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Abstract. The Boltzmann equation is a fundamental kinetic equation that

describes the dynamics of dilute gas. In this paper we study the local well-
posedness of the Boltzmann equation in bounded domain with the Cercignani-

Lampis boundary condition, which describes the intermediate reflection law

between diffuse reflection and specular reflection via two accommodation co-
efficients. We prove the local-in-time well-posedness of the equation by es-

tablishing an L∞ estimate. In particular, for the L∞ bound we develop a
new decomposition on the boundary term combining with repeated interaction

through the characteristic. Moreover, under some constraints on the wall tem-

perature and the accommodation coefficients, we construct a unique steady
solution of the Boltzmann equation.

1. Introduction. In this paper we consider the classical Boltzmann equation,
which describes the dynamics of dilute particles. Denoting F (t, x, v) the phase-
space-distribution function of particles at time t, location x ∈ Ω moving with ve-
locity v ∈ R3, the equation writes:

∂tF + v · ∇xF = Q(F, F ) . (1)

The collision operator Q describes the binary collisions between particles:

Q(F1, F2)(v) = Qgain −Qloss = Qgain(F1, F2)− ν(F1)F2

:=

¨
R3×S2

B(v − u, ω)F1(u′)F2(v′)dωdu− F2(v)

(¨
R3×S2

B(v − u, ω)F1(u)dωdu

)
.

(2)

In the collision process, we assume the energy and momentum are conserved. We
denote the post-velocities:

u′ = u− [(u− v) · ω]ω, v′ = v + [(u− v) · ω]ω , (3)

then they satisfy:

u′ + v′ = u+ v , |u′|2 + |v′|2 = |u|2 + |v|2 . (4)
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In equation (2), B is called the collision kernel which is given by

B(v − u, ω) = |v − u|Kq0(
v − u
|v − u|

· ω)

with − 3 < K ≤ 1 , 0 ≤ q0(
v − u
|v − u|

· ω) ≤ C
∣∣∣ v − u|v − u|

· ω
∣∣∣ .

To describe the boundary condition for F , we denote the collection of coordinates
on phase space at the boundary:

γ := {(x, v) ∈ ∂Ω× R3}.

And we denote n = n(x) as the outward normal vector at x ∈ Ω. We split the
boundary coordinates γ into the incoming (γ−) and the outgoing (γ+) set:

γ∓ := {(x, v) ∈ ∂Ω× R3 : n(x) · v ≶ 0}.

The boundary condition determines the distribution on γ−, and shows how particles
back-scattered into the domain. In our model, we use the scattering kernel R(u→
v;x, t):

F (t, x, v)|n(x) · v| =
ˆ
n(x)·u>0

R(u→ v;x, t)F (t, x, u){n(x) · u}du, on γ− . (5)

Physically, R(u → v;x, t) represents the probability of a molecule striking in the
boundary at x ∈ ∂Ω with velocity u, and to be sent back to the domain with
velocity v at the same location x and time t. There are many models for it. In [3, 4]
Cercignani and Lampis proposed a generalized scattering kernel that encompasses
pure diffusion and pure reflection molecules via two accommodation coefficients r⊥
and r‖. Their model writes:

R(u→ v;x, t)

:=
1

r⊥r‖(2− r‖)π/2
|n(x) · v|

(2Tw(x))2

× exp

(
− 1

2Tw(x)

[
|v⊥|2 + (1− r⊥)|u⊥|2

r⊥
+
|v‖ − (1− r‖)u‖|2

r‖(2− r‖)

])
× I0

(
1

2Tw(x)

2(1− r⊥)1/2v⊥u⊥
r⊥

)
,

(6)

where Tw(x) is the wall temperature for x ∈ ∂Ω and

I0(y) := π−1

ˆ π

0

ey cosφdφ .

In the formula, v⊥ and v‖ denote the normal and tangential components of the
velocity respectively:

v⊥ = v · n(x) , v‖ = v − v⊥n(x) . (7)

Similarly u⊥ = u · n(x) and u‖ = u− u⊥n(x).
There are a few properties the Cercignani-Lampis(C-L) model satisfies, including:

• the reciprocity property:

R(u→ v;x, t) = R(−v → −u;x, t)
e−|v|

2/(2Tw(x))

e−|u|2/(2Tw(x))

|n(x) · v|
|n(x) · u|

, (8)
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• the normalization property(see the proof in appendix)ˆ
n(x)·v<0

R(u→ v;x, t)dv = 1 . (9)

The normalization (9) property immediately leads to null-flux condition for F :ˆ
R3

F (t, x, v){n(x) · v}dv = 0 , for x ∈ ∂Ω. (10)

This condition guarantees the conservation of total mass:ˆ
Ω×R3

F (t, x, v)dvdx =

ˆ
Ω×R3

F (0, x, v)dvdx for all t ≥ 0 . (11)

Remark 1. The C-L model is an extension of the following classical diffuse bound-
ary condition. The distribution function and scattering kernel are given by:

F (t, x, v) =
2

π(2Tw(x))2
e−

|v|2
2Tw(x)

ˆ
n(x)·u>0

F (t, x, u){n(x) · u}du on (x, v) ∈ γ−,

(12)

R(u→ v;x, t) =
2

π(2Tw(x))2
e−

|v|2
2Tw(x) |n(x) · v|.

It corresponds to the scattering kernel in (6) with r⊥ = 1, r‖ = 1.
Other basic boundary conditions can be considered as a special case with singular

R: specular reflection boundary condition:

F (t, x, v) = F (t, x,Rxv) on (x, v) ∈ γ−, Rxv = v − 2n(x)(n(x) · v),

R(u→ v;x, t) = δ(u−Rxv),

where r⊥ = 0, r‖ = 0.
Bounce-back reflection boundary condition:

F (t, x, v) = F (t, x,−v) on (x, v) ∈ γ−,

R(u→ v;x, t) = δ(u+ v),

where r⊥ = 0, r‖ = 2.

Here we mention the Maxwell boundary condition, which is another classical
model describes the intermediate reflection law. The scattering kernel is given by
the convex combination of the diffuse and specular scattering kernel:

R(u→ v) = c
2

π(2Tw(x))2
e−

|v|2
2Tw(x) |n(x) · v|+ (1− c)δ(u−Rxv), 0 ≤ c ≤ 1.

Compared with the C-L boundary condition, the Maxwell boundary condition does
not cover the combination with the bounce back boundary condition. Such combi-
nation is covered in the C-L boundary condition with r‖ > 1. Moreover, the C-L
boundary condition represents a smooth transition from the diffuse to the spec-
ular. The Maxwell boundary condition represents the convex combination of the
Maxwellian and the dirac δ function. Here we show the graphs for both boundary
condition in the two dimension for comparison. We assume the particles are mov-
ing towards the boundary with velocity u = (u‖, u⊥) = (2,−2), thus the boundary
condition is given by[

F (t, x, v)|n(x) · v|
]∣∣∣
γ−

=

ˆ
n(x)·u>0

R(u→ v)δ
(
u− (2,−2)

)
|n(x) · u|du.
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Then the distribution function F (t, x, v)|γ− for both boundary condition can be
viewed as the following graphs:

Figure 1. Maxwell
boundary condition
with c = 1/2.

Figure 2. C-L
boundary condition
with r⊥ = r‖ = 1/2.

Moreover, we show the graphs for the distribution function F |γ− with C-L bound-
ary condition with smaller accommodation coefficients.

Figure 3. C-L
boundary condition
with r⊥ = r‖ =
1/10.

Figure 4. C-L
boundary condition
with r⊥ = r‖ =
1/30.

Figure 2 shows a smoother transition since the particles begin to concentrate
toward to the point (2, 2). Meanwhile Figure 1 represents the phenomena that
half particles are specular reflected and half particles are diffusive. When we take
smaller accommodation coefficient, Figure 3 and Figure 4 demonstrate that the
distribution function F (t, x, v)|γ− gradually concentrate on (2, 2). Moreover, the z-
coordinate shows that the C-L scattering kernel indeed tends to a dirac δ function
as the accommodation coefficients become smaller.

Due to the generality of the C-L model, it has been vastly used in many appli-
cations. There are other derivations of C-L model besides the original one, and we
refer interested readers to [6, 3, 2]. Also there have been many application of this
model in recent years, on the rarefied gas flow in [19, 20, 25, 26, 27]; extension to
the gas surface interaction model in fluid dynamics [22, 21, 30]; on the linearized
Boltzmann equation in [11, 29, 23, 10]; on S-model kinetic equation in [28] etc.
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1.1. Main result. We assume that the domain is C2. Denote the maximum wall
temperature:

TM := max{Tw(x)} <∞ . (13)

Define the global Maxwellian using the maximum wall temperature:

µ := e
− |v|

2

2TM , (14)

and weight F with it: F =
√
µf , then f satisfies

∂tf + v · ∇xf = Γ(f, f) , (15)

where the collision operator becomes:

Γ(f1, f2) = Γgain(f1, f2)− ν(F1)F2/µ =
1
√
µ
Qgain(

√
µf1,
√
µf2)− ν(F1)f2 . (16)

By the reciprocity property (8), the boundary condition for f becomes, for
(x, v) ∈ γ−,

f(t, x, v)|n(x) · v| = 1
√
µ

ˆ
n(x)·u>0

R(u→ v;x, t)f(t, x, u)
√
µ(u){n(x) · u}du

=
1
√
µ

ˆ
n(x)·u>0

R(−v → −u;x, t)
e−|v|

2/(2Tw(x))

e−|u|2/(2Tw(x))
f(t, x, u)

√
µ(u)

|n(x) · v|
|n(x) · u|

{n(x)·u}du.

Thus

f(t, x, v)|γ− = e
[ 1
4TM

− 1
2Tw(x)

]|v|2
ˆ
n(x)·u>0

f(t, x, u)e
−[ 1

4TM
− 1

2Tw(x)
]|u|2

dσ(u, v). (17)

Here we denote

dσ(u, v) := R(−v → −u;x, t)du, (18)

the probability measure in the space {(x, u), n(x) · u > 0} (well-defined due to (9)).
Denote

wθ := eθ|v|
2

, (19)

〈v〉 :=
√
|v|2 + 1. (20)

Theorem 1.1. Assume Ω ⊂ R3 is bounded and C2. Let 0 < θ < 1
4TM

. Assume

0 < r⊥ ≤ 1, 0 < r‖ < 2 , (21)

min(Tw(x))

TM
> max

(1− r‖
2− r‖

,

√
1− r⊥ − (1− r⊥)

r⊥

)
, (22)

where the TM is defined in (13).
If F0 =

√
µf0 ≥ 0 and f0 satisfies the following estimate:

‖wθf0‖∞ <∞, (23)

then there exists a unique solution F (t, x, v) =
√
µf(t, x, v) ≥ 0 to (1) and (5) in

[0, t∞]× Ω× R3 with

t∞ = t∞(‖wθf0‖∞, r⊥, r‖, θ, TM ,min{Tw(x)},Ω).

Moreover, the solution F =
√
µf satisfies

sup
0≤t≤t∞

‖wθe−|v|
2tf(t)‖∞ . ‖wθf0‖∞. (24)
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Remark 2. In Theorem 1.1 the accommodation coefficient can be any number that
does not correspond to the dirac δ case. So far we are not able cover the specular
reflection, we will explain the difficulty in section 1.3. Also we cover all the range for
K in the collision kernel B in (2). We derive (24) and existence using the sequential
argument. Assumption (23) is used to obtain the estimate (24) for the sequence
solution, which is the key factor to prove the theorem.

Remark 3. In Theorem 1 we do not restrict the wall temperature to have a small
fluctuation. Instead we have a more relax condition (22). In particular, for the
pure diffuse reflection, i.e, r‖ = r⊥ = 1, we do not have any constraint for the
temperature(except TM <∞,min(Tw(x)) > 0).

Remark 4. There has been a lot of studies for Boltzmann equation in many aspects,
the global solution [13, 12, 18, 17]; regularity estimate [14, 15, 1, 5]; the steady
solution [8, 9, 7].

So far we are only able to prove the local well-posedness with the C-L boundary
condition. There are several obstacles to construct the global solution with the C-L
boundary condition for arbitrary accommodation coefficient.

To obtain the global solution of the Boltzmann equation [13] developed the L2−
L∞ bootstrap and derive the time decay and continuous solution of the linearized
Boltzmann equation with various boundary condition. In particular, for the diffuse
boundary condition with constant wall temperature, [13] used the L2 estimate on
the boundaryˆ

n(x)·u<0

f2(t, x, u)|γ− |n(x) · u|du ≤
ˆ
n(x)·u>0

f2(t, x, u)|n(x) · u|du,

with f |γ− = cµ
√
µ

ˆ
n(x)·u>0

f(t, x, u)
√
µ|n(x) · u|du. (25)

Here cµ is the normalization constant such that cµµ|n·u|du is a probability measure.
To be more specific, the diffuse boundary condition can be regarded as a projection
Pγf = f |γ− . Thenˆ
n(x)·u>0

(f −Pγf)2|n(x) · u|du =

ˆ
n(x)·u>0

f2|n(x) · u|du−
ˆ
n(x)·u>0

Pγf
2|n(x) · u|du ≥ 0.

However, for the C-L boundary condition, such L2 inequality does not work. We
can not regard the boundary condition (17) as a projection because of the new
probability measure dσ(u, v) in (18).

Another method to obtain the global solution is to use the entropy inequality.
[12] used the entropy inequality and the L1 − L∞ bootstrap to derive the bounded
solution of the linearized Boltzmann equation with periodic boundary condition. To
adapt the entropy method in bounded domain, [24] used the Jensen inequality for
the Darrozès-Guiraud information with Maxwell boundary condition. To be more
specific, we define E as the Darrozès-Guiraud information :

E :=

ˆ
γ+

h
( F

cµµ

)
cµµ(u)|n(x)·u|du−h

( ˆ
γ+

F

cµµ
cµµ(u)|n(x)·u|du

)
, h(s) = s log s.

Since cµµ(u)|n(x)·u|du is a probability measure then E ≥ 0 by the Jensen inequality
and thus the entropy inequality follows. For the C-L boundary condition, such
inequality does not work since the probability measure is given by dσ(u, v) (18),
which is different from cµµ(u)|n(x) · u|du.
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Even though the global solution is not available for arbitrary accommodation
coefficient, we are able to construct the steady and global solution when the coef-
ficients are closed to 1. This means that we require the boundary condition to be
closed to the diffuse boundary condition. We will discuss the steady solution in the
following section.

1.2. Beside the local-in-time well-posedness, we can establish the stationary solu-
tion under some constraints. The steady problem is given as

v · ∇xF = Q(F, F ), (x, v) ∈ Ω× R3 (26)

with F satisfying the C-L boundary condition.
We use the short notation µ0 to denote the global Maxwellian with temperature

T0,

µ0 :=
1

2π(T0)2
exp

(
− |v|

2

2T0

)
.

Denote L as the standard linearized Boltzmann operator

Lf := − 1
√
µ0

[
Q(µ0,

√
µ0f) +Q(

√
µ0f, µ0)

]
= ν(v)f −Kf

= ν(v)f −
ˆ
R3

k(v, v∗)f(v∗)dv∗,

(27)

with the collision frequency ν(v) ≡
˜

R3×S2 B(v − v∗, w)µ0(v∗)dwdv∗ ∼ {1 + |v|}K
for −3 < K ≤ 1. Finally we define

Pγf(x, v) := cµ
√
µ0(v)

ˆ
n(x)·u>0

f(x, u)
√
µ0(u)(n(x) · u)du, (28)

where cµ is the normalization constant.

Corollary 1. For given T0 > 0, there exists δ0 > 0 such that if

sup
x∈∂Ω

|Tw(x)− T0| < δ0, max{|1− r⊥|, |1− r‖|} < δ0, (29)

then there exists a non-negative solution Fs = µ0+
√
µ0fs ≥ 0 with

˜
Ω×R3 fs

√
µ0dxdv =

0 to the steady problem (26). And for all 0 ≤ ζ < 1
4+2δ0

, β > 4,

‖〈v〉βeζ|v|
2

fs‖∞ + |〈v〉βeζ|v|
2

fs|∞ . δ0 � 1.

If µ0+
√
µ0gs with

˜
Ω×R3 gs

√
µ0dxdv = 0 is another solution such that ‖〈v〉βgs‖∞+

|〈v〉βgs|∞ � 1 for β > 4, then fs ≡ gs.

