2021 ASEE ANNUAL CONFERENCE (=

Virtual Meeting | July 26-29, 2021 | Pacific Daylight Time

Paper ID #33875

Mechanix: An Intelligent Web Interface for Automatic Grading of Sketched
Free-Body Diagrams

Matthew Runyon, Texas A&M University

Matthew Runyon is a PhD student in the Department of Computer Science and Engineering at Texas A&M
University. He received his bachelor’s degree in Mechanical Engineering at Texas A&M University. He
has been working with Dr. Hammond in the Sketch Recognition Lab with research focuses in artificial
intelligence, human-computer interaction, and education.

Dr. Vimal Viswanathan, San Jose State University

Dr. Vimal Viswanathan is an associate professor in the Mechanical Engineering Department at San Jose
State University. His research interests include design innovation, creativity, design theory, and engineer-
ing education.

Dr. Kimberly Grau Talley P.E., Texas State University

Dr. Kimberly G. Talley is an associate professor in the Department of Engineering Technology, Bobcat
Made Makerspace Director at Texas State University, and a licensed Professional Engineer. She received
her Ph.D. and M.S.E. from the University of Texas at Austin in Structural Engineering. Her undergraduate
degrees in History and in Construction Engineering and Management are from North Carolina State Uni-
versity. Dr. Talley teaches courses in the Construction Science and Management and Civil Engineering
Technology Programs, and her research focus is in student engagement and retention in engineering and
engineering technology education. Contact: talley @txstate.edu

Dr. Tracy Anne Hammond, Texas A&M University

Dr. Hammond is Director of the Texas A&M University Institute for Engineering Education & Innovation
and also the chair of the Engineering Education Faculty. She is also Director of the Sketch Recognition
Lab and Professor in the Department of Computer Science & Engineering. She is a member of the Center
for Population and Aging, the Center for Remote Health Technologies & Systems as well as the Institute
for Data Science. Hammond is a PI for over 13 million in funded research, from NSF, DARPA, Google,
Microsoft, and others. Hammond holds a Ph.D. in Computer Science and FTO (Finance Technology
Option) from the Massachusetts Institute of Technology, and four degrees from Columbia University:
an M.S in Anthropology, an M.S. in Computer Science, a B.A. in Mathematics, and a B.S. in Applied
Mathematics and Physics. Hammond advised 17 UG theses, 29 MS theses, and 10 Ph.D. dissertations.
Hammond is the 2020 recipient of the TEES Faculty Fellows Award and the 2011 recipient of the Charles
H. Barclay, Jr. ’45 Faculty Fellow Award. Hammond has been featured on the Discovery Channel and
other news sources. Hammond is dedicated to diversity and equity, which is reflected in her publications,
research, teaching, service, and mentoring. More at http://srl.tamu.edu and http://ieei.tamu.edu.

Dr. Julie S. Linsey, Georgia Institute of Technology

Dr. Julie S. Linsey is an Associate Professor in the George W. Woodruff School of Mechanical Engineer-
ing at the Georgia Institute of Technological. Dr. Linsey received her Ph.D. in Mechanical Engineering
at The University of Texas. Her research area is design cognition including systematic methods and tools
for innovative design with a particular focus on concept generation and design-by-analogy. Her research
seeks to understand designers’ cognitive processes with the goal of creating better tools and approaches
to enhance engineering design. She has authored over 150 technical publications including over forty
journal papers, and ten book chapters.

(©American Society for Engineering Education, 2021

Mechanix: An Intelligent Web Interface for Automatic Grading
of Sketched Free Body Diagrams

Abstract

Sketching free body diagrams is an essential skill that students learn in introductory physics
and engineering classes; however, university class sizes are growing and often have hundreds of
students in a single class. This situation creates a grading challenge for instructors as there is
simply not enough time nor resources to provide adequate feedback on every problem. We have
developed a web-based application called Mechanix to provide automated real-time feedback on
hand-drawn free body diagrams for students. The system is driven by novel sketch recognition
algorithms developed for recognizing and comparing trusses, general shapes, and arrows in
diagrams. We have discovered students perform as well as paper homework or other online
homework systems which only check the final answer through deployment to five universities with
450 students completing homework on the system over the 2018 and 2019 school years. Mechanix
has reduced the amount of manual grading required for instructors in those courses while ensuring
students can correctly draw the free body diagram.

Keywords: FBD, sketch, statics, dynamics, engineering education.
Introduction

Free body diagrams are an integral part of problem-solving in many fields of engineering. These
diagrams are critical in Mechanics and related topics. They are often taught to students in the first
physics or statics courses due to the prevalence of free body diagrams in engineering problem-
solving. Two popular statics textbooks [1], [2] introduce free body diagrams in early chapters just
after explaining vectors and fundamental laws of physics. Rosengrant et al. showed that students
will use free-body diagrams even when they do not receive credit for drawing them and that
students who can correctly draw diagrams are more successful in solving problems correctly [3].
Furthermore, Sweller showed that using the visual aid of a free body diagram helps reduce the
problem's cognitive load and increase learning effectiveness [4].

