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ABSTRACT. The Boltzmann equation is a fundamental kinetic equation that
describes the dynamics of dilute gas. In this paper we study the local well-
posedness of the Boltzmann equation in bounded domain with the Cercignani-
Lampis boundary condition, which describes the intermediate reflection law
between diffuse reflection and specular reflection via two accommodation co-
efficients. We prove the local-in-time well-posedness of the equation by es-
tablishing an L°° estimate. In particular, for the L> bound we develop a
new decomposition on the boundary term combining with repeated interaction
through the characteristic. Moreover, under some constraints on the wall tem-
perature and the accommodation coefficients, we construct a unique steady
solution of the Boltzmann equation.

1. Introduction. In this paper we consider the classical Boltzmann equation,
which describes the dynamics of dilute particles. Denoting F(t,z,v) the phase-
space-distribution function of particles at time ¢, location = € € moving with ve-
locity v € R3, the equation writes:

OF +v- -V, F=Q(FF). (1)
The collision operator () describes the binary collisions between particles:

Q(Fl»FZ)(v) :anin_Qloss anm(FlvFZ)_V Fl F2

= //JR3><S2 B(v — u,w)Fy (v )Fy(v")dwdu — Fy(v (//RaXSz (v —u,w)F1(u )dwdt(t)) .

In the collision process, we assume the energy and momentum are conserved. We
denote the post-velocities:

v =u—[(u—"v)-ww, vVV=v+4[(u—0) ww, (3)
then they satisfy:
W =uto, P =l (ol (4)
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In equation (2), B is called the collision kernel which is given by

B(v —u,w) = |U_U|qu(|z:Z| ‘W)
with —3<Kk<1, quo(uw)gc‘ﬂ.w’.
v — ul [v — ul

To describe the boundary condition for F', we denote the collection of coordinates
on phase space at the boundary:

v = {(z,v) € 0Q x R*}.

And we denote n = n(z) as the outward normal vector at = € Q. We split the
boundary coordinates 7 into the incoming (y_) and the outgoing (v4) set:

v = {(z,v) € 9Q x R? : n(x) - v < 0}.

The boundary condition determines the distribution on v_, and shows how particles
back-scattered into the domain. In our model, we use the scattering kernel R(u —
vz, t):

F(t,z,v)|n(z) -v| = / R(u — v;z, t)F(t, z,u){n(z) - updu, on~y_. (5)
n(z)-u>0

Physically, R(u — v;x,t) represents the probability of a molecule striking in the
boundary at x € 90N with velocity u, and to be sent back to the domain with
velocity v at the same location x and time ¢. There are many models for it. In [3, 4]
Cercignani and Lampis proposed a generalized scattering kernel that encompasses
pure diffusion and pure reflection molecules via two accommodation coefficients 7
and 7). Their model writes:

R(u — v;z,t)
- 1 n(@) - vl
ror(2 = rp)m/2 (2T (2))?
X exp (— ! {'””2 R €t )| TN G el U 7“|)U||2D (6)

2T, () L r(2—=my)
_ 1/2
“ I 1 2(1 TL) VU 7
2T (z) T

where T, (x) is the wall temperature for z € 99 and

Iy(y) := 7T71/ eV Pdg .
0
In the formula, v, and v denote the normal and tangential components of the
velocity respectively:
vy =v-n(r), vy=v—vin(r). (7)

Similarly vy = u-n(x) and u) = u — uyn(z).

There are a few properties the Cercignani-Lampis(C-L) model satisfies, including:

e the reciprocity property:
e_"u|2/(2Tw(z)) |n(x) . 'U‘ (8)
e—1ul?/(2Tw(z)) |n(x) u‘ ’

R(u — v;x,t) = R(—v — —u;x,t)
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e the normalization property(see the proof in appendix)

/ R(u — vyx,t)dv =1. (9)
n(z)v<0
The normalization (9) property immediately leads to null-flux condition for F:
/ F(t,z,v){n(z) -vidv =0, forz e 0. (10)
R3
This condition guarantees the conservation of total mass:
/ F(t,z,v)dvdx = / F(0,z,v)dvdx for all t > 0. (11)
QxR3 QxR3

Remark 1. The C-L model is an extension of the following classical diffuse bound-
ary condition. The distribution function and scattering kernel are given by:

2 lv]?
F(t,z,v) = ————F——5¢ 2Tu® / F(t,z,u){n(z) - u}du on (z,v) € y_,
W(QTM(:E))Z n(x) u>0
(12)
_ ?
R(u — v;,t) = e 2w |n(z) - vl.

(2T (x))?
It corresponds to the scattering kernel in (6) with r, =1,r = 1.

Other basic boundary conditions can be considered as a special case with singular
R: specular reflection boundary condition:

F(t,z,v) = F(t,z,Rv) on (z,v) € y—, Ryv =0 —2n(z)(n(z) - v),
R(u — v;x,t) = §(u — Ryv),

where r; = 0,7 = 0.
Bounce-back reflection boundary condition:

F(t,z,v) = F(t,z,—v) on (z,v) € v_,
R(u — vy, t) = §(u +v),
where r; = 0,7 = 2.

Here we mention the Maxwell boundary condition, which is another classical
model describes the intermediate reflection law. The scattering kernel is given by
the convex combination of the diffuse and specular scattering kernel:

R(u = v) = e~ T n(z) - o] + (1 — ¢)d(u — Ryv), 0<e< 1.

2

“r (2L, (@))?
Compared with the C-L boundary condition, the Maxwell boundary condition does
not cover the combination with the bounce back boundary condition. Such combi-
nation is covered in the C-L boundary condition with 7| > 1. Moreover, the C-L
boundary condition represents a smooth transition from the diffuse to the spec-
ular. The Maxwell boundary condition represents the convex combination of the
Maxwellian and the dirac ¢ function. Here we show the graphs for both boundary
condition in the two dimension for comparison. We assume the particles are mov-
ing towards the boundary with velocity u = (uj,u1) = (2, —2), thus the boundary
condition is given by

[F(t, 2,0)[n(@) - v]] ] - /n(m)wo R(u — v)5<u — (2, 72)) In(z) - uldu.

Y-
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Then the distribution function F(¢,z,v)|,_ for both boundary condition can be
viewed as the following graphs:

Maxwell boundary with u=(2,-2) C-L boundary condition with u=(2,-2)

F(t,x,v)

FIGURE 1. Maxwell FIGURE 2. C-L
boundary condition boundary condition
with ¢ = 1/2. with r; =7 = 1/2.

Moreover, we show the graphs for the distribution function F'|,_ with C-L bound-
ary condition with smaller accommodation coefficients.

C-L boundary condition with u=(2,-2) C-L boundary condition with u=(2,-2)

FIGURE 3. C-L FIGURE 4. C-L
boundary condition boundary condition
with r, = r = with r, = r =
1/10. 1/30.

Figure 2 shows a smoother transition since the particles begin to concentrate
toward to the point (2,2). Meanwhile Figure 1 represents the phenomena that
half particles are specular reflected and half particles are diffusive. When we take
smaller accommodation coefficient, Figure 3 and Figure 4 demonstrate that the
distribution function F'(t,z,v)|,_ gradually concentrate on (2,2). Moreover, the z-
coordinate shows that the C-L scattering kernel indeed tends to a dirac § function
as the accommodation coefficients become smaller.

Due to the generality of the C-L model, it has been vastly used in many appli-
cations. There are other derivations of C-L. model besides the original one, and we
refer interested readers to [6, 3, 2]. Also there have been many application of this
model in recent years, on the rarefied gas flow in [19, 20, 25, 26, 27]; extension to
the gas surface interaction model in fluid dynamics [22, 21, 30]; on the linearized
Boltzmann equation in [11, 29, 23, 10]; on S-model kinetic equation in [28] etc.
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1.1. Main result. We assume that the domain is C?. Denote the maximum wall
temperature:

T = max{T,(z)} < co. (13)

Define the global Maxwellian using the maximum wall temperature:

|v]?

e (14)
and weight F' with it: F' = \/uf, then f satisfies

where the collision operator becomes:

T(f1, f2) = Coun (1, fo) — v(Fy)Fa/pt = ;ﬁczgamwm Viif) = v(F) . (16)

By the reciprocity property (8), the boundary condition for f becomes, for
(z,v) €7,

1
ft,z,v)n(z) vl = ﬁ o R(u — vy z,t) f(t, z,u)v/ w(u){n(z) - u}du

1 e_IU‘Q/(2Tw(I)) x ’U|

= ﬁ ()0 R(_'U — —u,x,t)m t Z, ’LL vV Y x {TL ) U}du
Thus

f(t,.’ﬂ,’l)”»y_ — e[ﬁ_zni(m)“ﬂ? /( ) 0f.(t,m,u)e—[ﬁ_2T$(m)]|u\2do—(u,v). (17)

n(x) u>
Here we denote
o(u,v) := R(—v = —u;x,t)du,
do(u,v) := R( )d (18)

the probability measure in the space {(x,u),n(x)-u > 0} (well-defined due to (9)).
Denote

wy = eV (19)

(v) ==/ |v]2+ 1. (20)

Theorem 1.1. Assume  C R3 is bounded and C?. Let 0 < 0 < ﬁ. Assume

0<ry <1, 0<T’H<2, (21)
. 1_ — .
min (T, (z)) - max ( il ’ Vi-r; —(1 ’I‘l))’ (22)
Tv -7 Ty

where the Thr is defined in (13).
If Fo = \/ufo > 0 and fo satisfies the following estimate:

[[we follee < o0, (23)

then there exists a unique solution F(t,xz,v) = \/uf(t,z,v) > 0 to (1) and (5) in
[0, 0] X Q x R3 with

too = too(|wa folloo, 7L, |l 0, Th, min{Ty,(x)}, Q).
Moreover, the solution F' = \/uf satisfies

sup [wae ™ (1) ]loo S [lwe follse- (24)
0<t<to
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Remark 2. In Theorem 1.1 the accommodation coefficient can be any number that
does not correspond to the dirac d case. So far we are not able cover the specular
reflection, we will explain the difficulty in section 1.3. Also we cover all the range for
K in the collision kernel B in (2). We derive (24) and existence using the sequential
argument. Assumption (23) is used to obtain the estimate (24) for the sequence
solution, which is the key factor to prove the theorem.

Remark 3. In Theorem 1 we do not restrict the wall temperature to have a small
fluctuation. Instead we have a more relax condition (22). In particular, for the
pure diffuse reflection, i.e, 7y = r1. = 1, we do not have any constraint for the
temperature(except Thy < oo, min(7T,(z)) > 0).

Remark 4. There has been a lot of studies for Boltzmann equation in many aspects,
the global solution [13, 12, 18, 17]; regularity estimate [14, 15, 1, 5]; the steady
solution [8, 9, 7].

So far we are only able to prove the local well-posedness with the C-L boundary
condition. There are several obstacles to construct the global solution with the C-L
boundary condition for arbitrary accommodation coefficient.

To obtain the global solution of the Boltzmann equation [13] developed the L? —
L™ bootstrap and derive the time decay and continuous solution of the linearized
Boltzmann equation with various boundary condition. In particular, for the diffuse
boundary condition with constant wall temperature, [13] used the L? estimate on
the boundary

/ Ptz |n() - uldu g/ F2(t, 2, 0) () - uldu,
n(x) u<0

n(x)-u>0

with fl,_ = cu/1 f(t,z,u)\/pn(x) - uldu. (25)
n(x) u>0
Here ¢,, is the normalization constant such that ¢, u|n-u|du is a probability measure.
To be more specific, the diffuse boundary condition can be regarded as a projection
P,f = f|y_. Then

/ (f—ny)Q\n(x)u\du:/ f2|n(a:)-u\du—/ P, f2|n(x) - u|du > 0.
n(xz)-u>0 n(z)-u>0 n(xz)-u>0

However, for the C-L boundary condition, such L? inequality does not work. We
can not regard the boundary condition (17) as a projection because of the new
probability measure do(u,v) in (18).

Another method to obtain the global solution is to use the entropy inequality.
[12] used the entropy inequality and the L' — L° bootstrap to derive the bounded
solution of the linearized Boltzmann equation with periodic boundary condition. To
adapt the entropy method in bounded domain, [24] used the Jensen inequality for
the Darrozes-Guiraud information with Maxwell boundary condition. To be more
specific, we define £ as the Darrozés-Guiraud information:

& ::/ h(i>cu,u(u)|n(x)~u|du—h(/ icﬂﬂ(u)|n(:17)~u|du), h(s) = slogs.
v Cut v Cutt

Since ¢, p(u)|n(z)-uldu is a probability measure then £ > 0 by the Jensen inequality

and thus the entropy inequality follows. For the C-L boundary condition, such

inequality does not work since the probability measure is given by do(u,v) (18),

which is different from ¢, pu(u)n(z) - u|du.
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Even though the global solution is not available for arbitrary accommodation
coeflicient, we are able to construct the steady and global solution when the coef-
ficients are closed to 1. This means that we require the boundary condition to be
closed to the diffuse boundary condition. We will discuss the steady solution in the
following section.

1.2. Beside the local-in-time well-posedness, we can establish the stationary solu-
tion under some constraints. The steady problem is given as

v-V,F=Q(FF), (z,0)€QxR3 (26)

with F' satisfying the C-L boundary condition.
We use the short notation pg to denote the global Maxwellian with temperature

TOa
[v]?