Corollary 2. For 0 < ζ < 1
4+2δ0

, set β = 0, and for ζ = 0, set β > 4 where δ0 > 0
is in Corollary 1. There exists λ > 0 and ε0 > 0, depending on δ0, such that if˜

Ω×R3 f0
√
µ0 =

˜
Ω×R3 fs

√
µ0 = 0, and if

‖〈v〉βeζ|v|
2

[f(0)− fs]‖∞ + |〈v〉βeζ|v|
2

[f(0)− fs]|∞ ≤ ε0, (30)

then there exists a unique non-negative solution F (t) = µ0 +
√
µ0f(t) ≥ 0 to the

dynamical problem (1) with boundary condition (5), (6). And we have

‖〈v〉βeζ|v|
2

[f(t)− fs]‖∞ + |〈v〉βeζ|v|
2

[f(t)− fs]|∞
. e−λt

{
‖〈v〉βeζ|v|

2

[f(0)− fs]‖∞ + |〈v〉βeζ|v|
2

[f(0)− fs]|∞
}
.
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Remark 5. Different to the accommodation coefficient with almost no constraint
in Theorem 1.1, in Corollary 1, Corollary 2 we need to restrict these two coefficients
to be close to 1 in (29). To be more specific, we require the C-L boundary to be
close to the diffuse boundary condition.

In this paper we show the proof for the hard sphere case where 0 ≤ K ≤ 1. We
can establish the same result for the soft potential case( −3 < K < 0 ) using the
argument provided in [7].

1.3. Difficulty and proof strategy. For proving the local well-posedness we focus
on establishing L∞ estimate. In particular, for the L∞ estimate we trace back along
the characteristic until it hits the boundary or the initial datum. Thus we derive a
new trajectory formula with C-L boundary condition in (17). Before tracing back to
t = 0 there will be repeated interaction with the boundary, which creates a multiple
integral due to the boundary condition (5). We present the formula in Lemma 2.2.

To understand this multiple integral we define vk, vk−1, · · · , v1 in Definition 2.1.
The vi represents the integral variable at i-th interaction with the boundary. For
the diffuse reflection (12) with constant wall temperature, the boundary condition
for f = F/

√
µ is given by (25). Thus at the i-th interaction the boundary condition

is given by

f(vi−1) = cµ
√
µ(vi−1)

ˆ
n·vi>0

f(vi)
√
µ(vi)|n · vi|dvi.

If we further trace back f(vi) in the integrand along the trajectory until the next
interaction we have

f(vi) = cµ
√
µ(vi)

ˆ
n·vi+1>0

f(vi+1)
√
µ(vi+1)|n · vi+1|dvi+1.

Thus the integral over vi becomesˆ
n·vi>0

cµµ(vi)|n · vi|dvi.

The integrand for vi is symmetric for all 1 ≤ i < k and not affected by the other
variables. Moreover, cµµ(vi)|n · vi|dvi is probability measure. Thus we can apply
Fubini’s theorem to compute this multiple integral. But for the C-L boundary
condition (5) (6), the integrand is a function of both v and u, as a result the
probability measure is not symmetric for vi. We are not free to apply the Fubini’s
theorem, which brings difficulty in bounding the trajectory formula. To be more
specific, we need to compute the integral with the fixed order vk, vk−1, · · · v1. We
start from the integral of vk. By (17), the integral of vk isˆ

n(x)·vk>0

e
−[ 1

4TM
− 1

2Tw(x)
]|vk|2dσ(vk, vk−1). (31)

When r⊥, r‖ 6= 0, unlike the diffuse case, we can not decompose dσ(vk, vk−1)
in (18) (6) into a product of a function of vk and a function of vk−1. Thus the
integral ends up with a function of vk−1, which will be included as a part of the
integral over vk−1. This justifies that the order of the integral can not be changed.
Also the integral of vi is affected by the variables vi+1, vi+2, · · · vk. Thus we have
to compute the multiple integral with fixed order from vk to v1.

In fact, (31) can be computed explicitly as ec|vk−1|2( Lemma 4.2,Lemma 4.3 )
and thus the integral for the variable vk−1 has exactly the same form as (31). This
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allows us to inductively derive an upper bound for this multiple integral. We present
the induction result in Lemma 2.3.

With an upper bound for the trajectory formula another difficulty in the L∞

estimate is the measure 1{tk>0}. We need to show that this measure is small when
k is large so that the L∞ estimate follows by bounding a finite fold integral.

For this purpose [13, 1] decompose γ+ into the subspace

γδ+ = {u ∈ γ+ : |n · u| > δ, |u| ≤ δ−1}.

For diffuse case (12) the boundary condition for f is given by (25). We can derive
that there can be only finite number of vj belong to γδ+ under the constraint that

t < ∞. Meanwhile, by (25) the integral over γ+\γδ+ is a small magnitude number
O(δ). When k( times of interaction with boundary ) is large enough one can obtain
a large power of O(δ). The smallness of the measure 1{tk>0} follows by this large
power.

However, for our C-L boundary condition, the integrand is given by (17) (6),

which contains the term e−|v‖−(1−r‖)u‖|2 in (18). If we apply the standard decom-
position the integral over γ+\γδ+ is no longer a small number O(δ). This is because
even |v‖| � 1, |v‖ − (1− r‖)u‖| still depends on u‖.

A key observation is that when |v‖| is large enough, if |v‖ − (1 − r‖)u‖| < δ−1,
we can obtain |u‖| ≥ |v‖| + δ using 1 − r‖ < 1. We take 1 − r‖ = 1/2 as example.

If |v‖ − 1
2u‖| < δ−1, we take |v‖| ≥ 3δ−1. Then we have

1

2
|u‖| > |v‖| − δ−1 >

1

2
|v‖|+

1

2
δ−1, |u‖| > |v‖|+ δ−1.

For 1− r‖ 6= 1/2, we can choose a different number that depends on 1− r‖ to keep
this property.

Now we suppose the “bad” case |v‖ − (1 − r‖)u‖| < δ−1 happens for a large
amount of times. By the discussion above, for the multiple integral with order
vk, · · · , v1 we get an extremely huge velocity |vi| with some i < k. The integral
with dσ(vi, vi−1) will be extremely small once |vi−1| is small. This will provide the
key decaying factor to cancel all the other growth terms and prove the smallness
of the measure 1{tk>0}. The other one is the“good” case |v‖ − (1 − r‖)u‖| > δ−1.
From (6) we can conclude the integral under this condition is a small magnitude
number O(δ). Thus we are able obtain some small factors in both cases. Since the
integrand in dσ(u, v) in (18) (6) still contains the variable u⊥, v⊥, we also need to
apply the decomposition for these variables. The decomposition is similar and we
skip the discussion here. But we point out that since the integrand for u⊥ involves
the first type Bessel function I0, we need some basic estimate to verify that the
integral for u⊥ has the same property as v‖, u‖. We put these estimates in the
appendix.

Thus our new ingredient here is that we decompose the boundary term γ+ into
the subspace

γη+ = {u ∈ γ+ : |n · u| > ηδ, |u| ≤ (ηδ)−1}.

Here η is small number depends on the coefficient r‖ to ensure |u‖| ≥ |v‖| + δ−1

when |v‖− (1−r‖)u‖| < δ−1. We comment here that due to fact that such property
only holds when the coefficient for u‖ is less than 1, we are not able to cover the
specular or bounce back reflection. For these two cases, the coefficient is 1 and thus
such decomposition does not help us to conclude the smallness.
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During computing the trajectory formula the integral involves the variable Tw(x)
(the wall temperature on x ∈ ∂Ω in (6) ). It affects the real value of the coefficient
for u‖( different to 1 − r‖ ). This is the reason that we need to impose some
constraint on the wall temperature, which is the condition (22) in Theorem 1.1. We
present the decomposition and detail in Lemma 2.4 and its proof.

The way to construct the stationary solution and the dynamical stability( Corol-
lary 1 and Corollary 2 ) comes from the ideas in [8, 9]. They consider the diffuse
boundary condition with a small fluctuation on the wall temperature. Thus it can
be regarded as a perturbation around the diffuse boundary condition with constant
temperature. For our C-L boundary condition, when r⊥ and r‖ are close to 1, it
can be also regarded as a perturbation. Thus we need to restrict the accommo-
dation coefficient to have a small fluctuation around 1. Then we need to verify
the boundary condition satisfies the property as stated in Proposition 4.1 in [8] (the
condition (190) in this paper). Then we can follow the standard procedure provided
in [8] to prove Corollary 1 and Corollary 2.

1.4. Outline. In section 2 we conclude Theorem 1.1 by proving the L∞ bound for
the sequence fm as well as the existence and L∞ stability. In section 3, we conclude
Corollary 1 and Corollary 2 by using the key propositions provided in [8]. In the
appendix we prove some necessary estimates.

2. Local well-posedness. We start with the construction of the following itera-
tion equation, which is positive preserving as in [13, 16]. Then equation is given
by

∂tF
m+1 + v · ∇xFm+1 = Qgain(Fm, Fm)− ν(Fm)Fm+1, Fm+1|t=0 = F0, (32)

with boundary condition

Fm+1(t, x, v)|n(x) · v| =
ˆ
n(x)·u>0

R(u→ v;x, t)Fm(t, x, u){n(x) · u}du.

For m ≤ 0 we set

Fm(t, x, v) = F0(x, v).

We pose Fm+1 =
√
µfm+1 and

hm+1(t, x, v) = e(θ−t)|v|2fm+1(t, x, v). (33)

The equation for hm+1 reads

∂th
m+1 + v · ∇xhm+1 + νmhm+1 = e(θ−t)|v|2Γgain

(
hm

e(θ−t)|v|2 ,
hm

e(θ−t)|v|2

)
, (34)

with boundary condition

hm+1(t, x, v) = e(θ−t)|v|2e
[ 1
4TM

− 1
2Tw(x)

]|v|2

×
ˆ
n(x)·u>0

hm(t, x, u)e
−[ 1

4TM
− 1

2Tw(x)
]|u|2

e−(θ−t)|u|2dσ(u, v).
(35)

Here

νm = |v|2 + ν(Fm) ≥ |v|2. (36)

We use this section to establish the L∞ estimate of the sequence hm+1 and derive
the existence and uniqueness of the equation (1). The L∞ estimate is given by the
following proposition.
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Proposition 1. Assume hm+1 satisfies (33) with Cercignani-Lampis boundary con-

dition. Also assume θ < 1
4TM

, min(Tw(x))
TM

> max
(

1−r‖
2−r‖

,
√

1−r⊥−(1−r⊥)
r⊥

)
and

‖h0(x, v)‖L∞ <∞, (37)

If

sup
i≤m
‖hi(t, x, v)‖L∞ ≤ C∞‖h0(x, v)‖L∞ , t ≤ t∞, (38)

then we have

sup
0≤t≤t∞

‖hm+1(t, x, v)‖L∞ ≤ C∞‖h0(x, v)‖L∞ . (39)

Here C∞ is a constant defined in (166) and

t ≤ t∞ = t∞(‖h0(x, v)‖L∞ , TM ,min{Tw(x)}, θ, r⊥, r‖,Ω)� 1. (40)

Remark 6. The condition (40) is important. The smallness of the time will be
used in the proof many times. And the parameters in (40) guarantee that the time
only depends on the temperature, accommodation and the initial condition.

The Proposition 1 implies the uniform-in-m L∞ estimate for hm(t, x, v),

sup
m
‖hm‖∞ <∞ (41)

The strategy to prove Proposition 1 is to express hm+1 along the characteristic
using the C-L boundary condition. We present the formula in Lemma 2.2. We will
use Lemma 2.3 and Lemma 2.4 to bound the formula.

We represent hm+1 with the stochastic cycles defined as follows.

Definition 2.1. Let
(
X1(s; t, x, v), v

)
be the location and velocity along the tra-

jectory before hitting the boundary for the first time,

d

ds

(
X1(s; t, x, v)

v

)
=

(
v
0

)
. (42)

Therefore, from (42), we have

X1(s; t, x, v) = x− v(t− s).
Define the back-time cycle as

t1(t, x, v) = sup{s < t : X1(s; t, x, v) ∈ ∂Ω},

x1(t, x, v) = X1 (t1(t, x, v); t, x, v) ,

v1 ∈ {v1 ∈ R3 : n(x1) · v1 > 0}.
Also define

V1 = {v1 : n(x1) · v1 > 0}, x1 ∈ ∂Ω.

Inductively, before hitting the boundary for the k-th time, define

tk(t, x, v, v1, · · · , vk−1) = sup{s < tk−1 : Xk(s; tk−1, xk−1, vk−1) ∈ ∂Ω},

xk(t, x, v, v1, · · · , vk−1) = Xk (tk(t, x, v, vk−1); tk−1(t, x, v), xk−1(t, x, v), vk−1) ,

vk ∈ {vk ∈ R3 : n(xk) · vk > 0},
Vk = {vk : n(xk) · vk > 0},

Xk(s; tk−1, xk−1, vk−1) = xk−1 − (tk−1 − s)vk−1.

Here we set

(t0, x0, v0) = (t, x, v).
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For simplicity, we denote

Xk(s) := Xk(s; tk−1, xk−1, vk−1).

in the following lemmas and propositions.

Lemma 2.2. Assume hm+1 satisfy (34) with the Cercignani-Lampis boundary con-
dition (35), if t1 ≤ 0, then

|hm+1(t, x, v)| ≤ |h0(X1(0), v)|+
ˆ t

0

e−|v|
2(t−s)e|v|

2(θ−s)Γmgain(s)ds. (43)

If t1 > 0, for k ≥ 2, then

|hm+1(t, x, v)|

≤
ˆ t

t1

e−|v|
2(t−s)e|v|

2(θ−s)Γmgain(s)ds+ e|v|
2(θ−t1)e

[ 1
4TM

− 1
2Tw(x1)

]|v|2
ˆ
∏k−1
j=1 Vj

H,

(44)

where H is bounded by

k−1∑
l=1

1{tl>0,tl+1≤0}|h0

(
X l+1(0), vl

)
|dΣkl,m(0)

+

k−1∑
l=1

ˆ tl

max{0,tl+1}
e|vl|

2(θ−s)|Γm−lgain (s)|dΣkl,m(s)ds

+ 1{tk>0}|hm−k+2 (tk, xk, vk−1) |dΣkk−1,m(tk),

(45)

where

dΣkl,m(s) =
{ k−1∏
j=l+1

dσ (vj , vj−1)
}

×
{
e−|vl|

2(tl−s)e−|vl|
2(θ−tl)e

−[ 1
4TM

− 1
2Tw(xl)

]|vl|2dσ(vl, vl−1)
}

×
{ l−1∏
j=1

e
[ 1
2Tw(xj)

− 1
2Tw(xj+1)

]|vj |2
dσ (vj , vj−1)

}
.

(46)

Here we use a notation

Γm−lgain (s) := Γgain

(
hm−l(s,X l+1(s), vl)

e|vl|2(θ−s) ,
hm(s,X l+1(s), vl)

e|vl|2(θ−s)

)
for 0 ≤ l ≤ m .

(47)

Proof. For simplicity, we denote

µ̃(t, x, v) := e−|v|
2(θ−t)e

−[ 1
4TM

− 1
2Tw(x)

]|v|2
. (48)

From (34), for 0 ≤ s ≤ t, we apply the fundamental theorem of calculus to get

d

ds

ˆ t

s

−νmdτ =
d

ds

ˆ s

t

νmdτ = νm.

Thus based on (34),

d

ds

[
e−
´ t
s
νmdτhm+1(s,X1(s), v)

]
= e−

´ t
s
νmdτe|v|

2(θ−s)Γmgain(s). (49)
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By (36),

e−
´ t
s
νmdτ ≤ e−|v|

2(t−s) ≤ 0. (50)

Combining (49) and (50), we derive that if t1 ≤ 0, then we have (43).
If t1(t, x, v) > 0, then

|hm+1(t, x, v)1{t1>0}| ≤ |hm+1 (t1, x1, v) |e−|v|
2(t−t1)

+

ˆ t

t1

e−|v|
2(t−s)e|v|

2(θ−s)|Γmgain(s)|ds.
(51)

We use an induction of k to prove (44). The first term of the RHS of (51) can be
expressed by the boundary condition. For 1 ≤ k ≤ m, we rewrite the boundary
condition (35) using (48) as

hm−k+2(tk, xk, vk−1)

=
1

µ̃ (tk, xk, vk−1)

ˆ
Vk
hm−k+1(tk, xk, vk)µ̃(tk, xk, vk)dσ (vk, vk−1) .

