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ABSTRACT. We construct a unique global-in-time solution to the two species
Vlasov-Poisson-Boltzmann system in convex domains with the diffuse bound-
ary condition, which can be viewed as one of the ideal scattering boundary
model. The construction follows a new L?-L> framework in [3]. In our knowl-
edge this result is the first construction of strong solutions for two species
plasma models with self-consistent field in general bounded domains.

1. Introduction. One of the fundamental models for dynamics of dilute charged
particles (e.g., electrons and ions) is the Vlasov-Maxwell-Boltzmann (VMB) system,
in which particles interact with themselves through collisions and with their self-
consistent electromagnetic field:

(& v
OF, +v- -V Fy + m—*(E + = % B) VuFy = Q(Fy, Fy) + Q(Fy, Fo),
+

1.1
OF_ +v-V,F_ — ;T‘(E+ % X B)-V,F_=Q(F_,F.)+Q(F_,F_). b
Here Fy(t,z,v) > 0 are the density functions for the ions (4) and electrons (—)
respectively, and e4, m4 the magnitude of their charges and masses, ¢ the speed
of light. The self-consistent electromagnetic field E(¢,z), B(t,z) in 1.1 is coupled
with F' (¢, z,v) through the Maxwell system (see [15]). Previous studies for the VMB
system, for example the existence of global in time classical solution, uniqueness,
and asymptotic behavior without boundaries, can be found in [15], [6].

Now formally as the speed of light ¢ — oo, one can derive the so-called two
species Vlasov-Poisson-Boltzmann (VPB) system, where B(t,2) = 0. And the field
FE, that we are interested in, is associated with an electrostatic potential ¢ as

E(t, ) := =V, ¢(t, ), (1.2)
where the potential is determined by the Poisson equation:
— APt x) = /3(F+ — F_)dv :=p. (1.3)
R
In this paper we consider the zero Neumann boundary condition for ¢:
% =0 for z € 99. (1.4)
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It turns out that the presence of all the physical constants does not create essen-
tial mathematical difficulties. Therefore, for simplicity we normalize all constants
in 1.1 to be one, and the VPB system takes the form:

615F+ +v- vxF+ + E - VUF+ = Q(F+,F+) + Q(F+,F7),
OHF_ +v-V,F_ —E-V,Fy = Q(F_,Fy) + Q(F_,F_).

The collision operator between particles measures “the change rate” in binary hard
sphere collisions and takes the form of

Q(F1, F2)(v) := Qgain(F1, F2) — Qioss(F1, F2)

= / [(v—u) - w|[Fy () Fe(u) — Fi(v) Fs(u)]dwdu,

(1.5)

(1.6)

where ' = u — [(u — v) - wjw and v = v + [(u — v) - w]w. The collision operator
enjoys a collision invariance: for any measurable G, G,

/Rs 1 v B2 QG Gav=[0 0 0], /}RsQ(Gth):o. (1.7)

It is well-known that a global Maxwellian p satisfies Q(-,-) = 0 where

(o) = (2;)3/2 exp (- '“f) (1.8)

Throughout this paper, let’s use the notation

(1.9)

— if,=
L:—l-or—,anddenote—L:{ ’%L +
+ ,ife=—.

Being an important equation in both theoretic and application aspects, the Boltz-
mann equation has drawn attentions and there have been a lot of research activities
in analytic study of the equation. Notably the nonlinear energy method has led to
solutions of many open problems [14, 15] including global strong solution of both the
VMB system and the VPB system, when the initial data are close to the Maxwellian
1. One thing to note is that these results deal with idealized periodic domains or
whole space, in which the solutions can remain bounded in H* for large k.

In many important physical applications, e.g. semiconductor and tokamak, the
charged dilute gas is confined within a container, and its interaction with the bound-
ary often plays a crucial role both in physics and mathematics. So it’s natural to
consider the equation 1.5 in a bounded domain €2, and the interaction of the gas with
the boundary is described by suitable boundary conditions [4, 24]. In this paper we
consider one of the physical conditions, a so-called diffuse boundary condition:

F,(t,x,v) = cu,u(v)/ FE,(t,z,u)(n(x) - u)du for (x,v) € v_. (1.10)
n(z)u>0

Here, v_ = {(z,v) € O0xR3 : n(x)-v < 0} and n(x) is the outward unit normal at a

boundary point z. A number ¢, is chosen to be v/27 so that ¢, fn(m)_u>0 w(u)(n(x)-

u)du = 1. Due to this normalization the distrubution of 1.10 enjoys a null flux

condition at the boundary:

F,(t,z,v)(n(z) - v)du = 0 for z € 9Q. (1.11)
R3

One can view this boundary condition as one of the ideal scattering model.
However, in general, higher regularity may not be expected for solutions of the
Boltzmann equation in physical bounded domains. Such a drastic difference of
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solutions with boundaries had been demonstrated as the formation and propagation
of discontinuity in non-convex domains [23, 7], and a non-existence of some second
order derivatives at the boundary in convex domains [16]. Evidently the nonlinear
energy method is not generally available to the boundary problems. In order to
overcome such critical difficulty, Guo developed a L?-L® framework in [13] to study
global solutions of the Boltzmann equation with various boundary conditions. The
core of the method lays in a direct approach (without taking derivatives) to achieve a
pointwise bound using trajectory of the transport operator, which leads substantial
development in various directions including [8, 7, 16, 17]. There are also studies on
different type of collisional plasma models such as a Fokker-Planck equation with
some boundary conditions (for example, see [19] and reference therein).

The main goal of the paper is to study the 2 species VPB system coupled of
1.5 with 1.2 and 1.3, which describes the dynamics of electrons in the absence of a
magnetic field. From 1.7 and 1.11, a smooth solution of VPB with the diffuse BC
1.10preserves total mass:

// F,(t,z,v)dvdx = // F,(0,z,v)dvdz for all ¢ > 0. (1.12)
QxR3 QxR3

We assume that initially Fy(z,v) satisfies
// (F+(0,2,v) — F_(0,z,v))dvdz = 0. (a neutral condition) (1.13)
QxR3

Then [, { [gs (F(t,z,v) — F_(t,z,v))dv} dz = 0 for all ¢ > 0 from 1.12. This
zero-mean condition guarantees a solvability of the Poisson equation 1.3 with the
Neumann boundary condition 1.4.

There are some previous studies for the one-species VPB system (which is ob-
tained by letting F— = 0) with physical boundary conditions. For example the
time asymptotics of a solution to the VPB system is studied [5] under some a priori
assumption on the solutions. In [25] renormalized solutions (no uniqueness) were
constructed for the VPB system with diffuse boundary condition. Recently in [3]
the authors constructed a unique global strong solution to the VPB system with
diffuse boundary condition. They also had a weighted WP, 3 < p < 6 estimate
for the solution of such system. This regularity result was later improved in [2]
where the author obtained a weighted W1 estimate for the solution under the
appearance of an external field with a favorable sign condition E - n > 0 on the
boundary which will be explained later.

We consider a perturbation around pu:

F, = i+ iifi. (1.14)

Then the corresponding problem is given by

Oufs +0-Vofs =V6-Vofs + 5 - Vofs (115)

;ﬁczw, Vi(Fe 4 F) =T fo+ £) — v Voo,

2
_ﬁQ(\/ﬁf-‘m u) -

atf— +'U'va— +v¢vvf— -

NS

Vof-
2

QUL ) - ;ﬁczw, VA~ 1) =T fo+ f2) + v VouR
f(va’U) = fO(xaU)7
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3]
—A,P(t,x) = /RS Vil fy — f2)dv, 8% =0 for z € 0, (1.16)

fut,x,v) = cu\/ﬁ(v)/ Vi) fo(t, z, w)(n(x) - u)du for (z,v) € y—. (1.17)

n(z)u>0

g1 hi
F = h = let
ora= ] n=[in]

_ L [2Q(/mgr p) + Qp, (91 + 92)) | _ N
Ly= N [2Q(\/ﬁgz,u)+Q(u, VA9 +92))} =vlv)g— K. (1.18)

Here the collision frequency is defined as

v(v) = fczlossfu 2 [ [ =) wlpduds ~ ), (119)

It is well-known that for hard-sphere case,

L 1
P — ain 9 = — ain s — k v, U U du,
\/ﬁ(v)Qg Vi1, 1) \/ﬁ(v)Qg (ks V/g1) /]R 2(v, u)g1 (u)
1
m@loss(ﬂa \//7g1) = /]R3 kl(U,U)gl (u)du,
with
ky(v,u) =wlv — u\e‘%7
omu? _Lv2=lu? (1.20)
ko(v,u) =nlv —u|te” 8 e sh-ul®
Thus

Ko — %anin(\/ﬁglaﬂ) + Q(”’ \/ﬁ(gl + 92))
9= %anin(\/ﬁg%u) + Q(M7 \/ﬁ(g1 + 92))

_ [fRs ko (v, u)(3g1(u) + ga(u))du — [os ki (v, u)(g1(
Jrs Ko (v, 1) (3g2(u) + g1 (w))du — [ ki (v, u)(g1(u) + ga(u))du]
The nonlinear operator is defined as
F(Q, h) = Fgain(g7 h) - Floss(ga h)
— i [anin(\/ﬁgla \/ﬁ(hl + h2) - Qloss(\/ﬁgh \/ﬁ(hl + h2)):| (122)
f anin(\/ﬁg% \/ﬁ(hl + h2) - Qloss(\/ﬁg% \//j(hl + h2)) '

Then for f = [j}] 1.15 becomes

Ouf +v-Vuf = V6 -Vof + a5 -Vof + Lf =T(f.f) —awv - Voy,  (1:23)

<
&
-
)
V]
~—
S
&
=
U
S
| I

1
1l
Let’s clarify some notations. We denote
wy(v) = eIl (1.24)

The boundary of the phase space v := {(z,v) € 99 x R3} can be decomposed as
v- = {(z,v) € 92 x R* : n(z) -v < 0}, (the incoming set),
vy = {(z,v) € 92 x R® : n(x) -v > 0}, (the outcoming set), (1.25)
Y0 = {(z,v) € 90 x R* : n(z) -v = 0}, (the grazing set).

where ¢ = {(1) _01} and ¢ =
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For any function z(z,v) :  x R® — R, denote

z|2, = 22dy, |23 _ = 22dy, |22, = 22 n(x) - v|dvdx
2,+ 2, 7,2 T
T+ -

Now for any vector-valued function f,g : Q x R® — R2, with f = B}], and

g= B +] , let’s clarify the following notations:

\fl o= 1fel +1f=1s f9:=fr9+ + f-g-,

)= [ /Q g = / /Q (hgi ot fog-) dva,
=) o= 4] or =[5
L, = / g~ / A+ 15
= / [Py ~ / (U7 + £ 7). £12., // |FIPIn(z) - o|dvd,

1O = [[ i~ // (U (0P + £ ()[P)dvdz,

1 (®)lloo := sup @I+ 11

z,v)ENX

1.1. A new distance function. Throughout this paper we extend ¢, for a nega-
tive time. Let

ds(s,z,v) = ¢g (z,v) for —oo < s <O, (1.26)

where ¢, (x,v) satisfies —A¢y, (z,v) fR fo+ — fo,—)\/mdv.
The characteristics (trajectory ) is determined by the Hamilton ODEs for fi and

f— separately

d Xf(S't z,v)| VI (s;t,2,0)
ds V (s;t,z,v)| fLquSf(s,XLf(s;t,x,v))

with (X[ (t;t,2,0), VI (t;t,2,0)) = (z,v).
For (t,x,v) € R x 2 x R3, we define the backward exit time t'l’;L(t,sc, v) as

for — oo < s,t < o0, (1.27)

t{)_’L(t,aﬁ,v) =sup{s > 0: X/(r;t,z,v) € Q forall 7 € (t — s,1)}. (1.28)

Furthermore, we define at{u(t,x,v) = X/ (t -ty (t,2,0);t,7,v) and v{;L(t,x,v) =
VIt - tb,. (t, z,v);t, z,0).
Definition 1.1 (Distance Function). For € > 0, for t = + or — as in 1.9, define

t—tf,(tz,v) +e
e

. [1 - X(t—tl{,b(t;x,v) +e>}

afe (t,z,v) = X( )|n(z£7L(t,x,v)) ~v{;7L(t,x,v)\

(1.29)
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Here we use a smooth function x : R — [0, 1] satisfying
x(t)=0, 7<0, and x(7)=1, 7 > 1,

d (1.30)
d*X(T) €1[0,4] for all T € R.
-

Note that af.,(0,2,v) = af,.,.(0,2,v) is determined by fy and its extension
1.26. For the sake of simplicity, we could drop the superscription / in X/, V.7, t£ .

f f J ;
Ti, ,» Up,, unless they could cause any confusion.

Also, denote
afet(t,z,v) 0

0 afe—(tz,v)|’ (1.31)

afe(t,z,v) =

and let [ag o (t,2,0)] = afc (7, 0)] + afe(tz,0)].
One of the crucial properties of the new distance function in 1.29 is an invariance
under the Vlasov operator:
[& +v-Vy —(Vyoy- Vv]ozf,w(t,x,v) =0. (1.32)

This is due to the fact that the characteristics solves a deterministic system 1.27
(See the proof in the appendix). This crucial invariant property under the Vlasov
operator is one of the key points in our approach.

It is important to note that a different version of the distance function which has
been used in the author’s previous paper [2] to establish the regularity of the one
specie VPB system is not applicable here. In [2], the weight & took the form

1/2
t,2,0) = [l0- V(@) + €(a)? — 20+ V(@) - 0)elo) ~ 2E(0.7) - VE(@)E()
(1.33)
for x € Q close to boundary, where Z := {Z € 9Q : d(z,Z) = d(x,0Q)} is uniquely
defined. And ¢ was assumed to be a C® function £ : R® — R such that Q = {z €
R3: &(z) < 0}, 00 = {z € R3 : £(z) = 0}, and VE(z) # 0 when [£(z)] < 1. And
the domain was assumed to be strictly convex:

> 0i6(2)¢i¢; > Cel¢|® for all ¢ € R® and for all 2 € Q = QU Q.
,J

One of the crucial property this & enjoys is the velocity lemma:
{Or+v- -V, + E-V,}altz,v)| < vla, (1.34)
when under the sign condition
E-n>0d>0, on0Q, (1.35)
where n is the outward normal vector. This can be seen by direct computation:
{0, +v -V + E-V,}&%(t, z,v)| ~ [v|a® + Ce(E, V. E,0.E)v|¢(x), (1.36)
for some bounded function C¢. Now under 1.35, we get an extra stronger control
for ¢(z) from &2, and therefore the second term on the right-hand side of 1.36 can
be bounded by:
Ce
infycon E(t,y) - VE(2)
Thus combing 1.36 and 1.37 we obtain 1.34. This means &(¢,z,v) retains its full

power under the transport operator, which is crucially used for establishing the
theories in [2].

Celv|é(x) < [W(E(t,T) - VE@))E(2) < %&2@,%@) (1.37)
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Thus it’s clear that without the last term in 1.33, i.e. in the case F - V& =0 on
09}, in order to have the £(z) control from the second term on the right hand side
of 1.36, we can only obtain

|{at +v- V£ +E- V’U}&Q(ta 3}‘,1])| 5 |’U|6[(t,$, U)' (138)

Therefore a(t, z,v) suffers a loss of power under the transport operator, and would
result it’s been inapplicable for the situation here.

Therefore the previous distance function & would work only under a crucial
favorable sign condition 1.35. But for the two species VPB system, it’s clear from
the equation 1.5 that if one requires the sign condition for the field for F, i.e.
—V¢-n > 0, then inevitably one would have +V¢-n < 0, so the field for F._ would
fail to satisfy the sign condition. We note that the similar & has also been used by
[12], [18] in the study of one-species problem of Vlasov equation.

Thus one of the major benefit for this new distance function « is that it only re-
quires the zero-Neuuman boundary condition E-n = 0 (see Lemma 2.1, Proposition
4), and therefore with £V¢-n = 0 from 1.4, we can apply this distance function to
the two species VPB system 1.5.

1.2. Main Theorem. The main goal of this paper is the construction of a unique
global strong solution of the two species VPB system with the diffuse boundary
condition when the domain is C® and convez. Moreover an asymptotic stability of
the global Maxwellian y is studied.