1
RO = (T2 EXP( 2T0)

Denote L as the standard linearized Boltzmann operator

Lf = jTO [Qpo, VViisF) + Q(/fiof. 1o)] = v(v)f — K f o

=v(v)f - k(v,v.) f(vs)dvs,

R3

with the collision frequency v(v) = [[gs, g2 BV — vi, w) o (vs ) dwdv, ~ {1 + [v]}*
for —3 < K < 1. Finally we deﬁne

P, f(,0) i= cuv/Ho(0) J/ Sy wdi, (@)

where ¢, is the normalization constant.
Corollary 1. For given Ty > 0, there exists 6o > 0 such that if

Sua% |Tw(z) — To| < 0o, max{[l —ry],[1—r|} < do, (29)
xrec

then there exists a non-negative solution Fy = po++/fio fs > 0 with [[o, g3 fs/Bodzdy =
0 to the steady problem (26). And for all 0 < { < ﬁ, 8 >4,

102 Folloo + [(0)%e1" filoo S 00 < 1.
If po++/Hogs with ffngs gsy/Iodxdv = 0 is another solution such that 1 (0)8 gs]loo +
(V)2 gsloe < 1 for B> 4, then fo = gs.

Corollary 2. For 0 < (< ﬁ, set B =0, and for ( =0, set 5 > 4 where dg > 0
is in Corollary 1. There exists A > 0 and €9 > 0, depending on &g, such that if

ffng3 fO\/,LTO = foxR?’ fs\/lTO = O, and Zf
1) 1£(0) = Fallloo + ()7 e [£(0) = flloo < 0, (30)

(t() = po + /o f(t) > 0 to the

then there exists a unique non-negative solution F
), (6). And we have

dynamical problem (1) with boundary condition (5

|MW“WW><mm+wwwWUw—mu
< e )PP IF(0) — fullloo + [(0)2eS PP [£(0) — filloo }-
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Remark 5. Different to the accommodation coefficient with almost no constraint
in Theorem 1.1, in Corollary 1, Corollary 2 we need to restrict these two coefficients
to be close to 1 in (29). To be more specific, we require the C-L boundary to be
close to the diffuse boundary condition.

In this paper we show the proof for the hard sphere case where 0 < K < 1. We
can establish the same result for the soft potential case( —3 < K < 0 ) using the
argument provided in [7].

1.3. Difficulty and proof strategy. For proving the local well-posedness we focus
on establishing L>° estimate. In particular, for the L estimate we trace back along
the characteristic until it hits the boundary or the initial datum. Thus we derive a
new trajectory formula with C-L boundary condition in (17). Before tracing back to
t = 0 there will be repeated interaction with the boundary, which creates a multiple
integral due to the boundary condition (5). We present the formula in Lemma 2.2.

To understand this multiple integral we define vy, vg_1,--- ,v1 in Definition 2.1.
The v; represents the integral variable at i-th interaction with the boundary. For
the diffuse reflection (12) with constant wall temperature, the boundary condition
for f = F/\/it is given by (25). Thus at the i-th interaction the boundary condition
is given by

flvi1) = Cu\/ﬂ(vi—l)/ fi)v/ p(vi)|n - vildvs.
n-v; >0
If we further trace back f(v;) in the integrand along the trajectory until the next
interaction we have

F(0:) = /o) / Vel vl

n-v;41>0

Thus the integral over v; becomes

/ cuit(vy)|n - vl dv;.
n-v; >0

The integrand for v; is symmetric for all 1 < ¢ < k and not affected by the other
variables. Moreover, ¢, u(v;)|n - v;|dv; is probability measure. Thus we can apply
Fubini’s theorem to compute this multiple integral. But for the C-L boundary
condition (5) (6), the integrand is a function of both v and u, as a result the
probability measure is not symmetric for v;. We are not free to apply the Fubini’s
theorem, which brings difficulty in bounding the trajectory formula. To be more
specific, we need to compute the integral with the fixed order vy, vg_1,--v1. We
start from the integral of vi. By (17), the integral of vy, is

7[4T1 72T$(T,)]|”k\2
e 'Tu do(vg, vk—1). (31)
n(x)- v >0

When 71,7 # 0, unlike the diffuse case, we can not decompose do(vi,vk—1)
in (18) (6) into a product of a function of v and a function of vg_;. Thus the
integral ends up with a function of vg_1, which will be included as a part of the
integral over vg_1. This justifies that the order of the integral can not be changed.
Also the integral of v; is affected by the variables v;41, V42, - vE. Thus we have
to compute the multiple integral with fixed order from v to v;.

In fact, (31) can be computed explicitly as ec‘”kfl‘z( Lemma 4.2,Lemma 4.3 )
and thus the integral for the variable vj_; has exactly the same form as (31). This
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allows us to inductively derive an upper bound for this multiple integral. We present
the induction result in Lemma 2.3.

With an upper bound for the trajectory formula another difficulty in the L
estimate is the measure 14, -0y We need to show that this measure is small when
k is large so that the L*° estimate follows by bounding a finite fold integral.

For this purpose [13, 1] decompose 7,4 into the subspace

Vi ={uersi|n-ul>6u <57},

For diffuse case (12) the boundary condition for f is given by (25). We can derive
that there can be only finite number of v; belong to 'yi under the constraint that
t < co. Meanwhile, by (25) the integral over v, \7} is a small magnitude number
O(5). When k( times of interaction with boundary ) is large enough one can obtain
a large power of O(§). The smallness of the measure 1y, ¢y follows by this large
power.

However, for our C-L boundary condition, the integrand is given by (17) (6),
which contains the term e~1?1==rDwl” in (18). If we apply the standard decom-
position the integral over 74 \7J is no longer a small number O(§). This is because
even |UH| > 1, |UH - (1 — T’H)UH| still depends on U

A key observation is that when |v| is large enough, if vy — (1 —r)u| < 671,
we can obtain |uj| > |v| + 6 using 1 — 7 < 1. We take 1 —r| = 1/2 as example.
If |v — 2uy| < 671, we take |v)| > 367! Then we have

1 _ 1 1 __ _
§|u”\>\v‘||—6 1>§|’UH|—|—§5 1, |u|‘|>\v|||+6 L

For 1 — 7 # 1/2, we can choose a different number that depends on 1 — 7| to keep
this property.

Now we suppose the “bad” case |v — (1 — r))uyy| < d~! happens for a large
amount of times. By the discussion above, for the multiple integral with order
Vg, -+ 01 we get an extremely huge velocity |v;] with some i < k. The integral
with do(v;,v;—1) will be extremely small once |v;_1| is small. This will provide the
key decaying factor to cancel all the other growth terms and prove the smallness
of the measure 1y, ~0;. The other one is the“good” case |v — (1 — r)yy| > 671
From (6) we can conclude the integral under this condition is a small magnitude
number O(4). Thus we are able obtain some small factors in both cases. Since the
integrand in do(u,v) in (18) (6) still contains the variable u,, v, , we also need to
apply the decomposition for these variables. The decomposition is similar and we
skip the discussion here. But we point out that since the integrand for u  involves
the first type Bessel function Iy, we need some basic estimate to verify that the
integral for u; has the same property as v,u. We put these estimates in the
appendix.

Thus our new ingredient here is that we decompose the boundary term ~, into
the subspace

VI ={u €~y :|n-ul >nd,lul < (nd)~ "}

Here 7 is small number depends on the coefficient 7| to ensure |uy| > |oy| + 07!
when |v) — (1 —7)uy| < 6~'. We comment here that due to fact that such property
only holds when the coefficient for u is less than 1, we are not able to cover the
specular or bounce back reflection. For these two cases, the coefficient is 1 and thus
such decomposition does not help us to conclude the smallness.



558 HONGXU CHEN

During computing the trajectory formula the integral involves the variable T, ()
(the wall temperature on z € 9Q in (6) ). It affects the real value of the coefficient
for w( different to 1 — » ). This is the reason that we need to impose some
constraint on the wall temperature, which is the condition (22) in Theorem 1.1. We
present the decomposition and detail in Lemma 2.4 and its proof.

The way to construct the stationary solution and the dynamical stability( Corol-
lary 1 and Corollary 2 ) comes from the ideas in [8, 9]. They consider the diffuse
boundary condition with a small fluctuation on the wall temperature. Thus it can
be regarded as a perturbation around the diffuse boundary condition with constant
temperature. For our C-L boundary condition, when 7, and r|| are close to 1, it
can be also regarded as a perturbation. Thus we need to restrict the accommo-
dation coefficient to have a small fluctuation around 1. Then we need to verify
the boundary condition satisfies the property as stated in Proposition 4.1 in [8] (the
condition (190) in this paper). Then we can follow the standard procedure provided
in [8] to prove Corollary 1 and Corollary 2.

1.4. Outline. In section 2 we conclude Theorem 1.1 by proving the L*° bound for
the sequence f™ as well as the existence and L*° stability. In section 3, we conclude
Corollary 1 and Corollary 2 by using the key propositions provided in [8]. In the
appendix we prove some necessary estimates.

2. Local well-posedness. We start with the construction of the following itera-
tion equation, which is positive preserving as in [13, 16]. Then equation is given
by

HF™ ! 0 V™ = Quain(F™, F™) —v(F™)F™ T F™HY, o = Fy, (32)
with boundary condition

F™ P (¢ z,v)|n(z) -v] = / R(u — vy x,t)F™ (¢, z,u){n(z) - u}du.
n(z) u>0
For m <0 we set
F(t,z,v) = Fy(x,v).
We pose F™+L = /uf™+! and

R (t, 2, v) = e(eft)‘vwf"”l(t,x, v). (33)
The equation for h™+! reads
m+1 . m+1 mpm+1 _ (0—1t)|v)? . h™ h™
8th +v th +v"h € Fgam (e(e—t)”|2 ) 6(9—t)|v\2 ) (34)
with boundary condition
hm+1(t7 x, ’U) — e(@—t)\vﬁ@[ﬁ—2T$(1)Hv|2
35
o / B (2, w)e T~ TR |0 = 0-DIul g ). (35)
n(x)-u>0
Here
v = Jof? + v(E™) > [of?. (36)

We use this section to establish the L estimate of the sequence h™*! and derive
the existence and uniqueness of the equation (1). The L* estimate is given by the
following proposition.
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Proposition 1. Assume h™*! satisfies (33) with Cercignani-Lampis boundary con-
1 min (T (z)) > max (1*7‘“ Vl—m_—(l—m_)) and

dition. Also assume 0 <

4T 7 Tm 2= L
[[ho(z; v)]|Lee < o0, (37)
If
sup ||hi(t, z,v)|| Lo < Coollho(z, V)|, t < too, (38)
i<m
then we have
sup [|W" T (t, 2, 0)]| L < Coollho(2,v)| 1o (39)
0<t<to
Here Cy is a constant defined in (166) and
t <too = too(|[ho(z,v)||oe, Tar, min{ Ty (x) }, 0,71 ,7,Q) < 1. (40)

Remark 6. The condition (40) is important. The smallness of the time will be
used in the proof many times. And the parameters in (40) guarantee that the time
only depends on the temperature, accommodation and the initial condition.

The Proposition 1 implies the uniform-in-m L estimate for h™(t, z,v),

sup [|2™[[oo < 00 (41)
m
The strategy to prove Proposition 1 is to express h™*! along the characteristic

using the C-L boundary condition. We present the formula in Lemma 2.2. We will
use Lemma 2.3 and Lemma 2.4 to bound the formula.

We represent h™ 1! with the stochastic cycles defined as follows.

