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ABSTRACT: Artificial neuronal devices that functionally resem-
ble biological neurons are important toward realizing advanced
brain emulation and for building bioinspired electronic systems. In
this Communication, the stochastic behaviors of a neuronal
oscillator based on the charge-density-wave (CDW) phase
transition of a 1T-TaS2 thin film are reported, and the capability
of this neuronal oscillator to generate spike trains with statistical
features closely matching those of biological neurons is
demonstrated. The stochastic behaviors of the neuronal device
result from the melt-quench-induced reconfiguration of CDW domains during each oscillation cycle. Owing to the stochasticity,
numerous key features of the Hodgkin-Huxley description of neurons can be realized in this compact two-terminal neuronal
oscillator. A statistical analysis of the spike train generated by the artificial neuron indicates that it resembles the neurons in the
superior olivary complex of a mammalian nervous system, in terms of its interspike interval distribution, the time-correlation of
spiking behavior, and its response to acoustic stimuli.
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The stochastic nature plays a key role in enabling functions
of biological neural networks including visual, auditory,

and cognitive systems.1−3 However, the research on the
stochastic firing characteristic of artificial neurons remains very
limited. Most previous research on artificial neurons has
focused on developing circuits involving tens of transistors4 or
on building neuronal devices based on insulator−metal
transition (IMT) materials,5−8 volatile memristors,9−11 mag-
netic tunnel junctions,12,13 and chalcogenide-based phase-
change materials,14 to realize basic neuronal features such as
emulating the action potential generation,5,8,9 noise re-
sponse,15−17 and realizing the integrate-and-fire function for
computing applications,10,11,18 typically overlooking the
stochasticity of neurons. Although there are a few reports of
the stochastic artificial neurons based on IMT materials or
spintronic devices,8,14,19,20 the research on neuronal stochas-
ticity is confined in the spike probability under different
control conditions19,20 or the response to input with stochastic
noise.8,14 Study on more detailed stochastic properties, such as
the underlying form of probabilistic distribution followed by
the interspike interval, the time correlation of spiking behavior,
and the statistical resemblance to their biological counterpart,
has been largely missing. In this work, we propose a stochastic
neuronal oscillator utilizing the electrically induced charge-
density-wave (CDW) phase transition of a 1T-TaS2 thin
film.21−23 An oscillator device based on 1T-TaS2 has been
reported before.21 However, the stochastic properties of the

CDW device have never been studied. Here, we report the
stochastic behaviors in the firing activity of the CDW neuronal
oscillator. We discovered that tunable statistical characteristics
can be achieved by applying different bias voltages to the
device. Its close resemblance to the neuronal spiking in the
superior olivary complex (SOC) of mammals is also revealed
for the first time.
1T-TaS2 is a layered crystalline material exhibiting typical

CDW properties. At a high temperature there is a simple
metallic phase. At Tc0 = 543 K, it forms an incommensurate
(IC) phase. When cooled below Tc1 = 350 K, the IC structure
forms a nearly commensurate (NC) state, where the hexagonal
array of CDW domains are separated by domain walls. Below
Tc2 = 183 K, a fully commensurate (C) phase forms.24 Figure
1a illustrates the atomic structure of the four phases. The C
phase behaves as a Mott insulator, but IC is metallic. The NC
phase is an intermediate phase. The atomic structure of CDW
domains and domain walls resemble C and IC, respec-
tively.25−27 At room temperature, 1T-TaS2 thin films are
normally in the NC phase, but they would undergo a phase
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transition to IC in the presence of an external electric field
exceeding 20 kV cm−1, accompanied by the resistance
decreasing to approximately half of its initial value,21,22,28

which makes a room-temperature oscillator possible.
Figure 1b shows the schematic structure of the 1T-TaS2

neuronal oscillator and the cross-sectional scanning trans-
mission electron microscopy (STEM) image at the metal
contact region. The material composition of each layer is
confirmed by the electron energy loss spectroscopy (EELS), as
shown in Figure S1 (Supporting Information). In the current−
voltage (I−V) characteristics of the 1T-TaS2 device (Figure 1c,
orange curve), an abrupt current increase at the threshold
voltage (Vth) was observed due to the phase transition from
NC to IC.21,26,27 To induce the oscillation, a series resistor and
a parallel capacitor are connected to the device to form a
Pearson-Anson circuit, and then a DC bias (Vdc) is applied.
The voltage across the 1T-TaS2 thin film (Vout) is observed by
an oscilloscope. If the load line of the resistor in the circuit
crosses the hysteresis window like the straight lines do in
Figure 1c, the 1T-TaS2 thin film can convert back and forth
between the NC and IC states, leading to the oscillation of
Vout.