(52)

Directly applying (52) with k = 1 the first term of the RHS of (51) is bounded by

1

µ̃ (t1, x1, v)

ˆ
V1

hm(t1, x1, v1)µ̃(t1, x1, v1)dσ(v1, v). (53)

Then we apply (43) and (51) to derive

(53) ≤ 1

µ̃(t1, x1, v)

[ ˆ
V1

1{t2≤0<t1}e
−|v1|2t1hm(0, X2(0), v1)µ̃(t1, x1, v1)dσ(v1, v)

+

ˆ
V1

ˆ t1

0

1{t2≤0<t1}e
−|v1|2(t1−s)e|v1|2(θ−s)|Γm−1

gain (s)|µ̃(t1, x1, v1)dσ(v1, v)ds

+

ˆ
V1

1{t2>0}e
−|v1|2(t1−t2)|hm(t2, x2, v1)µ̃(t1, x1, v1)dσ(v1, v)

+

ˆ
V1

ˆ t1

t2

1{t2>0}e
−|v1|2(t1−s)e|v1|2(θ−s)|Γm−1

gain (s)|µ̃(t1, x1, v1)dσ (v1, v) ds
]
.

Therefore, the formula (44) is valid for k = 2.
Assume (44) is valid for k ≥ 2 (induction hypothesis). Now we prove that (44)

holds for k + 1. We express the last term in (45) using the boundary condition.
In (52), since 1

µ̃(tk,xk,vk−1) depends on vk−1, we move this term to the integration

over Vk−1 in (44). Using the second line of (46), the integration over Vk−1 isˆ
Vk−1

e−|vk−1|2(tk−1−tk)µ̃(tk−1, xk−1, vk−1)/µ̃ (tk, xk, vk−1) dσ(vk−1, vk−2). (54)

We have

e−|vk−1|2(tk−1−tk)µ̃(tk−1, xk−1, vk−1)/µ̃ (tk, xk, vk−1)

= e−|vk−1|2(tk−1−tk)e|vk−1|2(tk−1−tk)e
[ 1
2Tw(xk−1)

− 1
2Tw(xk)

]|vk−1|2

= e
[ 1
2Tw(xk−1)

− 1
2Tw(xk)

]|vk−1|2
.

Therefore, by (54) the integration over Vk−1 readsˆ
Vk−1

e
[ 1
2Tw(xk−1)

− 1
2Tw(xk)

]|vk−1|2
dσ(vk−1, vk−2), (55)

which is consistent with third line in (46) with l = k − 1.
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For the remaining integration in (52), we split the integration over Vk into two
terms asˆ
Vk
hm−k+1(tk, xk, vk)µ̃(tk, xk, vk)dσ(vk, vk−1) =

ˆ
Vk

1{tk+1≤0<tk}︸ ︷︷ ︸
(56)1

+

ˆ
Vk

1{tk+1>0}︸ ︷︷ ︸
(56)2

.

(56)
For the first term of the RHS of (56), we use the similar bound of (43) and derive
that

(56)1 ≤
ˆ
Vk

1{tk+1≤0<tk}e
−|vk|2tkhm−k+1(0, Xk+1(0), vk)µ̃(tk, xk, vk)dσ(vk, vk−1)

+

ˆ
Vk

ˆ tk

0

1{tk+1≤0<tk}e
−|vk|2(tk−s)e|vk|

2(θ−s)Γm−kgain (s)µ̃(tk, xk, vk)dσ(vk, vk−1)ds.

(57)

In the first line of (57),

e−|vk|
2tk µ̃(tk, xk, vk)dσ(vk, vk−1),

is consistent with the second line of (46) with l = k, s = tk. In the second line
of (57)

e−|vk|
2(tk−s)µ̃(tk, xk, vk)dσ(vk, vk−1),

is consistent with the second line of (46) with l = k.
From the induction hypothesis( (44) is valid for k) and (55), we derive the inte-

gration over Vj for j ≤ k − 1 is consistent with the third line of (46). After taking

integration
´∏k−1

j=1 Vj
we change dΣkk−1,m in (46) to dΣk+1

k,m . Thus the contribution

of (57) is ˆ
∏k
j=1 Vj

1{tk+1≤0<tk}|h0

(
Xk+1(0), vk

)
|dΣk+1

k,m(0)

+

ˆ
∏k
j=1 Vj

ˆ tk

0

e|vk|
2(θ−s)Γm−kgain (s)dΣk+1

k,m(s)ds.

(58)

For the second term of the RHS of (56), we use the same estimate as (43) and
we derive

(56)2

≤
ˆ
Vk

1{tk+1>0}e
−|vk|2(tk−tk+1)hm−k+1 (tk+1, xk+1, vk) µ̃(tk, xk, vk)dσ (vk, vk−1)

+

ˆ
Vk

ˆ tk

tk+1

1{tk+1>0}e
−|vk|2(tk−s)e|vk|

2(θ−s)Γm−kgain (s)µ̃(tk, xk, vk)dσ(vk, vk−1)ds.

(59)

Similar to (58), after taking integration over
´∏k−1

j=1 Vj
the contribution of (59) is

ˆ
∏k
j=1 Vj

1{tk+1>0}|hm−k+1 (tk+1, xk+1, vk) |dΣk+1
k,m(tk+1)

+

ˆ
∏k
j=1 Vj

ˆ tk

tk+1

e|vk|
2(θ−s)Γm−kgain (s)dΣk+1

k,m(s)ds.

(60)
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From (60) (58), the summation in the first and second lines of (45) extends to k.
And the index of the third line of (45) changes from k to k+ 1. For the rest terms,
the index l ≤ k − 1, we haven’t done any change to them. Thus their integration

are over
∏k−1
l=1 Vj . We add

´
Vk dσ(vk, vk−1) = 1 to all of them, so that all the

integrations are over
∏k
l=1 Vj and we change dΣk−1

l,m to dΣkl,m by

dΣkl,m = dσ (vk, vk−1) dΣk−1
l,m .

Therefore, the formula (45) is valid for k + 1 and we derive the lemma.

The next lemma is the key to prove the L∞ bound for hm+1. Below we define
several notation: let

rmax := max(r‖(2− r‖), r⊥), rmin := min(r‖(2− r‖), r⊥). (61)

Then we have

1 ≥ rmax ≥ rmin > 0. (62)

Define

ξ :=
1

4TMθ
,

where θ < 1
4TM

is given in (33). Then we have

θ =
1

4TMξ
, ξ > 1. (63)

We inductively define:

Tl,l =
2ξ

ξ + 1
TM , Tl,l−1 = rminTM + (1− rmin)Tl,l,

· · · , Tl,1 = rminTM + (1− rmin)Tl,2.
(64)

By a direct computation, for 1 ≤ i ≤ l, we have

Tl,i =
2ξ

ξ + 1
TM + (TM −

2ξ

ξ + 1
TM )[1− (1− rmin)l−i] (65)

Moreover, let

dΦk,lp,m(s) :={
k−1∏
j=l+1

dσ(vj , vj−1)}

× {e−|vl|
2(tl−s)e−|vl|

2(θ−tl)e
−[ 1

4TM
− 1

2Tw(xl)
]|vl|2dσ(vl, vl−1)}

× {
l−1∏
j=p

e
[ 1
2Tw(xj)

− 1
2Tw(xj+1)

]|vj |2
dσ(vj , vj−1)}.

(66)

Note that if p = 1, dΦk,l1,m(s) = dΣkl,m(s) where dΣkl,m(s) is defined in (46). And let

dΥp′

p := {
p′∏
j=p

e
[ 1
2Tw(xj)

− 1
2Tw(xj+1)

]|vj |2
dσ(vj , vj−1)}. (67)

Then by the definition of (66) and (46), we have

dΦk,lp,m(s) = dΦk,lp′,m(s)dΥp′−1
p , (68)

dΣkl,m(s) = dΦk,lp,m(s)dΥp−1
1 . (69)
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Remark 7. We aim to bound the multiple integral in the trajectory formula in
Lemma 2.2. Each integral in the formula involves the variable Tw(x), TM , r⊥, r‖,
thus we need to find the pattern of the upper bound for each fold integral. This is
the reason we define these inductive notations.

Now we state the lemma.

Lemma 2.3. Given the formula for hm+1 in (43) and (44) of lemma 2.2, there
exists

t∗ = t∗(TM , ξ, C, k) (70)

such that when t ≤ t∗, for any 0 ≤ s ≤ tl we haveˆ
∏k−1
j=p Vj

1{tl>0}dΦk,lp,m(s) ≤ (CTM ,ξ)
2(l−p+1)Al,p. (71)

where we define:

Al,p = exp

([ [Tl,p − Tw(xp)][1− rmin]

2Tw(xp)[Tl,p(1− rmin) + rminTw(xp)]
+ Cl−p+1t

]
|vp−1|2

)
. (72)

Here CTM ,ξ is a constant defined in (80) and C is constant defined in (83).
Moreover, for any p < p′ ≤ l, we haveˆ

∏k−1
j=p Vj

1{tl>0}dΦk,lp,m(s) ≤ (CTM ,ξ)
2(l−p′+1)

ˆ
∏p′−1
j=p Vj

1{tl>0}Al,p′dΥp′−1
p

≤ (CTM ,ξ)
2(l−p+1)Al,p.

(73)

Proof. From (9) and (18), for the first bracket of the first line in (46) with l + 1 ≤
j ≤ k − 1, we have ˆ

∏k−1
j=l+1 Vj

k−1∏
j=l+1

dσ(vj , vj−1) = 1.

Without loss of generality we can assume k = l+ 1. Thus dΦk,lp,m = dΦl+1,l
p,m . We use

an induction of p with 1 ≤ p ≤ l to prove (71).
When p = l, by the second line of (66), the integration over Vl is written asˆ

Vl
e−|vl|

2(tl−s)e−|vl|
2(θ−tl)e

−[ 1
4TM

− 1
2Tw(xl)

]|vl|2dσ(vl, vl−1). (74)

By θ = 1
4TMξ

in (63) and s ≤ tl, we bound (74) by
ˆ
Vl
e
−[ 1

2TM

ξ+1
2ξ −

1
2Tw(xl)

−tl]|vl|2dσ(vl, vl−1). (75)

Expanding dσ(vl, vl−1) with (6) and (18) we rewrite (75) asˆ
Vl,⊥

2

r⊥

|vl,⊥|
2Tw(xl)

e
−[ 1

2TM

ξ+1
2ξ −

1
2Tw(xl)

−tl]|vl,⊥|2

× I0
(

(1− r⊥)1/2vl,⊥vl−1,⊥

Tw(xl)r⊥

)
e
−
|vl,⊥|

2+(1−r⊥)|vl−1,⊥|
2

2Tw(xl)r⊥ dvl,⊥

×
ˆ
Vl,‖

1

πr‖(2− r‖)(2Tw(xl))

× e−[ 1
2TM

ξ+1
2ξ −

1
2Tw(xl)

−tl]|vl,‖|2e
− 1

2Tw(xl)

|vl,‖−(1−r‖)vl−1,‖|
2

r‖(2−r‖) dvl,‖,

(76)
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where vl,‖, vl,⊥, Vl,⊥ and Vl,‖ are defined as

vl,⊥ = vl · n(xl), vl,‖ = vl − vl,⊥n(xl),

Vl,⊥ = {vl,⊥ : vl ∈ Vl}, Vl,‖ = {vl,‖ : vl ∈ Vl}.
(77)

vl−1,‖ and vl−1,⊥ are defined similarly.
First we compute the integration over Vl,‖, the third, fourth line of (76). To

apply (210) in Lemma 4.2, we set

ε = tl, w = (1− r‖)vl−1,‖ , v = vl,‖,

a = −[
1

2TM
2ξ
ξ+1

− 1

2Tw(xl)
], b =

1

2Tw(xl)r‖(2− r‖)
. (78)

By ξ > 1 in (63), we take t∗ = t∗(ξ, TM )� 1 such that when tl < t ≤ t∗, we have

b−a−ε =
1

2Tw(xl)r‖(2− r‖)
− 1

2Tw(xl)
+

1

2TM
2ξ
ξ+1

−tl ≥
1

2TM
2ξ
ξ+1

−t ≥ 1

4TM
. (79)

Also we take t∗ = t∗(ξ, TM ) to be small enough to obtain 1+4TM tl ≤ 1+4TM t ≤ 2
when t ≤ t∗. Thus the t∗ we choose here is consistent with (70). Hence

b

b− a− ε
=

b

b− a
[1 +

ε

b− a− ε
]

≤
2ξ
ξ+1TM

2ξ
ξ+1TM + [Tw(xl)− 2ξ

ξ+1TM ]r‖(2− r‖)
[1 + 4TM tl]

≤
4ξ
ξ+1TM

2ξ
ξ+1TM + [min{Tw(x)} − 2ξ

ξ+1TM ]rmax
:= CTM ,ξ, (80)

where we use (61).
In regard to (210), we have

(a+ ε)b

b− a− ε
=

ab

b− a
[1 +

ε

b− a− ε
] +

b

b− a− ε
ε. (81)

By (80) and tl < t, we obtain

b

b− a− ε
ε ≤

4ξ
ξ+1TM

2ξ
ξ+1TM + [min{Tw(x)} − 2ξ

ξ+1TM ]rmax

t.

By (78), we have

ab

b− a
=

2ξ
ξ+1TM − Tw(xl)

2Tw(xl)[
2ξ
ξ+1TM + [Tw(xl)− 2ξ

ξ+1TM ]r‖(2− r‖)]
.

Therefore, by (79) and (81) we obtain

(a+ ε)b

b− a− ε
≤

2ξ
ξ+1TM − Tw(xl)

2Tw(xl)[
2ξ
ξ+1TM + [Tw(xl)− 2ξ

ξ+1TM ]r‖(2− r‖)]
+ Ct, (82)

where we define

C :=
4TM

(
2ξ
ξ+1TM −min{Tw(x)}

)
2 min{Tw(x)}[ 2ξ

ξ+1TM + [min{Tw(x)} − 2ξ
ξ+1TM ]rmax]

+

4ξ
ξ+1TM

2ξ
ξ+1TM + [min{Tw(x)} − 2ξ

ξ+1TM ]rmax
.

(83)
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By (80), (82) and Lemma 4.2, using w = (1 − r‖)vl−1,‖ we bound the third,
fourth line of (76) by

CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)]

2Tw(xl)[
2ξ
ξ+1TM (1− r‖)2 + r‖(2− r‖)Tw(xl)]

+ Ct
]
|(1− r‖)vl−1,‖|2

)
(84)

≤ CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)][1− rmin]

2Tw(xl)
[

2ξ
ξ+1TM (1− rmin) + rminTw(xl)

] + Ct
]
|vl−1,‖|2

)
. (85)

where we use (61) and (62).
Next we compute first, second line of (76). To apply (213) in Lemma 4.3, we set

ε = tl, w =
√

1− r‖vl−1,⊥ , v = vl,⊥,

a = −[
1

2TM
2ξ
ξ+1

− 1

2Tw(xl)
], b =

1

2Tw(xl)r⊥
.

Thus we can compute b
b−a−ε and (a+ε)b

b−a−ε using the exactly the way as (80) and (82)

with replacing r‖(2 − r‖) by r⊥. Hence replacing r‖(2 − r‖) by r⊥ and replacing
vl−1,‖ by vl−1,⊥ in (84), we bound the first, second line of (76) by

CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)]

2Tw(xl)[
2ξ
ξ+1TM (1− r⊥) + r⊥Tw(xl)]

+ Ctl
]
|
√

1− r⊥vl−1,⊥|2
)

≤ CTM ,ξ exp

([ [ 2ξ
ξ+1TM − Tw(xl)][1− rmin]

2Tw(xl)
[

2ξ
ξ+1TM (1− rmin) + rminTw(xl)

] + Ct
]
|vl−1,⊥|2

)
. (86)

where we use (61) and (62).
Collecting (85) (86), we derive

(76) ≤ (CTM ,ξ)
2 exp

([
[ 2ξ
ξ+1TM − Tw(xl)][1− rmin]

2Tw(xl)
[

2ξ
ξ+1TM (1− rmin) + rminTw(xl)

] + Ct

]
|vl−1|2

)
= (CTM ,ξ)

2Al,l,

where Al,l is defined in (72) and Tl,l = 2ξ
ξ+1TM .

Therefore, (71) is valid for p = l.
Suppose (71) is valid for the p = q+ 1(induction hypothesis) with q+ 1 ≤ l, then

ˆ
∏l
j=q+1 Vj

1{tl>0}dΦl+1,l
q+1,m(s) ≤ (CTM ,ξ)

2(l−q)Al,q+1.

We want to show (71) holds for p = q. By the hypothesis and the third line of (66),

ˆ
∏l
j=q Vj

1{tl>0}dΦl+1,l
q,m (s)

≤ (CTM ,ξ)
2(l−q)

ˆ
Vq
Al,q+1e

[ 1
2Tw(xq)

− 1
2Tw(xq+1)

]|vq|2
dσ(vq, vq−1).