Here a C3 domain means that for any p € 99, there exists sufficiently small

81 > 0,85 > 0, and an one-to-one and onto C3-map
np i {x) € R? : lz | <01} — 92N B(p,da), (1.39)
o= (2),1,7),2) = Moz, 7))

A conver domain means that there exists Cqn > 0 such that for all p € 92 and 7,
and for all ) in 1.39

2
> GGoomy(x)) () < —Cal¢[* for all ¢ € R (1.40)

i,j=1

Theorem 1.2. Assume a bounded open C3 domain Q C R® is convex 1.40. Let
0 <9 <9 <K1. Assume the neutral condition 1.13 and the compatibility condition

oules) = e /i@) [ foule ) V) e oy (1)
n(x) u>0
Then there exists a small constant 0 < €9 <K 1 such that for all 0 < € < ¢ if an
initial datum Fy = p+ \/pfo > 0 satisfies
||w19f0HL°°(Q><R3) <g, (1.42)
and, recall the matrix definition of o in 1.31,

2 2
||w1§a§f07avx7vfo||Lp(ng3) <e for 3<p<6, 1— 2; <pB < 3’ (1.43)

and

||w1z,~va0HL3(QxR3) < 00, (1.44)
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then there exists a unique global-in-time solution (f,¢y) to 1.15, 1.16, 1.17 such
that F(t) = p+ /uf(t) > 0. Moreover there exists Aooc > 0 such that

sup " lwy f () || oo (xrsy + sup "5 (t)|lc2 () S 1, (1.45)
>0 >0
and, for some C > 0,
||w1§a?)svx,vf(t)HLp(Qst) < et forallt >0, (1.46)
and, for 0 < §=46(p,B) < 1,
IV f (Ol s @yri+smsy St 1 for all ¢ > 0. (1.47)
Furthermore, if (f, ¢f) and (g, ¢4) are both solutions to 1.15, 1.16, 1.17 then
1£(t) = g(®) |l Lr+saxrsy St 1F(0) = g(0)|| Lrvsaxrsy for all t > 0. (1.48)

The proof of Theorem 1.2 devotes a nontrivial extension of the argument of [3]
now for the two species VPB system. One of the major difference here is the L2
coercivity estimate.

We now illustrate the main ideas in the proof of Theorem 1.2 which largely
follows the framework in [3]. In the energy-type estimate of V., f in O/Ji .-weighted
LP-norm, the operator v - V, causes a boundary term to be controlled:

¢
/ / / |a? Vo flP|n - v|dvdS,ds. (1.49)
0 JoQ Jn-w<0 ’

It turns out this integrand is integrable if

-2
g>"L = sothat n. uPP=PHl c L1 (R3). (1.50)

On the other hand to control the terms in the bulk we need a bound of ¢f(t) in
C2. A key observation is that

1 1
H/ Vs sy [ (A R
RR3 LE(Q) T = 1Y% el Lo* (o) LP(QxR3) p P
(1.51)
which leads C*%F-bound of ¢ by the Morrey inequality for p > 3 as long as
_Bp* -2
afyfﬁ € L},.(R*) for some Bp* > ]p%l (1.52)
The proof of 1.52 can be found in [3], where the authors employ a change of variables

v (xﬁ(t,x,v),tﬁ(t,x,v)), and carefully compute and bound the determinant of

the Jacobian matrix to get

_ 2. Fy|1-8p*

/ cffp*dfu < / (= 73) ?(xb)‘ dx{ + good terms < oo, (1.53)
lvj<1 7 boundary |£C — J/"b‘?’_ﬁp*

which turns to be bounded as long as Sp* < 1.

In order to run the L2-L> bootstrap argument we need to prove the L? coercivity
property of the solution f (Proposition 6). This is one of the major difference from
[3], as here for the two species VPB system, the null space of the linear operator L
in 1.18 is a six-dimensional subspace of L?(R?; R?) spanned by orthonormal vectors

{CGH AR R v | R
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(see Lemma 1 from [15] for the proof). And the projection of f onto the null space
N(L) can be denoted by

Pf(t,z,v)
ot [ otem | G e G [V o522 [ ]

Using the standard L? energy estimate of the equation, it is well-known (See [15])
that L is degenerate: (Lf, f) = ||v'/?(I — P)f||L? . Thus it’s clear that in order
QXR

to control the L? norm of f(t), we need a way to bound the missing ||P(t)| 7> term.

From there we adopt the ideas from [7] and apply it to our setting (two species
system). By using weak formulation of the equation 1.23, we properly choose a set
of test functions:

o = [—=(v]* — ﬁa)\/ﬁ%VMM]
N e (e RV M
o [0 b)\/ﬁaj@i} 193
b,1 — (’L )faj@i ) 2,7 s Ly Iy

N)“’l\?

(1.56)
R [|v]? ij\fo”!]gpb( )] i#£]
b2 | vPo; /004 (x) | ’
e = [(Jv[? _Bc)fv-vmtpc}
¢ _(|U‘2 _60)\/ﬂv'vw¢c ’
where g, (t,z), gp(t,x), and p.(t, x) solve
7A50a = a:‘:(tax)7 8n80a |BQ =0,
y - (1.57)

—Apl = b;(t,x), @lloa =0, and — Ap, = c(t,z), @eloa =0,

and carefully choose 8, = 10, B, = 1, and 5. = 5 to satisfy 7.11. Integrating against
those test functions fg (¢,1.23), we can nicely extract the L? norms of the N(L)
projections of f: |jax(t)||22, ||b(t)]|22,]|c(t)||?2 through the term (v - V. f,¢). And
therefore we recover the bound for the missing ||P f(¢)||2, term from the L? energy
estimate of f.

Finally we use L2-L> bootstrap argument to derive an exponential decay of f in
L>. The main idea here is to control f; and f_ separately along their trajectories
(X4(s),Vi(s)) and (X_(s),V_(s)) by using the double Duhamel expansion, and
then use change of variables to get the L? bound. But here as we are working with
the two species system, it’s important to note that in the process of the double
Duhamel expansion, a mix of trajectories would occur 8.25. That is if we start
with either © = + or —, both the f; and f_ terms would appear in the first
Duhamel expansion of f,. From there we perform the second Duhamel expansion
by expanding f along (X4 (s),Vi(s)), and expanding f_ along (X_(s),V_(s)).
And then we treat them using two different change of variables

u— Xy ('8, X, (s;t,x,0),u), ur— X (858, X,(s;t,m,0),u) (1.58)

accordingly to get the bound with || fi|[z2 + || f=| r2 in the bulk. But thanks to the
L? coercivity (Proposition 6) which gives control to the whole ||f||z2, we can take
the sum > _, |f,| and close the estimates.
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2. Preliminary. In this section, we give some basic estimates of initial-boundary
problems of the transport equation in the presence of a time-dependent field E(t, x),
and f here is assumed to be a scalar valued function f(¢,z,v) : [0,00) x @ x R® — R
satisfies

Of+v-Vof+E-V,f+9f=H, (2.1)

where H = H(t,z,v) and ¢ = 9(t,x,v) > 0. We assume that E is defined for all
t € R. Throughout this section (X (s;¢,x,v), V(s;t,z,v)) denotes the characteristic
which is determined by 1.27 with replacing —tV ¢ by E.

Lemma 2.1. Assume that Q is convez 1.40. Suppose that sup, |E(t)||c1 < oo and
n(x) - E(t,z) =0 for x € 0Q and for all t. (2.2)
Assume (t,z,v) € Ry x Q x R® and t + 1 > tp(t,z,v). If v € OQ then we further
assume that n(z) - v > 0. Then we have
n(xp(t,z,v)) - vp(t, z,v) < 0. (2.3)
Proof. The proof is the same as that of Lemma 1 in [3]. But since we are going to
use some of the argument for later purpose, let’s present the proof here.

Step 1. Note that locally we can parametrize the trajectory (see Lemma 15 in [16]
or [22] for details). We consider local parametrization 1.39. We drop the subscript
p for the sake of simplicity. If X (s;¢,z,v) is near the boundary then we can define
(Xn, X)) to satisfy

X(s;t,x,v) = n(X) (51, 2,0)) + Xn(s;t, z,0)[-n(X) (s; 1, 2,0))]. (2.4)

For the normal velocity we define
Vi(sit,z,v) == V(s;t,x,v) - [-n(X)(s; 1, 2,v))]. (2.5)
We define V| tangential to the level set (n(X|) + X, (—n(X)))) for fixed X,,. Note

that
A(n(z)) + za(—n(z))))
al‘”’i

Ln(z)) fori=1,2.

We define (V) 1,V]2) as

X | x - an(X”)D. (2.6)

V= (V - Vn[—n(Xn)]) ' ( oy dr) ;

Therefore we obtain
Vi(sit,z,u) = Vo[-n(X))] + V) - Vg n(X)) — Xo V) - Vo n(X)). (2.7)
Directly we have
X(sit,,u) = X - Ve (X)) + Xon[—n(X))] — Xn X - Ve n(X))-

Comparing coefficients of normal and tangential components, we obtain that

Xn(s;t,x,v) = Vo(s;t, z,0), XH(S;t,xm) =V(s;t,z,v). (2.8)
On the other hand, from 2.7,
V(s) = Val=n(X))] = Va Ve (X)X + V] - VI n(X) X + V] - Ve (X))
= XV (X)) = Xa Ve XV = Xp V) - V3 (X)) X

i

(2.9)
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From 2.9 - [-n(X)))], 2.8, and V = E, we obtain that
Vls) = [Vi(s) - V(X () - Vii(s)] - n(X () + E(s, X (s)) - [-n(X(5))]
= Xu(8) [V (s) - V2n(X () - Vi (5)] - (X (5))-

Step 2. We prove 2.3 by the contradiction argument. Assume we choose (t,z,v)
satisfying the assumptions of Lemma 2.1. Let us assume

(2.10)

Xn(t —tp;t,x,v) + Vo (t — to; 6, z,v) = 0. (2.11)
First we choose 0 < ¢ < 1 such that X,,(s;t,z,v) < 1 and
Va(s;t,x,v) >0 for t —tp(t,z,v) < s <t—tp(t,z,v) +e. (2.12)

The sole case that we cannot choose such £ > 0 is when there exists 0 < § < 1 such
that V,(s;t,z,v) <0 for all s € (t — tp(t,x,v),t — tp(t, z,v) + ). But from 2.8 for
s€ (t—tp(t,z,v),t —tp(t,z,v) +0),

0 < X, (s;t,x,v) = X, (t — tu(t, z,v);t,x,v) +/ Va(rit,z,v)dr < 0.

t—tp (t,z,v)

Now with € > 0 in 2.12; temporarily we define that ¢, := ¢ — tp(t,x,v) + €,
e = X(t — to(t,x,v) + &;t,2,0), and v, = V(¢ — tp(t,2,v) + ;t,2,v). Then
(Xn(sst,m,v), X (85, 2,0)) = (Xn(8; b, Tu, v4), X (854, T4, v4)) and
(Va(sst,z,0), V(s;t,2,0)) = (Vs s, 24, 04), V) (85 s, T4, U4 )).

Now we consider the RHS of 2.10. From 1.40, the first term [V (s) - V*1(X(s)) -
Vi (s)] - n(X)(s)) < 0. By an expansion and 2.2 we can bound the second term

E(s, X(s)) - n(X)(s))

(2.13)
= E(s,0,X)(s)) - n(X)(s)) + [ E(s)l[c2 O(| Xn(s)])
= [|E(s)llc1O(| Xn(s)])-
From 1.27 and assumptions of Lemma 2.1,
Vii(s; 8, 2, 0)| < vl +to(t,2,0)[[ Elle < o]+ (1+ )] E|oo-
Combining the above results with 2.10, we conclude that
Vn(s;t*,x*,v*) S (v + (1 —I—t)||E||OO)2Xn(S;t*,x*m*),
and hence from 2.8 for t — tp (¢, z,v) < s < &,
d
7Xn ;t*v *y Ux Vn ;t*, *9 Uk
g5 X0 (8300 @ay V) + Va8 6, 0] (2.14)

S (vl + 1+ t)HE||00)2[Xn(3§t*»x*vv*) + V(85 i, Ty v4)]
By the Gronwall inequality and 2.11, for ¢ — tp (¢, z,v) < s < t,,
(X (85 s T, Vi) + Vi (85 by T, 04)]

< (Xt = to(t, ,0)) + Vi (t — tu(t, 2, u))] e+ AFDIEI)?)

~

=0.

From 2.12 we conclude that X,,(s;t,z,v) = 0 and V,,(s;t,z,v) = 0 for all s €
[t —tb(t,z,u),t — tp(t,z,u) + €]. We can continue this argument successively to
deduce that X, (s;t,z,v) = 0 and V,,(s;t,z,v) = 0 for all s € [t — tp(t,z,v),1].
Therefore x,, = 0 = v,, which implies x € 02 and n(z)-v = 0. This is a contradiction
since we chose n(z) - v > 0 if z € 9. O
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Lemma 2.2. Assume that, for A7 >0, §; > 0,
sup MY E(t) |0 < 61 < 1. (2.15)
t>0

We also assume & (v) < ¥(t,z,v) < C(v) for some C > 0. For e satisfying

26,
— 2.1
€ > A > 0, (2.16)

there exists a constant Cs, n, o > 0 such that, for allt > 0,

¢
/ / |h|dvyds
0 Jyi\vg

t (2.17)
< Comsr { ol + [ 1) + ][04+ 092 + -9, 4 (o) s
0
If E € L™ does not decay but
[E®)]le <0, (2.18)
then for e > 0,
t
/ / |h|dvyds
A (2.19)
t
< Csten { [lholl1 +/ I1h(s)]|1 + ||[8t +v-Vo,+E -V, + w]h(s)Hlds } ,
0
where we have time-dependent constant Cs .0 > 0.
Proof. See the proof of Lemma 6 in [3]. O

Lemma 2.3 (Green’s identity). For p € [1,00), we assume f € L} (Ry x Q x R?)
satisfies
Ouf +v-Vof +E-Vof € I (R LP(Q x BY), f € LE (Rys LP(v,).
Then f € C) (Ry; LP(Q x R?)) and f € L} (Ry; LP(y-)).
Moreover

T T
1FT)E + / L = IO + / e
(2.20)

N R RNV

Proof. See the proof of Lemma 5 in [3]. O
Proposition 1. Assume the compatibility condition
folz,v) =g(0,2,v) for (x,v)€~_. (2.21)
Letp € [1,00) and 0 < ¥ < 1/4. Assume
Vafo, Vofo € LP(Q X R?),
Ve wtb0:9: Va,wtb Vg, Va,o 60,9, Vautbpg € LP([0,T] x 7)),
V.H,V,H e LF([0,T] x 2 x R3
ey, e 1P g € LP([0,T] x Q x R3
el gy € L= (0 x RB),em“lzg € L*=([0,T] x v-),
el /e L°(0,T] x Q x R3).

)
)
)
) (2.22)
)
)

}
}
[
}
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Then for any T > 0, there exists a unique solution f to 2.1 such that V., f €
CO([0, T]; L7 (2 x R?)) N L}((0,T); L (7))

Proof. See the proof of Proposition 2 in [3]. O

Lemma 2.4. Assume E(t,z) € CL is given and 2.15 and

sup M2t ||V E(t)]|oo < 02 < 1, (2.23)
t>0

with Ay + 09 + & < 1.Then there exists C > 0 such that

[V, X (s;t,2,v)| < Cecgz(/\z)_2\t —s|, for all max(t —tp(t,z,v),—¢€) < s <t
(2.24)

Proof. See the proof of Lemma 9 in [3]. O
3. L™ estimate. Let t = + or — asin 1.9. We set F'(t,z,v) = g and ¢° = 0. We
then apply proposition 1 for £ =0,1,2... to get a sequence F* such that
OF N f .V FH — VetV EH
= anin(Ffv FLE + FEL) - QIOSS(FLEJA? FLZ + FfL)?