Definition 2.1. Let (Xl(s;tx,v),v) be the location and velocity along the tra-
jectory before hitting the boundary for the first time,

C;‘ig(Xl(s;;f,x,v)>:<g>. (42)

Therefore, from (42), we have
X1(s;t,z,v) =z —v(t — s).
Define the back-time cycle as
ti(t,z,v) = sup{s < t: X'(s;t,z,v) € 9N},
zi(t,z,v) = X (t1(t, z,0);t,2,0),
vy € {v; € R :n(x1) -v1 > 0}.
Also define
Vi ={v1 :n(xy) v >0}, x1 €90
Inductively, before hitting the boundary for the k-th time, define
tp(t,x, v 01, ,vp—1) = sup{s < tg_1 : Xk(s;tk_l,xk_l,vk_l) € 00},
zp(t,z, v, 01, vpm1) = XP (te(t, 2,0, vp—1) s th_1 (8, 2,0), 21 (£, 2, 0), vp—1) |
vy, € {vp € R® :n(xy) - vp, > 0},
Vi = {vg : n(xg) - v > 0},
XF(sitp—1, Th-1,v0-1) = Tr—1 — (te—1 — 8)Vk—1.
Here we set
(to, xo,vo) = (¢, z,v).
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For simplicity, we denote
Xk(s) = Xk(s; b1, Th—1, Vk—1)-
in the following lemmas and propositions.
Lemma 2.2. Assume h™*! satisfy (34) with the Cercignani-Lampis boundary con-

dition (35), if t1 <0, then

t
B (2, )] < [ho(XH(0),v)] + / eIt loFO=pm (syds.  (43)

0
Ift1 > 0, for k > 2, then
|h™ Tt 2, 0))
t
< / eI =) P O=o)Tm (g e\vme—tl)e[ﬁfmnvﬁ/ .
t =i vs
(44)
where H is bounded by
k-1
> Lo <oplho (X0), 01) [dSF,,,(0)
1=1
k—1 t (45)
+ Z/ e‘””?(e_s)|F’gr;;f(s)\d2ﬁm(s)ds
=1 max{0,t; 41}
+ Loy ™2 (b iy vp—1) [dE 0 (),
where
k—1
a5t (s) ={ ] do(vj,05-1) )
j=l+1
X {efl’”‘Z(t‘f‘q)e*'”’|2(9*tl)67[ﬁ7m]‘U’|2d0(vz,Ul—l)} (46)
=1 S I W— AT
% {He et 20T do (v, v5-1) }
j=1
Here we use a notation
R (s, X (s),m) R™(s, XHL(s),v)
m—I1 L . 9 9 9 9
Faain (%) = Tgain ( elvil?(6—s) ’ elvil*(0—s) forosi<m.
(47)
Proof. For simplicity, we denote
ity w,v) = e 1000 ~lat —mmm IoF, (48)

From (34), for 0 < s < t, we apply the fundamental theorem of calculus to get

d [? d [
T ) —vdr = £/t vdr = v™.
Thus based on (34),
d . m m ,
di [e—_fs’y dThm+1(S7X1(S),U):| — e~ f;u dTe‘U|2(9_.S)Fg;in(8)' (49)
s



C-L BOUNDARY IN THE BOLTZMANN THEORY 561

By (36),
o= [ivmdr < e—|U|2(t—S) <0. (50)
Combining (49) and (50), we derive that if ¢t; < 0, then we have (43).
If t1 (¢, z,v) > 0, then

B (2, 0) Ly 50y | < IR (b1, 20, 0) [P0t

t
L A VN

t1
We use an induction of k to prove (44). The first term of the RHS of (51) can be
expressed by the boundary condition. For 1 < k < m, we rewrite the boundary
condition (35) using (48) as

(51)

R (T

1
=—— | pmRtl a(t d ).
ﬂ(tk,xk,kal) Lk ( kaxkvvk)u( k)xkavk) O'(Uk,’l]k 1)
Directly applying (52) with k£ = 1 the first term of the RHS of (51) is bounded by
1
T E— h™(t [(t d . 53
ey o M ) @ v e, (53)
Then we apply (43) and (51) to derive

[/ 1i,<o<tye” o f? “R™(0,X3(0), v1)fi(t1, 21, v1)do(v1,v)

(52)

(53) < PR

/ / lo,<o<tiye ot =) lvll o= S)|F ain ()m(tl,ﬂﬁl,vl)da(vl,v)ds

+/ Liysope ™ O W 1y 2y vy) ity 21, 01)dor (v, v)
V1

t1 .
+/ / 1{t2>0}67|v1‘Q(tts)@‘vllzw*s)|Fg§m1( a(t, z1,v1)do (vi,v) ds|.
Vi

ta
Therefore, the formula (44) is valid for k = 2.

Assume (44) is valid for k£ > 2 (induction hypothesis). Now we prove that (44)
holds for k 4+ 1. We express the last term in (45) using the boundary condition.
In (52), since m depends on vi_1, we move this term to the integration
over Vj_1 in (44). Using the second line of (46), the integration over Vj,_ is

2 ~ ~
/ emlorma Pt =t ity gy vp—1) /i (b @y vE—1) do(vg—1,v5—2). (54)
Vi—1

We have
67|Uk—1|2(tk_17tk)ﬂ(tk—1,Ik_l,vk_l)/ﬂ (tkazk,vk_l)
= eilvkﬂ‘2(t’“’17tk)e‘”k*1|2(tk71*tk)e[m_ﬁ@k)]\kallz
e[sz(zk 1) m””’c—ﬂZ.
Therefore, by (54) the integration over Vi_; reads

1
T — 57— | | Vk —
/ e[”w“‘k*l) enllLE T do(vg—1,vk—2), (55)
Vi—1

which is consistent with third line in (46) with | = k — 1.
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For the remaining integration in (52), we split the integration over Vj into two
terms as

/hm_k+1(tk,l’k7Uk)ﬂ(tkvxka'Uk)dU(UIcaUIc—l):/ 1{tk+1§o<tk}+/ 1,503 -
Vk Vk v

k

(56), (56),
(56)
For the first term of the RHS of (56), we use the similar bound of (43) and derive
that

(5())1 S/ 1{tk+1§0<tk}ei|vk‘Ztkhmikle(O)XkJrl(O)aUk)ﬂ’(tlkaaUk)da(vkavk—l)
Vi
k 2 2
—|—/ / 1{tk+1§0<tk}67|v’“‘ (ti=s) glvel (efs)Fg;;lk(s)ﬂ(tk,xk,vk)da(vk,vk_l)ds.
Vi Jo
(57)
In the first line of (57),

et fy 1y, 2y, v ) do (v, v ),
is consistent with the second line of (46) with | = k, s = ¢;. In the second line
of (57)
eI PO ity v ) do (v, V1),

is consistent with the second line of (46) with [ = k.

From the induction hypothesis( (44) is valid for k) and (55), we derive the inte-
gration over V; for j < k —1 is consistent with the third line of (46). After taking
integration fl—[?:ll v, e change dEZ_Lm in (46) to dZ’ZE. Thus the contribution

of (57) is

/ Ltypn<o<ny ho (XFF1(0), v) A7 (0)

j=1 Vi
e f, L e e

For the second term of the RHS of (56), we use the same estimate as (43) and
we derive

(56),

S/ 1{1s,c+1>o}6_‘v’“lz(t’c_t”l)hm_lngl (tha1, Try1, V&) fi(te, Tk, Vi )do (Vk, VE—1)

(58)

ty
+/ / Loy soye =Dl FO=I PR ()7 1y, o) dor (v, g1 ) ds.
Vi Jtkt1
(59)
Similar to (58), after taking integration over fnk 1y, the contribution of (59) is

[ Lol (e, o) WS )

j=1"i

t (60)
+ / / elvel®(6— S>Fg;m’“( )ASEtL(s)ds.
? tht1 ’
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From (60) (58), the summation in the first and second lines of (45) extends to k.
And the index of the third line of (45) changes from & to k+ 1. For the rest terms,
the index I < k — 1, we haven’t done any change to them. Thus their integration
are over Hffll V;. We add fv do(vk,vg—1) = 1 to all of them, so that all the

integrations are over Hl 1 V; and we change de ! to dEk by
sy, = do (vg,vp—1) dS,)
Therefore, the formula (45) is valid for k + 1 and we derive the lemma. O

The next lemma is the key to prove the L bound for h™t!. Below we define
several notation: let

Tmagz = Max(r|(2 —7),7L), Tmin = min(r)(2 —ry),rL). (61)

Then we have

1> rmaz = Tmin > 0. (62)
Define
1
§:= ma
where 0 < ﬁ is given in (33). Then we have
1
0= 1T &> 1. (63)

We inductively define:

2
ﬂ,l = iTMy T‘l,lfl = TminTJV[ + (]- - Tmin)ﬂ,lv

E+1 (64)
aTl,l = TminTm + (1 - Tmin)Tl,Q-
By a direct computation, for 1 < i <[, we have
28 28 I—i
T, = Tos + (Tar Ta) 1 = (1 = 7y ) 65
i = T+ (T = o D)L= (1= i) (65)
Moreover, let
Aok (s) ={ H do(vj,vj_1)}
J=l+1
X {eflvlﬁ(t"*s)e*l”"Z(Q*tl)ef[ﬁfm]‘v”?dcf(vz,111—1)} (66)
-1
{11 e[m_m“”“zda(waw—l)}.
Jj=p

Note that if p = 1, @} (s) = d5F,, (s) where dXf, (s) is defined in (46). And let

: - rrat s
= {[] el T o (v, 0 )}, (67)
i=p

Then by the definition of (66) and (46), we have

Aokl (s) = dol! (s)dr? !, (68)

¥}, (s) = d®k! (s)dx) . (69)
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Remark 7. We aim to bound the multiple integral in the trajectory formula in
Lemma 2.2. Each integral in the formula involves the variable Ty, (z), Tar, 71,7,
thus we need to find the pattern of the upper bound for each fold integral. This is
the reason we define these inductive notations.

Now we state the lemma.

Lemma 2.3. Given the formula for h™1 in (43) and (44) of lemma 2.2, there
exists

t" =t (T, &, C, k) (70)
such that when t < t*, for any 0 < s < t; we have
/ k=15, 1{t1>0}dq)§:£n(5) < (CTA4,£)2(l_p+l)Al,p~ (71)

i=p ¥J
where we define:
[Tip = Tuw(@p)][1 = Tmin]
Arp = ’
b = &P <[2Tw($p)[Tl’p(1 = Pmin) + TminTw (Tp)]

Here Cr,, ¢ is a constant defined in (80) and C is constant defined in (83).
Moreover, for any p < p' <1, we have

/ 1{tl>0}d©§:7lﬂ(3) < (CTM’E)Q(l_pq_l)/ /1 1{tl>0}Al,P/dT£/_1
Tz v, [15=, Vi (73)
< (O )* PV A,

Proof. From (9) and (18), for the first bracket of the first line in (46) with [ + 1 <
7 < k—1, we have

+cl—p+1t]|up_12>. (72)

k—1
/k H do(vj,vj_1) = 1.
-1y

j=1+1 Y3 j=I+1
Without loss of generality we can assume k =1+ 1. Thus d®
an induction of p with 1 < p <1 to prove (71).
When p = [, by the second line of (66), the integration over V is written as

kil — g@lt+ll
o = AP0t We use

/e—m|2<tl—s>e—m|2<e—n>e—[ﬁ—mﬂvl'2d0(vl,UH). (74)
Vi
By 0 = ﬁ in (63) and s < t;, we bound (74) by
/ ¢~ l2tar e —amp vl do (v, v-1) (75)
Vi

Expanding do(v;, v;—1) with (6) and (18) we rewrite (75) as

/ gme—[zﬁw %_ZTwl(ml)_tl”vl,J.‘z
Vi T QTw(l'l)

o 1/2 \uu_|2+(1—TJ_)\1;L711J_\2
« I I—r)Y v v\ - S LCTIN dv, |
Tw({El)TJ_ ’

1
X /V 71 (2 — 1)) (2T (1))

\vl —(1—r )'11171 \2
e+l 2 ___1 il I A
« e 12Tar 28 ~ampp ~tllvnlT T TR En ) dvy,|,
,
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where vy, v, 1, Vi1 and V| are defined as
v, = n(xr), vy = v — v, n(rg),
VI)J_ = {vu_ NS Vl}, Vlv“ = {,UlvH RS Vl}.

vj—1, and vi_1 1 are defined similarly.
First we compute the integration over V|, the third, fourth line of (76). To
apply (210) in Lemma 4.2, we set

(77)

e=t, w=(L=rv_1 v =1y,

1 1 1
a=—| |, b= . (78)
2T {2_51 2Tw(1’l) 2T, (.’L‘l)TH(Q — 7“”)
By £ > 1 in (63), we take t* = t*(§,Th) < 1 such that when ¢; < ¢t < ¢*, we have
1 1 1 1 1
b—a—e = - —t; > —t > . (79
2T () (2 — 7)) 2Tw(fvz) 2Ty 25 §+1 L= 2TM£2+—51 = 4Ty (79)

Also we take t* = t*(&, Ths) to be small enough to obtain 1+4Tyt; < 1+4Tpt < 2
when ¢ < t*. Thus the t* we choose here is consistent with (70). Hence

b b €
= 1
b—a—c¢ bfa[ +bfa75]
26
M
< = [1+ 4T st)]
§+1TM + [T ( ) @TM]T’H(Q — ’I"”)
& T
< 5+1 CTM,S’ (80)

E+1TM + [mln{T ( )} E+1TM]rmaz

where we use (61).
In regard to (210), we have

(a+e)b  ab € b

= 1 1
b—a—e¢ b—a[ +b—a—5]+b—a—5 (81)
By (80) and ¢; < t, we obtain
b e < HlTM t.
b—a—c¢ £+1TM + [min{7Ty,(x)} — £+1TM]Tmax
By (78), we have
ab i §+1TM T ( )
b—a 2T, (x)[ 25 Ta + [Tw(w) — 2 Tulry(2 = ry)]
Therefore, by (79) and (81) we obtain
2 Tw
lateb eerly — Tu() +Ct,  (82)
b—a—e ™ 2T, (x1)[E7Tv + [Tw(@) — S5 Tulry (2 — )]
where we define
_ ATy (E-i-l Ty — min{T, (z )})
2min{T,, (x)}[§+1TM + [min{7T, ()} — §+1 & Tor]rmac) (53)

+ £+1TM
£+1TM + [min{T(z)} — €+1TM]rmax
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By (80), (82) and Lemma 4.2, using w = (1 — 7))v;_1,j we bound the third,
fourth line of (76) by

(25 Ty — T (1)
2Tw(xl)[5+1TM(1 — 7‘”) + T‘H(Z — TH)Tw(.rl)]

+ Ct}

Oy, € €XD <[ (1- T|)Ul—1,||2)

(84)
(25 Tor — Tue)][1 — ol
QTw( ) [§+1 TM(1 - Tmz’n) + TminTw (xl)]

where we use (61) and (62).
Next we compute first, second line of (76). To apply (213) in Lemma 4.3, we set

e=t, w=/1—rw_11,v=01,

1 1 L b= 1
QTM;fl 2T, (x)” 2T (z)r 1

< Cry, e €Xp <[ +Ct}|vl_17||2>. (85)

a=-]

7275 and l(,(:i)l; using the exactly the way as (80) and (82)

with replacing (2 — r) by r1. Hence replacing (2 — r|) by . and replacing
v;—1,| by v—1,1 in (84), we bound the first, second line of (76) by

Thus we can compute

[§+1 T — T (1))
2T, (z: )[HITM( r1) + i Tw(z))

s ¢ exp ([ —|—Ctl}|mvl—1¢|2>
[ Tw(2)][1 = Tmin]
)[ — Tmin) + TminTw (ml)]

where we use (61) and (62).
Collecting (85) (86), we derive

< Cr,, e €xp ([ + Ct] Ul—l,L|2)- (86)

[T — T (@)][1 = T

(76) < (CTM,S)2 €Xp (

+Ct| |lv_1)?
2Tw (xl) [%TM(l - rmin) + rminTw (l‘l)]
= (O 6)* Avt,
where A; ; is defined in (72) and T;; = E+1 & Tos.