Understanding and drawing free-body diagrams accurately is an essential aspect of a student’s
success in engineering. Students should have thorough feedback [5] about free body diagrams in
entry classes so that they do not form misconceptions and unnecessarily struggle with future
classes; however, many university courses can be quite large, especially in the introductory courses
such as statics and dynamics. The increased number of students results in an increased number of
homework submissions for an instructor or teaching assistant to grade, which carries a
considerable time burden. As a result, students may not receive detailed feedback promptly or
receive a minimal amount of feedback. This has led many instructors to use web-based homework
systems, allowing students to immediately know if their answers are correct while decreasing the

grading burden for the instructor and assistants. This automated feedback can help reduce students'
reliance on the instructor’s feedback [6].

Unfortunately, the move towards online homework systems often diminishes instructors' ability to
provide meaningful feedback to students on their diagrams since the typical software only checks
the final answers and does not require diagrams. Some instructors may require students to turn in
their hand-drawn diagrams for feedback. This feedback helps students identify and correct their
misconceptions about a topic [7], but often instructors do not have the resources required to provide
valuable feedback on time and must resort to checking only for completion.

We propose a solution to the feedback and time constraint problems in the form of a web
application called Mechanix that utilizes novel sketch-recognition algorithms to assess a sketched
free body diagram and automatically grade students' responses to homework questions. This is the
modern iteration of our previous system with the same name [8]. We recreated the system as a web
application to support as many students and devices as possible. The interface has been improved
to help guide students while remaining unobtrusive. We designed new algorithms for recognizing
trusses and curved arrows. The new truss algorithm gives us more flexibility in what kinds of
trusses we can accept while curved arrows expand the number of problems we can support to
include those with applied moments. The solver has been improved to allow equilibrium equations
in terms of variables and flexible input of units rather than using a dropdown. The improved
version provides a closer-to paper and pen experience to the students by reducing input latency. It
provides step-by-step guidance to the students to teach them the general solution procedure rather
than steps specific to the problem like our previous system provided. The new version of the
software also makes the drawing of FBD possible on the system with minimum practice using a
stylus, mouse, or finger on a tablet. Mechanix has been implemented for five semesters at five
universities, with almost 500 students completing homework on the platform at that time.

Related Work

Existing Statics Tutoring Systems

There are systems that help in physics tutoring, such as the Andes physics tutoring system [9] and
the Free-Body Diagram Assistant [10]. The Conceptual Helper [11] was designed for helping
students with qualitative physics problems. These types of problems may involve diagrams but do
not typically involve numbers. They can be conceptually more difficult, especially if students
cannot visualize how the system might act. These systems are alternatives to pen-and-paper
homework using interfaces and interactions similar to those found in computer-aided design
(CAD) software. These systems allow for easier interpretation of diagrams by the computer, but
students might not benefit from drawing their diagrams by hand, such as increased learning
retention.

There are also several online homework systems such as Mastering Engineering,
WileyPlus, and McGraw-Hill Connect. These systems are commercial products offered by three
major textbook publishers. Some problems may require algebraic comparisons, which have been

implemented by some prior systems [12], [13]. These systems typically require the final answer to
a problem but do not require any diagrams. This situation can result in students struggling with
some concepts if they do not draw their free body diagram on their own since it is not required.
Some of these platforms offer free-body diagram interfaces, but the feedback on the students’
sketches is minimal.

Sketch-based Systems
Sketch recognition systems have been used to recognize different types of sketched gestures and

diagrams in many areas. The seminal work in gesture recognition was produced by Rubine [14],
in which he defined 13 crucial features. These have been expanded to primitive shape recognition
systems such as PaleoSketch [15], which recognizes low-level shapes such as lines, arcs, and
circles. These low-level shapes can be combined using geometric recognition systems such as
LADDER [16], making sense of more complex shapes by breaking them down into combinations
of primitive shapes. LADDER uses domain-specific knowledge to define how the components of
shapes are combined and related to each other. There are also uses of geometric recognition in
various domains, such as circuit diagrams [17]. There are other domain-specific systems such as
nuSketch [18], which focuses on the geometric relationships between shapes such as “above” or
“below.” This was extended to COGSketch [19], which has users label their diagrams with
domain-specific labels and then uses them combined with geometric placements of the shapes to
provide feedback. These geometric building blocks proved useful in the creation of the system in
this paper.

There are systems such as Newton’s Pen [20] and our previous version of Mechanix [8], which
utilize early digital stylus computers to allow students to sketch diagrams and equations in physics
problems while providing some feedback about their diagrams; however, these systems rely on
older technologies that can limit the systems and make system usage more difficult. Tools like
Newton’s Pen II have sought to overcome the original Newton’s Pen's technical limitations with
broader support and capability [21]. Another interesting system for physics-based problems is
Physics Book [22] which focuses more on animating physical systems and problems with springs
and pulleys. Our system is focused on free body diagrams of general shapes and trusses.

