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Speed Up Quantum Transport Device Simulation
on Ferroelectric Tunnel Junction With Machine
Learning Methods

Tong Wu

Abstract— As the device size scales down to the nanome-
ter regime, quantum effects play an important role in
device characteristics and performance. Quantum transport
device simulation based on the nonequilibrium Green’s
function (NEGF) has been extensively applied to simulate
the nanoscale devices. The NEGF simulations, however, can
be computationally expensive, especially in the presence
of scattering. In this study, a machine learning (ML)-based
framework is developed, targeting on replacing the com-
putationally intensive NEGF simulations. This framework
first learns a sparse representation of a quantum transport
property of interest and then trains a model to describe the
quantitative mapping relation between the device parame-
ters and properties. Also, the accuracy is further improved
with the application of feature engineering. As an example,
a graphene-ferroelectric—-metal (GFM) ferroelectric tunnel
junction (FTJ) is simulated. The results show that the
ML-based framework allows circumventing the NEGF cal-
culation and simultaneously maintaining high accuracy in
quantum transmissions and tunneling /-V characteristics.
This ML-based framework can be applied to speed up the
quantum transport device simulations and enable efficient
tunneling device design.

Index Terms— Machine learning (ML), nanodevice, non-
equilibrium Green'’s function (NEGF) simulations.

|. INTRODUCTION

S THE size of electron devices scales down to the

nanoscale regime, quantum effects become increas-
ingly important. In nanoscale field-effect transistors (FETs),
quantum-mechanical tunneling limits ultimate scaling. On the
other hand, quantum effects serve as the fundamental operation
mechanism for nanodevices such as tunneling FETs [1], [2],
magnetic tunnel junction (MTJ) [3], [4], and ferroelec-
tric tunnel junction (FTJ) [5], [6]. To capture the quan-
tum effects in those device studies, the nonequilibrium
Green’s function (NEGF) formalism has been developed
and applied to computer-aided design and simulation of
nanoscale devices [7]-[10]. To model a realistic device size
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Fig. 1. (a) Diagram of the NEGF simulation speed up by ML techniques.
The ML model is trained to link the device parameters to device prop-
erties and it can replace the NEGF simulation to accelerate the whole
simulation. (b) Schematic of the GFM FTJ. The top contact (metal) and
the bottom contact (graphene) are separated by a thin ferroelectric (FE)
layer.

with scattering, the NEGF simulations, however, can be
computationally expensive, which hinders efficient device
design [9], [11].

To address this issue, one approach is to develop a data-
driven model that can replace the computationally most
demanding part in the device simulation flow. Recently,
machine learning (ML) methods have been developed and
applied for design and simulation problems in the fields of
quantum chemistry and quantum physics [11], [12], as well as
computational materials science [13]-[15]. Compared to these
more fundamental fields, the application of the ML method in
the quantum device simulation remains much more limited.

In this work, an ML-based framework to enable efficient
modeling of quantum transport in nanoscale devices is pro-
posed, as shown in Fig. 1(a). In the quantum transport device
simulations, the NEGF simulations, which simulate device
properties from device parameters, can be computationally
expensive in the presence of scattering for routine device
design. Alternatively, an ML model can be trained, which
maps device parameters to device properties based on the data
obtained from the NEGF simulations, as shown in Fig. 1(a).
Once the model is trained, the NEGF simulations path
can be replaced with significantly improved computational
efficiency. This ML-based framework is capable of speeding
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Fig. 2. Block diagram of the ML-based method in the quantum transport simulation. There are four main blocks in this approach: the device simulation
block that uses the NEGF simulation to generate data, the DL block that reduces the learning target features; the regression block that implements
the regression, prediction, and cross validation; and the feature engineering block that consists of feature generation and feature selection.

up the modeling quantum effects in the device simulation
for enabling high-throughput, computationally efficient device
design. Also, it can be further extended to a high-dimension
data set or a complex device structure.

