algorithm, which is reported in Table VII
along with iterations for all approaches. As is clear, FR-Mccga

requires fewer iterations for larger systems.
Table VIII reports the cost/objective increase of FR-Mb,

FR-Mccga, and CCGA-H over CCGA, which is exact (modulo
tolerances). With the exception of the smaller system, where
all approaches perform well, CCGA-H is worse than both FR-
Mb and FR-Mccga. The results for the complex 1354-PEG
system show that the cost increase for the CCGA-H is more
than one order of magnitude higher than those for FR-Mb and
FR-Mccga. Overall these results show a very small cost increase
for both FR-Mb and FR-Mccga over CCGA, suggesting that the
proposed approaches are promising, not only in terms of CPU
times but also cost-wise.
Finally, Fig. 4 exemplifies that FR-CCGA and CCGA can

be further combined to produce real-time optimality gaps. The
illustration shows the behavior across time of FR-Mccga and
CCGA on a randomly chosen instance of the 1354-PEG system.
The red line represents the upper bound (final feasible solution)
generated in 1.87 seconds by the FR-Mccga. The blue line
represents a sequence of true lower bounds (infeasible solutions)
generated by the intermediary iterations of Algorithm 1 (for

Fig. 4. Convergence plot for the 1354-PEG system.

CCGA). This indicate that the FR-CCGA and CCGA can be
run in parallel (in separate threads) to provide upper and lower
bounds to the SCOPF respectively. This may be valuable for
operators to assess the quality of the associated FR-CCGA
solution and decide whether to commit to the already feasible
FR-CCGA solutions or wait until a better solution is found or
the optimality gap is sufficiently small.

VII. EXTENSIONS, LIMITATIONS AND FUTURE WORK

There are several interesting avenues for future research.
One of them is the addition of new features to the SCOPF
such as the inclusion of line contingencies. This requires the
precomputation of different structures for K0, K1, k2, and k3

for each considered line contingency. The processes of learning
would remain the same. The process of solving both the original
CCGAwith Algorithm 1 (to generate training instances) and the
FR-CCGA (48)–(49) would remain similar, but with a larger set
of contingency states and their respective contingency variables.
Thiswould lead to a sublinear increase in the data for the problem
(with as many new preprocessed structuresK0,K1, k2, and k3

as the number of line contingencies). This would not present a
significant technical obstacle since the structure of the SCOPF
problem would remain the same.
Notice that, in a broader perspective, the ML models of this

work “learn to solve an optimization problem” while the post-
processing feasibility recovery phase (Section V) precisely uses
the same initial decomposition scheme to ensure feasibility. In
this context, as long as a SCOPF model possesses a reasonable
decomposition scheme, it is a candidate to the proposed general
framework. Hence, the most relevant technical limitation for
this framework is the development of decomposition approaches
for the underlying optimization problem. As future research,
security-constrained versions of convexifications of theACOPF,
such as those applied in [16] and [17], will be studied instead of
the preventive DC-SCOPF.

VIII. CONCLUSION

This paper proposed a tractable methodology that combines
deep learning models and robust optimization for generating
solutions for the preventive DC-SCOPF problem. The consid-
ered SCOPFmodeled generator contingencies and the automatic
primary response of synchronized units. Computational results
over two large test cases demonstrate the practical relevance of
the methodology as a scalable, easy to specify, and cost-efficient
alternative tool for managing short-term scheduling.
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