21 The waveform of oscillation can be tuned by the applied
Vdc (Figure 1d). When Vdc is around the lower limit of
oscillation (Figure 1c green line, 2.21 V), the 1T-TaS2 thin film
tends to stay mostly in the NC phase, only occasionally
switching to the IC phase, and switches back to NC
immediately (Figure 1d, green waveform). Since the time
interval between the consecutive pulses is random, this
operation domain can be considered as the stochastic
oscillation regime. The oscillation behavior is similar when
the voltage is close to the upper limit (Figure 1c violet line,

Figure 1. Structure and electrical characterization of a 1T-TaS2
oscillator. (a) Schematic illustration of the atomic structure of the
four phases of 1T-TaS2. Blue and gray stars represent CDW
superlattice in C and IC phases, respectively. The blue dots in the
metal phase schematic represent individual Ta atoms. (b) Schematic
structure and cross-sectional STEM image of the 1T-TaS2 oscillator at
the metal contact region. The scale bar is 20 nm. The thickness of this
1T-TaS2 sample is ∼6 nm. (c) I−V characteristic of the 1T-TaS2 film,
the oscillator circuitry, and the load lines under different bias
conditions. The oscillation occurs if Vdc ranges from 2.21 V (green
line) to 2.56 V (violet line). (d) The corresponding oscillation
waveforms at different Vdc in (c). For Vdc = 2.21 V (green) and Vdc =
2.56 V (violet), the oscillation peaks are separated by random time
intervals; for Vdc = 2.40 V (cyan line), the oscillation occurs
continuously.

Figure 2. Statistical analysis of the spike trains generated by the artificial neuron. (a) A typical series of waveforms excited by increasing Vdc. The
series resistor is 1.5 kΩ. (b) The statistical distribution of the interspike intervals corresponding to the different bias conditions as indicated in (a)
and the fitted distribution curves. For the stochastic oscillation regime, the interspike interval generally follows an exponential distribution with
tunable rate parameter λ = 0.0937 ms−1 (2.185 V), 0.283 ms−1 (2.19 V), 0.781 ms−1 (2.195 V), 1.248 ms−1 (2.545 V), 0.575 ms−1 (2.55 V), 0.0414
ms−1 (2.555 V). For the regular oscillation regime, the interval follows a Gaussian distribution with tunable mean μ and standard deviation σ, μ =
0.330 ms and σ = 0.0221 ms (2.25 V), μ = 0.223 ms and σ = 0.0074 ms (2.25 V). A transitional Gamma distribution with parameters α = 10 and β
= 0.07 is also observed (2.22 V). (c) Firing rate vs Vdc relation of the neuronal oscillator with a 3 kΩ series resistor.
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2.56 V), but in this case the 1T-TaS2 tends to remain in the IC
phase (Figure 1d, violet waveform). When Vdc is between the
two stochastic oscillation regimes (Figure 1c cyan line, 2.40 V),
neither NC nor IC is relatively stable, resulting in a continuous
oscillation waveform where every pulse is closely followed by
another (Figure 1d, cyan line). We consider this operation
domain as the regular oscillation regime.
To investigate the stochastic properties of the 1T-TaS2

device and its ability to emulate the stochasticity in biological
neural spiking, a statistical analysis of the spike trains generated
by the artificial neuron was conducted. Following the similar
approach as the statistical treatment of an actual nervous cell,
we focused on the analysis of the interspike time intervals.29−32