1. APPROACH

The overall purpose of the ML-based framework is to
develop a data-driven model that can relate the device
parameters to device properties in the quantum transport
device simulations. As an example of illustration, a monolayer
graphene—ferroelectric-metal (GFM) FTJ device, as shown
in Fig. 1(b), is simulated [16]. The graphene contact has
an energy-dependent density of state (DOS), which impacts
the device I-V characteristics, and requires treatment beyond
the Wentzel-Kramers—Brillouin (WKB) approximation calcu-
lation, which is incapable of modeling contacts and scattering.
The NEGF calculation that can treat contact and scattering
effect is necessary, and a time-efficient method that can speed
up the NEGF device simulation is desired for efficient device
design.

For the GFM device in Fig. 1(b), we focus on obtaining two
of the device properties: transmission versus energy and /-V
characteristics. The transmission provides physical insights
into quantum mechanical behaviors of the FTJ device oper-
ations. Since the current can be straightforwardly computed
from the transmissions, the learning target is only set as the
transmission versus energy. Then the current will be computed
from the ML-reconstructed transmissions. We take the loga-
rithm of transmissions as a function of energy log(7 (E)) due
to the large range of the order of magnitude of the transmission
data.

Fig. 2 outlines the ML-based framework, which consists
of four blocks: 1) device simulation block, 2) dictionary
learning (DL) block, 3) regression block, and 4) feature
engineering block, as indicated by the dashed line boxes.
The simulation block performs the NEGF simulations for
obtaining the training and testing data sets. We describe the
NEGF simulations used to generate the training and testing
data in Section II-A. The DL technique, which facilitates

the representation of log(7'(E)), is described in Section II-B.
Regression algorithms, which are the core of relating the
device parameters to the device properties, are discussed in
Section II-C. The feature engineering block is introduced
in Section II-D. Finally, the overall workflow is described in
Section II-E.

A. Quantum Transport Simulation

To study the carrier transport and device performance of
the GFM FTJ device, which is shown in Fig. 1(b), the NEGF
on a finite-difference grid device simulation is used [7], [8].
The potential profile of the device is calculated by solving
the electrostatic Poisson equation in 1-D along the vertical
direction self-consistently with the contact equilibrium carrier
statistics [16]. Dirichlet boundary condition is taken for the
last node.

Since the tunneling barrier thickness is small in the FTJ
device, the ballistic transport is assumed for simplicity. The
Fermi level pinning is neglected as it can be weak at the
graphene—FE insulator interface [16]. The Green’s function
can be written as

G(E)=[(E+i0")Ioy— H—Ec— £, (E)— £2(E) — Zsea ()|
(1)

where Iy is the unit matrix, H is the device Hamiltonian
obtained by the finite difference approximation, E. is the
conductance band edge, X; and X, are the self-energies for
the graphene and metal contacts, respectively, and Xgc,(E)
is the scattering self-energy [17]. The FTJ is assumed to be
uniform in the transverse direction, and the NEGF transport
equation is solved in the 1-D transport direction by using
an effective mass Hamiltonian in the energy range we inter-
ested in.

To provide a capability to phenomenologically model elastic
scattering due to defects and impurities in the device sim-
ulations, the self-consistent Born approximation (SCBA) is
used in the NEGF transport simulations [17], [18]. The scat-
tering self-energy is related to the retarded Green’s function
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as Xseal(i, j) = D(, j)G(, j), and the in-scattering (out-
scattering) function ™ is related to the electron (hole)
correlation function G™P as Ti™°U(;, j) = D(i, j)G™P(i, j),
where D(i, j) = S i, where S is a constant factor describing
the strength of scattering, J;; is the Dirac delta function, and
i and j are the point position indices [17].