Therefore, (71) is valid for p = [.
Suppose (71) is valid for the p = ¢ + 1(induction hypothesis) with ¢+ 1 < [, then

/ , 1{tl>o}d‘1)i;11’,lm(5) < (Cry )P A1

j=q+1 Vi

We want to show (71) holds for p = ¢q. By the hypothesis and the third line of (66),

/ Ly sopd®hth(s)
é’=q Vi

(87)
S S B I
S(OTM,§)2(IQ)/V Az,q+16[2m(”) 2Tw(a:q+1)” al da(vq,vq_l).
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Using the definition of A; 441 in (72), we obtain
(87) < (Oryy e)?
% / exp ( (Th,q+1 — Tw(2g41)) (1 = Tmin)
v, 2T (q+1)[Thg+1(1 = Tmin) + TminTw(Tg41)]

[2T 1(1 Yy T 2T (i )”Uq‘Q
x e ?Twla) 2Twlrqr do(vg,vg—1).

fogl? + clquvqﬁ)

(88)
We focus on the coefficient of |v,|? in (88), we derive
(Tl,q-ﬁ-l - Tw(x(]-‘rl))(l - Tm’m) |’U |2 + [ 1 _ 1 ]|’U |2 _
2T (2g+1)[Th,g+1(1 = Tmin) + TrminTw (Tg+1)] I 2Ty (zq)  2Tw(Tgt1) I
(Thg+1 — Tow(2g+1)) (A = Tmin) — [T1g41(1 = Tmin) + TminTw (Tg+1)] o2 + |vg|?
2T (2g+1)[Th,g+1(1 = Tmin) + TminTw(Tg+1)] ! 2T (z4)
_ —Tw(Tg+1)(1 = Tmin) — TminTw(Tg+1) B |2 + |vq|2
2T (g 1)[Th,q41(1 = Tmin) + TminTw(Tg11)] 7 2T (z4)
_ _|Uq|2 |Uq|2

2[T1g+1(1 = rmin) + TminTw(Tg11)]  2Tw(2q)

By the Definition 2.1, x441 = g1 (¢, T, v, 01, -+ ,vq), thus Ty (z4+1) depends on
vq. In order to explicitly compute the integration over V,, we need to get rid of the
dependence of the T, (x4+1) on vy. Then we bound

exp ( —|vg|? )
2[T1,g+1(1 — Tmin) + TminTw (2q11)]

oyl oyl =
< exp T )=eXp( J )
2[T1,g+1(1 — Tmin) + rminTar] 2T 4
where we use (64).
Hence by (18) (6) and (89), we derive
(88) < (Cryp)* %
% / i qu,l_| —[ﬁ—m—ckqt”%,iﬁ
Vgu TL 2T (zq)
(1—=71)"vg 041,10\ —letBr0orilivg—n.
<o ( Tow(zq)r e ‘ B dvg,L (90)

1
) /v w2 — 1) (2T (2))

_ lvg, | =A=r)vg_1,)*
% e*[ﬁ*mfcl qt]l’uq‘H‘26_ szl(zq> < ruuwu‘i : dvq,”.
In the fourth, fifth line of (90), to apply (210) in Lemma 4.2, we set
1 1 1

a=|

— , b= L e=C% w=(1—rv,_1-
My Walwy) '~ Walagry@— 1)) @ =r)vg-v

Taking (78) for comparison, we can replace %TM by Tj,, and replace ¢t by C'~9¢.

Then we apply the replacement to (79) and obtain

,thzi

1
b—a—e>— —C% >
a-e= = ATh,’

L 2Ty 2

MerT



568 HONGXU CHEN

where we take t* = t*(Th,&,C, k) to be small enough and ¢t < t*. Also we require
the ¢ satisfy

_f <aTyCRr< 2.
b—a—ce¢

We conclude the ¢* only depends on the parameter in (70). Thus by the same
computation as (80) we obtain

b < 2Ty 4
b—a—¢e = T4+ [min{T,(z)} — Tl7q]1"|| (2— 7'”)

< CVTM’E7

where we use Tj , < 5%TM from (64) and (61). Cr,, ¢ is defined in (80).
By the same computation as (82), we obtain
(a+e)b ab ab 5 b

bfafszbfa—i_bfab—afe bfa—eg

Tiq — Tw(xq)

l—q+1
= @) Ty + Tulrg) ~ T z—m] ¢ °

Here we use 1} 4 < %TM and (61) to obtain

ab € be
b—ab—a—¢ b—a-—c¢
AT (Th,q — min{T,, (z)})

< — . clmat
2min{Ty (z) }11,q + [min{Ty ()} — Tiq]r (2 —7))]

+ 3¢ e clmar<clmati
@T =+ [mln{Tw(x)} — Tl)q]T” (2 — ’I“H)

with C defined in (83).
Thus by Lemma 4.2 with w = (1 — 7)v
bounded by

the fourth, fifth line of (90) is

q—1

ox [T‘l’q - Tw(‘rq)]
Oty 6 €XP ([2Tw(zq)[Tl,q(1 — )2+ 72— ) Tw(zy)]

+CTTH]| (1 = 7y )vg-ay |2>

[Th,q — Tw(2g)][1 = Tmin]
2T (2g)[T1,4(1 — rin) + TminTw (24)]

By the same computation the second, third line of (90) is bounded by

[T1,q — Tw(2g)][1 — Tmin]
Ot ¢ P <[2Tw(xq)[Tl,q(1 — Tmin) + TminTw (xq)]

By (91) and (92), we derive that

< Oy exp ([ + Cl_q+1t] |’Uq_17||2> . (91)

+ Clqurlt} Uq_17L|2> . (92)

(90) < (Cryy )20

[T1g — Tw(2g)][1 — rmin] it ,
exp <[2Tw(xq)[Tz,q(1 — Tmin) + TminTw(24)] + T ] Jog |
= (Cry )* 71 A,

which is consistent with (71) with p = ¢. The induction is valid and we derive (71).
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Now we focus on (73). The first inequality in (73) follows directly from (71)
and (68). For the second inequality, by (67) we have

(CTM7€)2(l_p/+l) /l_lpllv 1{tl>0}Al,PldTg_l
j=p YJ

< (CTM,§)2(l_p +1) 'y / 1{t1>0}
5= vi /v,

p'—1

x Ay e T e g a2, (93)
In the proof for (71) we have
(87) < (88) < (90) < (Cryy )* TV AL
Then by replacing ¢ by p’ — 1 in the estimate (87) < (Cr,, ¢)?¢~9YA4; , we have

(93) < (CTM7€)2(l_p/+2)/ /o 1{tz>0}Al,p’—1dT£,_2'
="V

Keep doing this computation until integrating over V, we obtain the second in-
equality in (73). O

The next result is the Lemma 2.4, which is the smallness of the last term of (45).

Lemma 2.4. Assume

min(T (s) > ma (5, S L)y, (01)
For the last term of (45), there exists
ko = ko(Q, Cryy 6, C, Ty, o,y min{Toy () },£) > 1, (95)
t' =t'(ko, & Tar, min{T,,(x)},C,ro,ry) < 1 (96)
such that for all t € [0,t'], we have
| oy, L0 11) < (3" Aky 11 (97)

where Apy—1,1 s defined in (72).

Remark 8. The difference between this lemma and Lemma 2.3 is that we have the
1

small term (5)'“0. This lemma implies when k = kg is large enough, the measure of
the last term of (45) is small.
We need several lemmas to prove it.
Lemma 2.5. For 1 <i<k-—1, if
v - n(xi)| <6, (98)
then

L {ueviifosn(en| <6} L a1 AP (t1) < 8(Cryy ) * D M1 (99)
=t v,

=i Vi
If
i — miviea, | > 071, (100)
then
/Hklv l{tk>0}1{|”i>ll_"i,llvi—l,u\>5‘1}d®§,}lr€;1(tk) < 5(CTNI,§)2(k_i)«4k71,i. (101)

j=i Vi
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Here n; | is a constant defined in (109).

If
[vi 1 — M 1 vim1,0| > 5t (102)
then
/l_[k1 1{tk>0}1{|Ui,J__77'i,J_Ui—1,L‘>571}d®§,7’r{r€l_1(tk) < 6(CTM,€)2(k_i)Ak*1,i'
j=i YJ
(103)

Here n; 1 is a constant defined in (112).

Proof. First we focus on (99). By (90) in Lemma 2.3, we can replace [ by k— 1 and
replace ¢ by i to obtain

J o, Mo (00 < (O

j=i Vi

/ EME_[H;&M _2Tw1(ri)'—ck7it]\vi,i.|2
Vi1 Tl 2Tw(l‘i)

1—7r 1/2U‘J_’U'711_ v P )viog 1 12
x I ( ) i, LVi—1, e T ()T L dv; 1 (104)
Tw($i)TL
1

X /

Vil 7T7’H(2 — T|‘)(2Tw(.’£l))

» log  —(=rv;_q 12

,%,%,Ck i, 2 — . l i H’ s

X e [ng_lyi 2Ty () ]|'U1,||| e 2Ty () HICETR dvi,H'

Under the condition (98), we consider the second, third line of (104) with integrating

over {v; 1 € Vi1 t|vi-n(z;)] < ﬁc;} To apply (214) in Lemma 4.3, we set

1 1 L b= 1
2T—1, 2T (xs)” B 2T (wi)r1

i
,e=C"" w=vV1—-rivi_1.

a=-

Under the condition |v; - n(z;)| < ﬁé, applying (214) in Lemma 4.3 and us-

ing (92) with ¢ =4, = k — 1, we bound the second, third line of (104) by

[Tk—1,i — T (3)][1 = Tin]
5CTM7£ P <[2Tw (xz)[kal,z(l - rmin) + TminTw (IZ)]

+ Ckiit] |'Ui—1,L|2) . (105)

Taking (92) for comparison, we conclude the second, third line of (104) provides
one more constant term ¢. The fourth, fifth line of (104) is bounded by (91) with
q = 1,1 = k — 1. Therefore, we derive (99).

Then we focus on (101). We consider the fourth, fifth line of (104). To ap-
ply (212) in Lemma 4.2, we set

1 1 1 ;
a=— 4 , b= , e=CF w = (1—7r))vi_1.
2Me—1i 2Ty () 2T (zi)ry (2 — 7)) (E=ri)vi-y
(106)
We define
Bi:==b—a—e. (107)
In regard to (212),
b b €
— 1 .
b—CL—Ew b—a[ + b—a—a]w
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By (106),
b . Tk—l,i £ . Cck—it
b—a kal,i(l — 7"H)2 + Tw(l‘i)T”(Q - ’I“H>7 b—a—c Bi,l\ '

Thus we obtain

b

b = Mlvi-v (108)

where we define

. Tk—l,i[l + Ckiit/BL”]
i, - Tk—l,i(l — 7“H)2 + Tw(l‘i)T” (2 — ’I“H)
Thus under the condition (100), applying (212) in Lemma 210 with —2—w =

b—a—e

ni,|Vi—1,| and using (91) with ¢ = 4,1 = k — 1, we bound the fourth, fifth line
of (104) by

(Th—1i = Tw (@)][1 = Tmin] i 2
0C : C" "t |v;— .
Taa b SXP ([2Tw(xi)[T,€_17i(1 ) Frmn TG TE vl
By the same computation in Lemma 2.5, we derive (101) because of the extra

constant 4.