Figure 2a shows a typical series of spike trains generated by the
1T-TaS2 artificial neuron under different bias conditions. The
oscillation waveforms of only 10 ms duration of the measured
data are displayed so that the interspike intervals can be clearly
distinguished. Figure 2b shows the histograms of the interspike
intervals and the fitted distribution curves corresponding to
each waveform in Figure 2a. Generally, when the device
operates in the stochastic oscillation regime, the interspike
interval follows exponential distributions with tunable rate
parameter λ ranging from 0.041 to 1.248 ms−1. When the
device operates in the regular oscillation regime (dark yellow
and olive lines), randomness still exists due to the varying
oscillation amplitude, which results from the resistance
variation of the 1T-TaS2 thin film during each oscillation
cycle (Figure S2, Supporting Information). In this case, the
interspike intervals follow a Gaussian distribution whose mean
and standard deviation (std) both decrease as Vdc increases. In
addition, an intermediate distribution (green line) is also found
when Vdc is very close to the regular oscillation regime, which
can be fitted well using a Gamma distribution. The two
parameters of the Gamma distribution (α, β) can change from

(2, 1.5) to (12, 0.06) as Vdc increases, leading to a gradual
transition from exponential to Gaussian (Figure S3, Supporting
Information). The spike trains with interspike intervals
following exponential, Gamma, and Gaussian distributions
were also observed in biological neurons of a mammalian
auditory nerve.33,34

Figure 2c plots the firing rate as a function of Vdc. For the
regular oscillation (blue region), the firing rate is determined
by the RC (R = resistor; C = capacitor) delay of the circuit.
The upward trend of firing rate in this regime is due to the
larger current enhancing the charge/discharge rate of the
capacitor. At both sides (green and purple regions) of this plot,
the device is in the stochastic oscillation regime, where the
dependence of the firing rate on the bias voltage is very
sensitive. An abrupt rise of the firing rate occurs as Vdc comes
closer to the regular oscillation regime by less than 0.1 V.
To investigate the origin of the stochastic oscillation, we

measured the IV curve of a 1T-TaS2 sample for over 200
switching cycles, with a 1 min cooling down between each two
measurements as a precaution to exclude potential heat
accumulation; results are shown in Figure S5 (Supporting
Information). The Vth of the phase transition has a cycle-to-
cycle variation within the range from 0.823 to 0.840 V, which
results from the microscopic stochasticity in the CDW phase
transition process. When the device operates in the stochastic
oscillation regime, the oscillator operation is very sensitive to
the varying Vth. A slight variation in Vth can lead to the change
between firing and nonfiring. In other words, the microscopic
stochasticity in the CDW transition process is magnified in the
oscillator operation. As a result, the stochastic oscillation
regime exhibits a significantly enhanced randomness and
stochastic features compared to the regular oscillation regime.
A numerical model is developed to describe how the random

distribution of the threshold voltage leads to the stochastic

Figure 3. Demonstration of key features of biological neurons using the neuronal oscillator. (a) Optical micrograph of a 3-synapse-1-neuron
network that consists of three memristors connected in parallel to the 1T-TaS2 device, as well as the comparison to its biological analogue. The
scale bar is 100 μm. (b) The firing rate vs Vdc relation with different series resistances to mimic the firing rate vs membrane potential of a biological
neuron. (c) Subthreshold oscillation of the neuronal device. Voltage levels of the metastable state are denoted by gray dash lines. (d) Frequency
adaption of the memristor-oscillator network. (e) Temperature dependence of the neuronal oscillator. As the temperature approaches Tc1 of the
phase transition (350 K), the output waveform shifts downward, and the oscillation amplitude shrinks, similar to the behavior of typical biological
neurons.43,44
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oscillation. A sigmoidal dependence of the firing rate as a
function of the threshold voltage is extracted from experiment.
The firing rate increases from 0 to over 3000 s−1 when the
threshold voltage changes by only ∼0.02 V. With this relation
as the input, we simulated the spike trains generated under
different bias conditions in the lower stochastic oscillation
regime using a Monte Carlo method. The spike waveforms and
the exponential distributions of the interspike interval obtained
from the simulation agree well with the experimental results, as
shown in Figure 2a,b and Figure S6 (Supporting Information).
This serves as a validation that the stochastic behaviors of the
neuronal oscillator originate from the Vth variation of the 1T-
TaS2 device. We attribute the distribution of Vth to the
microscopic random rearrangement of CDW domains during
each phase transition cycle, which results from the melting-
and-quench process induced by the joule heat when current
passes through the 1T-TaS2 thin film.35−39 The existence of
CDW domains has been confirmed by scanning tunneling
microscopy, and the domain reconfiguration has been captured
by ultrafast dark-field electron microscopy in a recently
published paper.25−27,40−42 The CDW domain reconfiguration
can change the resistance of the thin film and therefore the Vth
of phase transition.
The firing rate−voltage relation shown in Figure 2c