Contact effects can play an important role in nanoscale
devices. As for the GFM structure, self-consistent electro-
statics modulate the Dirac energy point of graphene contact
with regard to its Fermi level. In the NEGF device simulation,
a phenomenological description is used for the self-energy of
a contact [19], which can be expressed as

TI(E) = 1g(E)t” 2)

where g¢(E) is the surface Green’s function of the contact, and
7 is the coupling between the device node and the surface node
of the contact. The contact broadening can be expressed as

TH(E) =i(Z((E) — Z1(E)") = tAJ(E)c™ 3)

where A((E) = i(g(E) — g(E)Y) = 2z Ds(E) is the
surface spectral function and Dg(E) is the DOS at the surface
node of the contact. The imaginary part of the contact self-
energy is proportional to the DOS of the contact material.
For a monolayer graphene contact, the surface node of the
contact is essentially the graphene layer. By assuming 7 is
energy independent, the self-energy of graphene contact can
be expressed as

Z1(E) = —iao(|E — Eq| + 00) “4)

where oy is a proportional constant determined by the coupling
strength between the contact and device, E4 is the Dirac
energy, the first term describes the linear dependence of the
graphene DOS on energy, and the second term describes a
nonzero residue DOS at the Dirac point due to fluctuations
and defects in graphene [20], [21].

In the transport energy range of interest, the DOS of metal
contact is approximately constant, and its contact self-energy
can be expressed as

2 (E) = —ity (5)

where fy = A2/(2m.Ax?), m. is the effective mass, and Ax
is the grid spacing.
The transmissions can be computed as [8]

T(E) = trace(GT|G'T,) (6)

where '/, = —2Im(X;,) is the broadening function of
the electrodes. In the presence of elastic scattering or at
the ballistic limit, the current can be computed from the
Landauer—Biittiker formula [8]

I = /dE -T(E)| fap,1 (E) — fop2(E)] (7

where fop;(E) = Noln(1 +exp(—(E — EF,;)/kgt)) is derived
by summing over the transverse modes, where i = 1,2 is for
graphene contact and metal contact, Ny = mckgt/(2m h?) is
the density constant, where kg is the Boltzmann’s constant,
and ¢ is the temperature [19].

For the GFM FT1J device as shown in Fig. 1(b), the device
parameters of interest in this work include six most important
parameters, the barrier heights @;, ®@,, the thickness of the
FE layer t, the scattering strength S, the Dirac energy
of graphene E,, and the effective mass m.. Although the
ML-based framework only takes six parameters for demon-
stration, it is extendible to higher dimensions of the device
parameter space.

B. DL for Dimensionality Reduction of Output
Device Properties

As described above, the target of the ML method is to learn
log(T (E)). A straightforward choice of the basis function of
the transmissions is the numerical grid basis. For a typical
simulated energy range of ~1 eV and a grid spacing of
~1 meV, the size of the basis set determined by the number
of energy grid points is ~1000. One issue that needs to be
addressed is that since log(7T (E)) is discretized as a vector,
the large size of the basis set leads to the high dimensionality
of the learning target. To reduce the dimensionality of the
learning target for computationally efficient ML, it is preferred
to describe the target function, which is the transmission versus
energy here, in a feature space.

Hence, we investigate the DL as an efficient way to reduce
the feature size of the transmissions, so that the log(7(E))
can be replaced with a sparse representation learned from
DL [22], [23]. DL can efficiently generate a dictionary of the
target data, which can map the high-dimension original data
to a low-dimension processed data. With this dictionary, the
transform between the original data and the new data can be
simply a sparse coding step sharing the same implementation.
In DL, the target function is represented by a linear combina-
tion of a feature basis set which can be learned from the data
set, X = Da, where D is an m X k dictionary matrix, m is
the length of a data set vector, k is the size of the dictionary
basis set, and a = [a1,0a2,...,0,] are the coefficients that
represent the data set of X = [Xq, X2, ..., X,,] in the sparse
dictionary representation, where n is the length of the data set.
Here, the coefficient matrix a has a dimension of k x n, and
the data X matrix has a size of m x n. In DL, an empirical
cost function is optimized

1 n
co) = > (X}, Xp;) (8)
j=1

where the cost function can be defined as the Euclidean
distance between a data vector X ; and its corresponding vector
constructed from the dictionary Xp; = Da;.