(87)
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Using the definition of Al,q+1 in (72), we obtain

(87) ≤ (CTM ,ξ)
2(l−q)

×
ˆ
Vq

exp

(
(Tl,q+1 − Tw(xq+1))(1− rmin)

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 + Cl−qt|vq|2

)
× e[ 1

2Tw(xq)
− 1

2Tw(xq+1)
]|vq|2

dσ(vq, vq−1).

(88)

We focus on the coefficient of |vq|2 in (88), we derive

(Tl,q+1 − Tw(xq+1))(1− rmin)

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 + [

1

2Tw(xq)
− 1

2Tw(xq+1)
]|vq|2 =

(Tl,q+1 − Tw(xq+1))(1− rmin)− [Tl,q+1(1− rmin) + rminTw(xq+1)]

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 +

|vq|2

2Tw(xq)

=
−Tw(xq+1)(1− rmin)− rminTw(xq+1)

2Tw(xq+1)[Tl,q+1(1− rmin) + rminTw(xq+1)]
|vq|2 +

|vq|2

2Tw(xq)

=
−|vq|2

2[Tl,q+1(1− rmin) + rminTw(xq+1)]
+
|vq|2

2Tw(xq)
.

By the Definition 2.1, xq+1 = xq+1(t, x, v, v1, · · · , vq), thus Tw(xq+1) depends on
vq. In order to explicitly compute the integration over Vq, we need to get rid of the
dependence of the Tw(xq+1) on vq. Then we bound

exp

(
−|vq|2

2[Tl,q+1(1− rmin) + rminTw(xq+1)]

)
≤ exp

(
−|vq|2

2[Tl,q+1(1− rmin) + rminTM ]

)
= exp

(
−|vq|2

2Tl,q

)
,

(89)

where we use (64).
Hence by (18) (6) and (89), we derive

(88) ≤ (CTM ,ξ)
2(l−q)

×
ˆ
Vq,⊥

2

r⊥

|vq,⊥|
2Tw(xq)

e
−[ 1

2Tl,q
− 1

2Tw(xq)
−Cl−qt]|vq,⊥|2

× I0
(

(1− r⊥)1/2vq,⊥vq−1,⊥

Tw(xq)r⊥

)
e
−
|vq,⊥|

2+(1−r⊥)|vq−1,⊥|
2

2Tw(xq)r⊥ dvq,⊥

×
ˆ
Vq,‖

1

πr‖(2− r‖)(2Tw(xq))

× e−[ 1
2Tl,q

− 1
2Tw(xq)

−Cl−qt]|vq,‖|2e
− 1

2Tw(xq)

|vq,‖−(1−r‖)vq−1,‖|
2

r‖(2−r‖) dvq,‖.

(90)

In the fourth, fifth line of (90), to apply (210) in Lemma 4.2, we set

a = −[
1

2Tl,q
− 1

2Tw(xq)
], b =

1

2Tw(xq)r‖(2− r‖)
, ε = Cl−qt, w = (1− r‖)vq−1,‖.

Taking (78) for comparison, we can replace 2ξ
ξ+1TM by Tl,q and replace t by Cl−qt.

Then we apply the replacement to (79) and obtain

b− a− ε ≥ 1

2Tl,q
− Cl−qt ≥ 1

2TM
2ξ
ξ+1

− Ckt ≥ 1

4TM
,
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where we take t∗ = t∗(TM , ξ, C, k) to be small enough and t ≤ t∗. Also we require
the t satisfy

ε

b− a− ε
≤ 4TMCkt ≤ 2.

We conclude the t∗ only depends on the parameter in (70). Thus by the same
computation as (80) we obtain

b

b− a− ε
≤ 2Tl,q
Tl,q + [min{Tw(x)} − Tl,q]r‖(2− r‖)

≤ CTM ,ξ,

where we use Tl,q ≤ 2ξ
ξ+1TM from (64) and (61). CTM ,ξ is defined in (80).

By the same computation as (82), we obtain

(a+ ε)b

b− a− ε
=

ab

b− a
+

ab

b− a
ε

b− a− ε
+

b

b− a− ε
ε

≤ Tl,q − Tw(xq)

2Tw(xq)[Tl,q + [Tw(xq)− Tl,q]r‖(2− r‖)]
+ Cl−q+1t.

Here we use Tl,q ≤ 2ξ
ξ+1TM and (61) to obtain

ab

b− a
ε

b− a− ε
+

bε

b− a− ε

≤
4TM

(
Tl,q −min{Tw(x)}

)
2 min{Tw(x)}[Tl,q + [min{Tw(x)} − Tl,q]r‖(2− r‖)]

Cl−qt

+
2Tl,q

2ξ
ξ+1T + [min{Tw(x)} − Tl,q]r‖(2− r‖)

Cl−qt ≤ Cl−q+1t

with C defined in (83).
Thus by Lemma 4.2 with w = (1 − r‖)vq−1,‖, the fourth, fifth line of (90) is

bounded by

CTM ,ξ exp

([ [Tl,q − Tw(xq)]

2Tw(xq)[Tl,q(1− r‖)2 + r(2− r‖)Tw(xq)]
+ Cl−q+1t

]
|(1− r‖)vq−1,‖|2

)

≤ CTM ,ξ exp

([ [Tl,q − Tw(xq)][1− rmin]

2Tw(xq)[Tl,q(1− rmin) + rminTw(xq)]
+ Cl−q+1t

]
|vq−1,‖|2

)
. (91)

By the same computation the second, third line of (90) is bounded by

CTM ,ξ exp

([ [Tl,q − Tw(xq)][1− rmin]

2Tw(xq)[Tl,q(1− rmin) + rminTw(xq)]
+ Cl−q+1t

]
|vq−1,⊥|2

)
. (92)

By (91) and (92), we derive that

(90) ≤ (CTM ,ξ)
2(l−q+1)

exp

([ [Tl,q − Tw(xq)][1− rmin]

2Tw(xq)[Tl,q(1− rmin) + rminTw(xq)]
+ Cl−q+1t

]
|vq−1|2

)
= (CTM ,ξ)

2(l−q+1)Al,q,

which is consistent with (71) with p = q. The induction is valid and we derive (71).
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Now we focus on (73). The first inequality in (73) follows directly from (71)
and (68). For the second inequality, by (67) we have

(CTM ,ξ)
2(l−p′+1)

ˆ
∏p′−1
j=p Vj

1{tl>0}Al,p′dΥp′−1
p

≤ (CTM ,ξ)
2(l−p′+1)

ˆ
∏p′−2
j=p Vj

ˆ
Vp′−1

1{tl>0}

×Al,p′e
[ 1
2Tw(x

p′−1
)
− 1

2Tw(x
p′ )

]|vp′−1|
2

dσ(vp′−1, vp′−2)dΥp′−2
p . (93)

In the proof for (71) we have

(87) ≤ (88) ≤ (90) ≤ (CTM ,ξ)
2(l−q+1)Al,q.

Then by replacing q by p′ − 1 in the estimate (87) ≤ (CTM ,ξ)
2(l−q+1)Al,q we have

(93) ≤ (CTM ,ξ)
2(l−p′+2)

ˆ
∏p′−2
j=p Vj

1{tl>0}Al,p′−1dΥp′−2
p .

Keep doing this computation until integrating over Vp we obtain the second in-
equality in (73).

The next result is the Lemma 2.4, which is the smallness of the last term of (45).

Lemma 2.4. Assume

min(Tw(x))

TM
> max

(1− r‖
2− r‖

,

√
1− r⊥ − (1− r⊥)

r⊥

)
. (94)

For the last term of (45), there exists

k0 = k0(Ω, CTM ,ξ, C, TM , r⊥, r‖,min{Tw(x)}, ξ)� 1, (95)

t′ = t′(k0, ξ, TM ,min{Tw(x)}, C, r⊥, r‖)� 1 (96)

such that for all t ∈ [0, t′], we haveˆ
∏k0−1
j=1 Vj

1{tk0
>0}dΣk0

k0−1,m(tk0
) ≤ (

1

2
)k0Ak0−1,1, (97)

where Ak0−1,1 is defined in (72).

Remark 8. The difference between this lemma and Lemma 2.3 is that we have the
small term ( 1

2 )k0 . This lemma implies when k = k0 is large enough, the measure of
the last term of (45) is small.

We need several lemmas to prove it.

Lemma 2.5. For 1 ≤ i ≤ k − 1, if

|vi · n(xi)| < δ, (98)

thenˆ
∏k−1
j=i Vj

1{vi∈Vi:|vi·n(xi)|<δ}1{tk>0}dΦk,k−1
i,m (tk) ≤ δ(CTM ,ξ)2(k−i)Ak−1,i. (99)

If
|vi,‖ − ηi,‖vi−1,‖| > δ−1, (100)

thenˆ
∏k−1
j=i Vj

1{tk>0}1{|vi,‖−ηi,‖vi−1,‖|>δ−1}dΦk,k−1
i,m (tk) ≤ δ(CTM ,ξ)2(k−i)Ak−1,i. (101)
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Here ηi,‖ is a constant defined in (109).
If

|vi,⊥ − ηi,⊥vi−1,⊥| > δ−1, (102)

thenˆ
∏k−1
j=i Vj

1{tk>0}1{|vi,⊥−ηi,⊥vi−1,⊥|>δ−1}dΦk,k−1
i,m (tk) ≤ δ(CTM ,ξ)2(k−i)Ak−1,i.

(103)
Here ηi,⊥ is a constant defined in (112).

Proof. First we focus on (99). By (90) in Lemma 2.3, we can replace l by k− 1 and
replace q by i to obtainˆ

∏k−1
j=i Vj

1{tk>0}dΦk,k−1
i,m (tk) ≤ (CTM ,ξ)

2(k−i)

×
ˆ
Vi,⊥

2

r⊥

|vi,⊥|
2Tw(xi)

e
−[ 1

2Tk−1,i
− 1

2Tw(xi)
−Ck−it]|vi,⊥|2

× I0
(

(1− r⊥)1/2vi,⊥vi−1,⊥

Tw(xi)r⊥

)
e
−
|vi,⊥|

2+(1−r⊥)|vi−1,⊥|
2

2Tw(x)r⊥ dvi,⊥

×
ˆ
Vi,‖

1

πr‖(2− r‖)(2Tw(xi))

× e−[ 1
2Tk−1,i

− 1
2Tw(xi)

−Ck−it]|vi,‖|2e
− 1

2Tw(xi)

|vi,‖−(1−r‖)vi−1,‖|
2

r‖(2−r‖) dvi,‖.

(104)

Under the condition (98), we consider the second, third line of (104) with integrating
over {vi,⊥ ∈ Vi,⊥ : |vi · n(xi)| < 1−η

2(1+η)δ}. To apply (214) in Lemma 4.3, we set

a = −[
1

2Tk−1,i
− 1

2Tw(xi)
], b =

1

2Tw(xi)r⊥
, ε = Ck−it, w =

√
1− r⊥vi−1,⊥.

Under the condition |vi · n(xi)| < 1−η
2(1+η)δ, applying (214) in Lemma 4.3 and us-

ing (92) with q = i, l = k − 1, we bound the second, third line of (104) by

δCTM ,ξ exp

([ [Tk−1,i − Tw(xi)][1− rmin]

2Tw(xi)[Tk−1,i(1− rmin) + rminTw(xi)]
+ Ck−it

]
|vi−1,⊥|2

)
. (105)

Taking (92) for comparison, we conclude the second, third line of (104) provides
one more constant term δ. The fourth, fifth line of (104) is bounded by (91) with
q = i, l = k − 1. Therefore, we derive (99).

Then we focus on (101). We consider the fourth, fifth line of (104). To ap-
ply (212) in Lemma 4.2, we set

a = − 1

2Tk−1,i
+

1

2Tw(xi)
, b =

1

2Tw(xi)r‖(2− r‖)
, ε = Ck−it, w = (1−r‖)vi−1,‖.

(106)
We define

Bi,‖ := b− a− ε. (107)

In regard to (212),

b

b− a− ε
w =

b

b− a
[1 +

ε

b− a− ε
]w.
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By (106),

b

b− a
=

Tk−1,i

Tk−1,i(1− r‖)2 + Tw(xi)r‖(2− r‖)
,

ε

b− a− ε
=
Ck−it
Bi,‖

.

Thus we obtain
b

b− a− ε
w = ηi,‖vi−1,‖, (108)

where we define

ηi,‖ :=
Tk−1,i[1 + Ck−it/Bi,‖]

Tk−1,i(1− r‖)2 + Tw(xi)r‖(2− r‖)
(1− r‖). (109)

Thus under the condition (100), applying (212) in Lemma 210 with b
b−a−εw =

ηi,‖vi−1,‖ and using (91) with q = i, l = k − 1, we bound the fourth, fifth line
of (104) by

δCTM ,ξ exp

([ [Tk−1,i − Tw(xi)][1− rmin]

2Tw(xi)[Tk−1,i(1− rmin) + rminTw(xi)]
+ Ck−it

]
|vi−1,‖|2

)
.

By the same computation in Lemma 2.5, we derive (101) because of the extra
constant δ.

Last we focus on (103). We consider the second, third line of (104) with inte-
grating over {vi,⊥ : vi,⊥ ∈ Vi,⊥, |vi,⊥| > 1+η

1−η δ
−1}. To apply (214) in Lemma 4.4, we

set

a = − 1

2Tk−1,i
+

1

2Tw(xi)
, b =

1

2Tw(xi)r⊥
, ε = Ck−it, w =

√
1− r⊥vi−1,⊥.

(110)
Define

Bi,⊥ := b− a− ε. (111)

By the same computation as (108),

b

b− a− ε
w = ηi,⊥vi−1,⊥,

where we define

ηi,⊥ :=
Tk−1,i[1 + Ck−it

Bi,⊥
]

Tk−1,i(1− r⊥) + Tw(xi)r⊥

√
1− r⊥. (112)

Thus under the condition (102), applying (217) in Lemma 4.4 with b
b−a−εw =

ηi,⊥vi−1,⊥ and using (92) with q = i, l = k − 1, we bound the second, third line
of (104) by

δCTM ,ξ exp

([ [Tk−1,i − Tw(xi)][1− rmin]

2Tw(xi)[Tk−1,i(1− rmin) + rminTw(xi)]
+ Ck−it

]
|vi−1,⊥|2

)
.

Then we derive (101) because of the extra constant δ.

Lemma 2.6. For ηi,‖ and ηi,⊥ defined in Lemma 2.5, we suppose there exists η < 1
such that

max{ηi,‖, ηi,⊥} < η < 1. (113)

Then If

|vi,‖| >
1 + η

1− η
δ−1 and |vi,‖ − ηi,‖vi−1,‖| < δ−1, (114)

we have
|vi−1,‖| > |vi,‖|+ δ−1. (115)
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Also if

|vi,⊥| >
1 + η

1− η
δ−1 and |vi,⊥ − ηi,⊥vi−1,⊥| < δ−1, (116)

then we have

|vi−1,⊥| > |vi,⊥|+ δ−1. (117)

Remark 9. Lemma 2.5 includes the cases that are controllable because of the small
magnitude number δ, which is the “good” factor for us to establish the Lemma 2.4.
This lemma discusses those “bad” cases, which are the main difficulty since they
do not directly provide δ.

Proof. Under the condition (114) we have

ηi,‖|vi−1,‖| > |vi,‖| − δ−1.

Thus we derive

|vi−1,‖| > |vi,‖|+
1− ηi,‖
ηi,‖

|vi,‖| −
1

ηi,‖
δ−1

> |vi,‖|+
1− ηi,‖
ηi,‖

1 + η

1− η
δ−1 − 1

ηi,‖
δ−1

> |vi,‖|+
1− ηi,‖
ηi,‖

1 + ηi,‖

1− ηi,‖
δ−1 − 1

ηi,‖
δ−1

> |vi,‖|+
1 + ηi,‖

ηi,‖
δ−1 − 1

ηi,‖
δ−1 > |vi,‖|+ δ−1,

where we use |vi,‖| > 1+η
1−η δ

−1 in the second line and 1 > η ≥ ηi,‖ in the third line.

Then we obtain (115).
Under the condition (116), we apply the same computation above to obtain (117).

Lemma 2.7. Suppose there are n number of vj such that

|vj,‖ − ηj,‖vj−1,‖| ≥ δ−1, (118)

and also suppose the index j in these vj are i1 < i2 < · · · < in, thenˆ
∏k−1
j=i1

Vj
1{tk>0}1{ (118) holds for j = i1, i2, · · · , in}dΦk,k−1

i1,m
(tk)

≤ (δ)n(CTM ,ξ)
2(k−i1)Ak−1,i1 .