(3.1)
—A¢>‘:/ F{ —F'dv /gsfdx:o o,
R3 + N ’ Q ’ on loq ’
and, on (z,v) € v_,
F(tz,v) = cuu/ Ff(t,z,u){n(z) - u}du, (3.2)
n(z)-v>0
and F*1(0,2,v) = Fy, (7, v).
Then f*1 solves
[0+ v Vo = qVad! - Vo v+ g5 - Vo'
= }(fZ —qv- nge\/ﬁ + Fgain(fe7 fe) - FlOSS(feJrla f@)’ (33)
¢*
—A¢' = I d/fd:O— =0
o = [t = v, [ dar=o T <o,
Denote the characteristics (X7*, V;*) which solves
d
£Xf(s;t,x,v) = Vf(s;t,x,v),
J (3.4)
& yt(sit ) = 96 (s, X (s:1,.0)).
s
tfb(t,x,v =sup{s < t: X'(s;t,z,v) € 9N},
¢ £yl
z1 ,(tx,v) =X/ (¢ (¢t x,v);t,z,0),
1,L( ( 1,L( ) ) (35)

):
E
té;l(t,:v,v,vl) :=sup{s < tl{’b : Xf_l(s;th(t,m,v)w?b(tw,v),vl) € 00},
asgzl(t,x,v,vl) = Xffl(tgzl(t,as,v,vl);t?L(t,x,v),xf,L(t,x, v),v1),

and inductively
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ti:(kil)(t T,V,V1, " aUk:—l)
=swp s < (0 XTO T A e €00
xi:(k_l)(tvxvvvvh'" 7/Uk71) .
(k=1 = (k1) e—(k—2) €—(k—2
= Xf (k 1) (tk7b( );tk—(l,b )3 k—(l,L )7vk*1)'
Here,
tf;(lil) = tf;(lil)(ta TyV,V1, " 7Ui71)7
xf;(’_l) = ‘rf,:(l_l)(u T,0,V1, """ ,Ui,1)~
Proposition 2. Assume that for sufficiently small M > 0, such that
M
lwo folloo < =5 (3.7)
then there exits T*(M) > 0 such that
sup max ||wg fC ()]s < M. (3.8)
o<t<T* ¢
Proof. We define
RE(t, z,v) := wy(v) (L, z, v). (3.9)
By an induction hypothesis we assume
sup [|hf(t)[loo < M. (3.10)
0<t<T*
Then A" solves
vz ‘. vv
0+ v Vo = Vs’ - Vot v+ g5 - Vo' - q¥]hf+l
9
h£ hf h€+1 hé
=K £ . ¢ r in\= >~ ) Foss S 3.11
wyh" = q1v - Vo wy /1t + wyl'ga (wﬁ,wﬂ) wyl') (w19 wﬁ) (3.11)
a6 = [ - sOvide, [ das=0 o5 _
et 0T B P T oonlaa
where K,,,( - ) = wng(w%9 -). The boundary condition is
REFY, = C#W§\/ﬁ/ hlwy ' /u{n - u}du. (3.12)
n-u>0
We define
‘ )= vi(t,x,v) 0
VAL LU= 0 Ve (t,x,v)
. V(U) + % . vd)[ _ vz(bijjuwﬂ 0
) 0 v(v)— 3% Vot + 7vw¢i§“wﬂ)
(3.13)
From 3.10, for M < 1, ||[V¢*|l < 1 and hence
¢ 41/0
v, (t,z,v) > ?@) (3.14)

Let 0 4 V4
K h
Ce gVt gain(—, —) == | 75| 3.15
g qv-Vo'y/u+ Ty (W,wﬁ) 4 (3.15)
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Note that
[wog’| S 110" |os + () [IR°]12,, (3.16)
where we have used
h h
I'(—,—) < h||%. 3.17
wal (o 20 S Wl (3.17)

Consider the trajectories of hﬂ“ and h'*! separately from 3.11,

%{e* N Vf(ﬂxf(T)va(‘F))dTthrl(8, Xf(s; t,2,0), VLZ(S; t a2, U))}
—e N Vf(T’Xf(T)’VLe(T))dT{Kwﬁ,Lhe(s,Xf(s), VLZ(S)) + wqggf(s,Xf(s), VLZ(S))}
(3.18)
From 3.18 and 3.12, we have
hf“(t,x,v)
= 1y <oe™ S0 R0, X1(0), V(0))
t
v/ e LV o+ wog!)(s, XL (st ,0), Ve (st ))ds (19
max{t{yL,O}
ot
+ 1% ,>0€ O h“_l(t{,u Xf(tli,ﬁ t,z,v), ‘/Lz(tf.,b; t,z,v)).
We define
1
Wy(v) = ————. (3.20)
wy (v)y/p(v)
From 3.12,

the last line of 3.19
I v 1
=1y spe T —
e wy (V1))

/ REEL, 2t o) (o )eppdn(at,) - vr Jduy.
n(mf )-v1>0

We define V(x) = {v € R® : n(z) -v > 0} with a probability measure do = do(z)
on V(x) which is given by

do = cyp(v){n(z) - vido. (3.21)
Let
V., ={v; eR®: n(xﬁz(J_l)) -v; > 0} (3.22)

Then inductively we obtain from 3.19, 3.18 and 3.12,

Pt (¢, @, 0)]

— [Evt e+l ¢ ¢
< 1t{,L§06 oY |R(0, X, (0), V7(0))]
t
+ / e S Ky B wag!) (s, XE (it ,0), VE(sit,0))|ds (3.23)
max{tliw,()}
*f:e Vf
e 1,c

+ 1, 0~7/ |H],
1200y, (VAL ) 2 v
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where |H| is bounded by

21%;‘ oG- 0y B0, X105 00), V(05 00)) [ A0, (0)
=1

k—1 4 f-0-1

I3

1 £—1 —(1—1
1= Jmax{t{] 0} {ti1, <0<t 7y
= I+1,00

XKy 0w g (s, X[ (s500), VT (s500) A, (s)ds

+ {0<t5 . 1)}|hé (k— 1)( (kfl),xf;:(kfl) Op—1)|dT g 1L(t§; L(k 1))

where

e e -
A7 (s) = {I52), doy, ) x {e " sy (u)don, }

(3.24)

Hé_:ll{ei ft;:lw VZ U/ﬂ(Uj,b) M(,ijb)da-j,b}y
wy(v;)\/1(v;)

and

X (s 0) = X (s s L(l D xf (= 1),111),

VI (siu) =V (it Y Y ), (3.25)

vj,b = ‘/Lf—j (t?L(] 1) t ,tf L(] 1)75(5?;(]'71)71}]‘).

Step 2-2.  We claim that there exist 7" > 0 and ko > 0 such that for all k& > ko
and for all (¢,z,v) € [0,T] x Q x R3, we have

14 k/5
/Hk_lv Lt (ot e i 1y50y 5K UNQ{z} ' (3.26)

=1 Vit

The proof of the claim is a modification of a proof of Lemma 14 of [16].
For 0 < § < 1 we define

0—(j— _

V2= {u; €Vt oy (2l YT > 6, oy <071 (3.27)
Choose )

T = . 3.28

FEIET e 2 IETE (3.28)

We claim that
(=(G=1) _ 40— 0—(—1
#0026 for vy €V, 0<t<T, 0 <UD, (3.29)
For j > 1,

t—j
¢
J+1,e . 2
- =(G-1) =0G-1)
VEI(s; ti, LT, ,vj)ds

L—(3—1)
tj,t/

l—(j—1
= |'Tj+1,b -y L(j )‘2

l—j 14 1 l—(j—1
|(:I;j+iL _xj L(] )) n(xj,L(j ))‘

L—j
tiii,.

Vv

—(G-1) £—(—-1 —(i—1
. SV it U0 28070 ) n(al U ))ds‘

- )/+ Yj / Vsbe‘j(T,Xf—j(T))dT).n(x§;<j—1>)ds)

G-1 LD
It
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—(j—1 1—(j—1 0—j
> oo (wjf” NS0 =23

J+1L
—\/2 / | VX)),

(G-1)

where X/~ (1) = X9 (r; fb(jfl),xﬁ,:(jfl),vj).

Here we have used the fact if z,y € 09 and 99 is C? and Q) is bounded then
|z —y|? Zq [(x —y) - n(z)|. Hence

—(j-1
|vj-n(xjfﬂ o]
i L —1) e—(j—1) 2
. |t£ +1 ‘/z G-1) Vi (st g ,0;)ds
Jst ] L
4—(j 1)
|t ” tj+1 L|

J+1 B s . i I (i (i (i
‘/" /L(j—l) V' (r, X} J(T;tm(j 1)’wj,L(j 1)7Uj)) -n(xj,b(] 1))d7—d8‘

(G—1)

4 1 — 1

|’f,(j Pt 2+ 19TV — 2 PIvelIA
1 —

_|_§ sup ‘v(bé ](T XZ ]( = (G-1) 2 (j—-1) j))~n(:v£ = 1))|}

; ]L ) ]L Jst
e—j e~ (i=1)
t657] <r<tt

~

(3.30)
For v; € V‘»S 0<t<T, and te._(j_l) >0,

—1 /— 1
SO 1LY HeT A TRV |12 + IV |0 )

We choose T' as 3.28 then prove 3.29.

Therefore if te (k=1) > 0 then there can be at most {[ ] + 1} numbers of
Um € Vm ,forl < m < k — 1. Equivalently there are at least kK —2 — [T?] numbers
ofUZEV“\V for 0 < i <m.

Let us choose k=N x ([5—9] 1) and N = ([%] + 1) > (C > 1. Then we have

k—1
/k—lv. 1{ ;;L(k D, w,v,v1,~~,vk—l)>0}d2k_1

j=1 Vi

v - n(zy,

e -

NL/4 g0,
< 7 /{ there are exactly m of v; € VﬁL } H Cop(vy)™*dv;
m=t and k—1—mof v; € Vi \V¢, =1
[%]Jrl m k—1-m
k—1 1/4 1/4
< Cop(v)/*dw Cop(v)*/*dv
m=1 m 1% V\V3
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Step 2-3. We define a notation

1 oIl = 22
o —olv —ul? — o2 1T L 3.31
T R (3.31)

ko(v,u) := v —

F0r0<%<g,if0<§<g—%then

2
?lo]

ko (v, u) Sks(v,u). (3.32)

eOlulz ~

See the proof in the appendix.
Moreover, for 0 < % < g, (see the proof of Lemma 7 in [13])

19|v\2
/Rs k, (v, w) & T —rardu < (v)~L. (3.33)
Also, we have
-1 7~ -1 _
sup w9 (V5.0) v/ 1(V5.b) < H efy+1 VeI ()% H M2 (o —tjt1,.) < M7t
j=1 vj 'LUﬂ('Uj) V lu(v]) ~ j=1 j=1 -
(3.34)
and
D Lpet cocpt--ny = Ly-omn gy (3.35)

Then from 3.16, 3.14, and 3.23, 3.24, 3.26, 3.34, and 3.35, if we choose ¢ > ky and
0 <t < T where kg and T in 3.26, and let M? < vy, we have

A (¢ 2, 0)

< [le” 10t ho|l

t
+ 1000 [ ey (Vo)) o, X s, 0), ) s
0} R3

max{t‘i’L ,

L—(1—1)

tl,l,
+Cksup/ 6_%”0“_5)/ / ko (V" (s;01),u)
U Jmax{t{] r3 JR3

z+1 0

R (s, X (5500, w) [{n(an) - v} \/ﬁd”ld“ds

t )
+ / (VE (s, 2, 0))e™ 2 25707 o= Tro=0) 2 () 12, ds

max{t{ 0}

L—(1—1)

.

+ Cj sup (V7 (s m))
l max{tflll 0}
fL“ v Hm
x el e 1 ) [ ds
t
e[ e v s
max{t’i’ll,()}

f-=1)

+ Cj sup Y ||e*%”0(t*S)V¢)£*l(s)||Oods

-1
l max{tlJrLL,O}

(3.36)



TWO SPECIES COLLISIONAL PLASMA 1377
k/5 3 e (k—1)

1 —3ug(t—t, ) g (4 f—(k—1)

{3} et R B,

where we used the abbrevia‘%ion of 3.25.
vi=ln)

From fg(Vf_l(s; v))e” S 7 97ds <1 and 3.33, we derive that
IR B loo S IREH B lloo + B (B)lloo
Sellh(0) oo + o)1t ") llos (3.37)
e sup 1A () oo + M Sup 1R ()|

By taking supremum in ¢ and choosing M < 1 and 0 <t <T* < T with T" <« 1,
we conclude 3.8. O

4. Weighted WP estimates.

Proposition 3. The main goal of this section is to prove the following weighted
WP estimate for the sequence f* in 3.3 Let us choose 0 < 9 < ¥ < 1 and

-2 2
p—<ﬁ<7, for 3 <p<6. (4.1)
p 3
Assume f' solves 3.3, and for some T > 0
sup sup |Jwyf ()]s < 1, (4.2)
£>0 0<t<T
sup sup eM||V,6 (t)]|o < 61, (4.3)
£>0 0<t<T
with
o1
0< —<kq 1. (4.4)
Ay

Then there exists T** < 1 and C > 0 such that the sequence 3.3 satisfies

max sup  E°(t) < C{llwo follsotllwj follhHllwsaf, Ve follp+V e folf 4 } < oo.
20 g<t<T** ’

(4.5)
where we define, for 0 < e <K 1,
EFH(E) ==lwa f T (Oloo + Nwg O + lwgale Voo fH @I
' B 041 ! 041 (4.6)
+/O |w1§af€£vx,vf (1) Z7+ +/0 lws f () 27_‘_.

To prove this, we need the following results:
Proposition 4. Assume ¢¢(t,z) obtained from 1.16 with V¢ satisfies 2.15 and
sup 6A2'5|\V2q5f(t)||Oo < < 1. (4.7)
t>0

Then for v = + or — as in 1.9, for all 0 < o <1 and N > 1 and for all s > 0,
x €,

du
e e LY )
u|< 6,09y Ly
and, for any 0 < k < 2,
efc'\'ufu|2 1 <
/u|>N v —ul2=% ayp. (s, T, u)adu R 61,882, 1 (4.9)
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Proof. It is important to note that from 2.15 we have n(z) - V¢; = 0 for all z € Q.
Thus for both trajectories (Xi(s;t,z,v), Vi(s;t,x,v)), their corresponding fields
FV. 05 satisfy FV, ¢ -n(x) = 0. Therefore we can apply Proposition 3 from [3] to
afe .+ and ayp. _ separately to conclude 4.8 and 4.9. O

Lemma 4.1. For any 0 < 6 < 1, we claim that if (f,¢y) solves 1.16 then
¢r(®)llora-s@) Soe llwof(t)llee for all = 0. (4.10)
Proof. We have, for any p > 1,

[ = £Vt Lp(msmﬂ/p(/ngﬁ(v)1@@) o £(2)

Then we apply the standard elliptic estimate to 1.16 and deduce that

16r @) llwzr ) S llws f(E)]o-
On the other hand, from the Morrey inequality, we have, for p > 3 and ) C R?,

165 B)llcra-s/n(0) Sp.a 6(E)lw2r()-
Now we choose p =3/ for 0 < § < 1. Then we can obtain 4.10. O

To close the estimate, we use the following lemma crucially.

Lemma 4.2. Assume 4.1. If ¢4 solves 1.16 then

195 212 g < (€1 PP{F @l + 0 Vaf DN} for p>3. (411)
Proof. Applying the Schauder estimate to 1.16, we deduce
160 o3 ) S | [ (1O = £ ide]| 1y o or 93 (412)

By the Morrey inequality, WP C C™'% with p > 3 for a domain Q C R? with
a smooth boundary 02, we derive

H / (£ (1) — £ (1)) /o]

" @)
< £) = /() ido |
S| [ - rwval,, o (113)
1/q
< ([nan) 1Ol + | [ Valr0 - @R,
R3 R3 Lr ()
By the Holder inequality, for ¢ = + or — as in 1.9,
| [ Vbt o) iy
R3
< H¢ p Oéfsb(t r ')Bvfo(t z )’
~ MNage, (ta, )P llLz=@s)ll 0™ U ey (4.14)

p—1

u(v ﬁ P
_ ( /R ”d) e (b, VPV £ty 2, )l -

’ O‘fy&b(tvxvv) Pt

4.144

Note that p 2 < Bp < ?’ppl < 1 from 4.1. We apply Proposition 4 and conclude

that 4.14; < < 1 Takmg LP(Q)-norm on 4.14 and from 4.13, we conclude 4.11. O
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We need some basic estimates to prove Proposition 3. Recall the decomposition
of L in 1.18. From 1.19

[V,r(v)] < / |w]p(uw)dwdu < 1. (4.15)
R3 Js2

Recall the definition of k,(v,u) from 3.31. From 1.20 and a direction computa-
tion, for 0 < p < é,

[o]%+]utv|?
Bkt (0, 0+ 0)| = Ci Oy, (Jule™ =77 ) Sky(v,u+v),  (416)
and
w2 w2 —ludol?)?
Op, ka(v,u +v) = C, U1(| | 5 e 8lul? )
_ G i WPl [of? — |u+0f?] us
Jul © 4|ul |ul 4.17
SEE g2 o
<€ e 16]u]
|ul

For g1,92 : R3 = R, g = [zl}, we define
2

Kog(v) = [fRa Voka (v, u)(3g1(u) + ga(u))du — [o5 Voki(v,u)(g1(u) + g2(u))du
Y ’ fRS vka(vv ’LL)(?)QQ(U) + g1 (u))du - fRs vvkl (Uv u)(gl(u) + 92(u))(iu18)
From 3.32, 4.16, and 4.17, .