demonstrates that information can be coded and transmitted
by the spiking frequency in this oscillator device, which implies
the potential of the device as a neuron emulator. To study how
the oscillator device performs as an artificial neuron, we
integrated three parallel memristors as artificial synapses to the
oscillator. Figure S7 (Supporting Information) shows the
characteristics of the memristor, and Figure 3a shows the
optical image of the system. Using the 3-synapse-1-neuron
network, we demonstrated numerous critical features of a
biological neuron.43,44 Since the three memristors share the
same bottom electrode, the spatial-temporal integration can be
directly realized based on Ohm’s law and Kirchhoff’s current
law (Figure S8, Supporting Information).
Figure 3b plots the firing rate as a function of Vdc when the

devices with different series resistors operate in the lower
stochastic oscillation regime. For clarity, the curves are shifted
with respect to their respective bias voltage V0 at which the
firing probability is half. The dependence of the firing rate on
bias voltage can be described by a logistic function, which
closely matches the firing rate versus membrane voltage
relation of typical biological neurons.29−32 Furthermore, the
slope of the curve can be readily tuned by changing the value
of the series resistance, which provides the capability to
emulate a wide range of probabilistic models of artificial
neuron, including the present model, linear model, or
sigmoidal model depending on specific application needs.45

Subthreshold oscillation, another key feature of biological
neurons, can be realized in a neuronal oscillator with a
relatively thick 1T-TaS2 film (∼20 nm). Besides the two stable
states (NC at ∼0.89 V and IC at ∼0.825 V), a metastable
intermediate state at ∼0.85 V is observed in the I−V
characteristic (Figure S10, Supporting Information), which
can be ascribed to the nonuniform temperature distribution in
the sample according to a previous study.46 When operating in
the stochastic oscillation regime, the 1T-TaS2 sample some-
times can be “stuck” in this intermediate state and then directly
return to the initial state, and it only occasionally experiences a
complete phase transition (Figure 3c, Vdc = 4.5 or 5.5 V). Such
a waveform can be regarded as a train of neural spikes

separated by subthreshold oscillations. When Vdc further
decreases to 4.45 V (or increases to 5.54 V), a pure
subthreshold oscillation can be realized.
We also demonstrated the neuronal frequency adaption in

the memristor-oscillator network, by exploiting the filament
reshaping of memristor when electric current passes through it.
Figure 3d shows the waveform evolution in a larger time scale
(∼3.5 s). As time proceeds, the resistance of the memristor
increases, as shown in Figure S7c (Supporting Information).
Hence the voltage across the 1T-TaS2 thin film reduces
gradually. The oscillation evolves from regular (red) to
stochastic (orange). It then experiences a further decrease in
the frequency (dark yellow) and finally almost terminates
(yellow).
In addition, we measured oscillation waveforms from room

temperature to 335 K to show the temperature dependence of
the artificial neuron. Both the average voltage level and the
amplitude of the oscillation reduce as the environmental
temperature increases, as shown in Figure 3e, which arises due
to the shift and shrink of the hysteresis window at a higher
temperature (Figure S11, Supporting Information). Such a
temperature dependence of the neuronal spiking closely
mimics the temperature-dependent behavior of biological
neurons as described by the Hodgkin-Huxley model.43,44