(119)

Proof. By (73) in Lemma 2 with l = k − 1, p = i1, p′ = in and using (101) with
i = in, we haveˆ

∏k−1
j=i1

Vj
1{tk>0}1{ (118) holds for j = i1, · · · , in}dΦk,k−1

i1,m
(tk)

≤ δ(CTM ,ξ)2(k−in)

ˆ
∏in−1
j=i1

Vj
Ak−1,in1{tk>0}1{ (118) holds for j = i1, · · · , in−1}dΥin−1

i1

= δ(CTM ,ξ)
2(k−in)

ˆ
∏in−1−1

j=i1
Vj

ˆ
∏(in)−1
j=in−1

Vj

Ak−1,in1{tk>0}1{ (118) holds for j = i1, · · · , in−1}dΥ
(in)−1
in−1

dΥ
in−1−1
i1

. (120)
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Again by (73) and (101) with i = in−1 we have

(120) ≤ δ2(CTM ,ξ)
2(k−in−1)

ˆ
∏in−1−1

j=i1
Vj

×Ak−1,in−1
1{tk>0}1{ (118) holds for j = i1, · · · , in−2}dΥ

in−1−1
i1

.

Keep doing this computation until integrating over Vi1 we derive (119).

Lemma 2.8. For 0 < δ � 1, we define

Vδj := {vj ∈ Vj : |vj · n(xj)| > δ, |vj | ≤ δ−1}. (121)

For the sequence {v1, v2, · · · , vk−1}, consider a subsequence {vl+1, vl+2, · · · , vl+L}
with l + 1 < l + L ≤ k − 1 as follows:

vl︸︷︷︸
∈V

1−η
2(1+η)

δ

l

, vl+1, vl+2 · · · vl+L︸ ︷︷ ︸
all∈Vl+j\V

1−η
2(1+η)

δ

l+j

, vl+L+1︸ ︷︷ ︸
∈V

1−η
2(1+η)

δ

l+L+1

. (122)

In (122), if L ≥ 100 1+η
1−η , then we have

ˆ
∏k−1
j=l Vj

1{tk>0}1
{vl+j∈Vl+j\V

1−η
2(1+η)

δ

l+j for 1≤j≤L}
dΦk,k−1

l,m (tk)

≤ (3δ)L/2(CTM ,ξ)
2(k−l)Ak−1,l.

(123)

Here the η satisfies the condition (113).

Remark 10. In this lemma we combine the estimates and properties in Lemma
2.5 and Lemma 2.6. In the proof we will address the difficulty stated in Lemma 2.6
to obtain the key factor (3δ)L/2.

Proof. By the definition (121) we have

Vi\V
1−η

2(1+η)
δ

i = {vi ∈ Vi : |vi · n(xi)| <
1− η

2(1 + η)
δ or |vi| ≥

2(1 + η)

1− η
δ−1}.

Here we summarize the result of Lemma 2.5 and Lemma 2.6. With 1−η
1+η δ < δ, when

vi ∈ Vi\V
1−η

2(1+η)
δ

i

1. When |vi · n(xi)| < 1−η
2(1+η)δ, then we have (99).

2. When |vi| > 2(1+η)
1−η δ−1,

(a) when |vi,‖| > 1+η
1−η δ

−1, if |vi,‖ − ηi,‖vi−1,‖| < δ−1, then |vi−1,‖| > |vi,‖| +
δ−1.

(b) when |vi,‖| > 1+η
1−η δ

−1, if |vi,‖ − ηi,‖vi−1,‖| ≥ δ−1, then we have (101).

(c) when |vi,⊥| > 1+η
1−η δ

−1, if |vi,⊥ − ηi,⊥vi−1,⊥| < δ−1, then |vi−1,⊥| >
|vi,⊥|+ δ−1 .

(d) when |vi,⊥| > 1+η
1−η δ

−1, if |vi,⊥ − ηi,⊥vi−1,⊥| ≥ δ−1, then we have (103).



574 HONGXU CHEN

We define Wi,δ as the space that provides the smallness:

Wi,δ := {vi ∈ Vi : |vi,⊥| <
1− η

2(1 + η)
δ}⋃

{vi ∈ Vi : |vi,⊥| >
1 + η

1− η
δ−1 and |vi,⊥ − ηi,⊥vi−1,⊥| > δ−1}⋃⋃

{vi ∈ Vi : |vi,‖| >
1 + η

1− η
δ−1 and |vi,‖ − ηi,‖vi−1,‖| > δ−1}.

Then we have

Vi\V
1−η

2(1+η)
δ

i

⊂ Wi,δ

⋃
{vi,⊥ ∈ Vi,⊥|vi,⊥| >

1 + η

1− η
δ−1 and |vi,⊥ − ηi,⊥vi−1,⊥| < δ−1}⋃

{vi,‖ ∈ Vi,‖|vi,‖| >
1 + η

1− η
δ−1 and |vi,‖ − ηi,‖vi−1,‖| < δ−1}.

(124)

By (99), (101) and (103) with 1−η
1+η δ < δ, we obtainˆ

∏k−1
j=i Vj

1{vi∈Wi,δ}1{tk>0}dΦk,k−1
i,m (tk) ≤ 3δ(CTM ,ξ)

2(k−i)Ak−1,i. (125)

For the subsequence {vl+1, · · · , vl+L} in (122), when the number of vj ∈ Wj,δ

is larger than L/2, by (119) in Lemma 2.7 with n = L/2 and replacing the condi-
tion (118) by vj ∈ Wj,δ, we obtainˆ

∏k−1
j=l Vj

1{Number of vj∈Wj,δ is larger than L/2}1{tk>0}dΦk,k−1
l,m (tk) (126)

≤ (3δ)L/2(CTM ,ξ)
2(k−li)Ak−1,l. (127)

We finish the discussion with the case(1),(2b),(2d). Then we focus on the case
(2a),(2c).

When the number of vj /∈ Wj,δ is larger than L/2, by (124) we further consider

two cases. The first case is that the number of vj ∈ {vj : |vj,‖| > 1+η
1−η δ

−1 and |vj,‖−
ηj,‖vj−1,‖| < δ−1} is larger than L/4. According to the relation of vj,‖ and vj−1,‖,
we categorize them into

Set1: {vj /∈ Wj,δ : |vj,‖| > 1+η
1−η δ

−1 and |vj,‖ − ηj,‖vj−1,‖| < δ−1}.
Denote M = |Set1| and the corresponding index in Set1 as j = p1, p2, · · · , pM .
Then we have

L/4 ≤M ≤ L. (128)

By (115) in Lemma 2.6, for those vpj , we have

|vpj ,‖| − |vpj−1,‖| < −δ−1. (129)

Set2: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,‖| ≥ |vj−1,‖|}.
Denote M = |Set2| and the corresponding index in Set2 as j = q1, q2, · · · , qM.

By (128) we have

1 ≤M ≤ L−M ≤ 3

4
L. (130)

Then for those vqj we define

aj := |vqj ,‖| − |vqj−1,‖| > 0. (131)
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Set3: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,‖| ≤ |vj−1,‖| ≤ |vj,‖|+ δ−1}.
Denote N = |Set3| and the corresponding index in Set3 as j = o1, o2, · · · , oN .

Then for those oj , we have

|voj ,‖| ≤ |voj−1,‖| ≤ |voj ,‖|+ δ−1. (132)

From (122), we have vl ∈ V
1−η

2(1+η)
δ

l and vl+L+1 ∈ V
1−η

2(1+η)
δ

l+L+1 , thus we can obtain

− 2(1 + η)

1− η
δ−1 < |vl+L+1,‖| − |vl,‖| =

L+1∑
j=1

|vl+j,‖| − |vl+j−1,‖|. (133)

By (129), (131) and (132), we derive that

−2(1 + η)

1− η
δ−1

<
M∑
j=1

(
|vpj ,‖| − |vpj−1,‖|

)
+
M∑
j=1

(
|vqj ,‖| − |vqj−1,‖|

)
+

N∑
j=1

(
|voj ,‖| − |voj−1,‖|

)
≤ −Mδ−1 +

M∑
j=1

aj .

Therefore, by L ≥ 100 1+η
1−η and (128), we obtain

2(1 + η)

1− η
δ−1 ≤ L

10
δ−1 ≤ M

2
δ−1

and thus
M∑
j=1

aj ≥Mδ−1 − 2(1 + η)

1− η
δ−1 >

Mδ−1

2
. (134)

We focus on integrating over Vqi , those index satisfy (131). Let 1 ≤ i ≤ M, we
consider the third line of (104) with i = qi and with integrating over {vqi,‖ ∈ Vqi,‖ :
|vqi,‖| − |vqi−1,‖| = ai}. To apply (211) in Lemma 4.2, we set

a = − 1

2Tk−1,qi

+
1

2Tw(xqi)
, b =

1

2Tw(xqi)r‖(2− r‖)
, ε = Ck−qit.

By the same computation as (142), we have

a+ ε− b = − 1

2Tk−1,qi

+
1

2Tw(xqi)
− 1

2Tw(xqi)r‖(2− r‖)
+ Ck−qit < − 1

4TM
. (135)

Then we use ηqi,‖ < 1 to obtain

1{|vqi,‖|−|vqi−1,‖|=ai} ≤ 1{|vqi,‖|−ηqi,‖|vqi−1,‖|>ai} ≤ 1{|vqi,‖−ηqi,‖vqi−1,‖|>ai}. (136)

By (211) in Lemma 4.2 and (136), we apply (91) with q = qi to bound the third
line of (104)( the integration over Vqi,‖ ) by

e
− a2

i
4TM CTM ,ξ exp

([ [Tk−1,qi − Tw(xqi)][1− rmin]

2Tw(xqi)[Tk−1,qi(1− rmin) + rminTw(xqi)]
+ Ck−qit

]
|vqi−1,‖|2

)
.

(137)
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Hence by the constant in (137) we draw a similar conclusion as (125):ˆ
∏k−1
j=qi

Vj
1{tk>0}1{|vqi,‖|−|vqi−1,‖|=ai}dΦk,k−1

qi,m (tk) ≤ e−
a2
i

4TM (CTM ,ξ)
2(k−qi)Ak−1,qi .

(138)
Therefore, by Lemma 2.7, after integrating over Vq1,‖,Vq2,‖, · · · ,VqM,‖ we obtain
an extra constant

e−[a2
i+a

2
2+···+a2

M]/4TM ≤ e−[ai+a2+···+aM]2/(4TMM) ≤ e−[Mδ−1/2]2/(4TMM)

≤ e−[L8 δ
−1]2/(4TM

3
4L) ≤ e−

1
96TM

L(δ−1)2

≤ e−Lδ
−1

.

Here we use (134) in the last step of first line and use (128), (130) in the first step

of second line and take δ � 1 in the last step of second line. Then e−Lδ
−1

is smaller
than (3δ)L/2 in (127) and we concludeˆ

∏k−1
j=l Vj

1{M=|Set1|≥L/4}1{tk>0}dΦk,k−1
l,m (tk) ≤ (3δ)L/2(CTM ,ξ)

2(k−li)Ak−1,l. (139)

The second case is that the number of vj ∈ {vj /∈ Wj,δ : |vj,⊥| > 1+η
1−η δ

−1} is

larger than L/4. We categorize vj,⊥ into

Set4: {vj /∈ Wj,δ : |vj,⊥| > 1+η
1−η δ

−1 and |vj,⊥ − ηj,⊥vj−1,⊥| < δ−1}.

Set5: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,⊥| > |vj−1,⊥|}.

Set6: {vj ∈ Vj\V
1−η

2(1+η)δ

j : |vj,⊥| ≤ |vj−1,⊥| ≤ |vj,⊥|+ δ−1}.
Denote |Set4| = M1 and the corresponding index as p′1, p

′
2, · · · , p′M1

, |Set5| = M1

and the corresponding index as q′1, q
′
2, · · · , q′M1

, |Set6| = N1 and the correspond-
ing index as o′1, o

′
2, · · · , o′N1

. Also define bj := |vq′j ,⊥| − |vq′j−1,⊥|. By the same

computation as (134), we have

M1∑
j=1

bj ≥M1δ
−1 − 2(1 + η)

1− η
δ−1 >

M1δ
−1

2
.

We focus on the integration over vq′j . Let 1 ≤ i ≤M1, we consider the second line

of (104) with i = q′i and with integrating over {vq′i,⊥ ∈ Vq′i,⊥ : |vq′i,⊥| − |vq′i−1,⊥| =
bi}. To apply (216) in Lemma 4.2, we set

a = − 1

2Tk−1,q′i

+
1

2Tw(xq′i)
, b =

1

2Tw(xq′i)r⊥
, ε = Ck−q

′
it.

By the same computation as (142), we have

a+ ε− b = − 1

2Tk−1,q′i

+
1

2Tw(xq′i)
− 1

2Tw(xq′i)r⊥
+ Ck−q

′
it < − 1

4TM
. (140)

Similar to (136), we have

1{|vq′
i
,⊥|−|vq′

i
−1,⊥|=bi} ≤ 1{|vq′

i
,⊥−ηq′

i
,⊥vq′

i
−1,⊥|>bi}.

Hence by (216) in Lemma 4.4 and applying (92), we bound the integration over
Vq′i,⊥ by

e
−

b2i
16TM CTM ,ξ exp

([ [Tk−1,q′i
− Tw(xq′i)][1− rmin]

2Tw(xq′i)[Tk−1,q′i
(1− rmin) + rminTw(xq′i)]

+ Ck−q
′
i t
]
|vq′i−1,⊥|2

)
.
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Therefore,ˆ
∏k−1

j=q′
i
Vj

1{tk>0}1{|vq′
i
,⊥|−|vq′

i
−1,⊥|=bi}dΦk,k−1

q′i,m
(tk) ≤ e−

b2i
16TM (CTM ,ξ)

2(k−q′i)Ak−1,q′i
.

The integration over Vq′1,⊥,Vq′2,⊥, · · · ,Vq′M1
,⊥ provides an extra constant

e−[b21+b22+···+b2M1
]/16TM ≤ e−

1
400TM

L(δ−1)2

≤ e−Lδ
−1

,

where we set δ � 1 in the last step. Then e−Lδ
−1

is smaller than (3δ)L/2 in (127)
and we concludeˆ

∏k−1
j=l Vj

1{M1=|Set4|≥L/4}1{tk>0}dΦk,k−1
l,m (tk) ≤ (3δ)L/2(CTM ,ξ)

2(k−l)Ak−1,l. (141)

Finally collecting (127), (139) and (141) we derive the lemma.

Now we prove the Lemma 2.4.

Proof of Lemma 2.4. Step 1
To prove (97) holds for the C-L boundary condition, we mainly use the decom-

position (121) done by [1] and [14] for the diffuse boundary condition. In order

to apply Lemma 2.8, here we consider the space V
1−η

2(1+η)
δ

i and ensure η satisfy the
condition (113). In this step we mainly focus on constructing the η, which is defined
in (152).

First we consider ηi,‖, which is defined in (109). In regard to (106) and (107),
we take t′ = t′(ξ, k, TM )( consistent with (96) ) to be small enough and set t ≤ t′

to obtain

Bi,‖ ≥
1

2Tk−1,i
− Ck−it ≥ 1

2 2ξ
ξ+1TM

− Ckt ≥ 1

4TM
. (142)

By (65), Tk−1,i → TM as k − i→∞. For any ε1 > 0, there exists k1 s.t when

k ≥ k1, i ≤ k/2, we have Tk−1,i ≤ (1 + ε1)TM . (143)

Moreover, by (94), there exists ε2 s.t

min{Tw(x)}
TM

>
1− r‖
2− r‖

(1 + ε2). (144)

Then we have

ε2 = ε2(min{Tw(x)}, TM , r‖, r⊥). (145)

Thus we can bound Tw(xi) in the ηi,‖( defined in (109)) below as

Tw(xi) = Tk−1,i
Tw(xi)

Tk−1,i
≥ Tk−1,i

Tw(xi)

TM

1

1 + ε1
>

1− r‖
2− r‖

Tk−1,i
1 + ε2

1 + ε1
. (146)

Thus we obtain

ηi,‖ <
1 + Ck−it

Bi,‖

(1− r‖)2 +
1−r‖
2−r‖

1+ε2
1+ε1

r‖(2− r‖)
(1− r‖) =

1 + Ck−it
Bi,‖

1− r‖ + r‖
1+ε2
1+ε1

. (147)

By (143), we take

k = k1 = k1(ε2, TM , rmin) (148)
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to be large enough such that ε1 < ε2/4. By (142) and (147), we derive that when
k = k1,

sup
i≤k/2

ηi,‖ ≤
1 + 4TMCkt

1− r‖ + r‖
1+ε2

1+ε2/4

< η‖ < 1. (149)

Here we define

η‖ :=
1

1− r‖ + r‖
1+ε2

1+ε2/2

< 1 (150)

and we take t′ = t′(k, TM , ε2, C, r‖) to be small enough and t ≤ t′ such that

4TMCkt� 1 to ensure the second inequality in (149). Combining (145) and (148),
we conclude the t′ we choose only depends on the parameter in (96).