0K Vug(0)] S Z/ lki(,u+v)
% (13 Vg1 (u+ )| + |15 Voga(u -+ v)])du

< / kg (0, ) w3 Vg ()|,
RS

w;(v)
wi(u+v)

w; Kog(v)|

Z/ 92+ 0 2 (g 00|+ g+ )l

w3 (v)
S [ Rolw. ) 22 R g

S wogllso-
(4.19)

For g = [gl} and h = [21} the nonlinear Boltzmann operator I'(g, k) in 1.22
2 2

equals

T(g,h) = |:f]R3 Jez lu - w|(hy 4+ ha) (v +ui)gi(v + u|)\/mdwdu}
’ Jis Jiz |- @] (hy + ha) (v +u)ga (v + up) /(o + u)dwdu
|:fR3 Jez [ - wl(h1 4+ ho) (v + u)g1 (v \/ﬁdwdu]
fRa f§2 |u - w|(h1 4+ ho)(v+ u)ga(v dedu ’

(4.20)
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where v = (u - w)w and u; = u — u). Following the derivation of 1.20 in Chapter
3 of [10], by exchanging the role of \/z and w™!, we have

lwoT'(g, 1) S [lwogll / k(v u)|wyh(u)|du,
* (4.21)

ol 1) S ol ([ atoudlwagtaldu-+ @lwog(o)]).

By direct computations
VuI'(g, h)(v)
= Volgain(9, h) = VoTloss(g: h) (4.22)
= Tgain(Vog, 1) + Tgain (9 Voh) = Tioss(Vogs 1) = Dioss (9, Voh) + T (g, h).
Here we have defined
I'y(g,h)(v) =Ty gain — L'vloss
|:IR3 Jsz [u - w](hy 4+ ho) (v 4 ui)gi(v+ u))V mdwdu}
Jzs fSQ |- w|(h1 + h2)(v+u)ga( v—l—u” V(v + v)dwdu

|:f]R3 Jso [u - w|(ha 4 ha) (v + u)g1 (v mdwdu}
s Joo T~ wl(B1 + ha) (v + u) g2 (v) Vo /(v + w)dwdu] -

(4.23)
Note that
(w5l gain(Vog, B)| + [w5Lgain(g, Voh)]|
< (lwogllse + lwohlloc) { IwsTgain(| Vgl w51)| + [w5Tgain (wy ', V)| }
S (lwoglleo + lwoh|l) / / [(v—u) EU; { Vwﬂh(( ))| + |Z;;g(§/))| }dwdu.
Then following the derivation of 1.20 in Chapter 3 of [10], by exchanging the role
of /i and w;l, we can obtain a bound of

|wq§Fgain( v9, )|+|w19 galn(gav h)|

< Qhwoglle + ool [ o) Zj:j(z) (w3 Vug ()] + |wgVoh(wldu (4 oy

S ([wsglloo + lwohlloo) /ﬂ@ kg(v, u)(|wsVog(u)] + lwsVyh(u)|)du.

Clearly

wg(v) 1
~Foss 7vvh < %) — ~Vvh 2d
im0, Vo) 5 e [ <t () i)

S lhwagle [ Koo wlos 7,b(u)fdu,
R

|w1§FIOSS(vvg7h)| N <U>||w19hH00|w1§vvg(v)|~
For T, 10ss (g, h) defined in 4.23,

(4.25)

|w19 vloss(ga
W3 1
’9 | q9g|// W|——— [wyh(u)|V,\/p(u)dudw (4.26)
R3><82 wy(u)

§< >|wﬂg|||wﬂh\|oo-
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For I'y gain (g, h), following the derivation of 1.20 in Chapter 3 of [10], by exchanging
the role of \/ir and w;l

w(v) w
|'LU19 gam(gu | < ||U)19h||oo// ’LL - U |w::(1}/) wﬁ qudw

S lwohle | o) lwag(w)ldu.

(4.27)

The next result is about estimates of derivatives on the boundary. Assume 3.2
and 3.3. We claim that for (z,v) € vy_,

Voo 2,0)] < (0)/1(0) (1 + ) X 4.29. (4.28)

v
n(z) - vl

with

/ s {00 192014 920 DI Tanf b )]+ (w474 17D
n(zr)-u>

+ (L+ [Jwy flso + llws £ lso) /]R Ko (u,u) (| (u)| + £ (o)) de!
() (£ + £ + u(u) D) (Vo] + Iqub‘*lI)}w(u){n(x) -u}du.
(4.29)
From 3.3,
O fHL(t, 2z, v)

_ 1 £4+1 & o 41 ! £+1 v I pb4+1

—{os N e L AR R
+Vfl+1_Kfz_Fgain(feafe)+Floss(fe+1af£)+Q1U'vx¢l\/ﬁ}~

(4.30)

Let 7 (z) and 72(x) be unit tangential vectors to 9 satisfying 71(z) - n(z) =
0 = m»(z) - n(x) and 71(x) X 7a(z) = n(x). Define the orthonormal transformation
from {n, 7,72} to the standard basis {e1,es,e3}, i.e. T(z)n(z) =e1, T(z)m(x) =
ey, T(x)ma(x) = e3, and T = TT. Upon a change of variable: v/ = T (x)u, we
have

n(x)-u=n(z) T'z)w =n@)'T (z)u = [T(z)n(2)]'v =e -u = uj,
then the RHS of the diffuse BC 3.2 equals
i@ [ T )
uf>

Then we can further take tangential derivatives 9, as, for (z,v) € v_,

Or 1t 2, 0)
=CuV /”' n(z)- u>0 Z(tv T, u) V N(u){n(aj) ’ u}du (4’31)
+ v/ p(v) Vo fi(t, z,u) agT uy/ p(u){n(x) - u}du.

n(x)-u>0
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We can take velocity derivatives directly to 1.17 and obtain that for (z,v) € v_,

Vo (tzv) = ¢, Vo/p / ity u)/p(u){n(z) - u}du,(4.32)

(z)- u>0

OF (ta,0) = cun/u(v) o fE (8 w) () {n(z) - uhdu.

n(x)- u>0
For the temporal derivative, we use 1.23 again to deduce that

f€+1 (t T 'U)

v / {0 Vel + V'™ Vo — a5 - Vet T s

(z)-u>0

fl ! + Pgain(fe 17 feil) - FlOSS(fe, feil)
— quu- Va0 i V() n() - uldu

(4.33)
From 4.30-4.33, 1.20, and 4.21, we conclude 4.28.

Proof of Proposition 3. Step 1. Note that by our choice of f!, we have 9, f'(t,
z,v)|y_ = 0. Therefore combing 4.31, 4.30, and 4.32 and the assumption that
\Vm,fo|§7+ < 0o, we get 4.5 is valid for £ < 1.

Thus it suffices to prove the following induction statement: there exist T%* < 1
(and T** < T*(M)) and C > 0 such that

if max sup E™M(¢)
0<m<£0<t<T**

<C{llwy folloo + llws foll5 + llwgaf, Vawfolll + [Vrwfolh 4} < 00,

then sup ETL(1) (4.34)
0<t<T**
<C{llwg folloo + lwg follh + llwgaf, Vawfollh + [Vrufolh 4 3.
Define
ot (t,,0) i [V(v)+ % Vit oy g vt (4.35)
From the assumption 4.2, we have that v(v)+2-V,¢! > Y2 and v(v)— 2.V, ¢! >

V(v)
From 1.16, 1.20, and 4.21, we can easily obtain that, for 0 < p < 1

t
1
st Ol + [ 1=+ [ g

< g O + [y oo / / o fLP

r ) [ f] s 0r [ e 22 g
t t t
D A R M T

(4.36)
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Note that by the Holder inequality, 3.33, and 3.32,
[ s tep [ kato,wlws o) jduds
R3 R3

1
< llwg f I o k(v, u)" kg (v, u) P fwg £ ()| du

Ly (4.37)
1 1/q 1/p
< lops g ([ etan) (] ket opan)
R3 R3 I
S o(W)llwg L, + g FI2,.
From a standard elliptic theorem and 1.16, we have
! ¢ ! ¢
Jreez s [ rwari (1.39)

Now we focus on fot \wﬁf“‘l\if in 4.36. We plug in 3.2 and then decompose

75 U4 \75 where € is small but satisfies 2.16. This leads

[
< (Lo )
+ /Ot /6\(2 </y+(l’)\’yi($) wgl f¥v/p{n - u}du)p
< (/ \/ﬁ{n-u}du)p/q /t lwsf Iy + +/t /WW wg f/ul?

/ s 2, + / / s

From 3.3, Lemma 2.2, 4.21, and 4.37

t
/41
/()I%f* -

< Jlws FO)2 + / g f2 4+ (1+ wa o) / 1wz OB + wy £ ).
(4.39)

Collecting terms from 4.36, 4.37, 4.38, and 4.39, we conclude that for sup,>g
lwsfillee <1,

t
¥/ 1 A
s P BIE + / vt g+ |

t t
S llws O + (1 + IIwﬁJ”||0<>)/0 (g £lI5 + llwz f +/0 wg f 1)

< N P 4 m
S wif Ol + (o) +1(1 + [lwof ) max | = sup 7.

(4.40)
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Step 2. By taking derivatives 0 € {V,,,V,,} to 3.3,
[0+ v Ve —qVad" Vo +vge o [(wsdf ) = wsG, (4.41)

where

G = = 00 Vo f N 4 g0V - Vo f 4 O gain (f, ) — O 1oss (S, 1)
— Olv(v) +ap - VO (tw)] T — 0K f' — 10(0 - V.6 V).

(4.42)
Here we have used
Vot wy = Vot wy (82, 0)
[. w3
)+ 5 Vel () T 0
. [' _
0 v(v) — 3 - Vot(t, ) + 7v’”¢w:”wﬂ
(4.43)
Denote
v V.ot - Vyws
Vot iws+ = v(v) + 9 V(i?e(t,x) + xT?Uﬁa Vet wz—
v V.o - Vyws
= — — - Vei(t, DA
o) = 5 V() +
From 1.32 and 4.41, for « = + or — we have
1 _
§|w1§a’?e LOFT PO 4 v VomiVad - Vo 4 vge ] [wgells O
o Nwzdf 0+ v Ve iVad Vo e J w0 fE (4.44)
—-wﬁa?faJaf‘+wp ger

From 4.15, 4.43, 4.18, and 4.23
1G] S IVaf ™ + V2|V f
+ |Fgain(af£a fe)| + |Fgain(f£a 8fz)| + |FIOSS(JM+17‘9JM)|
+ Tioss (O, FOL+ KOS 4 1F ]+ [Togain(f6, F9)] 4 [Totoss (£, 1))
+ K f] + wo () T2V + V2O A+ f[wa fH o). )

Now we apply Lemma 2.3 to 4.44 to both ff_“ and f! separately and add them
together to obtain

t
¢ 1 0
lwsa? OF L + /vauw@gﬁ“M+Ah%ﬁ%a

< wgaf, Of(0)|I7

/|w19 ?L] afZJrl /// p| ffg ~(aff+1)p71|gf+1|'
QxR3

4.46,_ 4.464

(4.46)
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First we consider 4.46g. Directly, the contribution of |V, f*| +|V2¢¢||V, f/!]
of 4.45 in 4.46¢g is bounded by

1+ sup [V26]) / lwga, of 2. (4.47)

From 4.19, 4.24, and 4.25, the contribution of |Tgain (¢, Of%)| + |Tgain (O, f)| +
ITioss (FEHL, 0| + | KOf*| of 4.45 in 4.46¢ is bounded by

(1+ sup [fwaf*(s)llo + S IIwﬁf“l(S)lloo)
0<s<t

/// |ozf,Z ww‘?fé+1 )P~ 1/ lape (V) ko (v, w)wy(v)f* (u)|dudvdads.
QxR3
(4.48)

The estimate of 4.48 is carried out in Step 3.
From 4.25, the contribution of |Tjess (9T, f¢)| of 4.45 in 4.46g is bounded by

(3] / 3%, wyal, 7. (4.49)

For the |f“*1| contribution of 4.45 in 4.465, we bound

/ J[ putale @ty daduas
QxR3

< 1/]9 B 41 |p—1 0+1 M
N /0 //QX]R3 Vg, Wi OF TP ws f o D7 dzdvds

t
O[] i e o () / J[ st
0 OxR3 QxR3

(4.50)
Here we have used the fact that, from 1.24 and 4.3
loge o (s,2,0)]
< 2(1s+12tb(s,x,v)|vb(8ax7 U)| + 18§tb(s,z,v)+1)
(4.51)

0 s
<14 ol + / V6! (r, X (7 5,2, 0)dr + / V6! (r, X (3 5,2, 0))dr
0

S (L4 [lwy folloo + 61/A1)(v),

e} S,T,V B )P
and from 4.1, 5L < (14 61/A1) x o5 < (14 61/A).
From 4.26, the contribution of |I‘y’1oss(f”17 19| of 4.45 in 4.46¢ is bounded by

t
Hwﬁf[-‘rl”oo/ // p|w§a§£7eaf£+l‘p—1

x Jage o ()17 (Whwg (V)ws(0) " lwo f(s, 2, )| o (re) (4.52)

Stwar e [ [ wdiorvs [ e},

where we have used, from 4.51, |a e (v)|? (v)wg(v)wg(v) ™t S 1.
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From 4.19 and 4.27, the contribution of |’y gain| and |K, f| in 4.46g is bounded
by

1+ sup o) LI e twgor= oy [ kotw.w “’?8 ()

t
D[] e ot s war o)) / I
o JJaxrs 0<s<t

(4.53)

where we have used, for 1/p+1/p* =1 and 0 < ¢ < p, from 3.32, 3.33,
[l 0o = = [ kafos gl ) duds
[ a0 a0s05 71 @) [ e, (o) 7 )

A

‘af’f,s(””ﬁ 1/ 241 -1
< —_— pwa p
< [ L) Pwgaf, 07 o)

1/p* 1/
X (/RS ké(v,u)du> ’ (/RS ké(v,u)|w1§fz(u)|pdu> pdv
(/ |(v)YPws a? Af 1 (v) |pdv) </ / (v, w)|wg f*(u )|”dudv>
(/ |1/1/pw1§a§e,5(9fl+1p> g (/Rs w5f€|p)p

Note that from the standard elliptic estimate and 1.16,
16Ol < | [ (75 = £t 00/l

Then from 4.54 we bound the part of w;(v)~Y2(|Ve!| + |V2¢|) (1 + lwe f|oo)
of 4.45 in 4.44 by

t
s ) [ gt orts e L g 4 v
xXR3 9

t
S (1+ ||w19f£+1||oo)/ // |w1§a?2768f€+1|p71w51/4(|vd,4| + |V2¢¢))
0 QxR3
t
S+ ||w19f€+1||oo){0(1)/ // |w1§04'?e756fé+1|1}
o JJaxes
t
s [ wgel orp / L 16 s [ /}
0 QxR3

t
0(1)(1+||w19f£+1||00)/ // |w1§a?gaaf£+1|p
0 QxR3 ’
t t
R A AR
0 QOxR3 ’ 0 QxR3

where we have used, from 4.51, ase (v)Pwy(v) 712 < wy(v) V4,

N

N

SNF@) | Lraxrsy. (4.54)
Lr(Q)

(4.55)



TWO SPECIES COLLISIONAL PLASMA 1387

Step 3. We focus on 4.48. With N > 0, we split the u-integration of 4.48 into the
integrations over {|u| < N} and {|u| > N}.
For {Ju] > N} and 0 < ¢ < g, by Holder inequality with % + p% =1

/ k(007 )

1/p*
1
B
<ot (v E / ks(v,u) ——————
| fl,e( )|<L_i |u\2N Q( )afe1,E’L(u)5p>

1/p
x ( /M k@(vm)a?zl,ﬁfe(ml”)

1/p
. a?@,e(v) </ | ké(%“)a?e_l)saff(uﬂpdu) ,
u|>N

(4.56)

where have used Proposition 4 with 8¢ < B —p—l =1 from 4.1.

Then the contribution of {|u| > N} in 4.48 is bounded by

t B
1/ B 041 _plagee(v)]
v/ Pwsa, 0ff Tt (v)Pt
/o /Q/veR3| br e ) (v) 7
ws(v)
X k, (v, u)—2 W3
/|u|2N ol )wé(u)

t 1/q
« [ [([viroroon)
0 v
1/p
([ gt ol i)
|lu| >N v

t
/ Wil wsa, aff+1(s)||gds+/0 lwgal,_, 05" (s)|2ds,

Af (u)|dudvdazds

(o7 v B
where we have used, from 4.51, % <1 for fin 4.1, 3.32, and 3.33.