Last we focus on (103). We consider the second, third line of (104) with inte-
grating over {v; | 1 v; 1L €V, 1,|vi 1| > %6*1}. To apply (214) in Lemma 4.4, we
set

1 1 1 .
a= 72Tk71,i + ST b= m, e=CFt, w=V1—- T1V—1,1-
(110)
Define
B, :=b—a—e. (111)
By the same computation as (108),
b
mw =M, LVi—1,1,
where we define
ck—it
MiL Lol + 5] T—r.. (112)

C Tro1i(L—71) + T (z)ry

Thus under the condition (102), applying (217) in Lemma 4.4 with bﬁsfew =
7;,1vi—1,1 and using (92) with ¢ = 4,1 = k — 1, we bound the second, third line
of (104) by
(Th—1,i — Tw(x:)][1 — Tmin]
oC :
Toark P <[2Tw($z)[Tk1,z(1 - Tmin) + rmznTw(xz)]

Then we derive (101) because of the extra constant ¢. O

+ Ckiiﬂ Ui—l,L|2> .

Lemma 2.6. Forn; | andn; 1 defined in Lemma 2.5, we suppose there exists n < 1
such that

max{m7||,m,L} <n< 1. (113)
Then If
14+n ._ _
v, > T, 2(5 L and Vi1 — M4, Vie1,)| <O L (114)
we have

|Ui,1’“| > |’UZ-7||| +6° % (115)
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Also if
L and |vi, L — M1 vim1,0| <7 L (116)
then we have

‘Uifl,J_| > |’U7;’J_| +6‘1. (117)

Remark 9. Lemma 2.5 includes the cases that are controllable because of the small
magnitude number §, which is the “good” factor for us to establish the Lemma 2.4.
This lemma discusses those “bad” cases, which are the main difficulty since they
do not directly provide 4.

Proof. Under the condition (114) we have
mi g vien | > Joi | =87

Thus we derive

— i, Lo
[oi1 | > Jva | + il = =071
i, | 3,
— )1 s _ idfl
772' I 1=n M5,
il 1+ 1
>|vz|\\+ /A R U211 58 B S
My =1 Ni,|
1+, 1
> |Ui,|\ i H5 T~ 51t > |Ui,||| + (571,
M| M|

where we use |v; || > H” 5‘ in the second line and 1 > 7 > n; | in the third line.
Then we obtain (115)
Under the condition (116), we apply the same computation above to obtain (117).

O
Lemma 2.7. Suppose there are n number of v; such that
[0 = Mg vs-rg | =677, (118)
and also suppose the index j in these vj are iy < iy < --- < iy, then
K,k
/ k—1 1{tk>0}1{ (118) holds for j = i1,42," - - }d(I)zl ml( )
I;=, Vi (119)

< (5)n(CTM,§)2(k_il)Akfl,il :

Proof. By (73) in Lemma 2 with [ = k — 1, p = i1, p’ = 4, and using (101) with
i =1,, we have

/ k—1 l{tk>0}1{ (118) holds for j =47, -- zn}d(Pkal( )
Hj;il J

< §(Cr )2<’“—i")/ Ap_1.,1 1 - o adYieTt
= M€ k—1,in +{t, >0} L{ (118) holds for j =41, ,%n—1} i1

im—1
H;Z” Vj

:6(CTM7§)2(k7in)/i 1-1 /(z‘ )—1
I1,%5 Vi H]‘:ninflv.

=iy J

Ak—1,i, 11,501 1{ (118) holds for j = i1, - - - ,in,l}dTEi’L)fldTZ?“_1~ (120)
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Again by (73) and (101) with ¢ = i,,_; we have

(120) < 6*(Cry, ¢ )27 in=0) /n

;";le_l Vi
S
X Ak—1,in_y 1t >0} 1{ (118) holds for j = i1, -+ ,in_o3d Lo "
Keep doing this computation until integrating over V;, we derive (119). O
Lemma 2.8. For 0 < < 1, we define
1) —
V) i={v; € V)t |u; - nla;)| > 6, v <67} (121)
For the sequence {vy,va, -+ ,v5_1}, consider a subsequence {vi41,Vi42,"** ,U4L}
withl+1<I+ L <k-—1 as follows:
U U1, V42t VL, U4 L+1 - (122)
ev U anevi \ VT vt
In (122), if L > 10011‘—2, then we have
kk—1
/ o Loyl St d®;, (te)
VY {vip; €V \V, ;7" for 1<G<L} (123)

< (30)"2(Cry )70 Ap—1
Here the n satisfies the condition (113).

Remark 10. In this lemma we combine the estimates and properties in Lemma
2.5 and Lemma 2.6. In the proof we will address the difficulty stated in Lemma 2.6
to obtain the key factor (36)%/2.

Proof. By the definition (121) we have

) 2(11;2;)6_ . .. .. . 1;77 . >M -1
Vz\vz - {vl S VZ . "Ul n(x'b)| < 2(1 +77)5 or |’UZ| - 1— n 6 }

Here we summarize the result of Lemma 2.5 and Lemma 2.6. With %6 < §, when
v € VAYITD?
i i\V;
1. When |v; - n(z;)| < ﬁé, then we have (99).
2. When |v;| > 2(%2")5_17

1+

(a) when |v; | > $5867 1 Jug ) — m v,y | < 07, then [vgy | > Jvg | +

5L
(b) when |v; | > %6‘17 if |vg| — 15, viz1,j| = 67, then we have (101).

1+ 5t

- , if |'Uz',L - 77i,L”i—1,L| < 571, then |'Uz'—1,L| >

(c¢) when |v; 1| >
vi | +67".

(d) when |v; 1| > %5_17 if i1 —mi1vi1,1| > 071, then we have (103).
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We define W, 5 as the space that provides the smallness:

= [ €V v 1-n
Wis = {vi € Vi : Jug, 1| < (1+ el

U{Ul eV |vi L] > 5_ and |v; 1 — M 1 vi—1,1| > 51

UU{UI eV |’UZ-,||| > m571 and |’Ui,‘| — 771-}H11i,1’”‘ > (571}.

Then we have

1-n_g
V\V2(1+n)

c Wis| {vis € Vit fvi| > +775—

and |v;, 1 =i 1o, | <5} (124)
1+n _
U{vi»” € Vi7‘||viy|‘\ > m(s L and |Ui7” — 171-7”1)1'_17”| <9 1}.
By (99), (101) and (103) with {716 < §, we obtain

/Hkl Linew, o) L0y @5 (1) < 38(Crryy )™ A (125)
j=i VI

For the subsequence {v;11, -+ ,v4r} in (122), when the number of v; € W; s
is larger than L/2, by (119) in Lemma 2.7 with n = L/2 and replacing the condi-
tion (118) by v; € W; 5, we obtain

k,k—
/ k—1 1{Number of v;EW;j s is larger than L/2}1{tk>0}dq)l,m 1(tk) (126)

j=t YJ

< (38)"%(Cryy )1 Ag e (127)

We finish the discussion with the case(1),(2b),(2d). Then we focus on the case
(2a),(2c).

When the number of v; ¢ W, ;5 is larger than L/2, by (124) we further consider
two cases. The first case is that the number of v; € {v; : [v;| > 1+’75 Vand |v;) —
n;1vj—1,j| < 671} is larger than L/4. According to the relation of vj and vi_y ,

we categorize them into
1 _
Setl: {v; ¢ W;;: |v;, H| > +77(5 L and |v;, | — 77]‘7”1)]'_17”| <6 1L

Denote M = |Setl| and the Correspondlng index in Setl as j = p1,p2, -+ ,PM-
Then we have

L/A<M<L. (128)
By (115) in Lemma 2.6, for those v, we have
|,Upij - |vpj_17|“ < _571' (129)

1—n
Set2: {’Uj € Vj\nguMm :
Denote M = |Set2| and the corresponding index in Set2 as j = q1,¢2, "+ , gm-
By (128) we have

1<M<L-M<-L. (130)

=~ w

Then for those v,; we define

aj = |vg, || = lvg,—1,| > 0. (131)
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1-n
Set3: {v; € VAV 1 vyl < Jvjma | < ol +671)

Denote N = |Set3| and the corresponding index in Set3 as j = 01,02, -+ ,0nN.
Then for those o;, we have

[0, 1| < 100, 1,511 < Jvo,, 1] +67 (132)
From (122), we have v; € V""" and vy 41 € Vljfl;j)l , thus we can obtain
L+1
21+m)
- Tné P < Jorrppl = ol = D ol = v - (133)
j=1

By (129), (131) and (132), we derive that

1—n
M M N
<D (gl = lop, =) + X (w1l = fog,—1l) + D (0o, = v, ~1.11)
Jj=1 Jj=1 j=1
M
<M 4 ;.
j=1

Therefore, by L > 100% and (128), we obtain

2(14‘77)64 < £571 < %571
1—n 10
and thus
M
2(1 Mt
> a; > M5 - (14r7;7)5_1 > % (134)

<
Il
—_

We focus on integrating over V,,, those index satisfy (131). Let 1 < i < M, we
consider the third line of (104) with i = ¢; and with integrating over {v,, | € V,, || :

Qs

[Vgi | = [vg,—1,)] = ai}. To apply (211) in Lemma 4.2, we set
1 1 1
a=— + , b= , e=Ck ot
21,40 2Tw(zq,) 2T (xq,)r) (2 — 1))
By the same computation as (142), we have
1 1 1 1
ate—b=— - - +CF Ut < ———. (135
2Tk—1,q7¢ 2Tw (qu) 2Tw (IQi)TH (2 — ’I‘H) 4TM ( )

Then we use 7, < 1 to obtain

L vg 1= tvgs—11=ai} = Llvg, j1=ng 1vg 1,1 1>ai} S Lo, =g, 1va; -1, [>ai}- (136)

By (211) in Lemma 4.2 and (136), we apply (91) with ¢ = ¢; to bound the third
line of (104)( the integration over V,, | ) by

2
s (Tr—1,4: — T ()] [ — Tomin]
T X2 k3
e T Oy, ¢ €Xp <|:2Tw(xqi)[Tk—17q'i(1 = Tmin) + TminTw(Tq,)]

+ Ckai¢] |vqi_1,||2>
(137)
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Hence by the constant in (137) we draw a similar conclusion as (125):

a2
ke k— — a7 k—q;
/ k-1 1{tk>0}1{|vqiw|||*|vqi—1,u|:ai}d¢qi,m1(t’f) <e M (CTMxﬁ)Q( / )Akfl,qr
[1;24, Vi
(138)
Therefore, by Lemma 2.7, after integrating over Vg, |, Vg, |, " Vgr,| We Obtain

an extra constant

p—lai+ad++al )/4Tn < p—laitaz+tam]®/ATuM) < —[M6™" /2> /(4T M)

< e*[%éfl]Q/(LLTM%L) < e—ﬁL(gfly < eiLéil.

Here we use (134) in the last step of first line and use (128), (130) in the first step

—Ls !t

of second line and take § < 1 in the last step of second line. Then e is smaller

than (30)%/2 in (127) and we conclude

/,H Linr=fsett|2L/4) Lt >0y 481 (t) < (36)7/2(Cryy 0)* 1) A (139)

j=t Vi

The second case is that the number of v; € {v; ¢ W,5 : |v; 1| > }%’]6_1} is
larger than L/4. We categorize v; | into

Set4: {Uj ¢ Wis |'Uj,J_| > %(5—1 and |Uj7J_ — 77j7J_Uj_17J_‘ < 5_1}.

_1-n_
Set5: {v; € VAV vy | > fvj1 1}

1—n
Set6: {v; € V,\V/ " o 1| < fuojoa | < v +071
Denote |Set4| = M) and the corresponding index as pj,ph, -+, p)y,, [Setd] = My

and the corresponding index as ¢, ¢, -+ ,q)y,, |Set6] = Ny and the correspond-
ing index as 0,05, - ,0y,. Also define b; := lvg, 1| = [vg;—1,1]. By the same
computation as (134), we have
My 1
2(1 Mo
ij > M6t — M(g—l > 29
= 1—-n 2

We focus on the integration over V! - Let 1 <4 < My, we consider the second line
of (104) with i = ¢; and with integrating over {vy | € Vg 1 : vy 1| — |vg 11| =
b;}. To apply (216) in Lemma 4.2, we set

1 1 1 /
a=— + , b= e =CFt
2Tk—1,q; QTw (xqé) 2Tw (.rq;)T‘J_
By the same computation as (142), we have
1 1 1 / 1
ate—b=-— + - +CF < ——— (140
2Tk—1,q§ 2Tw (xq:) 2Tw (qu)’r‘L 4TM ( )

Similar to (136), we have

Loy s l=log 1 2 1=03 S Loy L =ng sogr s 1156}

Hence by (216) in Lemma 4.4 and applying (92), we bound the integration over
Vg1 by

,i [Tk—l q — Ty (zq’)][l - Tmin]
e 7 Cr,, ¢ €xp = ‘
s <[2Tw<mq;)[Tk1,q;<1 — Tmin) + Tmin T ()]

+c’“—qit]|qul,l|2> .
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Therefore,
b2
k,k—1 — T 2(k—q;
/ o N0 oy Lty =6 AR5 () < €7 T (O )** 70 A g
g Vs ' ‘ '
The integration over Vi 1,V 1, ,quw .1 provides an extra constant
1

e—[b§+b§+"‘+b3\41]/16TA1 < e*mL@_l)Q < e—L(S*l’

where we set § < 1 in the last step. Then e=%% " is smaller than (36)%/2 in (127)
and we conclude

/H’“‘l s =fsera> /4 Lt >00 AR 75 (tk) < (38)7/2(Cryy e)** 70 Aoy (141)

j=1 i

Finally collecting (127), (139) and (141) we derive the lemma. O
Now we prove the Lemma 2.4.