To further demonstrate the capability of the 1T-TaS2
stochastic neuronal device for emulating the statistical features
of biological neurons, we replicated the behaviors of neurons in
the SOC of mammals (dogs and cats) using the 1T-TaS2
device operating in the lower stochastic regime, with reference
to the previous physiological research on these biological
neurons.34,47 Other than the similarities demonstrated in the
distribution of interspike intervals, the mean versus std relation
is also plotted in Figure 4a. It is clear that all points locate
around a straight line, which validates the exponential
distribution of interspike intervals. The spike trains generated
by both the artificial neuron and the neurons of the HDR-I
unit of cats’ SOC both show this pattern and imply that the
interspike interval is independent of history (see Figure S12 in
the Supporting Information for comparison).29,30 To further
confirm this, we established a generalized linear model (GLM)
in which the dependence of the current spike interval (interval
index difference m = 0) on the past 10 intervals (m = 1,2,...,10)
are considered (Figure 4b). The analysis of the spike trains of
the two stochastic oscillation regimes (orange for the lower,
violet for the upper) and one regular oscillation regime (green)
shows that the Kernel parameter (which reflects the degree of
correlation) of all the historical events are much smaller than
that of the current event itself by 1−2 orders of magnitude, as
shown in Figure 4b. It means that the correlation between the
current spike and historical spikes is very weak, if not
completely independent. This inference is also supported by
the autocorrelation analysis as shown in the inset of Figure 4b,
points symmetrically distributed on both sides of the x-axis,
with a maximum deviation of ∼0.4. Such results also resemble
the autocorrelation of the spike trains generated by the
neurons in cats’ HDR-I unit (see Figure S12 in the Supporting
Information for comparison).34 When the firing rate is high
(very close to a regular oscillation regime), a polynomial
relation between the mean and std of the intervals, together
with a weak autocorrelation, is observed. The behavior of the
device in this regime is closer to the neurons of HDR-II or
LDR units in cats’ SOC (see Figure S13 in the Supporting
Information for a comparison).34
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The SOC is the first major site of convergence of auditory
information from ears and can transmit frequency information
to brains, which may also be used to fulfill tasks like Fourier
transform in electronic devices. Therefore, we made a
comparison between the response of the 1T-TaS2 neuronal
oscillator to a 500 Hz sinusoidal excitation input and that of
biological neurons in the mammalian auditory system. Figure
4c shows the distribution of interspike intervals when the
neuronal oscillator is excited by a sinewave input ( fsine) and by
a DC input ( fdc). As discussed above, the interspike intervals
should follow an exponential distribution. However, with a
sinewave input, the neuronal response shows an extra
sinusoidal modulation in the interval histogram besides the
overall trend of exponential decay. To highlight the difference,
the ratio of fsine to fdc in each time division of Figure 4c was
calculated and shown in Figure 4d. For clarity of display, in
Figure 4d the period of the input sinewave (2 ms) is used as
the unit of time. Compared with the response of the neuronal
device to the DC input, the interspike intervals in response to
the sinusoidal excitation are more likely to distribute around
the integer multiples of the input sinewave period. Such a
behavior normalized to the baseline response to DC input, that
is, fsine/fdc, closely matches the response of the biological
neurons in unit 67−28−5 of dogs’ medial superior olive to
monotone acoustic stimuli (see Figure S15 in the Supporting
Information for a comparison).47 In biological auditory
neurons, the congregation of the interspike intervals around
integer multiples of the excitation input period plays a critical
role in the human and animal’s ability to transmit the
frequency information on acoustic stimuli.47 Hence, the

statistical similarity in the spike trains not only reveals the
resemblance of the artificial neuron to its biological counter-
part but also is a requirement for neuronal devices to enable
more sophisticated neuronal functions.
In summary, the 1T-TaS2 stochastic neuronal oscillator

demonstrated here is capable of generating spiking trains with
statistical characteristics closely matching those of biological
neurons. Tunable stochastic spiking characteristics following
exponential, Gaussian, and Gamma distributions were realized
by this artificial neuron. The stochasticity is due to the varying
threshold voltage of phase transition, which originates from the
microscopic random reconfiguration of CDW domains in the
1T-TaS2 thin film during each oscillation cycle. By integrating
the neuronal device with memristors or a fixed resistor to form
an oscillating circuitry, we captured many key features of
biological neurons as described by the Hodgkin-Huxley model,
such as frequency coding, frequency adaption, temperature
dependence, and subthreshold oscillation. Furthermore, when
a sinusoidal input excites the neuronal oscillator, a change in
the distribution pattern of interspike intervals can emulate the
response of mammals’ auditory neurons to acoustic stimuli.
Therefore, the stochastic neuronal oscillator offers not only an
approach for better neuron emulation but also a new
perspective toward designing the neuron component of spiking
neural networks, exploiting more sophisticated neuronal
behaviors such as the stimulus-adaptive statistical properties
to encode and transmit information.

■ METHODS
Device Fabrication and Electrical Characterization.