(v) »
The contribution of {|u| < N} in 4.48 is bounded by, from the Hélder inequality,

t
1 p _
/ / [ i wgel OF T )

Qre Blwsal?, aft(u
/ Zk (v, u) v)| % (v )‘1‘ VoS e ﬁ( ”dudvdmds
lul<N 2 wg(u)  (0)P=V/Page ., (u)

/ 0 Pwga?, oFeH (st
B 0
Wi,y Of (u 1/
x[// (/ Zké(v,u)| A f; >|du>pdvdac] "ds. (4.58)
QJR3 Mul<N 1 e, (u)

where we have used 3.32 and the fact |aze |?/(v )% <1 from 4.51 and 4.1.
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By the Holder inequality, we bound an underlined u-integration inside 4.58 as

—p*glv—ul?

1 1/q
AP o € WV 4.59
Iwieics D8 Ol < (2 [ o i) - 459

where 1/p+1/p* = 1.
It is important to note that for « = + or —,

—p*Glv—ul 1 1/p* 1 1, 1/p*
</ ¢ _ =8 *du) < ’ _ <N *B‘ . (4.60)
R3 |’U - ulp aflfl,e,L(u) P | : |p O‘fgfl,a,L(')p

By the Hardy-Littlewood-Sobolev inequality with

1+ L = ! + !
p/p 3/pr SR
we have
|' : * ll‘lgN v B H 1 ) ll‘lgN -
T g, ()PP ) BERCTEINOLT P
S PV
~ afefl’w(.)p*ﬁ Lfﬂ(g;l) ®)

3(2;;1) p—1
L, <n P
< M= dv
3 D 5 (p )
R opeor . (v)7—17 " 20

1, 2/3
= (/ — —llsN dv) .
R3 af571767L(’l))36/2
3p=2

For 3 < p < 6, we have 3 - < 1 and % < pp%l. Importantly from 4.1 we have

(4.61)

% < 1. Now we apply 4.8 in Proposition 4 to conclude that
1y <m 2/8
—=—d < 1.
</ et e, (0) )2 > S
Finally from 4.58, 4.59, 4.60, 4.61, and 4.57 we bound
t
1
(1:48) o) [ 1} wgef 011
t
F s uof O+ s fwof ) [ lwgad, O8I
<s< 0

0<s<t
(4.62)

Collecting terms from 4.47, 4.48, 4.49, 4.50, 4.52, 4.53, 4.55, 4.57, and 4.62 we
have

t
4.464 50(1)/0 vyt Pwgall, o+
t
Ht sup [V O)) [ lwge 08 (463)
0<s<t 0 ’

t
U sup waf (9o +81/80) [ g s
0<s<t 0
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+(1 4+ supg<ys wo f4(5) oo + SuPg< szt [wo f(5) ] 0)
t
x o Ulwg A5 + lwgafe, OFE).

Step 4. We focus on 4.46,,_. From 4.28 and 4.29,

[ o) ol Py Ve )Pl oo
n(z)-v<0 (464)
< / ()P u(v) E (|n(x) PP+ 4 |n() .u|<ﬂfl>p+1) x |4.29[Pdo.
n(z)-v<0
Note that for 0 < 9 <, 1 we have u(v)%wg < eCll®
On the other hand, from 4.1, we have

for some C' > 0 when |v| > 1.

-2
B-1p+1> pr —p+l=-1, [|n(z) v|BVPHle Ll (R3).  (4.65)

Now we bound [4.29|P. For the first line of 4.29, we split the u-integration into
75 () U~y (x)\75 (x) where € is small but satisfies 2.16. By the Holder inequality

{Z/ () o'wm?faevrvvﬂ(svﬂf’u>l{w@afe,5,b<u)}5<u>m{n<x>~u}du}
1=+ ) u>

5 { / (z) |w1§a?2’1,svxv1}f€(37x,u)|p{n(1‘) . U}du}
75 (z

p/p
X { Z/ {wlﬁ,'aff—l’eyL(u)}_ﬁp |n(x) -u|,u3du}
=+ 775 (%)

+{ s o f o)t () )}
Y4 (@)\75 () '

. p/p
X {Z/ {wﬁafg_l,E,L(Saxau)}iﬁp |n(z) : u|‘upsdu} 5 p* = P
=t Y1+ @)\ ()

(4.66)

Note that aye . (s, 2,u) # |n(x) - u| for (z,u) € v4 in general. From 4.1, Bp* < 1.
From 4.8 and 4.9 with v = 0, we have a;gﬁ,f’lie7b\n(x) ul S Oz;faﬂtw €L}, .({ueR?}).
Since L@(m)(’”) 1 0 almost everywhere in R3 as ¢ | 0, by the dominant convergence

theorem, for 4.4, we choose € := %1 Lol
4.66 < 0(1)/ |w1§a?271$€vx,vfé(37x,u)|P{n(m) cutdu
75 ()

(4.67)
* / wiafs s Vawf (5,2, 0)P ()’ {n(x) - u}du.
v+ @)\75 (@)

Now applying Lemma 2.2 and 4.44 to fi and f¢ separately and adding them
together, the last term of 4.67 has a bound as
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t
/ / / |wq§a?2,l EV%,Ufe(s,as,u)|pu(u)p/8{n(ac) -u}dudS,ds
0 JOQ 'y+(:v)\'yi(ac) 7 (468)

t
S lwgaf, Vaw FOU5]5 + /0 lwgelfe s Vaw fII5 +4.69,

where, from 4.41, 4.42,

t
/0 //Q y 10+ v Vi = gV ™ Vi 4 vge o JwgpBal, ) Voo fP] (4.69)
X

t
S N T e A (4.70)
0 QxR3

t
- / / / Vot (10 [0y Vi £ (4.71)
0 QxR3
Clearly 4.70 < 4.63|¢«—¢—1. And, from 4.3,
t
4.71 < (51/0 ||w1§a?£_1)svw,vft’”g.

Now we consider the third term of 4.29. From the trace theorem WP(Q) —
W' ?(0Q) and 4.54

V6™ lzr 0 S V™,
Then
LA @i +
% (V2! + Va0 V() {n(e) - u}du} ds,

Lo gy S VO lwrr@) S llwg /™ e @xpe). - (4.72)

ot (4.73)
S (L4 wo floo + [lws f o) <Z ||V¢>m|’£p(am)
m=£{

S At llwaf Nloo + lwo f 5 loo) (lws FNTn ems) + 105 f b nray)-

For the second term of 4.29, by the Holder inequality with }%—i—% =1for3 <p <6,

{ L (st 1)+ (o e+ o)
n-u>

u, ')/ ’
< / Bl ) ) (1 )| + £ () - o) - u}du}
R

s |n-u/|t/p
P
< (/ 0(|f”1|p+|fZ|p){n'u}\/ﬁdU) + (L4 lwo floo + llwa f o)
n-u>
! I — / /
X/R3 (/R:skg(u,u)|n~u| q/pdu)pq
X/ o (u, ') (|fE ()P + [fH () P)|n - o' |du’ du
R3

< (1 woflloo + IIwﬂf“lHoo)/ (ISP + £ P) - ubdu

n-u>0

(4.74)
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S (U flwafloo + we fH o) (lwa flloo + s fH oo)-
Collecting terms from 4.64, 4.67, 4.69, 4.73, and 4.74 we derive that
4.46.,_

< lwgold, Vo fO)u(u)/3)

t t
+o(1) ( / wyal, . of" 5,+) - / (1+ wo f oo + s £+ 1 oc)

T (o<1>+ sup o f' ()]0 + sup [[wo F(5)llow + sup |wﬁff+1<s>||oo)
0<s<t 0<s<t 0<s<t

t 14
1
<3 Wl oy

m=£—1
41 t
+ Y (14 sup [fwyf™(s)]loo + sup |\V2¢m71(8)||oo)/ s wgf™
— 0<s<t 0<s<t 0

+1 ¢+ £+1

#1432 sup s 6)lle) [ 3 (o + o 1.0)

(4.75)
Step 5. From 4.40, 4.46, 4.63, 4.75 we have
sup £1(s)
0<s<t
m B p
< -
<Cy 0 BE% osggrg)tg (s) { lwgals, Vawfollb
(4.76)

£+1
+t <1 +llwf oo+ Y Mwa fMloo + 126 oo + V2¢€||oo> }

m={—1

m
o g, 2R, )

On the other hand, from Lemma 4.2,

V26" ()00 + V26" (1)l S [E°(E) + EH(O]V/P. (4.77)
Therefore from 4.76, 4.77, and the induction hypothesis in 4.34, we first choose a
small o(1), then large C' > Cj, and finally small 0 < T** < 1 to conclude

C 1
sup £ (s) < ollwal, Vaufollp + 55 sup sup £7(s)

0<s<t 10 o<s<t m<e
<C{llws folloo + llwg foll} + llwgea], . VeufollB}
This proves 4.34. O

5. L3L.* bound of V,f*.
Proposition 5. Assume the inital condition satisfies 3.7, /.5, and
||w1§va0||Lgm < 00. (5.1)
Then for T™* < 1, the sequence 3.3 satisfies
sup sup ”vae(t)”Lg(Q)L}J”(RS) S1 forall t>0. (5.2)
£ 0<t<T**
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Proof. Step 1. Note that from 3.3 and 4.32, we have
0+ v Ve = Vg’ - Vo 0(0) + g5 - Voo 10,1
=— 0, f"" - q%améf“l =0 [+ 0y (K fY) + 0, (Caain (f5. F1))  (5.3)
= 0T (1. 1) = 01(006" VT — 20,6 V)
with the boundary bound for (z,v) € y_
o SolvE [ VAR udu on - (5.4)

From 4.15, 4.19, 4.24, 4.25, 4.26, and 4.27, we obtain the following bound along
the characteristics for f; and f_ seperately. For « = + or — as in 1.9,

|00 L (t, 2, 0)]

< lt’i L(t,x,v)>t‘avf£+1(0’ Xf(ov t,x, U)v ‘/LZ(O; t,x, U))| (55)
+ 1y L(t,w,v)<t/”’(vb)i /( : |F (- tf”xb,uﬂ\/ﬁ{n(aﬁb) ~utdu (5.6)
! n(zp)-u>0
t
+ 10,1 (s, XL(s3t, 2, ), V(53 1, 2, 0))|ds (5.7)
max{tftf’L,O}
t
+ (L o £l + w0 ) (5.8)
max{t—t‘;yly,O}
X /]12{3 kg(Vf(s)7u)\avfl(s,Xf(s),u)|duds
t
v f £ (5) oo Va6 (5, XE (s, 3, 0) a1/ A, (5.9)
max{tftf’u()}

where §7 is in 4.3. Here we used that from 4.25, on the RHS of 5.3, |T'oss (9y f71, £9)]
< (W) |wa f ool £ < %va“‘w, and thus can be absorbed to the LHS.
Note that if [v] > 24L, then from 4.3 and 4.4, for 0 < s < t,

t
VE(sst,2,0)] 2 o] — / Vadl (7,2, 0)|dr
0

2 |’U| — 51/A1 (510)
bl
paiy 2 .
Therefore
1
<1 fi 1<r<oo. 5.11
e lloy (Vi z o) ||, > O ST (511
We derive
5'5||L,3Li+5
P 1/3
1+45

< [ ([ wsourio.xio)vi0)F) ( Lo T ) o
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1/3
S (fox]R3 |w’l§(‘/Lé(O; t’ T, U))avaJrl(O» Xf(O; tv €T, 'U)a ‘/LE(O; t’ Z, U))‘?)dvdx)
< [widf Ol
where we have used a change of variables (z,v) — (X£(0;t,z,v), V,*(0;t,7,v)) and

5.11.
Clearly

1561l p3 pr+s S sup fJwa fH()l]oo- (5.13)
* 0<s<t

From W12(Q) c L%(Q) c L*(Q) for a bounded @ C R3, and the change of
variables (z,v) — (X!(s;t,,v), Vf(s;t,x,v)) for fixed s € (max{t — tp,0},1),

t
||5.9||L§L%+5 < ||w19f£+1||oo/ HM1/8VI¢€(5,Xf(s;t,x,v))”ng||M1/8|| 80+0)
0 L,2

t
< Nlwo f e / IV a(5) 2
t

Slhwas e [ 165 w2

max{t—tp,0}

t
¥
< Jwof / 3 F4(3)])
0

(5.14)
Step 2. We claim
t
157 1pts S [ wpefs 2a5%(6) ez, (5.15)
0
Now we have for 3 < p < 6, by the Holder inequality 1%_6 = -t + %,
Pt
t
O ff(s, X (s;t,2,v), VVEi(sit, x,v))|ds
L L

max{tfth,O} L1+ (R3) L
- /t |w5a?5_1758xf5(s,Xf(s;t,ac,v)7Y/f(s;t7x7v))|
< s

max{t—t{ 0} wlgozfefl,w(s,Xf(s;t,z,v),Vf(s;t,x,v))ﬁ LIS ®3Y || ;4

, ! 13
< ' wy(v) !
~ e o (tx,0)P L;%‘%(Rg)
t
| s ons s X0V s
0 LE®9)|| s

< wy(v) ! x/t lwsa,_, 0, f(s)|| e . ds
~ afea’e,b(t,l“,v)ﬂ L%(Rg) o 9%pe-1 Oz L™

(5.16)

where we have used ape-1 o, (t,@,0) = ape1 . (s, X (s;t,@,0), VE(s;t,z,v)) for t —
tp(t,z,v) < s <t and the change of variables (z,v) — (X*(s;t,z,v), V(s;t,z,v))
and the Minkowski inequality.
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For 8 in 1.43, we have ﬂp < 1 since 2 < 22X for 3 < p. Therefore, we can
choose 0 < 0 < 1 so that 8 in 1 43 satlsﬁes

P+ pd
ﬂxp—l—é

We apply Proposition 4 to conclude that

<1 (5.17)

_pEps _g_ptps |2
w(v) ! oI e V5l <
sup t 1B s = sup pRTET dv S 1.
b 1O e BTN == ey be TR ape (¢ 2,0) P10

(5.18)
Finally, from 5.16, 5.18, and 1.46, we conclude the claim 5.15.

Step 3. We consider 5.9. We split the u-integration of 5.9 into two parts with
N>1as

/| V) 9 o, XL, ) (5.19)
+ / kg(Vf(s),u)\VUfZ(S,Xf(s),uﬂdu. (5.20)
|[u|>N

First we bound 5.19. From the change of variables

(2,0) > (X! (s3t,2,0), VY (s3t,0,0)) for t—t), < s <,

H/ (s;t,2,0),u)| Vo (s, X (s5t, @, ), u)|[du
lu|<N

37,3
beba (5.21)

- / Ky (0, )| Vo (5, )| du
lu|<N

L3L3
If || > 2N then |v —u|? 2 |v|* and k,(v,u) < & |2 for |[v| > 2N and |u| < N.