Description of Mechanix

One of the biggest hurdles we faced with our previous implementation was that the application
was a Java download. This situation caused many problems with the system administrators at
various schools because they were reluctant to install our application on their devices. This
reluctance limited the number of classrooms and, therefore instructors, that could adopt the
software. Additionally, early tablets were unable to utilize Mechanix since they could not run
Java. We decided a web application would be the best platform for our new version because it
would be easier for everybody to access and not interfere with any institutional IT policies.

Interface

Figure 1presents the problem solving interface of Mechanix. The design of this interface focuses
on the two main areas of the side panel and the sketch surface.

Side Panel

The side panel contains many interactions for students. We chose a side panel for these actions
because it allowed the remaining area, which is used for the sketch surface, to be more square in
standard landscape usage. The side panel is highlighted with labels A and B in Figure 1. Students
can input symbolic or numeric answers, and generalized feedback if given for certain mistakes.
Compared to our previous version, we reduced the detail of the scaffolding to try to focus on the
problem solving process rather than the steps to complete a specific problem.

Figure 1The interface for solving free body diagrams. (A) Problem image and description. (B) Equations that must be solved and
solutions entered. (C) Instructions on diagram sketching. (D) Sketch, Erase and Clear tools. (E) The sketching canvas.

Sketch Surface

The remainder of the screen after the side panel is dedicated to the sketching surface. Students are
provided a grid background to aid with sketching their diagrams as well as the coordinate axis for
the problem. The sketching tools are relatively basic to simplify using Mechanix and focus on

drawing the correct diagrams. The tools are draw, erase, and trash, as shown by label D in Figure
1.

The draw tool tracks the student’s pen or mouse and places digital ink on the page where it travels.
It can also capture pressure and tilt if the input device supports it via the browser Pointer Events.
Students can use a mouse or trackpad if necessary by holding the primary button while moving the
mouse. Once specific shapes are recognized, the strokes turn from gray to orange or purple to
indicate recognition. Also, the instructions shown with label C in Figure 1are updated.

Erasing provides the students with a new cursor to help indicate they are in erase mode. The act of
erasing is performed on the entire stroke rather than individual pixels. This makes it quicker for
students to erase erroneous or unrecognized strokes. When the student hovers over a stroke in erase
mode, it is highlighted red to indicate which stroke will be erased. This interaction is less clear
with a pen-enabled device as most pens do not support hover interactions very well. Since the free-
body rarely needs to be redrawn, it is not erasable after it has been recognized. This feature is to
help prevent students from accidentally erasing their entire body when trying to erase an arrow
that may intersect the body.

The current iteration of Mechanix was initially designed to facilitate truss analysis problems.
Because the sketch surface recognizes only one free body diagram, the global system (full truss)
is sketched in Mechanix and any local systems (joint or section free body diagrams) are sketched
on a student’s own paper. As such, the truss problems can be specified to be solved with the
Method of Joints or the Method of Sections in the instructor directions.

Mechanix also facilitates solving free body diagram, or general body, problems. The most testing
has occurred with free body diagrams problems that only have point loads acting upon the body.
These point loads can be along the x- and y-axes as well as along any diagonal. We have recently
developed the feature to recognize distributed loads and applied moments to increase the types of
problems that can be assigned in Mechanix. Figure 2 shows an example of a general body problem
which involves diagonal forces, applied moments, variable answers, and numeric answers.

Due to the flexibility of the general body recognition, we have adapted Mechanix to automatically
grade some rigid body statics problems. The current requirements are that the bodies must be
drawn relative to their position in the image, but Mechanix is able to facilitate simpler problems
such as 2 bodies linked together on an inclined plane.

® ... I — on

(@——>n

Figure 2An example of a general free body submission showing the flexibility of answer and force inputs.

Problem Solving Experience

Students must draw their free body diagram in order to receive credit in the system. A free body
diagram is an illustration used to visualize how forces and reactions occur on a given body. A free
body diagram should consist of the following:

1. A simplified version of the important portion of the system (the body)
2. Forces drawn as arrows pointing in the direction of the force on the body
3. A coordinate system

Since the system provides a coordinate system, the students only need to draw the body and forces.
The students start by sketching the body in their diagram, as shown by label E in Figure 1. In
general shape problems, where the point of the problem is to have student practice accurately
sketching free body diagrams, the students have a faded underlay of the problem image on the
sketch surface to trace. This image helps the students who want to make sure their diagram looks
similar to the image while also helping the template matching recognition be a little more robust.
After the student sketch matches the instructor’s version, their sketch turns orange with nodes
matching the instructor’s diagram, the background image is removed, and the students can proceed
with sketching forces.