To perform DL, the cost function C(D) is iteratively mini-

mized with the step-by-step procedure.

1) For a given dictionary matrix D, the orthogonal match-
ing pursuit (OMP) algorithm is used to determine the
coefficient matrix o. The OMP algorithm is a sparse
coding algorithm that finds the closest matching project
for a given data set X onto a dictionary.

2) For a given coefficient matrix a of a data set X, use
DL to obtain the dictionary D by optimizing the cost
function C(D).
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TABLE |
COMPARISON OF THE MAIN PROPERTIES OF
THE REGRESSION ALGORITHMS

Regression algorithm  LASSO EN KRR RF

Linear regression X X X

Non-Linear X X
Good for feature
. X X
selection

Time efficiency X X X

Ensemble method X

The above two steps are iterated until a specified condition,
such as a threshold value for the cost function, is met. The
iterative procedures output a dictionary D which is essentially
a basis set and the coefficient matrix a which is essentially
the sparse representation of the data set X in the dictionary
basis set.

Specifically, the DL is accelerated with a minibatch
approach. This approach divides the data into minibatches
and optimizes in an online manner with cycling over the
minibatches for the specified number of iterations.

C. Regression Algorithms to Link Device Parameters to
Device Properties

The regression block, as shown in Fig. 2, establishes a
regression relation between the device parameters and device
properties. Regression algorithms focus on the analysis of
the relationship between the variables which iteratively refine
the modeling with the error in the prediction based on the
model [24]. There are several different classes of regres-
sion algorithms, for example, kernel regression, regularization
method regression, and decision tree regression. Four popular
regression algorithms, least absolute shrinkage and selection
operator (LASSO) regression (regularization algorithm) [25],
[26], elastic net (EN) [26], kernel ridge regression (KRR)
(regularization with kernel algorithm) [27], and random forest
(RF) regression (decision tree algorithm) [28] are implemented
to establish a mapping relation between the device parameters
and device properties. The comparison of the main properties
of the regression algorithms is listed in Table I.

The first learning scheme adopted to learn the mapping
relation between the device representation and the log(7 (E))
is LASSO regression. LASSO regression is a type of linear
regression trying to shrink the data values toward a central
point, like the mean. It performs the L1 regularization, which
gives a penalty on the absolute value of coefficients. This
will return a sparse model with relatively few coefficients.
If there is a group of highly correlated variables, LASSO
regression has the trend to only select one of them. This
property makes LASSO well suited for feature elimination and
selection. LASSO, however, has limitations in the scenarios
that the feature dimension is much larger than the data
points.

Another implemented learning method is EN. It considers
the quadratic penalty part and the absolute value part, which
is a combination of LASSO regression and ridge regression.
EN is shown that it often outperforms the LASSO in terms
of prediction accuracy [29], and it suits better if only a few
training data points are provided.

TABLE Il
INPUT DEVICE PARAMETER SEARCH SPACE

Parameter @, @, tse S E; m,
Meani Barrier ~ Barrier  FE thick- Scattering ~ Graphene  Effective
eaning height 1  height 2 ness parameter  Dirac point mass
Unit eV eV nm eV? eV mo
Lower 0.7 1.5 0 -0.5 03
limit
Upper ¢ 25 33 038 0.2 0.9

limit
m, is the free electron mass.

To go beyond linear regression, KRR is implemented, which
is a special ridge regression with kernel-based tricks. KRR
can learn the linear function in the space of the kernel feature,
which could be the nonlinear function on the original space
if a nonlinear kernel is adopted. In this case, the radial basis
function (RBF) kernel is used to describe the mapping relation.
Combined with L2 regularization, the squared loss is taken
as the loss function in KRR. Unlike the L1 regularization
which trends to return to a sparse model, the L2 regularization
trends to set all the coefficients to a relatively small value.
This characteristic makes the ridge regression not suitable for
feature selection.