~ Iru
For 0 < § < 1 with 210 > 3,

3(1+6)
L, 7% ({[vl<2ND) || s

1
S T o0l

21
< Cy H/ kg(v,u)|VUfe(s,x,u)|du
ul <N

(5.22)

3(1+4)

# e
L% ({[v]22N)) || s

13/2

3(1+5)

|Vf s, T, |‘

L
Then by the Hardy-Littlewood-Sobolev inequality with 1 4 ﬁ = % + ﬁ, we
T
derive that
5225 |19 (5%, 0} 00

4
L3 = vaf (5)||L§L}J+5'

Combining the last estimate with 5.21, 5.22, we prove that
152901 3 pres S NV S ()| s s (5.23)
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Now we consider 5.20. Choose 0 < ¢’ < 1. We have
5.20

</ 1 wé(Ke(s;t,x,v)) kg(Vf(s;t,a:,v),u)
- |u‘ZNw1§(Vf(s;t,:1z,v))1*5' wg(u) ozfe_17e7b(s,Xf(s;t,z,v),u)ﬁ

1
X W (VI (s 6.2,0))° wlg(u)|afz—1’€(s,Xf(s; t,x,v), u)BVUfK(S,Xf(s; t,x,v),u)|du.

By the Holder inequality with % + z% =1with3<p<6
|5.20]

< 1
~owg(VE(s b a,v))Y

Vs b))k (Vi(sita0),w)
w@(u) af2717€7L(8,Xf(8;t,$,v),’u,)ﬂ LP* ({|u|>N})
w;(u) ‘ 8 ¢ ¢
X cape—1 (8, X, (s3t,x,v),u) Vo (s, X, (s;t,z,0),u) .
wﬁ(VLe(S;t7xaU))6 7he LT (R3)
(5.24)
Then by the Holder inequality with ﬁ = % + s
p—(1+5)
[15.20]] ;145
< 1
~ wy(VE(s; t, @, v)) 1= L;?ﬂ%
" wy(Vi(sit,,v)) — ko(V(s5t,2,0),u)
sup T 3
v wy(u) ape-1 . (5, X (s5t,2,0),u) Lo ({lu[>N})
wy(u) £ .. B ¢ 0.
X Hwﬁ(vf(s;t,x7v))6’afzl,E(stL(satvmvv)au) vvf (S,XL(S,LZ',U),’LL) - y

3 2
oPlvl

Note that, from 3.32, kg(vv“)m S kg(v,u) for some 0 < ¢ < p. Hence we

derive, using 5.11

[15-200 304,

_ o= 151V —ul® 1

<q sup 7
Xt vt |‘/sz —’LL| af£7175,L(87XL7u)IB L7* ({Jul>N})
)

’(I)(VE(S' t.x 1)))5, afffl,s(sa Xf(sa ta Z, U)) u)ﬂvvfg(& XLZ<S7 ta Zz, U)a U)

Lﬁ,v,z
Finally using 4.9 in Proposition 4 with g%? < Bp* < 1 from 1.43 and applying the
change of variables (z,v) — (X’(s;t,z,v), Vf(s;t,2,v)), we derive that

152003+,

1 Z (5.25)
%o | [ s @ om0, s )

LY || rr
v Lu’z
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hS HW LE ng(u)afe_l)s(s,x,u)ﬂvvfl(s,a:,u)HLﬁw
< quga?hl’gvvfz(s)‘ e
Combining 5.24 and 5.25 we conclude that
15201 5 145 S llwgafers Vuf“(s)llze,,- (5.26)

Finally from 5.23 and 5.26, and using the Minkowski inequality, we conclude that
15,90 3 1+

S (L4 [Jwg f oo + llwa fH o)

. (5.27)
< [T Ol s + lwges Fud(6) s, Jds.
0
Collecting terms from 5.5-5.9, and 5.12, 5.6, 5.14, 5.15, 5.27, we derive
sup vafeJrl(S)”L?L}J“
0<s<t e
< sup ‘|vai+1(5)||[,§[,}ﬁ5 + sup vaf@_l(s)”LQL}J”
0<s<t @ 0<s<t @
S lwg Vo fO)Ls, + sup [wy f(s)]loo + sup [ws f*(s)]loo (5.28)
Y 0<s<t 0<s<t
+t(1+ sup [lwy [ (5)]loo + sup [ws f(5)]loo)
0<s<t 0<s<t
X (sup [[wgel} Voo f (5)lp + 170 (5)] 3 p1s0).
0<s<t e
Therefore from 3.8 and 4.5, we can choose T** < 1 and conclude 5.2. O

6. Local existence.

Theorem 6.1. Let 0 < ¥ < ¥ < 1. Assume that for sufficiently small M > 0,
Fo = p+/nfo >0 satisfying 3.7, 4.5, 5.1 and the compatibility condition 1.41.

Then there exists T* (M) > 0 and a unique solution F'(t,z,v) = p+\/nf(t,z,v) >
0 to 1.15, 1.16, and 1.17 in [0, T*(M)) x Q x R3 such that

su wy f(t < M.
Ogtng* [[wg f ()]0 < (6.1)
Moreover
sup ||V f(t)|| s 148 <00 for0<d <1, (6.2)
0<t<T* v
and
B ! B
sup {||w5af’svz,vf(t)||5 + / lwsas Vo f(t) ZJF} < o0. (6.3)
0<t<T* 0

Furthermore, ||wyf()|loo, [Vof(E)llzsp2+s and ||wq§a'?£vw,vf(t)\|g + fot |w1§a’?’€
Ve ()], 4 are continuous in t.

Proof. Step 1. We claim that for T** <« 1, the whole sequence 3.3 satisfies
f¢ = f strongly in L°°((0,T); L' (2 x R?)). (6.4)
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Note that f! — f¢ satisfies (f*** — f*)|4=0 = 0, so
at[f“_l - fe] +v- vz[fu_l - fé] - qvmﬁbz : vv[f“_l - fq
+ qg ) vx(bz[fz“ _ fz] + y[f”l . fe]
=qVadse_je-1 - Vo fi! (6.5)
+ Fgain(fe fé) I Ss(f“_l» fe) - Fgain(fé_17 fz_l) + I‘loss(fev fg_l)
+ K[ff = —Q* Ve _per f0 —quu - Vadpe_per/p
By Lemma 2.3 for L'*9-space with 0 < § < 1, we obtain
6
17— £ }ﬁ+/w1”*#“ ﬂm3+/|#ﬂ Il
< it - iﬁ+/// IRHS of 6.5+ - £]° (6.6)
¢
*}A 7o — e
where vy is defined as 4.35.

Now for 0 < § < 1, by the Holder inequality with 1 = ﬁ + % + %5 and the
e =

3(1+

Sobolev embedding W11*+%(Q) c L™2=5 (Q) when Q C R?,

t
/ // Vape et - Vo fTHIFH = f4°
0 QxR3

t
N /0 vaﬁbf@—f@—l”L:g;jg ||va£_1||LgL5+5 H|f@rl - f£|5HL11,§J5 (6.7)

t
5st%ﬁ”@hnWX/HW“—ﬂWMﬁ®
0<s<t e 0

A simple modification of 4.37 and 4.38 as

flllmmwﬂw—ﬂ%wﬂ“w—ﬂmé
< [ ] [t - ik @ - e
s[é[w%»1f%W”+W“mﬂm“%mem

t t
s [ s [
0 0
leads to
t
/ // |the 2"%and 3" line of RHS of 6.5 f*"* — P
QxR3

S sup {1+ [wa S (5)]loo + lwa fO(s)lloo } (6.8)
0<s<t

t t
X(AH#—f“Wﬁ?FAIﬂ“—féﬂg-
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Then following the proof of 4.39 and applying 6.7 to 6.8, we can obtain

t
[ = g

<ol / 1FE = PN — SO
(6.9)
b sup {14 [9uf 20 g vs + 00 F e + 100 f* ()]oc)

t t
‘ ( L= [ —f“niiz)-
0 0

Using 3.8, 5.2, 6.6, 6.7, 6.8, 6.9 and [f*+! — f4]|;—o = 0 we get

sup [|757(s) — F4(s) 12+ / P g
0<s<t

<[0(t) +o(1)]

t
(e 7= 1= P s 1 - 1R
_S_

0<s<t
(6.10)
Thus adding 6.10 with the same estimate 6.10] pe+2_ pe41 we get
sup 17546 = P + [ 154 -
0<s<t
o 7926~ P+ [ 1 s,
0<s<t
<100 +ot0)] (sup 17— # i+ [ 1 - 1L
0<s<t 0
£ sup 77— 7 )
0<s<t
Therefore, inductively we have
s 176) = PO+ [ 17 - £ < 00+ o)
0<s<t
Hence we derive stability
1) min{m,¢
sup [[£(s) — f"(8)lI1 T3 < [O() +o(n) it (6.11)

0<s<t
and this concludes 6.4.

Step 2. We combine 3.8 and 6.4 to get unique weak-* convergence (up to sub-
sequence if necessary), (wgf¢ wyft) 2 (wof,wef) weakly—* in L®(R x Q x

R3;R?) N L®(R x ~;R?). For ¢ = [?] € C°(R x Q x R3; R?),

T
/0 (P 120 = v Vo +]g) + (af 1, Vad' - Voo + 5 - Vo) (6.12)

6.12,
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= foT<Kf€7 W) - <‘J1U : vz(be\/lja ‘P> + <Fgain(f€a fé)v @) — <Floss(f€+1v Jd)7 ‘P>
6.12gain 6.12108s

+f0 JMH’@ fo Cu\ffnwoféf{n utdu, @)

Except the underbraced terms in 6.12 all terms converges to limits with f instead
of f&+1 or f. B
We define, for (¢t,z,v) € R x Q x R? and for 0 < § < 1,

ff(t, x,v) = ks, v)fe(t, Z,v)

. (6.13)
NI N )
Note that f5(t,2,v) = 0 if either [n(z) - v| <4, [v] > 3, or [v] < 4.
From 3.8
T T
/() 6.12108s — /0 <Floss(f7 f)a 90>
T
( / o= u{E) = £ () + 72 ) — - @}/l duf ), 2, 0) e

/|v—u| Fo () + f— () a@du{ f () — F(0)}, (tz, v))d].

The second term converges to zero from the weak—sx convergence in L* and 3.8.
The first term is bounded by, from 3.8,

UOT /RB ko (2, u) (FE(t @, u) — F(t 2, u) (u)y/p(u)du

x sup [Jwy f(t)]|os + O(5).
0<t<T

1/2
L2(QXR3)] (6.14)

On the other hand, from Lemma A.1, we have an extension f¢(¢,z,v) of rs(z,u)
it ). We apply the average lemma (see Theorem 7.2.1 in page 187 of [10], for
example) to f(t,z,v). From 3.3 and 3.8

ftxu u)y/ p(u)du

< 0. (6.15)
H}/* (RxR3)

sup

4 R3

Then by H'/* cC L?, up to subsequence, we conclude that

[ ot )l = [ sttt Vil

strongly in Lix

So we conclude that 6.14 — 0 as £ — oo.

For 6.12,4,in let us use a test function o1 (v)@a(t, z). From the density argument,
it suffices to prove a limit by testing with (¢, z,v).

We use a standard change of variables (v, u) — (v/,u') and (v,u) — (u/,v") (for
example see page 10 of [10]) to get
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/OT 6.12in — /OT<Fgain(f, ),

T T
- /<gm(f =1, >+/ (Caain(f5 = £ 1), )

B 2/ //QXR3</]RS s (F(u) = f1 () + fL () = f-(w)) (6.16)

D)0 — ) -l (v >dwdu)f< oo 2)ducdd

’ Zi/ //ssz3</Rs () = fi(w)) (6.17)

(V)| (v =) - wlpr,, (u )dde> (f(v) + f-(0)p2,.(t, x)dvdadt.

For N > 1 we decompose the integration of 6.17 and 6.18 using
L={1 = x(lul = N)HT = x(Jo] = N)}
+x(Jul = N) + x(Jo] = N) = x(Jul = N)x(|v[ = N).

Note that {1 — x(Ju| = NM)}H1 = x(jv| = N)} Z0if |[v] < N+ 1 and |u] < N +1,
and if x(Ju| = N) + x(Jv| = N) — x(Ju| = N)x(Jv| = N) # 0 then either |[v| > N or
|u| > N. From 3.8, the second part of 6.17 and 6.18 from 6.18 are bounded by

///QR/R/S I x(ful = N) + x([o = N) = x(Jul = N)x(Jo[ = N)}

2 9,2
U [0l 0o flloo X {e” LI I S S TRV TR

<oik)

Now we only need to consider the parts with {1 — x(Ju| — N)}H{1 — x(Jv| = N)}.
Then

6.17

:EE/OT//QXN Rs(ff(t,au)—f+(t,x,u)+ff(t,m,u)—f_(t,x,u))
=l = ) ([ VAo =) wlor. (e ) du

< L= x(lv] = N}/ (t, 2, )2, (t, @) dvddt.

(6.18)

IN

(6.19)

Now, let us define
@, (u) == {1—x(Ju|— }/ V()| (v—u) wler, (v)dw for [v] < N+1. (6.20)

For 0 < ¢ << 1 we have O(%) number of v; € R? such that {v € R3 : |v| <

N+1} C UZ 153 2 B(v;, ). Since 6.20 is smooth in u and v and compactly supported,
for 0 < ¢ < 1 we can always choose § > 0 such that

|D,, (1) — Dy, (w)] < e if vE B(u, o). (6.21)
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Now we replace ®,,(u) in the second line of 6.19 by ®,, ,(u) whenever v €
B(v;,d). Moreover we use rs-cut off in 6.13. If v is included in several balls then
we choose the smallest 7. From 6.21 and 3.8 the difference of 6.19 and the one with
®,, (u) can be controlled and we conclude that

i

6.19 = {O(e) + O(3)} sup [[wa f)|%

T

x/ /Q(;(ac,u)(ff_(t,x,u) — fa(t,z,u) —|—ff(t,x,u) — [tz u)P,, , (u)du
R3

x {1 —x(Jv] = N)}fL(t 2,0) 00, (t, 2)dvdzdt.

(6.22)
From Lemma A.1 and the average lemma
max _ sup / ws(x,w) fE(t, o, u) @, , (u)du < 00. (6.23)
1<i<o(23) ¢ ||Jrs H,/ ! (RxR?)
For i = 1 we extract a subsequence ¢; C Z; such that
[ st o du > [ sl £t (u)du
R3 R3 (6.24)
strongly in Lfl
Successively we extract subsequences IO( ngy C oo C Zy C Z;. Now we use the
53

last subsequence ¢ € IO( N3, and redefine f¢ with it. Clearly we have 6.24 for all i.
3

Finally we bound the lasg term of 6.22 by

T
Copy,N max/ E
? 0 —
=%

—0 as £ — oo.

/RS fig(x,u)(fé(t,m,u) — flt,z,u))®,, , (u)du

sup [[wg oo
Ly, ¢

Together with 6.22 we prove 6.17 — 0. Similarly we can prove 6.18 — 0.
Now we consider 6.124. From

(Mg - Ap) = /Ha(fi e /(1 P A )

we have

196~ Vaolliz, < | [ s = 1)

'+(9(5)S%p|h0ﬁf€”ar (6.25)
L2

t,x

Then following the previous argument, we prove V¢! — V,¢ strongly in L%’z as
¢ — co. Combining with wyff = wyf in L, we prove fOT 6.124 converges to
f0T<qf, {Ve0-Vyp + 5 - Vedp}). This proves the existence of a (weak) solution
feL>.

Step 7. We claim 6.3. By the weak lower-semicontinuity of LP we know that (if
necessary we further extract a subsequence out of the subsequence of Step 0)

wﬁaﬁz ng,vfgﬂ — F, sup ||.7-"(t)||§ < liminf sup ||wl§0¢?,Z 8V;,C’vfé'*'l(t)||§,
' 0<t<T " 0<t<T* ’
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and
. .
/0 |F[p 4 < lim inf/0 |w1§a?2)svz,vf€+1(t) P i
We need to prove that
F = wéa?ﬁvz,vf almost everywhere except 7p. (6.26)

We claim that, up to some subsequence, for any given smooth test function
P € CZ(Q x R*\0; R?)

t t
lim / // wgaﬁz EV$7vf€+1wdxdv = / // wﬁagsvw,vﬂ/}dxdv.
t=o0 Jo QxR3 ’ 0 QxR3 '

(6.27)

We note that we need to extract a single subsequence, let say {¢.} C {¢}, satisfying
6.27 for all test functions in C°(Q x R3\vg;R?). Of course the convergent rate
needs not to be uniform and it could vary with test functions.

For each N € N we define a set

Sn 1= {(r,0) € QxR dist(z, 00) < . and |n(x) o] < 1. }ULlol > N}. (6.28)
For a given test function we can always find N > 1 such that
supp(y) C (Sn)¢ := Q x R*\Sy. (6.29)
We will exam 6.27 by the identity obtained from the integration by parts

t
/ (wgalfe ., Vo f )
0

t
— —/0 <a§z’6fe+1vvz,v(ww)> (6.30)
+Zi/0 /[Y na?g,wffﬂ(wﬁw) (6.31)

t
_/0 (Ve oo [ (w50). (6.32)

We finish this step by proving the convergence of 6.30 and 6.31. From 1.29 and 3.8,
if (z,v) € (Sn)¢ then

sup laf, ., (t,2,0)| S o] + (¢ +€)7 sup [ VoI5,
SNP (T + ¢)P sup Jwa f4)|2, < Oy < +oc.
>0

Hence we extract a subsequence (let say {¢x}) out of subsequence in Step 6 such
that o XA, € L™ weakly — % in L((0,T*) x (Sn)¢) N L2((0,T**) x (v N

fIN e
Sn)¢)). Note that o’ satisfies [0, + v - V=1V, - V, oz’Bg = 0 and
"N e

FEN e
O‘?ZN,E,L‘% = |n-v|®. By passing a limit in the weak formulation we conclude that
[0 +v-Vy—itVyepr-Vy]A, =0and 4,|, = |n-v|?. By the uniqueness of the Vlasov
equation (V¢r € WP for any p < 0o) we derive 4, = a?’w almost everywhere and
hence conclude that

o, Dol weakly —x in L((0,7°) x (Sx)°) N L((0,7) x (71 (Sv)°)).
(6.33)
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Now the convergence of 6.30 and 6.31 is a direct consequence of strong convergence
of 6.4 and the weak—x* convergence of 6.33.