1T-TaS2 crystals were provided by HQ Graphene. Nanometer-
thick samples were isolated from the bulk crystal using
mechanical exfoliation and transferred onto a p-doped silicon
wafer with 90 nm thermally grown silicon dioxide. Metal
contacts were fabricated using electron beam lithography
patterning followed by the deposition of palladium (15 nm)
and gold (50 nm) metals using electron beam evaporation.
The thickness of the sample was determined by atomic force
microscopy (Bruker Dimension Icon) and transmission
electron microscopy. The memristor devices were integrated
with the 1T-TaS2 device on the same wafer substrate. The
bottom electrodes consist of 2 nm titanium and 20 nm
platinum, and the top electrodes consist of 8 nm tantalum and
30 nm platinum. The switching layer is 5 nm Al2O3 deposited
at 80 °C using atomic layer deposition. All I−V characteristics
were measured in the Lakeshore cryogenic probe station
TTPX with a semiconductor analyzer (Keysight B1500A). The
oscillation waveform is collected by an oscilloscope (Keysight
DSO-X 3024T). The sinewave signal is generated by an
intrinsic function generator in the oscilloscope.

STEM and EELS Measurement. The high-resolution
STEM image was obtained using an FEI Titan Themis G2
with four detectors and spherical aberration. Before the
measurement, the sample was coated by chromium and carbon
layers on top sequentially, for protection, and then thinned by
the focused ion beam (FIB, FEI Helios 450S) with an
acceleration voltage of 30 kV. The acceleration voltage was
increased to 200 kV during the imaging to improve the image
quality. The EELS signals were collected by the Gatan 977
integrated within the STEM system.

Monte Carlo Simulation. The sigmoidal dependence of
the firing rate on the threshold voltage is propositional to the
cumulative distribution function of the threshold voltage Vth

(i)}

Figure 4. Emulation of the statistical properties of the neurons in the
SOC of mammalian nervous systems. (a) Mean vs standard deviation
relation of the artificial neural spiking. Each point is based on data
derived from 80 consecutive intervals. (b) Time correlation analysis of
the artificial neural spiking. The kernel parameter vs the interval index
difference m relation derived from the GLM model shows that for
both the regular (green) and stochastic oscillation regimes (orange for
lower, violet for upper) the interspike interval depends mainly on the
current state (m = 0) rather than the history of the spike train (m =
1,2,...,10). (inset) The autocorrelation coefficient vs mean interval
relation of the spike train in the stochastic regime. (c) The artificial
neuron’s response to DC excitation (blue) and 500 Hz sinusoidal
excitation (orange) in terms of interspike interval distribution.
(insets) The applied input voltage waveforms. (d) The response of
the neuronal device to sinusoidal excitation fsine normalized to the
baseline response to DC input fdc for each column in (c).
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derived from an experimental result. The firing rate is
simulated as

λ λ
α γ

= −
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where λ0 is the firing rate when the oscillation is about to be
continuous, V0

(i) = Vb − Vth
(i), and Vb is the applied bias voltage

across the 1T-TaS2 thin film, α = 3.5 is a fitting coefficient, and
γ = 0.002 eV is a broadening of the frequency transition. The
{V0

(i)} are drawn from the Gaussian distribution N(Vb −
Vth,mean, σ({Vth

(i)})), which is extracted from the experimental
data. The interspike interval t(i) − t(i−1) is simulated as the
expected first arrival time of a Poisson point process with rate
λ(V0

(i)).
Generalized Linear Model. The GLM allows the

outcome of dependent variables Y generated from a particular
distribution in the exponential dispersion models. In the GLM
model, the mean value μ depends on the independent variables
X as

μ β= | = −E Y X g X( ) ( )1
(2)

where E(Y|X) is the expected value of Y, Xβ is the linear
predictor, and g is the link function. To analyze the
experimental data, the effect of the historical and current
interspike intervals (X) on current interspike interval (Y) is
considered in the linear part of the model that uses the kernel
parameters (β) to quantify the temporal correlation between
the neural spikes. Comparison between the experimental and
theoretical data shows that the log link function Xβ = ln(μ),
which corresponds to the Poisson distribution. The extracted
kernel parameter β(m), as shown in Figure 4b, describes the
effect the spiking activity at the time bin (t − m) on the spiking
activity at the time bin t, which quantifies the temporal
correlation property of the experimental spiking data.
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