The last adopted learning method is RF. RF regression is
an ensemble learning model. It is more generalizable and
more robust than other methods. It operates by combining a
host of decision trees when training and outputting the mean
prediction of the individual decision tree. As for now, it is
still one of the most accurate learning algorithms available.
Another advantage is that the RF can directly handle thousands
of input features, which makes it a good choice for operating
on our data set with constructed features. Furthermore, RF
can also be implemented in feature selection as it provides
the importance of each input feature.

D. Feature Engineering of Device Parameters

As discussed before, the goal of the ML-based framework
is to discover a general relationship between the properties
of interest and the device parameters. The feature engineering
block in Fig. 2 targets on identifying more compact or even
analytical relations by focusing on the input device parameter
space.

The primary features are set as the six input device para-
meters, that is, {®, O, tr, S, Eq, m}, as listed in Table II.
Based on the above six primary features, a total of 2232 data
features are constructed. Applying the 12 prototype functions,
x, x5 x03 x705 %2 x72 x3, x7 3, Inx, (In x)_l ,e¥ and e,
72 new one-term features are immediately generated consid-
ering x as each of the primary features in order. Similarly,
choosing any two of the six primary features, and implement-
ing the 12 prototype functions on both of the chosen features,
can lead to 2160 (Cg X 12 x 12) new two-term features. Thus,
there are 2232 one-term and two-term features in total.

A feature selection algorithm, recursive feature elimination
(RFE), is applied to the newly composed data set for feature
down selection. RFE can be used along with any estimator that
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Fig. 3. Accuracy of DL. (a) Logarithmic transmission versus energy

reconstructed from the DL with different number of features (DL com-
ponents), compared to the data from the NEGF simulations, for a GFM
FTJ as shown in Fig. 1(b). (b) DL reconstructed log(T(E)) versus the
DL components. The simulated FTJ device is shown in Fig. 1(b), with
a polarization of P = 10 uC/cm?, the barrier heights of ¢y = 1.40 eV
and ¢o = 2.00 eV, an FE layer thickness of trg = 2.30 nm, the effective
mass of me = 0.40mg (mg is the free electron mass), and biased at
Vb = 0.4 V. The screening Ien%th of metal contact is a = 1 A. The
scattering strength is S = 0.3 eV~.

returns a feature-importance coefficient, for example, LASSO
and RF. Based on a trained ML model, the unimportant
features are eliminated, determined by comparing the threshold
with the corresponding feature importance. Next, a new learn-
ing model is trained based on the remaining features. This
recursive process will iteratively continue until the remaining
features reduced to a specified value. The selected features will
be tested and analyzed together with the data and the trained
ML model.

E. Workflow of the Device Simulation With ML

The ML-based framework supported by the NEGF simula-
tions works as follows.

1) Generate the training and testing data sets of device
properties from device parameters by using the NEGF
simulations.

2) Adapt DL for feature reduction of the device properties.

3) Train the ML model by using a regressor with the
training data set.

4) Generate new features based on the original parameters
and perform feature selection to get the most important
features.

5) Analyze and test the selected features with the original
ML model and the data set.

It is worth mentioning that the LASSO regressor is imple-

mented not only in the regression part but also in the feature
engineering part.

[1l. RESULTS AND DISCUSSIONS

We first examine how to represent the output device property
of interest, log(7'(E)), by using the DL method. While for the
NEGF simulations of the FTJ device, log(T (E)) is a vector of
> 100 elements, the goal of the DL is to reduce the feature size
of the device property, so that it facilitates subsequent regres-
sion processes. Fig. 3(a) shows the transmissions computed
by NEGF, compared to those reconstructed from DL with 8§,
10, and 12 components. The log(7T (E)) vector has 300 ele-
ments, and the DL procedure essentially reduces the property
vector size to 8, 10, and 12. The results show that despite
much smaller vector size, the DL reproduces the transmission