Proof of Lemma 2.4. Step 1
To prove (97) holds for the C-L boundary condition, we mainly use the decom-
position (121) done by [1] and [14] for the diffuse boundary condition. In order

1—n
to apply Lemma 2.8, here we consider the space Vf(“r”) and ensure 7 satisfy the
condition (113). In this step we mainly focus on constructing the 7, which is defined

in (152).

First we consider 7; |, which is defined in (109). In regard to (106) and (107),
we take t' = t/(&, k, Thr)( consistent with (96) ) to be small enough and set t < ¢/
to obtain

—Ckt > 1

—Ck it > —
- — ATy

B = (142)

2¢
erilm

By (65), Tk—1,; = Tn as k —i — co. For any 1 > 0, there exists k; s.t when

k>ky, i<k/2, wehave Tp_1,; < (1+¢e1)Tu. (143)

2T

Moreover, by (94), there exists €3 s.t
min{T (@)} 1=my

> 1 . 144
Ty 2—r ) (144)
Then we have
g9 = eo(min{Ty(x)}, Tar, 7y, 7L)- (145)
Thus we can bound T, (x;) in the n; || ( defined in (109)) below as
Tow(x;) Tw(z;) 1 1—m 14 &9
wai —T,i ZT,i T,i . 146
(w5) = Th1, Ty N PP =, -1, (146)
Thus we obtain
k—i k—i
14+ CB t 1+ CB t
il il
i, < = I=r)=——"""17%" (147)
(=) + o 2 =) L=y 4y

By (143), we take
k= ki =Fki(e2, Tass "min) (148)
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to be large enough such that e; < e3/4. By (142) and (147), we derive that when
k= kla

1 + 4Ty CFt
sup ;) < e T <m <1l (149)
. ’ _ 2
i<k/2 L=ry+ 71557
Here we define )
77” : <1 (150)

L7+ 77557
and we take t' = t'(k,Tns,2,C,7)) to be small enough and ¢t < ¢’ such that
4TpC*t < 1 to ensure the second inequality in (149). Combining (145) and (148),
we conclude the ¢’ we choose only depends on the parameter in (96).

Then we consider 7; |, which is defined in (112). In regard to (110) and (111),
by (142) we have B; | > ﬁ. By min{g&’(m)} > \/1_7“1“1(1_”) in (94) we can use
the same computation as (146) to obtain

with £1 < £2/4. Thus we obtain

N1 <nL <1,

where we define
1

nL = =
VI—r+ (1= VIt

with ¢ = t'(k, T, €2,C, 7)) ( consistent with (96) ) small enough and ¢ < #'.
Finally we define

<1, (151)

n = max{nL,n} < 1. (152)
Step 2
Claim: We have
L—n ° Bk

Proof. For t; <1,

tj+1
|/ vids|® = |zj41 — 251 2 (w41 — 7;) - n(x;)]
tj

i1
=1 v el = oy - nla)lt -t
2
Here we use the fact that if z,y € 09 and 9Q is C? and Q is bounded then
|z — y|? Za |(x — y) - n(z)|( see the proof in [8] ). Thus

1 ti+1
joj - ()| S | / 0yds|? < [t — 4|2, (154)
|tj - tj+1‘ t;

1—n

5
Since v; € VJ»Q(H”) ,t; <0, let 0 <t <t wehave

1—n —2
- N < |t: —t; [
o3 )| S 15 = ol (5 0) (155)

Then we prove (153). O
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In consequence, when ¢, > 0, by (153) and ¢ < 1, there can be at most
1y ¢
{[Co (B3] 4 1} numbers of v; € V7 Equivalently there are at least

(1-m)s
1—nm
21 158
k—2—[Cq ((1( ';7)7)) ] + 1 numbers of v; € V;\V; "7
Step 3
In this step we combine Step 1 and Step 2 and focus on the integration over
k—1
Hj:l Vj.
By (153) in Step 2, we define
2(1+n)\3
= [Ca(G—2)] + 1. 156
a5y (156)
0 s
For the sequence {v1,vy,---,v5_1}, suppose there are p number of v; € V"

with p < N, we conclude there are at most ( ) number of these sequences.

Below we only consider a single sequence of them.
In order to get (150),(151)< 1, we need to ensure the condition (143). Thus we

1—n 5
take k = ki(Ta,&,71,7)) and only use the decomposition V; = (Vj\VjQ(H") ) U

1-n g
V;UM) for Hk/Q V;. Then we only consider the half sequence {vl,vg7 e gt
s
We derive that when t;, > 0, there are at most N number of v; € VQ(””) and at
least k/2 — 1 — N number of v; € Vj\Vf(H") in Hffl V.
In this single half sequence {v1,--- , vy 2}, in order to apply Lemma 2.8, we only

want to consider the subsequence (122) with [+ 1 <!+ L < k/2 and L > 1001*_‘—2.
Thus we need to ignore those subsequence with L < 100%. By (122), we conclude

1—n 5
that at the end of this subsequence, it is adjacent to a v; € V""" . By (156), we
conclude

+77

There are at most N number of subsequences (122) with L < 1001 (157)

We ignore these subsequences. Then we define the parameters for the remaining
subsequence( with L > 100% ) as:

1—n 5
M, := the number of v; € Vj\V]?(H"’ in the first subsequence starting from vy,

n := the number of these subsequences.

Similarly we can define My, M3, --- , M,, as the number in the second, third, ---,
n-th subsequence. Recall that we only consider Hfé 21 V;, thus we have

1
100ﬁ < M; < k/2, for 1 <i<n. (158)
-1

By (157), we obtain

k
k2> M+ M, >k:/2—1—1001+—77N>7—101 +77N

5 - (159)
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Take M; with 1 <+¢ < n as an example. Suppose this subsequence starts from v;, 41
to vy, +n,, by (123) in Lemma 2.8 with replacing [ by [; and L by M;, we obtain
kk—1
/ Li>0pl Sh=n s @, (tr)
LV {01,405 €V, 05 \V L for 1<5<M;} (160)

j=t; Vi
< (30)Mi/2(Crpyy ) * D Ap 1y,

Since (160) holds for all 1 < i < n, by Lemma 2.7 we can draw the conclusion
for the Step 3 as follows. For a single sequence {v1,vq, - ,vi_1}, when there are p

1—n Pl
number v; € V", we have

Lt 501 d55 o (t)

/ 1 -
?;11 V; {p number v; € Vj2(1+") for a single sequence}

< (35)(M1+M+Mn)/2(CTM,§)2kAk—1,1~ (161)

Step 4
Now we are ready to prove the lemma. By (156), we have

/Hk_l v 1{tk>0}dzllz—l,m(tk)

j=1YJ
N
<

p=1

- 1, >0 dSE o (t). (162)
/{Exactlypnumber of v, € ijuﬁn)o ) {tx >0}k —1,

Since (161) holds for a single sequence, we derive
N

. kE—1
(162) < (Cry )" ) ( ) (30) (Mt MatoMa) /2 4,
p
p=1
< (Cryye) Nk — )N (364N 4 (163)

where we use (159) in the second line.
Take k = N3, the coefficient in (163) is bounded by
(Crryy )N NANFLGHNATIONEN < (O, )NV EH)NTE, (164)
where we choose N = N(n) large such that N3/4 — 10132 N > N3 /5.
n 1y
Using (156), we derive
36 = C(Q,n)N~/3,
Finally we bound (164) by
(Cry )N NN (O( Q) NN
< €2N3 log(Cry.¢) 4N log Ne(Na/s) log(C(Q,m)N~1/3)

_ AN log N ,(N?/5)(log(C(2,n)—} log N) ,2N° log(Cry, ¢)

3
— (AN log N—4= (log N—3log Cq,,—301log Cr,, ¢)

< ANlog N—32log N  — X log N _ ,— k5 logh (l)k’
o - -2

where we choose d to be small enough in the second line such that N = N(Q, 7, Cr,, ¢)

is large enough to satisfy

log N
log N — 3log C(2,n) — 301log Cr,, ¢ > 0g2 ,
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N3 N3
ANTog N — = log N < —~ log N.
08 30 BN =T 8

And thus we choose k = N3 = ky = k2(Q, 7, Cr,, ¢) and we also require log k > 150
in the last step. Then we get (97).

Therefore, by the condition (143), we choose k = ko = max{k;,k2}. By the
definition of n (152) with (150) and (151), we obtain n = n(Tas,C, 71,7, €2). Thus
by (145) and (148), we conclude the ko we choose here does not depend on ¢ and
only depends on the parameter in (95). We derive the lemma. O

Proof of Proposition 1. First we take
too < t'. (165)

with ¢ defined in (96). Then we let k = ko with ko defined in (95) so that we can
apply Lemma 2.4 and Lemma 2.3. Define the constant in (38) as

Coo = 3(Cry, £)Fe. (166)
We mainly use the formula given in Lemma 2.2. We consider two cases.
Casel: t; <0,
By (43) and using the definition of I'g};, (s) in (47) we have
IRt 2, v))

< |ho(X1(0;t, 2, v),v)| (167)

¢
+/ e|”‘2(9_t)/ B(v —u,w)\/p(u)
0 R3 xS§?
™ (s, X1(s),u') || h™ (s, X (s),v)
x ‘ el 65) ‘ el (=5)
where v/ = u/(u,v) and v' = v'(u, v) are defined by (3). Then we have

t
(168) < (sup [|A™(s)||p=)? x / / e‘“lz(e_t)B(v —u,w)
0<s<t 0 JR3xs?

X 4/ ,u(u)e(‘“|2+|”|2)(s_9)dwduds

t
< ( sup Hhm(s)HLoo)Q/ /]R3 e‘”lQ(S_t)hJ —u\’c\/ﬁe‘“lz(s_g)duds
0

0<s<t

dwduds, (168)

t
<c.. lhol3= / oI (o=0) ()43

t
2 —_
< Iholl~ / T TR T

1
Shrole (72 + N1,

where —3 < K < 1. Therefore, we obtain

(168) < C(Cos [ olloe) (2

1
— + Nt) < —|ho]| oo, 169
7+ N0 < ol (169)

where we choose
N = N(Cx, [[hollocs ko) > 1, too =tc(IN, Coo, || holloo, ko) < 1, (170)
with ¢ < ¢ to obtain the last inequality in (169).
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Finally collecting (167) and (168) we obtain
IRt 2, 0) 1 <01 lloo < 2llhollse < Coclloll oo, (171)

where C is defined in (166).
Case2: t; >0,
We consider (44) in Lemma 2.2. First we focus on the first line. By (169) we obtain

t
1
/ ePPEDTm ($)ds < —|[hol|oo (172)
t ko

Then we focus on the second line of (44). Using § = ﬁ we bound the second
line of (44) by

1 1
exp - |112> / H. (173)
<[2TM£3_£1 2Tw(1'1)] Hkofl V.

ji=1 J
Now we focus on fl—[ko—l . H. We compute H term by term with the formula given
j=1 Vi
in (45). First we compute the first line of (45). By Lemma 2.3 with p = 1, for every
1 <1< ko—1, we have

/n Lty <o<iy [ho (X™7H0), V™ =H(0)) A7, (0)

j=1 J

<ol [ ) LacocendSEs, (0)
H 0 V

j=1 Vi

< (CTMé)thOHOO

(Try — T (1)) (X — rmin) 2 | ol 2>
X ex : v|= +C'tjv|* ). 174
P <2Tw(x1)[1—‘l,1(1 - Tmin) + TminTw(xl)] | | | | ( )
In regard to (173) we have

1 1 )

exp( — ] ) x (174) =
[QTM% 2E1;($1)]
(Crye) ol - + ol + (€l
Q(Tw (xl)rmin + T’l,l(1 - Tmin)) QTM@

Using the definition (64) we have Ty, (1) < %TM and 171 < %TM. Then we
take

too = too(TM,kOagvc) (175)
to be small enough and ¢t < ¢, so that the coefficient for |v|? is
-1 1
+ + ()t
2(Tw(x1)rmz’n + Tl,l(1 - Tmin)) QTM%
< ! 1 Leki<o (176)
= 2(Turmin + Tia (1= Tmin)) 2T 25 T

Since (174) holds for all 1 <[ < kg — 1, by (176) the contribution of the first line
of (45) in (173) is bounded by

(Crar,) ™ 1ol - (177)
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Then we compute the second line of (45). For each 1 <[ < kg — 1 such that
max{0,t;41} < s < ¢, by (46), we have

dxko

lm

(5) = e~ Il =)gsko (1),
Therefore, we derive

t
/ /H O ()], (5)ds
j=1 J

max{0,t;4+1}

1 )
S/I_I)%lv e‘vl| (9—151)|Fg’;;ll(s)|dsdzi?m(tl)
= J

max{0,t;4+1}

1 k
< —lholleo 370 (¢
< 7. ol /H ()

(Thr = To(@1))(1 = Pin)
2T (21)[T1,1(1 — rmin) + TminTw(21)]

IN

1
lolle (Cry ) exp ( [of? + <c>lt|v|2),
(178)

where we apply (169) in the third line and we apply Lemma 2.3 in the last line.
In regard to (173), by (176) we obtain