Then we consider ηi,⊥, which is defined in (112). In regard to (110) and (111),

by (142) we have Bi,⊥ ≥ 1
4TM

. By min{Tw(x)}
TM

>
√

1−r⊥−(1−r⊥)
r⊥

in (94) we can use

the same computation as (146) to obtain

Tw(xi) >

√
1− r⊥ − (1− r⊥)

r⊥
Tk−1,i

1 + ε2

1 + ε1
,

with ε1 < ε2/4. Thus we obtain

ηi,⊥ < η⊥ < 1,

where we define

η⊥ :=
1√

1− r⊥ + (1−
√

1− r⊥) 1+ε2
1+ε2/2

< 1, (151)

with t′ = t′(k, TM , ε2, C, r‖)( consistent with (96) ) small enough and t ≤ t′.
Finally we define

η := max{η⊥, η‖} < 1. (152)

Step 2
Claim: We have

|tj − tj+1| &Ω

( 1− η
2(1 + η)

δ
)3

, for vj ∈ V
1−η

2(1+η)
δ

j , 0 ≤ tj . (153)

Proof. For tj ≤ 1,

|
ˆ tj+1

tj

vjds|2 = |xj+1 − xj |2 & |(xj+1 − xj) · n(xj)|

= |
ˆ tj+1

tj

vj · n(xj)ds| = |vj · n(xj)||tj − tj+1|.

Here we use the fact that if x, y ∈ ∂Ω and ∂Ω is C2 and Ω is bounded then
|x− y|2 &Ω |(x− y) · n(x)|( see the proof in [8] ). Thus

|vj · n(xj)| .
1

|tj − tj+1|
|
ˆ tj+1

tj

vjds|2 . |tj − tj+1||vj |2. (154)

Since vj ∈ V
1−η

2(1+η)
δ

j , tj ≤ 0, let 0 ≤ t ≤ t′, we have

|vj · n(xj)| . |tj − tj+1|
( 1− η

2(1 + η)
δ
)−2

. (155)

Then we prove (153).
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In consequence, when tk > 0, by (153) and t � 1, there can be at most

{[CΩ( 2(1+η)
(1−η)δ )3] + 1} numbers of vj ∈ V

1−η
2(1+η)

δ

j . Equivalently there are at least

k − 2− [CΩ( 2(1+η)
(1−η)δ )3] + 1 numbers of vj ∈ Vj\V

1−η
2(1+η)

δ

j .

Step 3
In this step we combine Step 1 and Step 2 and focus on the integration over∏k−1
j=1 Vj .
By (153) in Step 2, we define

N :=
[
CΩ

(2(1 + η)

δ(1− η)

)3]
+ 1. (156)

For the sequence {v1, v2, · · · , vk−1}, suppose there are p number of vj ∈ V
1−η

2(1+η)
δ

j

with p ≤ N , we conclude there are at most

(
k − 1
p

)
number of these sequences.

Below we only consider a single sequence of them.
In order to get (150),(151)< 1, we need to ensure the condition (143). Thus we

take k = k1(TM , ξ, r⊥, r‖) and only use the decomposition Vj =
(
Vj\V

1−η
2(1+η)

δ

j

)
∪

V
1−η

2(1+η)
δ

j for
∏k/2
j=1 Vj . Then we only consider the half sequence {v1, v2, · · · , vk/2}.

We derive that when tk > 0, there are at most N number of vj ∈ V
1−η

2(1+η)
δ

j and at

least k/2− 1−N number of vj ∈ Vj\V
1−η

2(1+η)
δ

j in
∏k/2
j=1 Vj .

In this single half sequence {v1, · · · , vk/2}, in order to apply Lemma 2.8, we only

want to consider the subsequence (122) with l + 1 < l + L ≤ k/2 and L ≥ 100 1+η
1−η .

Thus we need to ignore those subsequence with L < 100 1+η
1−η . By (122), we conclude

that at the end of this subsequence, it is adjacent to a vl ∈ V
1−η

2(1+η)
δ

l . By (156), we
conclude

There are at most N number of subsequences (122) with L ≤ 100
1 + η

1− η
. (157)

We ignore these subsequences. Then we define the parameters for the remaining
subsequence( with L ≥ 100 1+η

1−η ) as:

M1 := the number of vj ∈ Vj\V
1−η

2(1+η)
δ

j in the first subsequence starting from v1,

n := the number of these subsequences.

Similarly we can define M2,M3, · · · ,Mn as the number in the second, third, · · · ,
n-th subsequence. Recall that we only consider

∏k/2
j=1 Vj , thus we have

100
1 + η

1− η
≤Mi ≤ k/2, for 1 ≤ i ≤ n. (158)

By (157), we obtain

k/2 ≥M1 + · · ·Mn ≥ k/2− 1− 100
1 + η

1− η
N >

k

2
− 101

1 + η

1− η
N. (159)
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Take Mi with 1 ≤ i ≤ n as an example. Suppose this subsequence starts from vli+1

to vli+Mi , by (123) in Lemma 2.8 with replacing l by li and L by Mi, we obtainˆ
∏k−1
j=li
Vj

1{tk>0}1
{vli+j∈Vli+j\V

1−η
2(1+η)

δ

li+j
for 1≤j≤Mi}

dΦk,k−1
li,m

(tk)

≤ (3δ)Mi/2(CTM ,ξ)
2(k−l)Ak−1,li .

(160)

Since (160) holds for all 1 ≤ i ≤ n, by Lemma 2.7 we can draw the conclusion
for the Step 3 as follows. For a single sequence {v1, v2, · · · , vk−1}, when there are p

number vj ∈ V
1−η

2(1+η)
δ

j , we haveˆ
∏k−1
j=1 Vj

1
{p number vj ∈ V

1−η
2(1+η)

δ

j for a single sequence}
1{tk>0}dΣkk−1,m(tk)

≤ (3δ)(M1+···+Mn)/2(CTM ,ξ)
2kAk−1,1. (161)

Step 4
Now we are ready to prove the lemma. By (156), we haveˆ

∏k−1
j=1 Vj

1{tk>0}dΣkk−1,m(tk)

≤
N∑
p=1

ˆ
{Exactly p number of vj ∈ V

1−η
2(1+η)

δ

j }
1{tk>0}dΣkk−1,m(tk). (162)

Since (161) holds for a single sequence, we derive

(162) ≤ (CTM ,ξ)
2k

N∑
p=1

(
k − 1
p

)
(3δ)(M1+M2+···Mn)/2Ak−1,1

≤ (CTM ,ξ)
2kN(k − 1)N (3δ)k/4−101 1+η

1−ηNAk−1,1, (163)

where we use (159) in the second line.
Take k = N3, the coefficient in (163) is bounded by

(CTM ,ξ)
2N3

N3N+1(3δ)N
3/4−101 1+η

1−ηN ≤ (CTM ,ξ)
2N3

N4N (3δ)N
3/5, (164)

where we choose N = N(η) large such that N3/4− 101 1+η
1−ηN ≥ N

3/5.

Using (156), we derive

3δ = C(Ω, η)N−1/3.

Finally we bound (164) by

(CTM ,ξ)
2N3

N4N (C(Ω, η)N−1/3)N
3/5

≤ e2N3 log(CTM,ξ)e4N logNe(N3/5) log(C(Ω,η)N−1/3)

= e4N logNe(N3/5)(log(C(Ω,η))− 1
3 logN)e2N3 log(CTM,ξ)

= e4N logN−N3

15 (logN−3 logCΩ,η−30 logCTM,ξ)

≤ e4N logN−N3

30 logN ≤ e−N
3

50 logN = e−
k

150 log k ≤ (
1

2
)k,

where we choose δ to be small enough in the second line such that N = N(Ω, η, CTM ,ξ)

is large enough to satisfy

logN − 3 logC(Ω, η)− 30 logCTM ,ξ ≥
logN

2
,
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4N logN − N3

30
logN ≤ −N

3

50
logN.

And thus we choose k = N3 = k2 = k2(Ω, η, CTM ,ξ) and we also require log k > 150
in the last step. Then we get (97).

Therefore, by the condition (143), we choose k = k0 = max{k1, k2}. By the
definition of η (152) with (150) and (151), we obtain η = η(TM , C, r⊥, r‖, ε2). Thus
by (145) and (148), we conclude the k0 we choose here does not depend on t and
only depends on the parameter in (95). We derive the lemma.

Proof of Proposition 1. First we take

t∞ ≤ t′. (165)

with t′ defined in (96). Then we let k = k0 with k0 defined in (95) so that we can
apply Lemma 2.4 and Lemma 2.3. Define the constant in (38) as

C∞ = 3(CTM ,ξ)
k0 . (166)

We mainly use the formula given in Lemma 2.2. We consider two cases.

Case1: t1 ≤ 0,

By (43) and using the definition of Γmgain(s) in (47) we have

|hm+1(t, x, v)|
≤ |h0(X1(0; t, x, v), v)| (167)

+

ˆ t

0

e|v|
2(θ−t)

ˆ
R3×S2

B(v − u,w)
√
µ(u)

×
∣∣∣hm(s,X1(s), u′)

e|u′|2(θ−s)

∣∣∣∣∣∣hm(s,X1(s), v′)

e|v′|2(θ−s)

∣∣∣dωduds, (168)

where u′ = u′(u, v) and v′ = v′(u, v) are defined by (3). Then we have

(168) ≤ ( sup
0≤s≤t

‖hm(s)‖L∞)2 ×
ˆ t

0

ˆ
R3×S2

e|v|
2(θ−t)B

(
v − u,w

)
×
√
µ(u)e(|u|2+|v|2)(s−θ)dωduds

. ( sup
0≤s≤t

‖hm(s)‖L∞)2

ˆ t

0

ˆ
R3

e|v|
2(s−t)|v − u|K√µe|u|

2(s−θ)duds

.C∞ ‖h0‖2L∞
ˆ t

0

e|v|
2(s−t)〈v〉K+3ds

≤ ‖h0‖2L∞
ˆ t

0

e|v|
2(s−t)〈v〉4{1|v|>N + 1|v|≤N}ds

.‖h0‖∞
( 1

N2
+Nt

)
,

where −3 < K ≤ 1. Therefore, we obtain

(168) ≤ C(C∞, ‖h0‖∞)(
1

N2
+Nt) ≤ 1

k0
‖h0‖∞, (169)

where we choose

N = N(C∞, ‖h0‖∞, k0)� 1, t∞ = t∞(N,C∞, ‖h0‖∞, k0)� 1, (170)

with t ≤ t∞ to obtain the last inequality in (169).
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Finally collecting (167) and (168) we obtain

‖hm+1(t, x, v)1{t1≤0}‖∞ ≤ 2‖h0‖∞ ≤ C∞‖h0‖∞, (171)

where C∞ is defined in (166).

Case2: t1 ≥ 0,

We consider (44) in Lemma 2.2. First we focus on the first line. By (169) we obtain
ˆ t

t1

e|v|
2(θ−t)Γmgain(s)ds ≤ 1

k0
‖h0‖∞. (172)

Then we focus on the second line of (44). Using θ = 1
4TMξ

we bound the second

line of (44) by

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]
|v|2
) ˆ

∏k0−1
j=1 Vj

H. (173)

Now we focus on
´∏k0−1

j=1 Vj
H. We compute H term by term with the formula given

in (45). First we compute the first line of (45). By Lemma 2.3 with p = 1, for every
1 ≤ l ≤ k0 − 1, we haveˆ

∏k0−1
j=1 Vj

1{tl+1≤0<tl}|h0

(
Xm−l(0), V m−l(0)

)
|dΣk0

l,m(0)

≤ ‖h0‖∞
ˆ
∏k0−1
j=1 Vj

1{tl+1≤0<tl}dΣk0

l,m(0)

≤ (CTM ,ξ)
l‖h0‖∞

× exp

(
(Tl,1 − Tw(x1))(1− rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + Clt|v|2

)
. (174)

In regard to (173) we have

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]
|v|2
)
× (174) =

(CTM ,ξ)
l‖h0‖∞ exp

([ −1

2
(
Tw(x1)rmin + Tl,1(1− rmin)

) +
1

2TM
2ξ
ξ+1

]
|v|2 + (C)lt|v|2

)
.

Using the definition (64) we have Tw(x1) < 2ξ
ξ+1TM and Tl,1 <

2ξ
ξ+1TM . Then we

take

t∞ = t∞(TM , k0, ξ, C) (175)

to be small enough and t ≤ t∞ so that the coefficient for |v|2 is

−1

2
(
Tw(x1)rmin + Tl,1(1− rmin)

) +
1

2TM
2ξ
ξ+1

+ (C)lt

≤ −1

2
(
TMrmin + Tl,1(1− rmin)

) +
1

2TM
2ξ
ξ+1

+ (C)k0t ≤ 0. (176)

Since (174) holds for all 1 ≤ l ≤ k0 − 1, by (176) the contribution of the first line
of (45) in (173) is bounded by

(CTM ,ξ)
k0‖h0‖∞. (177)
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Then we compute the second line of (45). For each 1 ≤ l ≤ k0 − 1 such that
max{0, tl+1} ≤ s ≤ tl, by (46), we have

dΣk0

l,m(s) = e−|vl|
2(tl−s)dΣk0

l,m(tl).

Therefore, we deriveˆ tl

max{0,tl+1}

ˆ
∏k0−1
j=1 Vj

e|vl|
2(θ−s)|Γm−lgain (s)|dΣk0

l,m(s)ds

≤
ˆ
∏k0−1
j=1 Vj

ˆ tl

max{0,tl+1}
e|vl|

2(θ−tl)|Γm−lgain (s)|dsdΣk0

l,m(tl)

≤ 1

k0
‖h0‖∞

ˆ
∏k0−1
j=1 Vj

Σk0

l,m(tl)

≤ 1

k0
‖h0‖∞(CTM ,ξ)

l exp

(
(Tl,1 − Tw(x1))(1− rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + (C)lt|v|2

)
,

(178)

where we apply (169) in the third line and we apply Lemma 2.3 in the last line.
In regard to (173), by (176) we obtain

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]
|v|2
)
× (178) ≤ 1

k0
(CTM ,ξ)

l‖h0‖∞.

Since (178) holds for all 1 ≤ l ≤ k0−1, the contribution of the second line of (45)
in (173) is bounded by

k0 − 1

k0
(CTM ,ξ)

k0‖h0‖∞. (179)

Last we compute the third term of (45). By Lemma 2.4 and the assumption (38)
we obtainˆ

∏k0−1
j=1 Vj

1{0<tk0
}|hm−k0+2

(
tk0 , xk0 , V

m−k0+1(tk0)
)
|dΣk0

k0−1,m(tk0)

≤ ‖hm−k0+2‖∞
ˆ
∏k0−1
j=1 Vj

1{0<tk0
}dΣk0

k0−1,m(tk0
)

≤ 3(CTM ,ξ)
k0(

1

2
)k0‖h0‖∞

× exp

(
(Tl,1 − Tw(x1))(1− rmin)

2Tw(x1)[Tl,1(1− rmin) + rminTw(x1)]
|v|2 + (C)lt|v|2

)
. (180)

In regard to (173), by (176) we have

exp

([ 1

2TM
2ξ
ξ+1

− 1

2Tw(x1)

]
|v|2
)
× (180) ≤ (CTM ,ξ)

k0‖h0‖∞.

Thus the contribution of the third line of (45) in (173) is bounded by

(CTM ,ξ)
k0‖h0(x, v)‖∞. (181)

Collecting (177) (179) (181) we conclude that the second line of (44) is bounded
by

(CTM ,ξ)
k0 × (2 +

k0 − 1

k0
)‖h0‖∞. (182)
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Adding (182) to (172) we use (44) to derive

‖hm+1(t, x, v)1{t1≥0}‖∞ ≤ 3(CTM ,ξ)
k0‖h0‖∞ = C∞‖h0‖∞. (183)

Combining (171) and (183) we derive (39).
Last we focus the parameters for t∞ in (40). In the proof the constraints for t∞

are (165), (170) and (175). We obtain

t∞ = t∞(t′, N,C∞, ‖h0‖∞, TM , k0, ξ, C)
= t∞(k0, ξ, TM ,min{Tw(x)}, C, r⊥, r‖, CTM ,ξ, ‖h0‖∞).

By the definition of k0 in (95), definition of CTM ,ξ in (80), definition of C in (83),
we derive (40).

Then we can conclude the well-posedness.