Step 8. We devote the entire Step 8 to prove the convergence of 6.32.
Step 8-a. Let us choose (z,v) € (Sy)¢. From 1.24

If ], >t+e then ap ., (to,v)=1. (6.34)
From now we only consider that case
fé
ty, (t,m,0) <e+t. (6.35)

If |v| > 2(e + T**) sup, ||V¢*| s then

t
¥4
Vi (s1,2,0)] > [o] - / IV (7)loodr 050
> (e + T**)stl}p Vo lloo  for all £ and s € [—e, T**].

For this case we need a version of velocity lemma of & in 1.33, which shows up
in the author’s previous paper [2], but this time with neutral boundary condition
+V¢f -n =0 on dQ. So & now takes the form

at,m,v) = \/E(x)? + [VE(x) - ul? — 2(u- V2E(x) - u)é(x). (6.37)

From a direct computation,
[0 +u- Vo = Ve (t2) - Vu{E(2)” + | VE() - ul? = 2(u- VEE(x) - u)é()}

= 2{u- VEYE+2{u V26T V,E) — 2u- (u- VVE - u)é
—2{u- P2 VE} + 2V - VEHTE - up — 4{—iV6 - Vi€ uje
< lu- VER + 162 + {ul + ﬁ}(—m L V2E(x) - u)é(@)) + Vo' - VE||IVE - ul.
(6.38)
From the Neumann BC (n(z) - E(t,z) = 0 on z € 9f2), we have
Vo' (t,z) - VE(2)|
< Ve (t, ) - Ve + [V Bl oy 1€l ez lz — 2. (6.39)
Sa Ve ()l @ lé(2)],

where z, € 9Q such that |z — z,| = inf,cpq |2 — y|.
By controlling the last term of 6.38 by 6.39 and using 6.36, we conclude that

d
gd(s, XLf[ (s;t,x,u), bez (s;t, x, u))2
1

,SQ (1 + |Vf[(s;t,x,u)| —|- —_——
' VI (i, 2, u))|

,SQ,R,N (1 + |‘/Lfe (57t7 z, U)|)5¢(5, X,,f[ (s;t,x,u), ‘/sz (55 t,,I,’U,))Q,

Jals, X7 (sit,,0), VI (st 2, 0))°

L
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SO

la(s, XT (s;t,2,0), VI (sit, 2,0))|

L
1 _Cg—At=sl
> ——a(t,z,v)e " EHTT I sup V6Tl

Ca
__ Ca
e supg Vel 1
> — X% for all £ and s € [—e,T™].
Q

34
Especially at s =t — t{; (t,z,v), from 6.37,

Ca
: ' " supg Vel lloo 1
|n(x{)i) . vlf: | > % X~ for all £. (6.40)
; : 0

Step 8-b. From now on we assume 6.35 and

lv] < 2(5+T**)s3p [V | oos

or, from 1.27, |VLf[(s;t,:c,'U)| <3(e+T")sup V¢ | for se€[—e, T
4
(6.41)

Let (X{', X[ Vi1 V") satisfy 2.8, 2.6, and 2.10 with E = V.

n,u Hal'7 n, ‘

Let us define
Ty = sup {T >0: V,{ii(s;t,x,v) >0 forall seft— t{;i(t,x,v),T]}. (6.42)

Since (X! (s;t,z,v), VI (s;t,2,0)) is C! (note that V¢! € Ct,) in s we have

L L

an,i(ﬁ;t,x,v) =0.

We claim that, there exists some constant 0.« = O, 1+« sup, Ve[ o1 (%) in 6.48
which does not depend on ¢ such that
If 0< Vrfj(t — tﬁi(t,x,v);t,x,v) < duxand 6.41, then
7t £
V,{j(s; t,z,v) < ecls_(t_tb»t(t’m’”))|2V,{j (t— tﬁ’b(t7 x,v);t, z,v) (6.43)

fﬁ

forse|t— tb,L,ﬁ].

For the proof we regard the equations 2.8, 2.6, and 2.10 as the forward-in-time
e

problem with an initial datum at s = ¢ — tﬁﬁ(t,xm). Clearly we have X,Jii(t -
t{;i(t,x,v);t,x,v) =0 and V,{c’i(t - t{;i(t,x,v);t,x,v) > 0 from Lemma 2.1. Again
from Lemma 2.1, if Vyfi(t — tﬁi(t,x,v);t,x,v) = 0 then X,{i(s;t,x,v) = 0 for all

74 £
s>t — t{;b(t,x,v). From now on we assume V,fi(t — t{;b(t,x, v);t,z,v)] > 0. From

12

2.10, as long as t — t{)’L(t,x, v) < s <T* and

1

Vi (sitiaw) 20 and X[ (sit,0) < <

< 1, (6.44)
then we have

Vi) = ) Vi (9) - V9] - (X (9)

ll.e

<0 from 1.40
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— Vo (s, X7 () - (X[ ()]

=0(1) sup, |[Vé*| o1 x XL (s) from 2.13

~ X[ W () V2] () - V()] - (X () (6.45)

Ile

=0(1){3(e+T**) sup, | Vo [loc }2 X XA' (5) from 6.41

*% £
<C+e+T )2(sgp|\v¢e|\c1 Sup IVelloe) x X7, (s).

Let us consider 6.45 together with X,{[(s; t,x,v) = V,fg(s;t,m, v). Then, as long
as s satisfies 6.44,

V1 (s)
= V;fj(tftgi)Jr/ VL (rdr
7tb,L
¢ ¢ s o ¢
<vit-t) +/ L C+esT )Q(Sgp IVo*|lc sgpllvcﬁelloo) x X (r)dr
titb,L

= Vi@t

n,t

s . T P
+/ , C(1+e+T)?(sup | Vo'||cr sup ||v¢f||oo)/ , Vil (7)dr'dr.
t*tlfu 4 I tft{M
Following the same argument of the proof of Lemma 2.4, we derive that
EHOEREHEL

FC( e+ TP oup V6 o sup [Vl [ s = (6= ) )V ()ar
)4 l _

b,.
From the Gronwall’s inequality, we derive that, as long as 6.44 holds,
14
V,{L(s; t,x,v)
< Vr[i (t _ tlﬁi (t, T, U))ec(1+5+T**)2(SuPz Vo*ll o1 sup, Hv‘ﬁzuoo)x|3*(t*t{,i(t@;v))|2.
(6.46)

2
Now we verify the conditions of 6.44 for all —¢ < tftﬁ J(t,z,v) < s <T**. Note

14
that we are only interested in the case of V,{Cj(t - t{;’L(t,x,v);t, z,v) < d4x. From
the argument of 6.45, ignoring negative curvature term,

£
X (s5t,2,v)]
i £
< (e+ TV, it 2,0)]

+C[1+(a+T**)2sup||v¢f||oc}sup||v¢f||cl/ / IXE (7t 2,0)|drds
¢ 4 t—tf, Jt—tf,
<+ TV taol+C [ - @ )IX it o)ldr

t_tb,l,

Then by the Gronwall’s inequality we derive that, in case of 6.35,

P 1 -
Vi (t—ty t,x,v)] forall —e <t—ty <s<t<T™.
(6.47)

£
X[, (sit,2,0)| < Ceppes
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If we choose
o(1) 1

6** = e
|T** +E‘

(6.48)

then 6.46 holds for —e <t — t{)eb(t,x,v) < s < T**. Hence we complete the proof
of 6.43.
Step 8-c. Suppose that 6.41 holds and 0 < V,{ii(t — t{;i(t,x,v);t,x,v) < s With
Oux Of 6 48. Recall the definition of 7 in 6.42. Inductively we define 15 := sup {T >
0:v/ (s t,x,v) <0 forall s € [m,T } and 73,7'4, . Clearly such points can be
countably many at most in an interval of [t — tb L ] Suppose limy oo 7% = t. Then
choose ko > 1 such that |7, — | < |V,fi(t bL,t x,v)|. Then, for s € [1x,,1],
from 6.45 and 6.41,
VLt 0)| S IV (=t s tm,0)] (6.49)

Now we assume that 7, <t < Tp,4+1. From the definition of 7; in 6.42 we split

the case in two.

Case 1: Suppose V,/, (s t,z,v) >0 for s € (1p,,1).
From 6.45 and 6.47

VnL (t;t,x,v) / ,H |Vf (t tﬁi;t,z,vﬂ. (6.50)

Case 2: Suppose V,/, (s t,x,v) <0 for s € (1p,,1).
Suppose

1
- v/ (t t,x,v) = |V,£i(t;t,x,v)| > |V,{ii(t—t£i;t,m,v)\’4 forany 0 < A< 7

(6.51)
From 6.45, now taking account of the curvature term this time, we derive that
t
14

Viten < [ EOWE) V) V) nx ()

Tko
+ C’|V,{cj(t - tﬁi(t,x,v); t,x,v)l,
where we have used 6.41 and 6.47. From 6.51 the above inequality implies that, for
‘sz( (t,x,v);t,gc,v)|<<1,

t

Vi tmime5/< DIV (s)- V(X" () - VI (8)] - (X[ ())ds.

TkU ’
Note that [V, i L(s)\ and \%Xﬁci(sﬂ are all bound from V¢* € C!, 6.41, and 6.47.
Hence we have
\ =t st

= VI =t st A , , . (6.52)
5/ (DI (s)- V20X () - VI ()] - n(X[ (5))ds.

Tko

On the other hand, if ¢t — |V,fi(t bL,t z,v)|4 < 7 then |t — 7| < \Vfi(t -
£
t{),L;tm,v)\A, which implies that, from 6.45, 6.41, and 6.47,
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1
|V,fi(t;t,x,v)\ < \V,fi(t — tﬁi;t,x,v)ﬁ forany 0 < A< 7 (6.53)

Now we consider X,{i(t;t,x,v). From 6.45 and Xﬂf(s;t,x,v) = V,{M(s;t,x,v)
together with 6.47 and 6.41

X};i(t; t,x,v)

¢ ) t o ) ) ) )
SV =t it a0+ / / Vil (s) - V2n(X[ () - VI, ()] - n(XT (5)) dsdr

<0

74 14 94 £
SV =t ta, )| + VL=t st 0)?

[ [+ [

tf\VT{f(tft{;i,t,x,vﬂA . . . .
></ Wil (s) - V(X[ () - Vi ()] - (X[ (5))ds

ko

ol 24
< |V,{i(t — t,’;yL;t,x,v)| — \Vrfi(t — t{;yL;t,x,v)|2A from 6.52

¢ e ) ‘ -~
S} |an,b(t - tl]:,/,;tvxvvﬂ - ‘an,b(t - tl‘}:,,,;tvxv’u”l
<0,
(6.54)

for |V7{ci(t — t{;lb;t, x,v)| < 1. Clearly this cannot happen since x € Q and z,, > 0.
Therefore our assumption 6.51 was wrong and we conclude 6.53.
Step 8d. From 6.43, 6.49, 6.50, and 6.53 in Step 8-a and Step 8-b, we conclude

that the same estimate 6.53 for |V,fi(t - tﬁi;tw,vﬂ < 1 in the case of 6.35 and
6.41. Finally from 6.34, 6.40, 6.43, and 6.53 we conclude that

1\ 1A
\V,fi(t - t{;i(t,x,v);t,x,v)| > (N) (t,z,v) € [0,T"] x (Sn)°. (6.55)

From (2.36), (2.37), (2.40), and (2.41) in Lemma 2.4 in [21], and combing with

6.41 we have
‘ ¢ ¢ 2,0 42 ¢ 0
Veoth, Sa T )llv{,,bllté,bl%”v Pl 2 <o VL (8 =8, (82, 0)5 8, 2,0)],
U (T,
f@
Vx7vvn(1:b7L)

1
Sa T
[on(23,,)]

£ £
SQ |V'rf,L(t - t{,7b(t,x,v);t,x,v)\.

‘ v2200f£22 ‘ v Y vztsz@22
<|vllt£7bl2e' Pl 02 ol 16 [P (18] )el Vo (t"”)/)

(6.56)
Therefore from above we have
Vond?s  (ta,0)] Sy BlPs  (62,0) P | Vantl + Vasvn(zl )|
zvpe o \b by ~X fle\" 0%, T,v¥N\"b,, (6 57)
0 V3 _ 0 ° _ :
S Wil =t st o) PV (= 6]t )
Combing 6.55 and 6.57 we achieve
1
B
sup |V v (t,z,v)| S Se.NT* L.
(eN, (moye(sn)s, T Vot =t itz 0))2-8 ™

L
—e<t—t{ (t,o0)<t<T**
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Hence we extract another subsequence out of all previous steps for + = + first, and

then from that subsequence extract further another subsequence for « = — (and
redefine this as {¢x}) such that
VLUO‘?I»’N,W R Vm)a?w weakly — * in L>°((—e, T*") x (Sn)°). (6.58)

Note that the limiting function is identified from 6.33. Clearly the convergence of
6.32 is an easy consequence of strong convergence of 6.4 and the weak —* convergence
of 6.58.
Step 8-c. Inductively we extract {¢n} 2 {{n41} 2 {{n42} 2 -+ by following all
the process in Step 7 to Step 8-b. Then finally we define the subsequence, by the
Cantor’s diagonal argument,
Ly = L. (6.59)

Then clearly 6.27 holds with this subsequence for any test function . For any
¥ € C(Q x R3\70; R?) there exists Ny, € N such that supp(y)) C (Sn,,)¢. Then all
the proofs work.

This implies 6.26 from 6.30, 6.31, 6.32. Positivity F' = p+ /uf > 0 comes from
Step 1 and Step 6.
Step 5. Choose t > t' > 0. Instead of expanding h,(¢,x,v) at t = 0 as 3.19, we
expand at ¢’. Then by the iteration we have 3.23 replacing 0 by ¢'. Collecting all
terms at time ', we have

1h,(8) §||hL<t/>|loo{1t1,Lgt/eft/ v

N fttl,L Ve
+1t1L>t’m/ VJL;]-{# 1 <t'<t£ - 1)}d2l (t )}
(6.60)
Since 3.21 is a probability measure and |e~ v 1< |t =t for |t — ] < 1,

660 = ()l <O =D+ [ Lpmut ity IS4
Hj;l gt

Then by 3.23 we have [|h(t)||oc — [|2(t')]lc0 < 37 + Ok (|t —t|). For large k, choosing
|t —t'| < 1, we can prove ||h(t)]lco — [|R(t)|lco < 1 as |t — /| < 1.

Now we can expand h(t',z,v) at t by 3.19. Following the same argument we
have ||h(t')|loco — [[R(t)]leo < 1 as [t — /| < 1. Hence ||wy f(t )||Oo is continuous in t.

The continuity of ||V, f(t )”L'fL”“ and ||wl904?E 20 f(t) \p—i-fo |w190zfE 2 @)}
is an easy consequence of 5 55, 9, and 4.46, 4.75, 4.63 as well. D

7. L? coercivity.

Proposition 6. Suppose (f, ¢) solves 1.15, 1.16, and 1.17. Then there is 0 < Ay K
1 such that for 0 < s <t,

et F@)]2 + 2T (t) 2
t t
4 / 12T F(T)2 + =TTy (r) [2dr + / TR
<[22 F($)]2 + [Ty (s)] 2

# s s (e [ 175

s<t<t

(7.1)
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The null space of linear operator L is a six-dimensional subspace of L2(R3;R?)
spanned by orthonormal vectors

(412 R [} -ae o

and the projection of f onto the null space N(L) is denoted by
Pf(t,z,v)

= {a+(t,x) Mﬁ] +a_(t,2) [\% +5(t,2)- % {ﬁ] H(t’z)w'z 5 [ }7}3

In order to prove the proposition we need the following:
Lemma 7.1. There exists a function G(t) such that, for all 0 < s < t, G(s) <

I£(5)13 and
/ sz + [ 19013

/||I— ()2 + /|1— DR, (74

+ / I 2D I + / o F() P F(2.