In problems that involve a truss, the unlabeled nodes of the truss are shown after each pen-up
interaction (whenever the stylus leaves the surface or the mouse/track pad button is released). The
appearance of these unlabeled nodes let the students know how the system is perceiving their
sketch. Once the student’s diagram is matched to the instructor’s diagram, it turns orange, and the
nodes are labeled according to the instructor’s diagram.

Students then draw any number of required forces on the diagram connected to nodes. Once an
arrow is recognized, it changes colors to purple and provides a text box near the portion of the
arrow furthest from the node so that the student may name the force. An answer box in the side
panel is created for each uniquely named force. Students are allowed to draw the forces in any
direction. If they draw a diagonal force, the force's x and y components are added to the diagram
with gray dashed lines to simplify the student interaction of needing to specify the angle of their
force, what axis the angle is based on, and if the angle is degrees or radians. Two answer boxes
also appear in the side panel, requesting the x- and y-components of the diagonal force rather than
the diagonal force itself. The appearance of the component arrows and the two answer boxes also
reinforces to the student that any diagonal force can be broken down into its components.

After sketching their free body diagram, the students move on to solving the problem. This is the
final step and consists of students providing answers in text boxes as shown by label B in Figure
1. One unique feature of the system is that we can ask students for the equations of static
equilibrium in terms of their sketched diagram. Since the system understands where and in what
direction forces were drawn by the student, these equations can be compared with the instructor’s
answer. Students must type their units in the answer box and freely convert between equivalent
units such as newtons and kilonewtons. Providing a separate box for units was avoided explicitly
as the box would remind students to add units rather than the student needing to remember the
importance of units on their own.

The students can then submit their answers for grading and receive feedback about their answers.
There is additional feedback for several types of errors, including missing forces, extraneous
forces, missing units, the wrong type of units, and flipped positive/negative signs. More detailed
feedback can be added as the system matures; however, the instructors agreed that the feedback
must not be too specific. As learned from the previous version of Mechanix, students given too
much information (e.g., telling them they are missing a force in the x-direction at node A) will not
learn to solve the problems but will just follow the prompts. This level of feedback will lead to
high homework grades, but the student will still struggle on exams because the precise feedback
is not provided by a test.

Creative Design Mode
There is one additional mode of the problem available in Mechanix called creative design. Students

are given constraints, such as bridge length and maximum capacity of a truss member, in this
problem type and asked to build a truss bridge that satisfies the constraints and supports the largest
load possible. The interface is similar to the other problem types with the addition of students

labeling the angles between their beams and their beams' lengths. If enough values are provided to
distinctly determine all lengths and angles within a triangle, the remaining boxes are automatically
filled to help the student. A more detailed explanation of this mode as well as an analysis of student
feedback can be found in [23].

Use of AI Technology

Mechanix must be able to recognize the sketched free body diagrams of students as well as
determine if their answers are correct or incorrect. These tasks are non-trivial given the messy
nature of sketched data and the fact that there are multiple acceptable answers for a single problem.
The sketch recognition occurs in two main parts, which are described in the following sections.

Sketch Segmentation
The first step of recognition is to segment the stroke created between a single pen-down and

subsequent pen-up action. This step involves breaking the stroke into its separate substroke
components. In this application, we split strokes based on corners using the Shortstraw corner
finding method [24]. This method provides the locations of the corners within the stroke. Including
the first and last points as the first and last corner, the points between each pair of corners is then
converted into a substroke.

For each substroke created, we check if it intersects any other substrokes within a threshold of 30
pixels (the size of the displayed nodes) Euclidean distance. If two endpoints intersect, such as in
Figure 3a, then no additional steps are taken. If one substroke intersects the middle section of
another, such as in Figure 3b, then the intersected substroke is split in two, resulting in three
substrokes. If the substrokes cross each other, such as in Figure 3¢, each is split, resulting in four
substrokes.

{al il

Figure 3Three cases of substrokes intersecting

Shape Recognition

After the stroke has been segmented, the unrecognized substrokes are checked to see if they are
any of the expected shapes. Currently, the system recognizes trusses, general free body shapes,
and arrows. A problem consists of either a truss with arrows or a general shape with arrows. Since
there is a rigidly defined order of sketching the diagrams, recognition is checked in this order. This

helps prevent some false recognition, such as a subset of a truss being seen as a large arrow before
the truss is finished.

After the truss or general shape has been recognized, arrow recognition is preformed using an
arrow recognition algorithm based on Hammond’s Tahuti recognizer [16]. If a shape is recognized,
the substrokes are grouped and removed from the unrecognized set. If no shape is recognized, the
unrecognized substrokes are maintained and added to the substrokes generated from the next
stroke, at which point recognition occurs for the larger set of unrecognized substrokes. By focusing
on only the shapes that can be drawn at each stage of the problem, the recognition becomes more
robust as there is no need to check both types of shapes and risk false recognition. The two-step
recognition solution is simpler than a solution where every stroke causes recognition to run over
all existing strokes and shapes with a hierarchy of shape precedence. This situation also prevents
any possibility of the system recognizing some portion as a more complex shape and confusing
the student as to why their recognized shapes suddenly changed.