Proof of Theorem 1.1. First of all we take t < t∞, where t∞ is defined in (40)
so that we can apply Proposition 1. We have

sup
m
‖hm‖∞ . ‖h(0)‖∞.

• Existence

For hm given in (33), we take the difference hm+1 − hm and deduce that

∂t[h
m+1 − hm] + v · ∇x[hm+1 − hm] + νm(hm+1 − hm) = e(θ−t)|v|2Λm,

[hm+1 − hm]− = e(θ−t)|v|2e
[ 1
4TM

− 1
2Tw(x)

]|v|2

ˆ
n(x)·u>0

[hm+1(u)− hm(u)]e
−[ 1

4TM
− 1

2Tw(x)
]|u|2

e−(θ−t)|u|2dσ(u, v),

where

Λm = Γgain

(hm − hm−1

e(θ−t)|v|2 ,
hm

e(θ−t)|v|2

)
+ Γgain

( hm−1

e(θ−t)|v|2 ,
hm − hm−1

e(θ−t)|v|2

)
+ [ν(Fm−1)− ν(Fm)]hm−1.

By the same derivation as (43) (44), when t1 ≤ 0, we have

|hm+1 − hm|(t, x, v)

≤
ˆ t

0

e|v|
2(θ−t)

ˆ
R3×S2

B(v − u,w)
√
µ

×
[∣∣∣ (hm − hm−1)(s,X1(s), u′)

e|u′|(θ−s)

∣∣∣∣∣∣hm(s,X1(s), v′)

e|v′|(θ−s)

∣∣∣
+
∣∣∣hm(s,X1(s), u′)

e|u′|(θ−s)

∣∣∣∣∣∣ (hm − hm−1)(s,X1(s), v′)

e|v′|(θ−s)

∣∣∣
+
∣∣∣ (hm − hm−1)(s,X1(s), u)

e|u|2(θ−s)

∣∣∣∣∣∣hm−1(s,X1(s), v)

e|v|2(θ−s)

∣∣∣]dωduds,
where we use hm+1(0) = hm(0).
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Then we follow the computation for (168) to obtain

|hm+1 − hm|(t, x, v)

. (‖hm − hm−1‖∞)‖hm‖∞ ×
ˆ t

0

ˆ
R3×S2

e|v|
2(θ−t)B(v − u, ω)

×
√
µ(u)e(|u|2+|v|2)(s−θ)dωduds

. ‖hm − hm−1‖∞‖hm‖∞(
1

N2
+Nt)

. o(1)‖hm − hm−1‖∞, (184)

where we take N = N(‖hm‖∞) to be large and t < t∞ = t∞(N) to be small as
in (170).

When t1 > 0, by the same derivation as (44), we have

|hm+1 − hm|(t, x, v) ≤
ˆ t

t1

e|v|
2(θ−t)Λmds+ e|v|

2(θ−t1)e
[ 1
4TM

− 1
2Tw(x1)

]|v|2
ˆ
∏k−1
j=1 Vj

Hd,

where Hd is bounded by

k−1∑
l=1

ˆ tl

max{0,tl+1}
e|vl|

2(θ−s)|Λm(s)|dΣkl,m(s)ds

+ 1{tk>0}|hm−k+2 − hm−k+1|(tk, xk, vk−1)dΣkk−1,m(tk).

(185)

By (178) and (184), the first line of (185) is bounded by

k0O(t) sup
`≤m
‖h` − h`−1‖∞ = o(1) sup

`≤m
‖h` − h`−1‖∞,

where we take t < t∞ = t∞(k0) to be small.
Then we apply (180) (181) with replacing ‖hm−k0+2‖∞ by ‖hm−k0+2−hm−k0+1‖∞.

Thus we obtain the second line of (185) is bounded by(1

2

)k0

sup
`≤m
‖h` − h`−1‖∞.

Thus in the case t1 > 0 we obtain

‖hm+1 − hm‖∞ ≤ o(1) sup
`≤m
‖h` − h`−1‖∞. (186)

Therefore, hm is a Cauchy-sequence in L∞. The existence follows by taking the

limit m→∞ and the solution h = e(θ−t)|v|2f satisfies

∂th+ v · ∇xh+ |v|2h = e(θ−t)|v|2Γ

(
h

e(θ−t)|v|2 ,
h

e(θ−t)|v|2

)
. (187)

Moreover, we have

‖h‖∞ ≤ sup
m
‖hm‖∞ . ‖h(0)‖∞. (188)

This concludes the existence of f and (24).

• Stability

Suppose there are two solutions h1 and h2 satisfy (187). Also suppose there initial
condition satisfy

‖h1(0)‖∞, ‖h2‖∞ <∞.
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When t1 ≤ 0, by the same derivation as (169) and (184) we have

|h1 − h2|(t, x, v)

. |h1 − h2|(0) + (‖h1‖∞ + ‖h2‖∞)

ˆ t

0

‖h1 − h2‖∞e|v|
2(s−t)〈v〉4{1|v|>N + 1|v|≤N}ds

. ‖(h1 − h2)(0)‖∞ + (‖h2‖∞ + ‖h1‖∞)
[
O(

1

N2
)‖h1 − h2‖∞ +

ˆ t

0

N‖h1 − h2‖∞ds
]
.

By taking N = N(‖h1‖∞, ‖h2‖∞) to be large as in (170) so that

(‖h2‖∞ + ‖h1‖∞)O(
1

N2
)� 1,

we derive the L∞ stability by the Gronwall’s inequality.
When t1 > 0, the argument is exactly the same as the existence part and we

conclude the L∞ stability for all cases. The uniqueness follows immediately by
setting h1(0) = h2(0).

The positivity follows from the the property that iteration equation (32) is pos-
itive preserving and (186).

3. Steady problem with C-L boundary condition. This section is devoted to
the steady solution to the Boltzmann equation with the Cercignani-Lampis bound-
ary condition as mention in Section 1.2.

Remark 11. The setting of the steady solution is given in Section 1.2. We remark
here that in this section we no longer use notation µ. Instead we put the subscript
µ0, δ0 only for this section in order to avoid confusion.

To prove Corollary 1 we need the following Proposition.

Proposition 2 (Proposition 4.1 of [8]). Define a weight function scaled with pa-
rameter % as

w%(v) = w%,β,ζ(v) ≡ (1 + %2|v|2)
β
2 eζ|v|

2

. (189)

Assume ¨
Ω×R3

g(x, v)
√
µ0dxdv = 0,

ˆ
γ−

r
√
µ0dγ = 0 (190)

and β > 4. Then the solution f to the linear Boltzmann equation

v · ∇xf + Lf = g, f− = Pγf + r (191)

satisfies ‖w%f‖∞ + |w%f |∞ . ‖w%g‖∞ + |w%〈v〉r|∞.

For the purpose of applying Proposition 2, we focus on the boundary condition
for the linearized equation fs.

Lemma 3.1. For Fs = µ0+
√
µ0fs with Fs satisfying the boundary condition (5), (6),

the boundary condition for fs can be represented as

fs|−(x, v) = Pγfs + r (192)

such that ˆ
γ−

r
√
µ0 = 0. (193)

Moreover,

|r|∞ . δ0 + sup
0≤s≤t

δ0|f(s)|∞. (194)



C-L BOUNDARY IN THE BOLTZMANN THEORY 587

Before proving this lemma we need the following lemma for the C-L boundary
condition.

Lemma 3.2. In regard to the boundary condition (6), we have

1

|n(x) · v|

ˆ
n(x)·u>0

R(u→ v;x, t)µ0{n(x) · u}du = µx,r‖,r⊥ , (195)

where

µx,r‖,r⊥ =
1

2π[T0(1− r‖)2 + Tw(x)r‖(2− r‖)]
e
−

|v‖|
2

2[T0(1−r‖)
2+Tw(x)r‖(2−r‖)] .

× 1

T0(1− r⊥) + Tw(x)r⊥
e
− |v⊥|

2

2[T0(1−r⊥)+Tw(x)r⊥] .

(196)

Moreover, for any x ∈ ∂Ω and r‖, r⊥, we haveˆ
n(x)·v>0

µx,r‖,r⊥{n(x) · v}dv = 1. (197)

Proof. Using the definition of R(u → v;x, t) in (6) we can write the LHS of (195)
as ˆ

R+

|u⊥|
r⊥Tw(x)

exp
(
− 1

2Tw(x)

[ |v⊥|2 + (1− r⊥)|u⊥|2

r⊥

])
× I0

( (1− r⊥)1/2v⊥u⊥
Tw(x)r⊥

) 1

T0
exp

(
− |u⊥|

2

2T0

)
dv⊥

×
ˆ
R2

1

2Tw(x)r‖(2− r‖)π

× exp
(
− 1

2Tw(x)

|v‖ − (1− r‖)u‖|2

r‖(2− r‖)

) 1

2πT0
exp

(
−
|u‖|2

2T0

)
dv‖.

(198)

First we compute the third, fourth line of (198), in order to apply Lemma 4.2, we
set

a = − 1

2T0
, b =

(1− r‖)2

2Tw(x)r‖(2− r‖)
, v = u‖, w =

1

1− r‖
v‖, ε = 0,

b− a =
(1− r‖)2

2Tw(x)r‖(2− r‖)
+

1

2T0
.

Then the third, fourth line of (198) equals to

1

(1− r‖)2

b

b− a
exp

( ab

b− a
|
v‖

1− r‖
|2
)

=
1

2π

1

T0(1− r‖)2 + Tw(x)r‖(2− r‖)
exp

(
−

|v‖|2

2
[
T0(1− r‖)2 + Tw(x)r‖(2− r‖)

]).
Then we compute the first, second line of (198), in order to apply Lemma 4.3, we
set

a = − 1

2T0
, b =

1− r⊥
2Tw(x)r⊥

, v = u⊥, w =
1√

1− r⊥
v⊥, ε = 0,

b− a =
1− r⊥

2Tw(x)r⊥
+

1

2T0
.
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Then the first, second line of (198) is equal to

1

1− r⊥
b

b− a
e
ab
b−a |

v⊥√
1−r⊥

|2

=
1

2π[T0(1− r⊥) + Tw(x)r⊥]
exp

( |v⊥|2

2π[T0(1− r⊥) + Tw(x)r⊥]

)
.

Thus we conclude (195).
Then we focus on (197). The LHS of (197) can be written asˆ

R+

v⊥
T0(1− r⊥) + Tw(x)r⊥

e
− |v⊥|

2

2[T0(1−r⊥)+Tw(x)r⊥] dv⊥

×
ˆ
R2

1

2π[T0(1− r‖)2 + Tw(x)r‖(2− r‖)]
e
−

|v‖|
2

2[T0(1−r‖)
2+Tw(x)r‖(2−r‖)] dv‖.

(199)

Clearly (199) = 1.

Proof of Lemma 3.1. By plugging the linearization Fs = µ0+
√
µ0fs into the bound-

ary condition (5) and using Lemma 3.2 we obtain

µ0 +
√
µ0fs = µx,r‖,r⊥ +

1

|n(x) · v|

ˆ
n(x)·u>0

R(u→ v;x, t)
√
µ0(u)fs(u){n(x) ·u}du.

Thus

fs(v) =
µx,r‖,r⊥ − µ0
√
µ0︸ ︷︷ ︸
r1

+
1
√
µ0

1

|n(x) · v|

ˆ
n(x)·u>0

R(u→ v;x, t)
√
µ0(u)fs(u){n(x) · u}du︸ ︷︷ ︸

r2(fs)

.

We can rewrite the boundary condition into

fs(v) = r1 + r2(fs)− Pγfs + Pγfs. (200)

Clearly by (197) in Lemma 3.2 we haveˆ
γ−

r1
√
µ0 = 0. (201)

To prove the Lemma we just need to focus on r2(fs) − Pγfs. By Tonelli theorem,
we haveˆ
γ−

(r2(fs)− Pγfs)
√
µ0

=

ˆ
n(x)·v<0

[
R(u→ v;x, t)− |n(x) · v|µ0(v)

]
dv

ˆ
n(x)·u>0

√
µ0(u)fs(u){n(x) · u}du

= [1− 1]×
ˆ
n(x)·u>0

√
µ0(u)fs(u){n(x) · u}du = 0.

Thus we prove (193).
Then we focus on (194). By the assumption in (29) and ζ < 1

θ(4+2δ0) , for x ∈ ∂Ω

we have

|wρ(v)r|∞ = |wρ(v)
µx,r‖,r⊥ − µ0
√
µ0

|∞ . δ0.
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Then

|wρ(v)
[
r2(fs)− Pγfs

]
|

≤ |f |∞wρ(v)
1
√
µ0

ˆ
n(x)·u>0

[R(u→ v;x, t)

|n(x) · v|
− µ0(v)

]√
µ0(u)fs(u){n(x) · u}du

≤ |f |∞
∣∣∣wρ(v)

µx,r‖,r⊥ − µ0
√
µ0

∣∣∣
∞

. δ0|f |∞,

where we apply Lemma 3.2 in the last line. Then we conclude the Lemma.

Proof of Corollary 1. We consider the following iterative sequence

v · ∇xf `+1 + Lf `+1 = Γ(f `, f `), (202)

with the boundary condition given in the form (200)

f `+1
− = Pγf

`+1 + r1 + r2(f `)− Pγf `.

We set f0 = 0. By Lemma 3.1 we haveˆ
γ−

√
µ0

{
r1 + r2(f `)− Pγf `

}
dγ = 0.

Since
´

Γ(f `, f `)
√
µ0 = 0, we apply Proposition 2 with (194) in Lemma 3.1 to get

‖w%f `+1‖∞ + |w%f `+1|∞ .

∥∥∥∥w%Γ(f `, f `)

〈v〉

∥∥∥∥
∞

+ δ0|w%f `|∞,+ + δ0.

Since
∥∥∥w%Γ(f`,f`)

〈v〉

∥∥∥
∞

. ‖w%f `‖2∞, we deduce

‖w%f `+1‖∞ + |w%f `+1|∞ . ‖w%f `‖2∞ + δ0|w%f `|∞,+ + δ0,

so that for δ0 small, ‖w%f `+1‖∞ + |w%f `+1|∞ . δ0. Upon taking differences, we
have

[f `+1 − f `] + v · ∇x[f `+1 − f `] + L[f `+1 − f `]

= Γ(f ` − f `−1, f `) + Γ(f `−1, f ` − f `−1),

f `+1
− − f `− = Pγ [f `+1 − f `] + r2(f `)− Pγf ` + Pγf

`−1 − r2(f `−1).

And by Proposition 2 again for f `+1 − f `,
‖w%[f `+1 − f `]‖∞ + |w%[f `+1 − f `]|∞ . δ0

{
‖w%[f ` − f `−1]‖∞ + |w%[f ` − f `−1]|∞

}
.

Hence f ` is Cauchy in L∞ and we construct our solution by taking the limit f ` → fs.
Uniqueness follows in the standard way.

Then we focus on the dynamical stability, which is the Corollary 2. We need this
Proposition.

Proposition 3 (Proposition 7.1 from [8]). Let ‖wρf0‖∞ + |〈v〉wρr|∞ + ‖wρg‖∞ <
+∞ and

˜ √
µ0g =

´
γ
r
√
µ0 =

˜
f0
√
µ0 = 0. Then the solution f

∂tf + v · ∇xf + Lf = g, f(0) = f0, in Ω× R3 × R+ (203)

satisfies

‖wρf(t)‖∞+|wρf(t)|∞ ≤ e−λt
{
‖wρf0‖∞+sup eλs‖wρg‖∞+

ˆ t

0

eλs|〈v〉wρr(s)|∞ds
}
.
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Proof of Corollary 2. With the stationary solution for (26) given in Corollary 1, we
set the solution to (1) as

F = Fs +
√
µ0f, Fs =

√
µ0f + fs.

Then the equation for f reads

∂tf + v · ∇xf + Lf = L√µ0fsf + Γ(f, f),

where
L√µ0fsf = [Q(

√
µ0fs,

√
µ0f) +Q(

√
µ0f,

√
µ0fs)]/

√
µ0.

We consider the following iteration sequence

∂tf
`+1 + v · ∇xf `+1 + Lf `+1 = L√µ0fsf

` + Γ(f `, f `),

with
f `+1
− = Pγf

`+1 + r1 + r2(f `)− Pγf `.

Clearly
˜
{L√µ0fsf

` + Γ(f `, f `)}√µ0 = 0. Recall w%(v) = (1 + %2|v|2)
β
2 eζ|v|

2

in

(189). Note that for 0 ≤ ζ < 1
4 ,∥∥∥∥eλs2 w%{ 1

〈v〉
[L√µ0fsf

` + Γ(f `, f `)(s)

}∥∥∥∥
∞

. δ0 sup
0≤s≤t

‖eλs2 w%f `(s)‖∞ +

{
sup

0≤s≤t
‖eλs2 w%f `(s)‖∞

}2

.