1 ! 2 1 .
ex - o2 ) x (178) < —(Cry ) 110 ]|so-
p([2TM;fl 2Tw(g;1)M |> (178) < - (Crar.¢) Ao

Since (178) holds for all 1 <1 < kg—1, the contribution of the second line of (45)
in (173) is bounded by
ko — 1
T(CTM@)ICO [[70]loo- (179)
Last we compute the third term of (45). By Lemma 2.4 and the assumption (38)
we obtain

./H’“O‘lv 1{0<tk0}|hm_k°+2 (tkml’km Vm_k°+1(tko))|d2ﬁg_1,m(tko)

j=1 J

< o2, /
I

1
< S(CTMé)ko(i

(Tr,1 — Tw(21))(X — rimin)
P (2Tw(x1)[ﬂ,1(1 - 717’nin) + rminTw(xl)]

In regard to (173), by (176) we have

k
ko—1 1, 1{O<tk0 }dzkgfl,m(tko)

j=1 J

)* 1ol

lv|* + (C)lt|v|2>. (180)

1 1 ) .
ex - v]* ] x (180) < (C ol hall -
P <[2TM&3§1 2ﬂu](1‘1)]| | ) ( ) — ( TMyf) H OHOO

Thus the contribution of the third line of (45) in (173) is bounded by
(Crr,8)™lho(@, )| o- (181)

Collecting (177) (179) (181) we conclude that the second line of (44) is bounded
by

(Crap) > (24 )holloo- (182)

ko—1
ko
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Adding (182) to (172) we use (44) to derive
IRt 2, 0) 14,201 loo < 3(Cyy6) ™ holloe = Cocllho]loo- (183)

Combining (171) and (183) we derive (39).
Last we focus the parameters for ¢, in (40). In the proof the constraints for ¢.,
are (165), (170) and (175). We obtain

loo = too(t/v N,Cw, ||h0||(><>7TM7 k'(),f,C)
= too(k07f;TMamin{Tw(x)}acarlaﬂ\,CTM,E& HhOHOO)

By the definition of kg in (95), definition of Cr,, ¢ in (80), definition of C in (83),
we derive (40). O

Then we can conclude the well-posedness.

Proof of Theorem 1.1. First of all we take ¢t < too, where ¢, is defined in (40)
so that we can apply Proposition 1. We have

sup [ [|oo S [12(0) oo -

o Existence
For h™ given in (33), we take the difference h™*! — h™ and deduce that

6t[hm+1 _ hm] +o- Vw[hm—H _ hm] + Vm(hm+1 _ hm) — e(a—t)\v|2Am’

[+ — ) = OOl ety — e il
/ [herl(u) . hm(U)]ei[ﬁim”upeiwit”ulzda(u’U),
(z)-u>0

where

m h™ —hmt A
AT = Fgain< e(O—t)[v]2 6((Ft)IvIZ)
hm—l hm — hm_l
+ Fgain(e(eft)m2 7 e(8-1)]v]?

)+ (F ) = (P
By the same derivation as (43) (44), when #; < 0, we have

[ = hT(E @, v)

t
< [eFen [ Bu- )y
0 R3 x§2
" H (hm _ hm_l)(S,Xl(s),u/) hm(S,Xl(s),U/)

elw'1(6—s) elv’[(0—s)
hm(stl(S)au/) (hm — h’mil)(stl(s)vv/)
’ elvw'[(0—s) elv'1(6—s)
m _ jm— 1 1 m—1 1
+’(h h (s, X*( Hh sX ) )‘dwduds,
e\UIZ(O s) elv?(

where we use h™T1(0) = h™(0).
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Then we follow the computation for (168) to obtain
|R™TE — B (t, 2, v)

t
< (JA™ = B o) [ oo X / / OBy, w)
0 R3xS2

X \/u(u)e(‘"|2+‘”|2)(579)dwduds

m m— m 1

SR = B oo™ [loo (55 + V1)

S o()[IR™ = A" oo, (184)
where we take N = N(||h""]|«) to be large and t < too = too(N) to be small as
in (170).

When ¢; > 0, by the same derivation as (44), we have

t
IR R (2 2, ) s/ e|v|2<e—t>Amd8+e|v\2<e—t1>e[ﬁ7m“vl2/ Hy,
t1 jgll Vi

where Hy is bounded by

k—1

2]
\vl|2(0—s)|Am( )|d2k
e s)|d¥y,, (s)ds
— /max{o,tm} (185)

+ Loy [B R — R TEY (g, g, e ) SR, (k).
By (178) and (184), the first line of (185) is bounded by
koO(#) sup [|A° — h*™ oo = o(1) sup [|A° = h*Y|c,
£<m £<m
where we take ¢t < to = to(ko) to be small.

Then we apply (180) (181) with replacing ||h™~*o+2|| by ||hm ko2 _pm—kotl|| .
Thus we obtain the second line of (185) is bounded by

1\ ko _
(5) sup ||he —nt 1||oo.
<m

Thus in the case t; > 0 we obtain

[P = B o < 0(1);31) 125 = B oo (186)

Therefore, h™ is a Cauchy-sequence in L*>°. The existence follows by taking the
limit m — oo and the solution h = e@=DIvI° £ satisfies

. 2p _ (0-t)[v]? h h
Oth+v-Vih+|v|°h=ce r (e(0t)|v2’ e(et)v|2> . (187)

Moreover, we have
[7lloc < sup [ [loo S 1A(0)]oc- (188)

This concludes the existence of f and (24).
e Stability

Suppose there are two solutions h; and hs satisfy (187). Also suppose there initial
condition satisfy

[171.(0)loos [1F2]loc < 00
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When ¢; <0, by the same derivation as (169) and (184) we have
|7y = ha(t, 2, v)

t
S [7n = ha[(0) + ([[Pa o + ||hz\|c><>)/0 71— halloce! T {0) {1y o v + 1< }ds

1 t
S Ry = h2)(0) || + ([[R2]lo + ||h1Hoo)[O(F)||h1 = hafleo +/0 Nllh1 = ha||lsds|.

By taking N = N(||h1]|cos [|h2]loo) to be large as in (170) so that
1
(lhalloe + l11]120)O(575) < 1
we derive the L stability by the Gronwall’s inequality.

When t; > 0, the argument is exactly the same as the existence part and we
conclude the L stability for all cases. The uniqueness follows immediately by
setting hy(0) = h2(0).

The positivity follows from the the property that iteration equation (32) is pos-
itive preserving and (186). O

3. Steady problem with C-L boundary condition. This section is devoted to
the steady solution to the Boltzmann equation with the Cercignani-Lampis bound-
ary condition as mention in Section 1.2.

Remark 11. The setting of the steady solution is given in Section 1.2. We remark
here that in this section we no longer use notation u. Instead we put the subscript
140, 0g only for this section in order to avoid confusion.

To prove Corollary 1 we need the following Proposition.

Proposition 2 (Proposition 4.1 of [8]). Define a weight function scaled with pa-
rameter 9 as

we(v) = w5 (v) = (1 -+ @*[of) 2T, (189)
Assume
// g(x,v)/podzdv = 0, / ry/lody =0 (190)
QxR3 -
and B > 4. Then the solution f to the linear Boltzmann equation
v-Vof+Lf=g, J-=Pyf+r (191)
satisfies ||woflloo + [wofloo S weglloo + [we(v)7T]oo-

For the purpose of applying Proposition 2, we focus on the boundary condition
for the linearized equation f.

Lemma 3.1. For Fs = po++/ofs with Fs satisfying the boundary condition (5), (6),
the boundary condition for fs can be represented as

fsl-(z,v) =Py fs+r (192)
such that
/ r/to = 0. (193)
y—
Moreover,

7|00 S 00+ sup 6ol f(5)]sc- (194)
0<s<t
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Before proving this lemma we need the following lemma for the C-L boundary
condition.

Lemma 3.2. In regard to the boundary condition (6), we have
1

_ R(u — vz, t . du = gy r. 195
1) 0] Jnayuzg ) = e (199)
where
1 ‘/”H‘?
/J'J;,’r'”,?l — ST 5 T 5 67Q[To(l—r||)2+Tw(I)TH 2=r)] .
7?[1 o(1 —7))? + w(x)Tn(lz—Tu)] (196)
X e 2[T0(1*7¢§+Tw(1')7¢] .
To(1—ry) + Tp(x)ry
Moreover, for any x € 9Q and r|,r., we have
/ oy o An(z) - v}do = 1. (197)
(z)-v>0

Proof. Using the definition of R(u — v;x,t) in (6) we can write the LHS of (195)

as
/R |uy eXp(_ 1 [|UL|2+(1—M)|M|2])

4 11Ty (x) 2T, (x) rL
(1—T‘J_)1/2'UJ_UJ_ 1 ‘/LLJ_|2
I — — d
x 0( T (2)r L )TO x ( 2T0> UL

. (198)

x /]R? 2Tw(£li)’f’”(2 — T‘H)ﬂ'
Lo =@ =y Py 1 Juy |2
2Tu(x)  ry2—r)) ) 2Ty T (- 2T, ).

First we compute the third, fourth line of (198), in order to apply Lemma 4.2, we
set

xexp(—

e R S
2Ty’ 2T (z)ry (2 —7))’ a 1—r ’

0 (1 — TH)2 L
2Tw (x)r” (2 - ’I"H) 2T0 '
Then the third, fourth line of (198) equals to
1 b ab | | |2)
(1—7“”)2b—a b—al—r”
! 1 oy
B s - 2 )
27 To(1 —’I“H) +Tw($)7“||(2—7“”) Q[To(l —’I“H) —‘y—Tw(.CC)T”(Q—THﬂ

b—

exp (

Then we compute the first, second line of (198), in order to apply Lemma 4.3, we
set
1 1-— T 1

2T, oy T T T T

1_TL 1

7 P ST T
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Then the first, second line of (198) is equal to

ab vl 2
1 b i

1—-r,b—a

- ! exp oul )
2w [To(1 —ry) + Tow(x)r, ] 2n[To(1 —ry) + Ty (x)ry ]/

Thus we conclude (195).
Then we focus on (197). The LHS of (197) can be written as

lvy 12
/ vl e AT DFTw @] dy |
r, To(1 —r1) +Ty(z)ry

(199)

1) 12
2[To(1=7) )2+Tw(T)TH (2=r] dUH

1
x /R 2 [To(1 — )% + Tu ()7 (2 — )]
Clearly (199) = 1. O

e

Proof of Lemma 3.1. By plugging the linearization Fy = po++/tofs into the bound-
ary condition (5) and using Lemma 3.2 we obtain

o+ VTS, = in s o R(u = 32, )v/jow) fo(w) {n() - u} du

’I’L(I) : Ul n(x)-u>0
Thus
fs(v)

_ :ux,TH T Ho

Vv HO
————

T1

1 1
" \/ﬁm /n(:zr)-u>0 R(u - vz, t) \/me (u){n(z) ’ u}du.

r2(fs)
We can rewrite the boundary condition into

fs('U):Tl +T2(fs)_P’yfs+P’yfs~ (200)
Clearly by (197) in Lemma 3.2 we have

/ r1y/fo = 0. (201)

To prove the Lemma we just need to focus on r2(fs) — Py fs. By Tonelli theorem,
we have

/Xmm—amw%

— /( o {R(u — vy, t) — |n(x) m\ﬂo(v)} dv Vo @) fs () {n(z) - uldu

n(x)-u>0

- [ V) i =0
n(zx)-u>0
Thus we prove (193).
Then we focus on (194). By the assumption in (29) and ¢ < m, for x € 002

we have
lu’w,TH AN - /’LO

N

W, (V)7]00 = wp(v) loo S do-
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Then
[wp(v) [7"2(f8) - Pvfs] |
1 R(u — v;x,t)
< | floow v)i/ Rlu> viz,t) Vo (w) fs(u -udu
1000 7z oo L ol #00) }
Hax,ryry — MO
gfoo‘w v)— =~ ‘ S ol floos
o (0) 2| S 0l
where we apply Lemma 3.2 in the last line. Then we conclude the Lemma. O

Proof of Corollary 1. We consider the following iterative sequence
vV [P L =T (5 1), (202)
with the boundary condition given in the form (200)
FEN = Py () - Py St
We set fO = 0. By Lemma 3.1 we have

f{r1+r2 sz}dv—o

Since [T(f*, f4) /1o = 07 we apply Proposition 2 with (194) in Lemma 3.1 to get

wQF(fzv fz)
(v)

e pl
%Fg+>f)H < lw,o £41%, we deduce
o0

WJ”WmH%ﬂHMSH + 0olwe oot + do.

‘ o}

Since

ngf“_lnoo + |w9fé+1|oo S ||w9f[HZo + 60|wgf€|oo’+ + do,

so that for dp small, ||w,f e + |wof |
have

< §p. Upon taking differences, we

~

[f(#’l - ff] Fu- Vx[f[+1 o fZ] +L[ff+1 o fl}
=T(f = )+ =1,

ferl _ f{ = PV[]M—H _ fl] —‘r?‘z(fz) - nye +P»yf€_1 B r2(fé—1).
And by Proposition 2 again for f€+1 _ fé

||w9[f£+1 - fg]Hoo + |w9[fe+1 fe lloo S 50{||w9 f£71]||oo + ‘wg[fe - f£71]|<>0}-

Hence f* is Cauchy in L™ and we construct our solution by taking the limit f¢ — f,.
Uniqueness follows in the standard way. O

Then we focus on the dynamical stability, which is the Corollary 2. We need this
Proposition.