Truss Recognition
The definition of a truss is extremely broad and more complicated than just a structure made of
only triangles; any structure which has only two-force members (i.e., along the axis of the member)

is considered a truss. This allows for trusses containing arcs or squares (e.g., queen post truss).
Mechanix focuses on a specific subset of trusses called planar trusses, which occur in a two-
dimensional space. Although trusses can contain non-triangles, the problems explored in Mechanix
and many introductory courses all contain only triangles, so we focus on recognizing trusses
containing only triangles.

For the purposes of this project, we define a truss to have the following properties:
1. A connected graph
2. Made up of only triangles
3. Each triangle shares at least one side with another

Trusses are recognized in the following four steps:

Graph conversion: The first step in recognizing a truss is to convert the substrokes into a graph.
Each substroke end is a possible node, and the substroke itself is an edge in the graph. If the ends
are within a threshold Euclidean distance of 30 pixels from an existing node in the graph, then the
substroke is considered to have one end connected to the existing node. This threshold works well
with modern devices but can easily be adapted to be resolution-independent.

Connected graph check: After the substrokes have been converted to a graph, the next step is to
check that the graph is connected. This check is achieved through a standard depth-first search
starting from any node while keeping track of the nodes visited. Once the search completes, if the
visited node set does not contain all of the nodes in the graph, then there is some disjoint portion

of the graph since a connected graph will have a path between any pair of nodes. If there are any
disjointed sections, then the sketch cannot be a truss because trusses are connected by definition.

Triangle check: The third step is to check that a path of length 3 exists for traveling from each
node to itself. This check ensures that each node is a component of a triangle. The search is done
via a breadth-first search that tracks the number of steps taken from the beginning node to the
current node. Whenever this value is three, if the node matches the starting node, then the path is
a triangle. We keep track of distinct triangles based on their nodes. For example, in Figure 5, the
triangle containing nodes A, B, and D would be stored as triangle ABD with edges AB, AD, and
BD.

Adjacent triangle check: The final step is to check that all triangles share an edge with at least
one other triangle. This check prevents sketches that may be composed entirely of triangles but are
not trusses, such as in Figure 4. This determination is achieved by counting the occurrence of edges
in each distinct triangle. After counting the number of times each edge occurs, each distinct triangle
is checked to confirm at least one of its edges occurs in two triangles.

Figure 4Example of a sketch for which all nodes have a triangle path leading back to them, but the sketch is not a truss since
there are triangles that share no sides with another triangle.

FEEEE RS EaEE e
v

a
oy,

Figure 54 truss showing how all triangles must share a side with at least one other triangle. Both dotted triangles share a side
with the solid line triangle.

Truss Comparison

In order to check if a truss matches the expected truss for a problem, we must compare it to the
solution drawn by the instructor. In order for the trusses to match, the graph representations must
have all of the same nodes and edges, which means the adjacency lists must match. First, we

convert the solution sketch and submitted the sketch to two separate graphs. We can then
immediately say the graphs do not match if they have a different number of nodes. After this
simple check, we need a way to label the nodes to identify if the adjacency lists match. Graphs
could have the same adjacency lists but not be the same graph depending on how the nodes are
labeled, so the labeling must be consistent based on the rotation of the truss. For example, the
trusses in Figure 6 have the same adjacency lists but are not the same truss since one is rotated
180 degrees.

Figure 6Two trusses with the same adjacency lists that are not the same truss.

In order to confirm the trusses are the same and account for rotation, we sort each graph’s nodes
by their x-y coordinates. The sort orders the nodes such that those with higher y-coordinates
come first (towards the top of the page). If the value difference between two nodes is within a
threshold, then the node with the lower x-coordinate (towards the left of the page) comes first.
We use a threshold of 20 pixels for the sort, which makes the maximum distance between two
nodes 28 pixels to be considered the same node. No two nodes should be within the threshold in
both directions since the maximum distance for them to be considered the same is lower than the
distance used to combine nodes when segmenting. This sort ensures that the truss is a similar
rotation to the answer truss because the nodes will be sorted in the same order as long as the truss
is not too skewed. A graphical representation of the sort is shown in Figure 7, where the node
labels correspond to their position after sorting.

34px

102px

* 160px |

83T =

Figure 7Example of how nodes are sorted by y-value and then x-value with an overlap threshold of 20 pixels. Node labels
correspond to the position after sorting.