By Proposition 3 and Lemma 3.1, we deduce

sup
0≤s≤t

‖eλs2 w%f `+1(s)‖∞ + sup
0≤s≤t

|eλs2 w%f `+1(s)|∞

. ‖w%f0‖∞ + δ0 sup
0≤s≤t

‖eλs2 w%f `(s)‖∞

+ δ0 sup
0≤s≤t

|eλs2 w%f `(s)|∞ +

{
sup

0≤s≤t
‖eλs2 w%f `(s)‖∞

}2

.

For δ0 small, there exists a ε0 (uniform in δ0) such that, if the initial data satisfy
(30), then

sup
0≤s≤t

‖eλs2 w%f `+1(s)‖∞ + sup
0≤s≤t

|eλs2 w%f `+1(s)|∞ . ‖w%f0‖∞.

By taking difference f `+1 − f `, we deduce that

∂t[f
`+1 − f `] + v · ∇x[f `+1 − f `] + L[f `+1 − f `]

= L√µ0fs [f
` − f `−1] + Γ(f ` − f `−1, f `) + Γ(f `−1, f ` − f `−1),

[f `+1 − f `]− = Pγ [f `+1 − f `] +
µx,r‖,r⊥ − µ0
√
µ0

ˆ
γ+

[f ` − f `−1](n(x) · v)dv,

with f `+1 − f ` = 0 initially. Repeating the same argument, we obtain

sup
0≤s≤t

‖eλs2 w%[f `+1 − f `](s)‖∞ + sup
0≤s≤t

|eλs2 w%[f `+1 − f `](s)|∞

. [δ0 + sup
0≤s≤t

‖eλs2 w%f `(s)‖∞

+ sup
0≤s≤t

‖eλs2 w%f `−1(s)‖∞] sup
0≤s≤t

‖eλs2 w%[f ` − f `−1](s)‖∞.

This implies that f `+1 is a Cauchy sequence. The uniqueness is standard.
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To conclude the positivity, we use another sequence in [8],

∂tF
`+1 + v · ∇xF `+1 + ν(F `)F `+1 = Qgain(F `, F `).

We pose F ` = Fs +
√
µ0f

`, then the equation for f ` reads

∂tf
`+1 + v · ∇xf `+1 + ν(v)f `+1 −Kf `

= Γgain(f `, f `)− ν(
√
µ0f

`)f `+1 − ν(
√
µ0fs)f

`+1 − ν(
√
µ0f

`)fs

+
1
√
µ0

{
Qgain(

√
µ0f

`,
√
µfs) +Qgain(

√
µ0fs,

√
µ0f

`)
}
.

It is shown in [8] that f ` is a Cauchy sequence. Thus by the uniqueness of the
solution we conclude the positivity of F and Fs by positive preserving property of
this sequence solution.

4. Appendix.

Lemma 4.1. For R(u→ v;x, t) given by (6) and any u such that u · n(x) > 0, we
have ˆ

n(x)·v<0

R(u→ v;x, t)dv = 1. (204)

Proof. We transform the basis from {τ1, τ2, n} to the standard bases {e1, e2, e3}.
For simplicity, we assume Tw(x) = 1. The integration over V‖( defined in (77) ),

after the orthonormal transformation, becomes integration over R2. We haveˆ
R2

1

r‖(2− r‖)
exp

( |v‖ − (1− r‖)u‖|2

r‖(2− r‖)

)
dv‖,

which is obviously normalized.
Then we consider the integration over V⊥, which is e3 < 0 after the transforma-

tion. We want to show

2

r⊥

ˆ 0

−∞
−v⊥e−

|v⊥|
2

r⊥ e
−(1−r⊥)|u⊥|

2

r⊥ I0

(2(1− r⊥)1/2v⊥u⊥
r⊥

)
dv⊥ = 1. (205)

The Bessel function reads

J0(y) =
1

π

ˆ π

0

eiy cos θdθ =
∞∑
k=0

1

π

ˆ π

0

(iy cos θ)k

k!
dθ =

∞∑
k=0

ˆ π

0

(iy cos θ)2k

(2k)!
dθ

∞∑
k=0

ˆ π

0

(−1)k(y)2k(cos θ)2k

(2k)!
dθ =

∞∑
k=0

(−1)k
( 1

4y
2)k

(k!)2
,

where we use the Fubini’s theorem and the fact thatˆ π

0

cos2k θ =
π

22k

(
2k
k

)
.

Hence

I0(y) =
1

π

ˆ π

0

ei(−iy) cos θdθ = J0(−iy) =
∞∑
k=0

( 1
4y

2)k

(k!)2
, I0(y) = I0(−y). (206)

By taking the change of variable v⊥ → −v⊥, the LHS of (205) can be written as

2

r⊥

ˆ ∞
0

v⊥e
− |v⊥|

2

r⊥ e
−(1−r⊥)|u⊥|

2

r⊥ I0

(2(1− r⊥)1/2v⊥u⊥
r⊥

)
dv⊥.



592 HONGXU CHEN

Using (206) we rewrite the above term as

∞∑
k=0

2

r⊥

ˆ ∞
0

v⊥e
−|v⊥|

2

r⊥ e
−(1−r⊥)|u⊥|

2

r⊥
(1− r⊥)kv2k

⊥ u
2k
⊥

(k!)2r2k
⊥

dv, (207)

where we use the Tonelli theorem. By rescaling v⊥ =
√
r⊥v⊥ we have

2

r⊥

ˆ ∞
0

v⊥e
−|v⊥|

2

r⊥ e
−(1−r⊥)|u⊥|

2

r⊥
(1− r⊥)kv2k

⊥ u
2k
⊥

(k!)2r2k
⊥

dv

= 2

ˆ ∞
0

v⊥e
−|v⊥|2e

−(1−r⊥)|u⊥|
2

r⊥
(1− r⊥)kv2k

⊥ u
2k
⊥

(k!)2rk⊥
dv

= 2

ˆ ∞
0

v2k+1
⊥ e−|v⊥|

2

dve
−(1−r⊥)|u⊥|

2

r⊥
(1− r⊥)ku2k

⊥
(k!)2rk⊥

(208)

= 2
k!

2
e
−(1−r⊥)|u⊥|

2

r⊥
(1− r⊥)ku2k

⊥
(k!)2rk⊥

= e
−(1−r⊥)|u⊥|

2

r⊥
(1− r⊥)ku2k

⊥
k!rk⊥

. (209)

Therefore, the LHS of (205) can be written as

e
−(1−r⊥)|u⊥|

2

r⊥

∞∑
k=0

(1− r⊥)ku2k
⊥

k!rk⊥
= e

−(1−r⊥)|u⊥|
2

r⊥ e
(1−r⊥)|u⊥|

2

r⊥ = 1.

Lemma 4.2. For any a > 0, b > 0, ε > 0 with a+ ε < b,

b

π

ˆ
R2

eε|v|
2

ea|v|
2

e−b|v−w|
2

dv =
b

b− a− ε
e

(a+ε)b
b−a−ε |w|

2

. (210)

And when δ � 1,

b

π

ˆ
|v− b

b−a−εw|>δ−1

eε|v|
2

ea|v|
2

e−b|v−w|
2

dv

≤ e−(b−a−ε)δ−2 b

b− a− ε
e

(a+ε)b
b−a−ε |w|

2

(211)

≤ δ b

b− a− ε
e

(a+ε)b
b−a−ε |w|

2

. (212)

Proof.

b

π

ˆ
R2

eε|v|
2

ea|v|
2

e−b|v−w|
2

dv =
b

π

ˆ
R2

e(a+ε−b)|v|2e2bv·we−b|w|
2

dv

=
b

π

ˆ
R2

e(a+ε−b)|v+ b
a+ε−bw|

2

e
−b2
a+ε−b |w|

2

e−b|w|
2

dv

=
b

π

ˆ
R2

e(a+ε−b)|v|2dve
(a+ε)b
b−a−ε |w|

2

=
b

b− a− ε
e

(a+ε)b
b−a−ε |w|

2

,

where we apply change of variable v+ b
a+ε−bw → v in the first step of the last line,

then we obtain (210).
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Following the same derivation

b

π

ˆ
|v− b

b−a−εw|>δ−1

eε|v|
2

ea|v|
2

e−b|v−w|
2

dv

=
b

π

ˆ
|v− b

b−a−εw|>δ−1

e(a+ε−b)|v− b
b−a−εw|

2

dve
(a+ε)b
b−a−ε |w|

2

≤ e−(b−a−ε)δ−2 b

b− a− ε
e

(a+ε)b
b−a−ε |w|

2

≤ δ b

b− a− ε
e

(a+ε)b
b−a−ε |w|

2

,

thus we obtain (212).

Lemma 4.3. For any a > 0, b > 0, ε > 0 with a+ ε < b,

2b

ˆ
R+

veεv
2

eav
2

e−bv
2

e−bw
2

I0(2bvw)dv =
b

b− a− ε
e

(a+ε)b
b−a−εw

2

. (213)

And when δ � 1,

2b

ˆ
0<v<δ

veεv
2

eav
2

e−bv
2

e−bw
2

I0(2bvw)dv ≤ δ b

b− a− ε
e

(a+ε)b
b−a−εw

2

. (214)

Proof.

2b

ˆ
R+

veεv
2

eav
2

e−bv
2

e−bw
2

I0(2bvw)dv

= 2b

ˆ
R+

ve(a+ε−b)v2

I0(2bvw)e
b2

a+ε−bw
2

e
b2

b−a−εw
2

dve−bw
2

= 2(b− a− ε)
ˆ
R+

ve(a+ε−b)v2

I0(2bvw)e
(bw)2

a+ε−b dv
b

b− a− ε
e

(a+ε)b
b−a−εw

2

=
b

b− a− ε
e

(a+ε)b
b−a−εw

2

,

where we use (205) in Lemma 4.1 in the last line, then we obtain (213).
Following the same derivation we have

2b

ˆ
0<v<δ

veεv
2

eav
2

e−bv
2

e−bw
2

I0(2bvw)dv

= 2(b− a− ε)
ˆ

0<v<δ

ve(a+ε−b)v2

I0(2bvw)e
(bw)2

a+ε−b dv
b

b− a− ε
e

(a+ε)b
b−a−εw

2

.

Using the definition of I0 we have

I0(y) =
1

π

ˆ π

0

ey cosφdφ ≤ ey.

Thus when a− b+ ε < 0,

2(b− a− ε)
ˆ

0<v<δ

ve(a+ε−b)v2

I0(2bvw)e
(bw)2

a+ε−b dv

≤ 2(b− a− ε)
ˆ

0<v<δ

ve(a−b+ε)v2

e2vbwe
(bw)2

a−b+ε

= 2(b− a− ε)
ˆ

0<v<δ

ve(a−b+ε)(v+ bw
a−b+ε )2

dv

≤ 2(b− a− ε)
ˆ

0<v<δ

vdv < δ,

where we use δ � 1 in the last step, then we obtain (214). Then we derive (217).
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Lemma 4.4. For any m,n > 0, when δ � 1, we have

2m2

ˆ ∞
n
mu⊥+δ−1

v⊥e
−m2v2

⊥I0(2mnv⊥u⊥)e−n
2u2
⊥dv⊥ . e−

m2

4δ2 . (215)

In consequence, for any a > 0, b > 0, ε > 0 with a+ ε < b,

2b

ˆ ∞
b

b−a−εw+δ−1

veεv
2

eav
2

e−bv
2

e−bw
2

I0(2bvw)dv

≤ e
−(b−a−ε)

4δ2
b

b− a− ε
e

(a+ε)b
b−a−εw

2

(216)

≤ δ b

b− a− ε
e

(a+ε)b
b−a−εw

2

. (217)

Proof. We discuss two cases. The first case is v⊥ > 2 nmu⊥. We bound I0 as

I0(2mnv⊥u⊥) ≤ 1

π

ˆ π

0

exp
(

2mnv⊥u⊥

)
dθ = exp

(
2mnv⊥u⊥

)
.

The LHS of (215) is bounded by

2m2

ˆ ∞
max{2 nmu⊥,

n
mu⊥+δ−1}

ve−m
2(v⊥− n

mu⊥)2

dv.

Using v⊥ > 2 nmu⊥ we have

(v⊥ −
n

m
u⊥)2 ≥ (

v⊥
2

+
v⊥
2
− n

m
u⊥)2 ≥ v2

⊥
4
.

Thus we can further bound LHS of (215) by

2m2

ˆ ∞
max{2 nmu⊥,

n
mu⊥+δ−1}

v⊥e
−m

2v2
⊥

4 dv⊥ . e−
m2

4δ2 .

The second case is 0 ≤ v⊥ ≤ 2 nmu⊥. Since n
mu⊥+ δ−1 < v⊥, without loss of gen-

erality, we can assume u⊥ > δ−1. We compare the Taylor series of v⊥I0(2mnv⊥u⊥)

and exp
(

2mnv⊥u⊥

)
. We have

v⊥I0(2mnv⊥u⊥) =
∞∑
k=0

m2kn2kv2k+1
⊥ u2k

⊥
(k!)2

, (218)

and

exp
(

2mnv⊥u⊥

)
=
∞∑
k=0

2kmknkvk⊥u
k
⊥

k!
. (219)

We choose k1 such that when k > k1, we can apply the Sterling formula such that

1

2
≤ | k!

kke−k
√

2πk
| ≤ 2.
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Then we observe the quotient of the k-th term of (218) and the 2k + 1-th term
of (219),

m2kn2kv2k+1
⊥ u2k

⊥
(k!)2

/
(22k+1m2k+1n2k+1v2k+1

⊥ u2k+1
⊥

(2k + 1)!

)
≤ 4

k2ke−2k2πk
/
( 22k+1mnu⊥

(2k + 1)2k+1e−(2k+1)
√

2π(2k + 1)

)
=

4e

2πmn

(k + 1/2

k

)2k+1
√

2π(2k + 1)

u⊥

=
4e

2πmn

(2k + 1

2k

)2k+1
√

2π(2k + 1)

u⊥
≤ 4e2

√
πmn

√
k

u⊥
.

Thus we can take ku = u2
⊥ such that when k ≤ ku,

ku∑
k=k1

m2kn2kv2k+1
⊥ u2k

⊥
(k!)2

≤ 4e2

√
πmn

ku∑
k=k1

22k+1m2k+1n2k+1v2k+1
⊥ u2k+1

⊥
(2k + 1)!

. (220)

Similarly we observe the quotient of the k-th term of (218) and the 2k-th term
of (219),

m2kn2kv2k+1
⊥ u2k

⊥
(k!)2

/
(22km2kn2kv2k

⊥ u
2k
⊥

(2k)!

)

≤ 4v⊥
k2ke−2k2πk

/
( 22k

(2k)2ke−2k
√

4πk

)
=

4v⊥√
π
√
k
.

When k > ku = u2
⊥, by u⊥ > δ−1 and v⊥ < 2 nmu⊥ we have

4v⊥√
π
√
k
≤ 4v⊥√

πu⊥
≤ 8n

m
√
π
.

Thus we have

∞∑
k=ku

m2kn2kv2k+1
⊥ u2k

⊥
(k!)2

≤ 8n

m
√
π

∞∑
k=ku

22km2kn2kv2k
⊥ u

2k
⊥

(2k)!
. (221)

Collecting (221) (220), when v⊥ < 2 nmu⊥, we obtain

v⊥I0(2mnv⊥u⊥) . exp
(2(1− r⊥)1/2v⊥u⊥

r⊥

)
. (222)

By (222), we have

ˆ 2 nmu⊥

n
mu⊥+δ−1

v⊥I0(2mnv⊥u⊥))e−m
2v2
⊥en

2v2
⊥dv

.
ˆ 2 nmu⊥

n
mu⊥+δ−1

e−m
2(v⊥− n

mu⊥)2

dv ≤ e−m
2δ−2

. (223)

Collecting (219) and (223) we prove (215).
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Then following the same derivation as (213),

2b

ˆ ∞
b

b−a−εw+δ−1

veεv
2

eav
2

e−bv
2

e−bw
2

I0(2bvw)dv

= 2(b− a− ε)
ˆ ∞

b
b−a−εw+δ−1

ve(a+ε−b)v2

I0(2bvw)e
(bw)2

a+ε−b dv
b

b− a− ε
e

(a+ε)b
b−a−εw

2

≤ e
−(b−a−ε)

4δ2
b

b− a− ε
e

(a+ε)b
b−a−εw

2

≤ δ b

b− a− ε
e

(a+ε)b
b−a−εw

2

,

where we apply (215) in the first step in the third line and take δ � 1 in the last
step of the third line.
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