Ep

©

.._4_4-4-0—0_0--0
0.4

0.2
VI[V]
Fig. 4. (a) Band diagram of the GFM FTJ device at ON-state.
(b) Transmission versus energy in the presence of scattering obtained by
the ML-based model compared to the NEGF simulation result. The lines
are from the NEGF simulation for the oN FE polarization state (solid line)
and the oFF-state (dashed line), and the diamonds are the transmission
predicted from the ML model for the on-state (red) and oFr-state (blue)
with DL basis. (c) oN and oFF current versus the applied voltage from the
NEGF simulation and the ML-based model. The simulated FTJ device is
the same as that in Fig. 3.

vector with high accuracy. In order to further understand the
dependence of the accuracy on the DL vector size, Fig. 3(b)
shows the accuracy of log(T (E)) reconstruction as a function
of the dictionary components. The results indicate that even
for a dictionary size down to 5, the reconstruction accuracy
is sufficiently high with >0.99. In this work, a dictionary
size of ten components is implemented. By this way, the
dimensionality of the learning target is reduced by 30 times
from the 300 elements of log(7 (E)) to ten components of DL,
which renders a high accuracy of approximately 0.995.

Next, we examine the results of different regression algo-
rithms in the regression block with the ten-component DL. The
device parameter space {®,, Oy, tg, S, Eq, m.}, as mentioned
in Section II-D, has the range as listed in Table II. A total
of 2500 device samples, which follow a uniform distribution
in the device parameter space, are simulated. Fifty percent of
the data are used as training data and 50% of the data are used
as the testing data and cross-validation is implemented. Fig. 4
shows the comparison of the results computed by NEGF and
those predicted by the ML model. The band diagram of the
GFM device at oN-state and OFF-state is shown in Fig. 4(a).
Fig. 4(b) compares the predicted transmissions and the NEGF
simulation results. The current computed by the two sets of
transmission data is shown in Fig. 4(c). It demonstrates that
the ML model trained based on 1250 data points is applicable
for the prediction of the transmissions and the corresponding
current of the device.

It is desirable to be able to achieve high accuracy with
a small training data set. The relationship between the
accuracy and the size of the training data set is exam-
ined next. Fig. 5(a) and (b) shows the mean absolute
relative error (MARE) and the root-mean-square error
(RMSE) of the learning results based on training sets
with 12-1250 datapoints. Here, MARE = 1/(Ng x N.)
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Fig. 5. Comparison of accuracy and time for four regression methods.
(a) MARE and (b) RMSE of the ML result with different regressors
versus the number of data points in training data set. (c) Total simulation
time versus the number of data points in training data set with different
regressors. The time is the sum of the NEGF simulation time for obtaining
the training data and model training time.

25| (log(Txecr) — 10g(Tprea))/log(Txecr), where Ny
is the number of test datapoints, N. is the number of
energy gird, Tnggr and Tpeq are the transmission from
the simulation and ML model, respectively, and RMSE =
(1/(Na x Ne)(Z1 2 (log(Tnecr) — 10g(Tprea))?))?. The
results indicate that a prediction of log(7'(E)) with a low
MARE (<0.1) can be achieved by all the four regressors with
a training data set larger than 1000, but the increase of the
training data set size adds computational costs.

To understand the computational resource cost, the total
time cost, which consists of the time for the sum of time
for obtaining the training data and time for training the ML
model, is shown in Fig. 5(c), as a function of the training
data points. Fig. 5(c) shows that increasing the training data
size comes with a proportional increase of the total time,
and an ML model that can be accurate for a smaller data
training data set, therefore, is more computationally preferable.
To achieve a small error of MARE < 0.05, the KRR regressor
performs best and requires the smallest data set size of larger
than 50, as shown in Fig. 5(a) and (b), which requires the
lowest computational cost for training the model among the
four regression methods studied.