Once both trusses are converted to graphs with sorted nodes, the nodes are indexed starting from
zero to provide a consistent representation between the two graphs. Now, each node is compared
to check that the adjacency lists match exactly between the two graphs. In the truss in Figure 5,
node A would be called 0, and it would be adjacent to nodes B, E, and D , or 1, 2, and 3,,
respectively. If the adjacency list matches for each node in the graph, then the trusses must
match. Note that there may be some cases where trusses may be slightly different such as if node
A in Figure Swas shifted to be directly over node B. This is a future work to check the angles of
the edges in the graph to have a stronger confirmation that the trusses match.

General Shapes

General shape free-body diagrams can be any shape that the instructor wants. As a result, there is
not really any recognition that is done to confirm the shape is a general shape. While we could
detect closed shapes as possible free-body diagrams, the free-body shape does not have to be a
closed shape, so this could limit the types of free-body diagrams supported by Mechanix.
Instead, we simply compare the shape drawn by the student to that of the instructor.

General Shape Comparison

In order to compare the shapes drawn by students and the instructor, we utilized the $P gesture
recognizer [25] with only the instructor answer as the template for matching. This situation
posed some problems for students drawing with vastly different aspect ratios or proportions than
the instructor’s diagram. In order to help the students, we added an underlay of the image from
which the free-body diagram was drawn. This background image allows the students to sketch a
free body with less error since the aspect ratio of the diagram is important to accurately visualize
the problem. We set a confidence threshold of 0.7 based on testing for the diagrams to be
considered matching.

Once the diagrams are considered a match, the nodes are placed on the diagram from what the
instructor drew in their solution. There can be extra nodes in order to make the students think
about where they need to place forces instead of students simply adding forces to all nodes that

appear. The nodes are placed based on their position within the bounding box for the answer
sketch.

Answer Comparison

The answers for the given and drawn answers can pose many problems. Since each arrow can be
drawn in either direction, the number of answer permutations is 2n for n arrows. Rather than
have an instructor input all permutations, the instructor must only input one correct permutation,
and all others can be checked against via the answer checking algorithm. Another problem is that
students may label their arrows anything they want (within our restriction of requiring a letter as
the first character). This labeling affects checking static equilibrium equations as these equations
are meant to be answered in terms of the variable names of the arrows.

The first step to checking if the answer is correct is to determine what forces are equivalent on
the student’s submission and the instructor’s answer. Any arrows that are on the same axis and
intersect the same node must be equivalent arrows in the submission and answer. In the event of
multiple arrows in the same axis at a node, both combinations of potential name swaps are
considered. Now we know what arrows are equivalent to each other in the submission and
answer, as well as if there are any missing or extra arrows at nodes from the submission.

Once the equivalent arrows are found, their answer values can be compared. Since we know the
arrows are on the same axis and intersect the same node, the only difference between them could
be their direction. If the student draws the arrow in the opposite direction of the answer diagram
but submits the negative value of the answer diagram, then the student’s answer is also correct.
We simply multiply the submission value by —1 if the arrows point in opposite directions. The
values are then checked for equivalence. We allow a 3% margin of error for the answers to
account for rounding differences. Units are checked using the MathJS library unless the answer
is zero, in which case the units are optional. We also check and attach applicable feedback at this
point if the student has the correct answer with the wrong sign by comparing the negative of their
submission to the answer.

After the arrow values are checked, the given equation values are checked. For answers which
contain variable names, such as the equations of static equilibrium, the variable names must be
converted based on the equivalent arrow names in the submission and answer. A regular
expression is used to replace instances of the submission arrow names in the answer equation
and vice-versa. If the arrows were drawn in different directions in the submission and answer
diagram, then a negative sign is added during the replacement. We check both the submission
against the answer and the answer against the submission due to the possible algebraic
combination of terms. For example, a problem may have two applied forces, both called Q, but
the instructor may decide to label them Q1, Q2. The student may submit both forces labeled Q,
and neither the instructor answer nor student submission are wrong. If just the submission is
converted to the instructor variable space, then the resulting equation is as follows.

Fy =0=2Q=3Fy =0=2Q1

This conversion does not yield the answer in the instructor’s variable space due to ambiguity in
the equivalent name across the instructor and student variable spaces. The instructor answer
converted to the student’s variable space is as follows

XFy =0=Q1+Q2=XFy =0=Q+Q

This conversion yields the same equation as the student’s answer and thus should be counted
correct.

Application Use and Payoff

Mechanix has been deployed for the past five semesters in 5 different universities in the United
States. Just over 450 students have used Mechanix to complete at least one homework assignment.
The assignments consist of general shape free-body diagram problems, various types of truss
analysis, and creative design problems.

The students completed these homework assignments with relatively few issues, and the issues
that were identified were able to be fixed quickly. Since Mechanix is a web application, any
changes or fixes could be pushed in an instant instead of the student needing to download an
update. After the first few semesters, there have been very few bug reports that did not turn out to
be user errors.