Proposition 3 (Proposition 7.1 from [8]). Let ||w, folloo + [{(0)w,r|oo + [|wpg]lso <
+o00 and [[ \/rog = fv rv/Bo = [ fox/ko = 0. Then the solution f

Of +v-Vof +Lf =g, f(0)=fo, inQxR>xR, (203)

satisfies

t
lwp f ()l Hwpf ()l oe < € {|wp folloo+sup eAs||wpg||oo+/0 e |(v)wpr (s)]sods}-
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Proof of Corollary 2. With the stationary solution for (26) given in Corollary 1, we
set the solution to (1) as

F:Fs+\/M0f7 Fs:\/,U/Of"i_fs‘
Then the equation for f reads
Ohf+v-Vof + Lf =L . f +T(f, f),

where

L\/PTOfs [ (\/7fba\/7f)+Q(\/7f? rfs)]/\/i

We consider the following iteration sequence
Of ™ 4o Vo f T+ LT = Ly fO+ DU ),
with
FEL =P () = Py St

Clearly [[{L s, f* + T(f5 fO)} o = 0. Recall wy(v) = (1 + Q2|v|2)§e<‘”|2 in
(189). Note that for 0 < ¢ < 1

oo it e o0}

2
<%swnwwf<mm+{wpw2wfmm}.

0<s<t 0<s<

By Proposition 3 and Lemma 3.1, we deduce

As
sup. le¥ wo T (s)]loo + sup |e% wo (5]
0<s< 0<s<t

As
S lwefolloo + 80 sup e w, f(s)]loo
0<s<t

2
As As
+%amw2%ﬂ@&+{pr2%ﬂ@m}.
0<s<t

0<s<t

For &g small, there exists a ¢ (uniform in dg) such that, if the initial data satisfy
(30), then

As
sup ||e Fwof () oo + sup e Fwo T (s)]oe < llwefolloo-
0<s 0<s<t

By taking difference f¢*! — f¢, we deduce that
O = f+ 0 Vo[ f T = F+ LI = 1
=L mnlf = AT = )+ D = 1,
£ =1 = B g P [ ) e,

with f“1 — f¢ = 0 initially. Repeating the same argument, we obtain

As As
sup [le¥ w, [/ = f(8)lloc + sup | wy[f = F4(s)|oo
0<s<t 0<s<t

ﬁ
S0+ sup Jle wof ()]l
0<s<t
As _ As _
+ sup [leF wof T (s)llse] sup [leF wo[f = F7(8)]|se-
0<s<t 0<s<t

This implies that f¢*! is a Cauchy sequence. The uniqueness is standard.
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To conclude the positivity, we use another sequence in [8],
OHF™ + v VP 4 p(FYOF = Quain(F, FY).
We pose F* = F, + \/;Tofé, then the equation for f¢ reads
Ouf ™ 4 v Vo L £ u(o) - K f
= Coain(f% 1) = (Vo f) T = v(iof) [ = v(Vio f) fs

+ = { Qun VIR VE) + Quin (T o )

It is shown in [8] that f’ is a Cauchy sequence. Thus by the uniqueness of the
solution we conclude the positivity of F' and Fs by positive preserving property of
this sequence solution. O

4. Appendix.

Lemma 4.1. For R(u — v;x,t) given by (6) and any u such that u - n(zx) > 0, we
have

/ R(u — vy x,t)dv = 1. (204)
(z)-v<0

Proof. We transform the basis from {71, 72,n} to the standard bases {e1,es,e3}.
For simplicity, we assume T)y(x) = 1. The integration over Vj( defined in (77) ),
after the orthonormal transformation, becomes integration over R2. We have

L (= A =meyPy
/Rzﬂ(?—ﬁ) b (2 =r)) o

which is obviously normalized.
Then we consider the integration over V, , which is e3 < 0 after the transforma-
tion. We want to show

2 0 _lvg 1?2 —a-r e 2 2(1—TL)1/2UJ_U/J_
— —vje "L e i 0( )

dvy =1. (205)
"L J o T

The Bessel function reads

=+ [ ’y“’“’dofz / (iycos§)* Z/ zycosm (iycos0)**
k(cos bl (Ly2)k
Z/ 1 ) dQ_Z(_l)k (5)2 )

k=0
where we use the Fubini’s theorem and the fact that

ook, T (2
/Ocos 022k(k)'

s oo r1,2\k
IO(y) — %/0 ei(*iy) C059d0 = Jo(fly) = Z %’ij)l R I()(y) = Io(fy). (206)
k=0

By taking the change of variable v; — —wv, , the LHS of (205) can be written as

N Ve Tl e T

2 [ o 7(1*T¢)\uﬂ2[0(2(1 —Tl)l/QULUL)dU
T 0

rL
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Using (206) we rewrite the above term as

© 2 Rl —lvi 12 —a-r)fug? (1 — TL)kUikuik
Z 7 vie "L e T1 —(kl)Qrzk dU,
k=0 + 70 VL

where we use the Tonelli theorem. By rescaling v, = /r v, we have

2 o0 —lvg 12 —a=r)lug |? (1 — TL)kU2ku2k
. vie - ¢ " #dv
1 Jo (k') ry
oo e e 12 (1 k, 2k, 2k
_2/ UJ_C_‘UL‘Qe% (1 —ry)"vi"u?
- 2,k
0 (kD2rf
[e's) (11— 2 k, 2k
_5 21 oo | g ZOor Dl P (1 — 7y ) uf
- vp € ve T Tk
0 (kD2rt
2k' *(1*7'7L)IHL\2 (1 —Tl)kuik *(1*7})‘“L‘2 (1 —rl)kuik
= Z2—€ L _— = e L _—
2.k k
2 (kN2 ket

Therefore, the LHS of (205) can be written as

—0rp P (1 —ry )Rk Ol Gy 2
e [ E 7]@-' = EX- [ e G =
k=0 T

Lemma 4.2. For any a > 0,b> 0, >0 witha+¢ <,

b 2 2 2 b (ate)b| 2
e es|v\ ea|v\ e blv—w| dv= —— eb-a-e |w| ]
T JR2 b—a—c¢

And when § < 1,

b 2 2 2
b eelol? galol? —blo—wl? g,
jo—

’/T b w|>§—1

b—a—e

b (ate)b

2
eb—a—¢ |w]

< ef(bfafe)é_2
- b—a—ce¢
< 571) etZaZe vl
~ b—a-—c¢

Proof.

b

™ ™

2
_ 9 e(a+€—b)|v+ﬁw|zeﬁib\w|2e—b|w|2dv
™ Jr2
b b
B N L T — = | = =P
T JR2 b—a—e

2 2 g2 b _ 2 o 2
e €5|v\ ea|v\ e blv—w]| dv = = e(a+s b)|v| eva w e blw| dv
R2 R2

(207)

(208)

(209)

(210)

(211)

(212)

where we apply change of variable v + ﬁw — v in the first step of the last line,

then we obtain (210).
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Following the same derivation
b / €E|v|26a|v|267b|v7w‘2d1}
W |‘7b7g7€u4>5*1
_b / plateb)lv— gt wf? g (@ )2
T o= =t—w|>5-1
ceam? b feompp 5 b feonpp
- b—a—c¢ b—a—c¢
thus we obtain (212). O
Lemma 4.3. For any a > 0,b> 0, >0 witha+¢e <,
b (ate)
2b vesvzeavze_bvze_bwzlo(%vw)dv R (213)
R+ b —a— €
And when § < 1,
b (ate)b
Qb/ ve“’Ze“”ze_bUZe_bwzlo(%vw)dv <d—e prate v’ (214)
0<v<d b—a—e

Proof.
Zb/ 065”2ea”267b”267bw210(2bvw)dv
R+
= 2b/ ve(““*b)lﬂ]o(2bvw)ea+b€fbw26bfbawadee*wa
R+

b2 (bw)? b (ate)b 2
=2(b—a—c¢) / vel @0 [ (2byw)eare—s dvbie b-a=c
R+ —a—c¢
b (ate)b, 2

where we use (205) in Lemma 4.1 in the last line, then we obtain (213).
Following the same derivation we have

26/ Ue“’ze’“}2e_bvze_b“’zlo(%vw)dv
0<v<é

w)? b ate
=20b—-a—c¢) / Ue(a+€7b)v210(vaw)e%dvie%ftjzwz.
0<v<é b—a—c¢
Using the definition of Iy we have

1 ™
Io(y) = f/ ere O < e,
0

7r
Thus when a — b+ ¢ < 0,

w 2
2b—a—c¢) / ve(“+5_b)”210(2bvw)ea(if)fb dv
0<v<é

2 (bw)?
< Q(b —a— 6)/ ,Ue(afb+5)v 62vbw6a7b+a
0<v<o

dp—a-e) [ ueletr g,
0<v<d

§2(b—a—6)/ vdv < 6,
0<v<d

where we use 0 < 1 in the last step, then we obtain (214). Then we derive (217). O
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Lemma 4.4. For any m,n >0, when § < 1, we have

oo 2
2. 2 2,2 _m
2m? vie ™ L h(2mnuyuy )e” " Yduy S e e, (215)
Duyr+6—1t

In consequence, for any a > 0,b> 0,6 >0 witha+¢ < b,

Qb/ v66”2e“”QG*b“26*bw2fo(2bvw)dv
b7375w+5_1
con b 216)
- b—a—c¢

b (ate)b o
< _eb-a— W, 217
=% —a—c° (217)

Proof. We discuss two cases. The first case is v1 > 2->u. We bound Iy as

1 ™
Iy(2mnviu, ) < f/ exp (2anJ_UJ_)d0 = exp (2mnv¢ul).
™ Jo

The LHS of (215) is bounded by

oo
2 n 2
2m? ve " (WL uL)” gy
max{22u, ,2u; +671}

M n
Using v1 > 2--uy we have

2
(01 — —up)? > (% + % D R %
Thus we can further bound LHS of (215) by
o0 m2v? m2
2m? vie~ 4Ldm_,§e_472.

max{2u,y,Xu; +6-1}

The second case is 0 < v < 272u,. Since J-uj +67 ! < v, without loss of gen-
erality, we can assume 1 > 6. We compare the Taylor series of v, Io(2mnv u,)

and exp (anvLuL). We have

o
m2kn2kvik+1u21€

vy Io(2mnuyuy ) = )? ) (218)
k=0 ’
and
o0
ok kpkuk ok
exp (anvﬂu) = % (219)

k=0

We choose k; such that when k& > k;, we can apply the Sterling formula such that

1 k!
<] < 2.
2~ |kke_k\/27rk| -
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Then we observe the quotient of the k-th term of (218) and the 2k + 1-th term
of (219),

2k, 2k,,2k+1, 2k
mtnStuT T ul

(k1) /( 2k + 1)! )

22k+1

22k+1m2k+1n2k+1vik+luik+l

< 4 /< mnu | )
k2ke—2konk (2k+1)2k+167(2k+1)\/m

_ de (k+1/2)2k+1 2r(2k + 1)
2rmn k

Uy
_ de (2k+1)2k+1\/2w(2k+1)< 4e* Vk
~ 2mmn \ 2k uy ~ Jmmnuy

Thus we can take k, = u? such that when k < k,,

Kk 2k, 2k, 2k+1, 2k 2 ku  o2k+1, 2k+1, 2k+1,2k+1, 2k+1
m=n ot u 4e 2 m n vl Uy (220)
(k!)2 ~ VTmn (2k + 1)!
k=k1 k=k1

Similarly we observe the quotient of the k-th term of (218) and the 2k-th term
of (219),

mzkn%vikﬂuzlk ( 22km2kn2kvikuik )
(k!)2 (2k)!

22k

< 4’01_ /( ) . 4UJ_
T kPhe2Rork’ \ (2k)2ke—2k/Ank/)  mVE

Whenk‘>ku=ui,byuj_>5_1 and v < 2;:u; we have

4UJ_ 4'UJ_ &n

Vavk = VauL S myE

Thus we have

) [
kaanvik+1uik: 8n 22km2kn2kvikuik

= (k1)? W = (2K)!

(221)

Collecting (221) (220), when vy < 27 u,, we obtain

2(1 — TJ_)l/z’UJ_UJ_)

vy Io(2mnou i u) ) ,Sexp( .
1

(222)

By (222), we have

n
2TnuL 7m2'U2 1’7,21)2
vy Io(2mnv i uy))e Le™ Uidv
w6t

m

Q%UL
< / e L) gy < gm0 (223)

ul+6-1

m

Collecting (219) and (223) we prove (215).
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Then following the same derivation as (213),

o0
2b/ ve“’Qe‘WQe_b”ze_waIo(vaw)dv
poe—swts!
>~ (bw)? b (ate)b
=2(b—a—¢) / ’0(3(‘”’54’)”21’0(2bfuw)emdviebj?w2
D S b—a—c¢
< e—(bél—(sczb—a) b egriti): w? 5 b egritejng’
- b—a—c¢ ~ b—a-—c¢
where we apply (215) in the first step in the third line and take § < 1 in the last
step of the third line. O
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