Once the ML model is trained, it can offer significant
improvement of computational time compared to the NEGF
simulations for predicting the quantum transmission. For
example, obtaining the transmissions of 1250 points with
NEGF requires about 10° s on an Intel 17-3770K, which
indicates that the direct NEGF simulations for extensive device
design will be computationally intensive. In contrast, once the
ML model is trained, the prediction from the model is <10 s,
which is at least 10* times faster. The ML-based method,
therefore, is suitable for fast, high-throughput device design
and optimization in a large design space.

To further discover the impact and importance of each
parameter on the device properties, a feature construction and
selection procedure is used. The selected features can not

accuracy but also provide the inner link or even an analytical
expression between the device parameters and properties. The
new one-term and two-term features are generated as stated in
Section II-D. The LASSO estimator is tested in the RFE for
its capability to return the feature importance coefficients. The
procedures, as described in detail in Section II-D, identify that
in addition to the original six-parameter feature set, the most
important one-term and two-term features ranked in order
include v/ @, v/®,, E2, (®m)"/?, and (®am.)'/?. By taking
advantage of the features identified, it is possible to predict
the transmission with higher accuracy.

To examine the choice of the feature set, the following three
feature sets are compared with the same regressor, KRR, and
the same original learning data set in Fig. 6:

Feature set 1: {®,, O, tre, S, Eq, Me};

Feature set 2: {v/ @1, v/©2, fre, S, E3, Jm.};

Feature set 3: {\/D®me, o/ Pome, tie, S, Eg},
where Feature set 1 is the original parameter set, Feature set 2
and Feature set 3 include the identified important features with
the rest of the original features. For a new feature set, first,
the device parameters are processed, calculating the values
of the corresponding features, to obtain the data for training
and testing. Then the DL is applied, and an ML model is
trained based on it. The performance of a feature set can be
quantified in the same way by plotting the MARE and RMSE
as a function of the size of the training data points.

Fig. 6 compares the accuracy of the three different feature
sets. The results show that Feature set 2 can reach the MARE
of 0.05 by only 50 datapoints, which is comparable to the
result of Feature set 1 with 100 datapoints. Mapping the results
to the -V characteristics, based on Feature set 2, the MARE
of current could be smaller than 0.09 on the 1250 tested
device samples. Benefited from the more complex features,
Feature set 3 also shows the improvement on a small data
set, but the improvement is smaller than Feature set 2. The
results indicate that a feature down selection procedure by
using RFE can help to improve the regression and unveil
the inner or even analytical relation between parameters and
properties of interest.

Although a simple FTJ device is studied for illustration,
the ML framework for modeling quantum transport in devices
is built based on a general procedure by first reducing the
dimensionality of the device properties by DL, then linking the
input device parameters to device properties by ML regression
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methods. Feature engineering further allows simplifying the
input feature space. The framework can be further extended
to a more complex device data set for more complex device
structures in future, as DL has been proved to be capable
of handling a larger and higher dimensional data set [22].
With the high-accuracy learned dictionary of transmissions,
the regression and feature engineering modules, as shown in
Fig. 2, can train a model whose accuracy can be improved
by enlarging the DL components, expanding the feature
space, and increasing the learning precision. Thus, the device
properties of interest, such as the transmissions and I-V
characteristics, can be predicted with good accuracy from the
input device parameters.

IV. CONCLUSION

An ML-based framework for replacing the computationally
intensive part of the NEGF device simulation is proposed. The
results show as follows.

1) By using DL, the dimensionalities of the device prop-
erties of interest can be significantly reduced remaining
the main information.

2) Four regression algorithms are investigated and com-
pared in terms of accuracy and computation time, indi-
cating that high prediction accuracy can be achieved.

3) The RFE procedures can be used to further improve the
accuracy and discover the inner relation from the device
parameters to device properties.

The framework presented here demonstrates the potential
of the ML techniques for fast and high-throughput simulation
and design of quantum-effect devices.
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