We have conducted focus groups with students at some of the universities using Mechanix, and
overall their thoughts on using Mechanix were positive, with many students noting that they liked
the simplicity of our interface compared to their other online homework systems. The instructors
also noted they like how Mechanix provides feedback about the student diagram and requires
students to add units on their own. One instructor said it seemed like the students who used
Mechanix were less likely to forget their units on an exam taken soon after the homework
completed on Mechanix.

From analyzing the homework scores and other metrics, we found that students performed just as
well on Mechanix as they did with other homework systems [26]. Figure 8 shows the comparison
of the performance of students in two groups at one of the participating schools. The Experimental
group used Mechanix to solve their problems in a Statics course while the Control group used their
regular online homework system. Both systems allowed three attempts to get the correct answer
for the problems. It is observed that both groups perform at the same level for the FBD problem
while the Mechanix group performs better on the problem on solving a truss. The previous iteration
of the software also shows similar results [8]; however, the previous version allowed for unlimited
graded attempts and had detailed help about every component that should exist in the diagram. In
the new version, the step-by-step instructions were removed to prevent the students from merely
following an in-depth guide on solving the problem on the screen instead of figuring it out on their
own. Also, the number of graded submissions was reduced to three since all the instructors allowed

three attempts on their other online homework systems. Due to these changes, it is a good sign that
students perform as well as other online homework systems. None of the other systems require or
grade the free body diagram, but it is part of the assignment for Mechanix, so the experience is
closer to a traditional paper and pencil assignment than other online systems.

100

80
60
40
20

0

FBD homework Truss homework

W EXP
m CTRL

Figure 8Comparison of average homework scores in two homework assignments in one of the participating schools. The
Experimental group used Mechanix and the Control group used the online homework system that they regularly use.

One additional metric we noticed was that 38.6% of students who did not get full credit by the
third attempt continued trying the problem. Of those who submitted more attempts, 39.2%
eventually got the problem completely correct (not for credit). This is just one way that an online
system with automatic feedback can provide more help than an instructor would be able to on
homework since the students were able to continue checking their answer immediately instead of
just looking at the solution after getting it wrong. We used these measurements instead of a time-
based measurement because it is difficult to accurately track the actual time spent on a problem by
each student. We have no way of reliably differentiating between a student taking a 10 minute
break and a student working out the math of a problem for 10 minutes. Further, some students
simply submitted 1 incorrect answer and never attempted to correct their mistakes.

Overall, Mechanix has graded over 3000 attempted problems by students with over 10000 total
attempts. The amount of time for an instructor or teaching assistant to grade 10000 attempts while
providing feedback that Mechanix can is around 100 hours if adequate feedback can be generated
and portrayed to the student in just 30 seconds (which is a low estimate for the feedback given).
In addition to the time savings for instructors, students receive their feedback immediately, which
helps their learning.

Conclusion and Future Work

In this paper, we presented Mechanix, an intelligent web application that is capable of
automatically grading hand-drawn free body diagrams for an introductory statics course using a
combination of existing and novel sketch recognition algorithms. Mechanix is currently deployed
to 5 universities and has been in use to complete homework assignments for five semesters by 450
students. Over 10000 problem submissions have been graded by Mechanix in this deployment.
Future work for the project includes determining recognition thresholds based on device type and
screen size, further improving the types of feedback we can give, and creating new instructor tools
to better analyze their students’ performance. Mechanix can be used to reduce the grading burden
on instructors while requiring students to draw free body diagrams. Students perform just as well
as in other homework systems where they are not required to draw the diagram. Additionally,
38.6% of students continued trying after exhausting their graded attempts, with 39.2% of those
eventually getting the problem correct. Our deployment has been successful so far with few
hiccups, and we hope to be able to grade more problem types while providing good feedback to
students going forward. Currently, Mechanix can also accommodate dynamics problems and
problems involving multiple rigid bodies. These problems are being tested and the results will be
published in our future papers.

Acknowledgments

We would like to acknowledge the NSF for their support via grants 1726306, 1725423, 1725659,
1726047, and 1725785 as well as our other collaborators Dr. Ben Caldwell and Dr. Kristi Shryock
for their help with this project.

References

[1] F.P. Beer, E. R. Johnston Jr, D. F. Mazurek, P. J. Cornwell, E. R. Eisenberg, and S. Sanghi,
Vector mechanics for engineers vol. 1: Tata McGraw-Hill Education, 1977.

[2] R. C. Hibbeler and R. C. Hibbeler, Engineering mechanics: statics & dynamics: Pearson
Education India, 2007.

[3] D. Rosengrant, A. Van Heuvelen, and E. Etkina, "Do students use and understand free-
body diagrams?," Physical Review Special Topics-Physics Education Research, vol. 5, p.
010108, 2009.

[4] J. Sweller, "Cognitive load theory, learning difficulty, and instructional design,"
Learning and instruction, vol. 4, pp. 295-312, 1994.

[5] A. A. Lipnevich and J. K. Smith, " “I really need feedback to learn:” students’
perspectives on the effectiveness of the differential feedback messages," Educational
Assessment, Evaluation and Accountability, vol. 21, p. 347, 2009.

[6] E. Odekirk-Hash and]. L. Zachary, "Automated feedback on programs means students
need less help from teachers," in Proceedings of the thirty-second SIGCSE technical
symposium on Computer Science Education, 2001, pp. 55-59.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

R. L. Bangert-Drowns, C.-L. C. Kulik,]. A. Kulik, and M. Morgan, "The instructional
effect of feedback in test-like events," Review of educational research, vol. 61, pp. 213-
238, 1991.

S. Valentine, F. Vides, G. Lucchese, D. Turner, H.-h. Kim, W. Lij, et al.,, "Mechanix: A
sketch-based tutoring system for statics courses," in Twenty-Fourth IAAI Conference,
2012.

K. VanLehn, C. Lynch, K. Schulze, J. A. Shapiro, R. Shelby, L. Taylor, et al., "The Andes
physics tutoring system: Lessons learned," International Journal of Artificial
Intelligence in Education, vol. 15, pp. 147-204, 2005.

R.]. Roselli, L. Howard, and S. Brophy, "A computer-based free body diagram
assistant,” Computer Applications in Engineering Education, vol. 14, pp. 281-290,
2006.

P. L. Albacete and K. VanLehn, "The Conceptual Helper: An intelligent tutoring system
for teaching fundamental physics concepts,” in International Conference on Intelligent
Tutoring Systems, 2000, pp. 564-573.

A.S. Gertner, "Providing feedback to equation entries in an intelligent tutoring system
for Physics," in International Conference on Intelligent Tutoring Systems, 1998, pp.
254-263.

J. A. Shapiro, "An algebra subsystem for diagnosing students' input in a physics
tutoring system," International Journal of Artificial Intelligence in Education, vol. 15,
pp. 205-228, 2005.

D. Rubine, "Specifying gestures by example," ACM SIGGRAPH computer graphics, vol.
25, pp- 329-337, 1991.

B. Paulson and T. Hammond, "Paleosketch: accurate primitive sketch recognition and
beautification,” in Proceedings of the 13th international conference on Intelligent user
interfaces, 2008, pp. 1-10.

T. Hammond and R. Davis, "LADDER, a sketching language for user interface
developers," in ACM SIGGRAPH 2007 courses, ed, 2007, pp. 35-es.

C. Alvarado and R. Davis, "SketchREAD: a multi-domain sketch recognition engine," in
ACM SIGGRAPH 2007 courses, ed, 2007, pp. 34-es.

K. Forbus, K. Lockwood, M. Klenk, E. Tomai, and J. Usher, "Open-domain sketch
understanding: The nuSketch approach,” in AAAI Fall Symposium on Making Pen-
based Interaction Intelligent and Natural, 2004, pp. 58-63.

K. Forbus, J. Usher, A. Lovett, K. Lockwood, and]. Wetzel, "CogSketch: Sketch
understanding for cognitive science research and for education,” Topics in Cognitive
Science, vol. 3, pp. 648-666, 2011.

W. Lee, R. de Silva, E. . Peterson, R. C. Calfee, and T. F. Stahovich, "Newton's Pen: A
pen-based tutoring system for statics," Computers & Graphics, vol. 32, pp. 511-524,
2008.

C. Lee,]. Jordan, T. F. Stahovich, and J. Herold, "Newtons pen ii: an intelligent, sketch-
based tutoring system and its sketch processing techniques," in Proceedings of the
International Symposium on Sketch-Based Interfaces and Modeling, 2012, pp. 57-65.
S. Cheema and]. LaViola, "PhysicsBook: a sketch-based interface for animating
physics diagrams," in Proceedings of the 2012 ACM international conference on
Intelligent User Interfaces, 2012, pp. 51-60.

[23]

[24]

[25]

[26]

M. Runyon, S. Polsley, B. Williford, S.-N. C. Liu,]. Hurt,]. Linsey, et al.,, "An Intelligent
System to Analyze Sketched Solutions to Open-Ended Truss Problems," in 26th
International Conference on Intelligent User Interfaces, 2021, pp. 224-233.

A. Wolin, B. Eoff, and T. Hammond, "ShortStraw: A Simple and Effective Corner Finder
for Polylines," in SBM, 2008, pp. 33-40.

R.-D. Vatavu, L. Anthony, and J. 0. Wobbrock, "Gestures as point clouds: a $ P
recognizer for user interface prototypes," in Proceedings of the 14th ACM international
conference on Multimodal interaction, 2012, pp. 273-280.

V. Viswanathan,]. Hurt, T. Hammond, B. Caldwell, K. Talley, and]. Linsey, "A Study on
the Impact of a Sketch-based Tutoring System in Statics Instruction," in ASEE annual
conference, 2020.