Proof of Proposition 6. Step 1.  Without loss of generality we prove the result
with s = 0. We have an L?-estimate from f0t<2e>‘2tf, 1.23)

I SO = 1O+ [ 17— PP
0

+ /0 t / /Q Ve ) 42 /0 Cr(g L)
= 2/; 2 (£ T/, ) —2/; [ Vo [ vt - 1)

t
#2301
0
where

Pfie {Pm} [V oy s F+ () p){n() - uldu
RS T [en/i) Lo - (Vi) {n(z) - uldu |

On the other hand multiplying +/p(v)¢ (¢, z) with a test function (¢, z) to 1.23
and applying the Green’s identity, (from the charge conservation) we obtain

| erttar- [ ovitr -5

- /sbf(t,x) (/ v~Vx\/ﬁ(f+f_)dv)d:c

// qu (t,x)(f+ — f2)/p{n - v}idvdS,

= [osttnn ([ (- rovi) e

(7.5)
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- //BQX]RS or(t,x)(f+ — f-)v/{n - v}dvdS,.

From 1.11, the last boundary contribution equals zero. Now we use 1.16 and deduce

that
[ [ostemn ([ (e 130y s

¢
= —/ 62’\27/¢f(t7x)8TAT¢f(T,x)dxdT
0 Q

1

t
3 [ [ 01V (r,a) Pdadr
2 0 Q

1 1
3 ([ otoras) - [ 9.00.0)Pa)

t
fAQ/ e”ﬂ/ Vet (1,2)|?dedr.
0 Q

Hence we derive

t
eSO+ 1o+ [ [[ vyt - )

t t
vac [ geraeps e [ e ps,
0 QxR3 0

< IO + o5 (0)]2 + / I 2D, £

t t
Dot o(1)} / 127 F12 + Ao / ESANTE]
0 0

Now we apply Lemma 7.1 and add o(1) x 7.4 to the above inequality and choose
0 < A2 < 1 to conclude 7.1 except the full boundary control.

Step 2.  Note that from 7.5, P,fy = zx(t,x)y/p(v) for a suitable functions
z4(t,z) on the boundary. Then for t =+ or —, for 0 <e <« 1

Pyff2 . = / ot 2) [Pda / H@)n(z) - v|do
oN R3
< / |2 (t, 2)Pda x / $(0)?|n(z) - v]dv
o0 Y+ (@)\75 (z)

= |1'y+\'yiﬂ1/4p'yfb|g,+'

Since P, f = f—(1=Py)f on vy we have [1y, \oe /4Py f15 4 S 1y e /4 fI5 L+
|(1 = P,)f|3.. Therefore

/0 PR < / e+ / - PR (7.6)
Note that
[0 + v Vo —qVe - Vo] (u'/*f))|
< 1V [0lVad|f + [0l Vad| + LI+ IT(f, £}

By the trace theorem Lemma 2.2,
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t
1/4 12
/O |1“/+\ij / f|2,+

. . (7.7)
S ol + 1+ o flle) [ UFIB+ [ 19015,
Adding o(1) x 7.6 to the result of Step 1 and using 7.7 we conclude 7.1. O
Proof of Lemma 7.1. From the Green’s identity, a solution f of 1.23 satisfies
t t
F@.00) - () w) - [ o)+ [ [ e nt)
s s Jy
t t ‘ t 1
- Pf,v-V, _/ I-P)f,v-V, +/ , Vg “Vu(—
[ ®ro-va) = [a-Pi Vot [ it o Vol
—_———
7.8¢ 7.8p
t t
= [ A L@=Py TGN ~ [ W Vb ).
7.84,
We use a set of test functions:
Ve = [ (|U|2 Ba)fv V:L’(pa+:|
¢ (‘U| - 5a>\fv ViePa_
2
ij _ ( v; b)\/ﬁaj%)} i
= | ] = 1a2a37
b,l ( 2 )\/78.7<)0‘l]) (79)
] = |U|2U1vjfa]¢b( ):| i ?é]
b2 |U| vzvafaa‘»"b( )]’ ’
= (|”U‘2 - ﬂC)IU ) VISDC:|
¢ _(|v‘2 _BC)\/EU'VISOC ’
where ¢, (t,2), vp(t,x), and . (t, z) solve
_Aspai = a4 (t,.’ﬂ), 8n80ai|6(2 - 07
. ; (7.10)
_A@b = bj(t7$>7 ‘Pb|89 = 07 and — ASDC = C(ta$)7 SDC|SQ = 07
and B, = 10, B, = 1, and 5. = 5 such that for all : = 1,2, 3,
[ 002 = =2 tucan =o
RS a 2\/§ (3 ?
[ @ = suteia =0, (7.11)
Rfi

[ e = sntutiao =0,
R3

Step 1. Estimate of 7.84,: From 7.9 and 7.11, we have 7.8;, = 0 for wb b 2,
and .. For ¢ = 1,, because from definition ¢ = o, — @a_, 7.84, equals

t
W0y, = [~ = Ao [ [ (Veu, =V ) oy

. (7.12)
=i [ 190y
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where
C, = / f(|v|2 - ﬁa)(vl)zudv = 5. (7.13)
RS

Now we look at 7.8¢. For ¢ = 9., from oddness in velocity integration and 7.11,
7.8¢c becomes

/ (Pfv- Vi) = —C / le(m) 3, (7.14)

where Cy = 2 [, (Jv]* — Bc)v? (IUQ‘I Yu(v)do = 2073/2,

For ¢ = 1,, from oddness in velocity integration and 7.11, 7.8 becomes

/(Pf,v-waa> = —01/ llas(7)[3 + lla—(7)]I3, (7.15)

where C7 =5 as in 7.13. .

For fixed 4, j, we choose test function ¢ = ;"] in 7.9 where S, and ¢ are defined
in 7.11 and 7.10. From oddness in velocity inteération and definition of §y, 7.8¢ in
7.8 yields

t N t
78C|wijl Z:/ <Pf,’l)v¢;;:j1> = —Cg/ /Qbi(aiinlbj), (716)

where Cy := 2 [o5 (v — B) fudv = 4y/T.
Next, we try test function 1/Jb’2 with ¢ # j to obtain

e
:_04/ / i)+ 0i(0;;A71b;)).

by oddness in velocity integral where Cy := 14./mw. Note that the RHS of 7.16 cancel
out with the first term in the RHS of 7.17, therefore combining them we get

Cy t »
;—@x7.8cwm + 1 78 oy :—0412/3 /Qbi(ajjA bi)

i#]

7.8¢l,

(7.17)

Estimate of 7.8 p: From 7.9,

7.8p = / N IARTS w;ﬁw», = Yoy pe
] (7.18)

t t
S [ Mot [ Vot Vogucne < [ ot @)lPIE

by elliptic estimate [[Vapar pellz S l[Paspellaz S [P fll2-

Step 2. Estimate of ¢ : For boundary integral 7.8g, we decompose f, = P, f +
1, (1 —P,)f. Then from 7.11 and trace theorem |Vycl2 < [l@cllmz S [lcll2s
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/t/wc //w 1,.(1- P,)fdy
<e/ Je(r ||2+c/|1— Ny, <l

Rem [ (LA-P)f ~TAND + [ (-P)fo-Tanh (120

(7.19)

If we define

then from 7.12, 7.18, elliptic estimate and Young’s inequality we have

t t
Rely, < ¢ / el + / TP ()2 + / WO @R (7.21)

We also use even/oddness in velocity integration, 7.11, and Young’s inequality to
estimate,

- / (rawd = [ @ (T P)f i)

<< [ Iva~aemis+ [ la-Prok

(22) /idspe(t, x)
(M50 Vidupe (¢, @)

solves —Adyp. = 0ic(t, x) with dpp.(t, x)|aq = 0. We taking difference quotient for
Oy f and it replace first three terms in the LHS of 7.8. With help of Poincaré
inequality [|0rpcll2 S [[VOipe||2, we can also compute 7.8¢f|¢:¢t =0, and

(7.22)

. Note that 0y,

Now, we choose a new test function ! := l

vxd)f : jﬁaﬂpc‘|

t

t (7.23)
S [ oo (EIVA 0013 + (o (7)IB + o (7)1B))

/ (P f v + / AP V)

t t t
se [Iva-tocni+ [ IolE+ [ ja- Pz

Since ! vanishes when it acts with Lf and T'(f, f), and boundary integral 7.8p
vanishes by Dirichlet boundary condition of ¢, , from 7.23, 7.24, and 7.8, we obtain

/b<8tf,wt / /6t<pc Tl‘)atc(TCCdQE—/ IVA~10,c(7)||3

<e / VA~ Bye(m)|12 (7.25)

- t (les 1B+ -l + I3 + / Py ).

(7.24)
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We combine 7.8, 7.12, 7.18, 7.19, 7.21, 7.22, and 7.25 with £ < 1 to obtain

/||c<r>||§scc<t>—ac<s>+/ 1@ P)f(r)|2 + /|1— (DB

+ [ el + / lwofllelPFIE (726
+e [ (larE + la- I + [6)]3)

for e < 1 where Ge(t) := (f(£),%c(t)) < [IF()3.

Step 3. Estimate of « : From mass conservation fQ ag(t,z)dv =0, @, in 7.10 is
well-defined. Moreover, we choose ¢, so that has mean zero, fQ Yay (t,x)dz = 0.
Therefore, Poincaré inequality ||¢q, |l2 S [|[V@ay ||2 holds and these are also true for
Opq,. which solves same elliptic equation with Neumann boundary condition.

For boundary integral 7.85, we decompose f, = P,f +1, (1 — P,)f. From
Neumann boundary condition d,¢, = 0 and oddness in velocity integral, fv Pq -
P,f(v-n(s)) =0 and we obtain similar esimate as 7.19,

/t/wa-ﬂv-n(x)):/t/wa-lml—mfdv
<s/ la(r ||2+c/|17 (MR, e<1.

For 7.87, from oddness,

787y = / () / G [ ] (T-P)f) -0t

<e / (VA" By ()3 + [ VA~ By (7)[2) (7.28)

+ [ g+ [ Ia- P

Now let us estimate fs VA= 0a (T)||3 + [VAT10a—(7)]|3 which appear in 7.22

(7.27)

type estimate. We use new test function ¢! = [aﬂp“* (x)\/ﬁ] . It’s easy to check

Ot pa_ (Z‘)\/ﬁ

86|y :/t// Qv - Vs -y =0,
8Py /// aVif Ve -V [&%ﬂ —0,

and from the null condition on boundary 1.11, we have 7.8 g|y—y: = 0. Moreover,

(7.29)

/St<Pf7v~Vx¢Z>+/:<I—Pf,v-waZ>

t
i~ 6/ (VAT Qar (7l + VAT Dra—(7)[13) (7.30)

T / 1b(r)[12 + / 11— Pf()2,
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and from 1.7

/ WL T(f, ) = 0. (7.31)

Now taking difference quotient, we obtain from 7.29, 7.30, and 7.30, for almost ¢,

/ (00 ], 6L) / / Orpa, Dras + Dypa. dra_da

= [(va" 90, ()1 + 198 001D (732

< / 1b(r)[12 + / 11— P2 + / 2T, 2.

Finally we change ¢ into a in 7.21 and combine with 7.8, 7.12) 7.15, 7.18, 7.27, 7.28,
and 7.32 with € < 1 to obtain

[ latoig + / V65713
<Gl /nl— (DI2 + /|1— (DB (7.33)
+ / PRGN / o F() | PS()IE + / 1b(r) 3.

for e < 1 where Go(t) := [[o. ps F(H)0a(t) S F(E)]13.

Step 4. Estimate of b: For fixed 4, j, we choose test function ¢ = w;l in 7.9 where
By and @y are defined in 7.11 and 7.10. For boundary integration, contribution of
P, f vanishes by oddness.

—//w 1, (1= P)f(v-n(x <a/||b JIE + /\ PR,

(7.34)

7.8Bly

and similar as 7.22 and 7.21, we use oddness and definition of 3, to vanish contri-
bution of a and b. We obtain

Tl S [ IVATab O + / le(r)I3 + / I=P)f()2,  (7:39)
Se [+ [ Ia-Pr@IE+ [ e nmiE 130

Next, we try test function 1/12’2- with 4 # j. We also have the following three
estimates using oddness of velocity integral,

783|wu:—//wb P)f(v-n(a <s/ 63 + /\ P
N/ VA~ a,bi(7)[3 + /nI— 2,
Relygy 5= [ B+ [1a-P)+ [ 11 el

7.87],

(7.37)
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To obtain estimate for |[VA™18;b;|2, we use a test function

i - [vmetn)
3T ot )

Note that 8,54,0{; solves antgog = 04b;(t,x) with 6tg0g(t,x)|ag = 0. We taking
difference quotient for Oy f in 1.16 and with help of Poincaré inequality, we get

7.8 =0
b5 |w:1/1§,] ’

¢ .
a¢f . 8“0]
78p| . ., :/ // : [ j b
P|’l/)*wb.j s QOxR3 \/ﬁf quﬁf : 8,530{) (738)

S / [wa flloo (£ VAT 0 ()5 + las (1) + a—(T)]3)-

Moreover,

[ ®rovii) s [(@-previ)
se [ 19a7 00, + [ (lar @I + la-(IF + [eIE) (739

+/ TP f2.

Since ¢, ; vanishes when it acts with Lf and I'(f, f), and boundary integral 7.8
vanishes by Dirichlet boundary condition of 8t<pi , from 7.38, 7.39, and 7.8, we

obtain
t _ t
/ / Orpl (7, )B4 (7, x)dx = / IV A=18,b;(7)|I2
s Q s

e [ IvaTton i+ [ Gar@B+la-B+lelH (740

/||I P)f(r)]2.

Now we combine 7.8, 7.12, 7.18, 7.16, 7.34, 7.35, 7.36, 7.17, and 7.37 for all , j
with proper constant weights. In particular, we note that RHS of 7.16 is cancelled
by the first term on the RHS of 7.17. Therefore,

o= [ [y
G-+ [ 10+ [ 0P,

+/ IIV*I/QF(f,f)(T)II§+/ lwo £ ()12 IPF(7)]3

+/ lle(r)13 +€/ (lax (I3 + lla-(M3),  Go() SNF@OIE, <1,
| ) (7.41)

Finally we combine 7.26, 7.33, and 7.41 with € < 1 to conclude 7.4. O
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8. Global existence and exponential decay. The following time-dependent
interpolation estimate is crucial in the proof of Theorem 1.2.

Lemma 8.1. Assume Q C R with a smooth boundary 0. For 0 < Dy < 1,
0< Dy <1, Ag >0, and for allt > 0,

IV26(t)l| o0 @) Se.p1,p2 €7Dt | cra-p1 () + €226t o202 ) (8:1)

Proof. Let ©; be an open bounded subset of R? containing the closure Q. Suppose
¢(t) € C*P2(Q). From a standard extension theorem (e.g. see Lemma 6.37 of [9]
in page 136) there exists a function ¢(t) € C*P2(Q;) and ¢(¢) = 0 in R*\Q; such

that ¢(t) = ¢(t) in Q and

¢(t)lcra-p1 () < Can,,py,0.10)[|c11-01 (), (8.2)

160|202 02,y < Ca01.00.0:16(E) 0202 (1)
where Cq q,.p,,p, does not depend on ¢(¢) and ¢.
Choose arbitrary points x,y in R3. For 0 < s < 1, (1 — s)x + sy € Ty. Note that
[(y — ) - VIV(t, (1 — s)z + sy)
[(y —2) - VIVe(t, (1 — s)x + sy) — [(y — x) - V]Vo(t, x)

y—= ;
+ (=g V) Vol — 2

= O(jz — y["*P2)sP2[V2h(t)] .0z + (ﬁ V) Vot @)y - al.

Taking an integration on s € [0, 1], we obtain that

(‘yi : v) Vo(t, )

1 ! _ 1 _
< — —z)-V]V(t, (1 — s)z + sy)ds| + —y|P*[V2h(t)] co.ps -
< = | [ =) IV, (1= )+ s9)as| + e~ 0PV A0l
(8.3)
On the other hand, from an expansion along s,
1
Vé(t.y) - Vilt.a) = [ [y~ ) VIVH(L (L s)o -+ sy)ds.
0
We plug this identity into 8.3 and deduce that for 0 < D; < 1
<:n—y .v> Vo(t, z)
|z —yl
|Vé(t,$) — V(E(tvy” 1 D 27
—y|? 0,D 8.4
1

< W[Vé(t)]m,l,m + 2 — [P (V23] .-

1+ Dy
Now let us choose

lw—yl=e M Hi= Y eg?
|z — y|

From 8.4

(@ V)Vt 2)] < P DNTEO)] ooy + ——

1+ Dy

€_D2A0t[v2($(t)]cg,D2 ]
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Taking supremum in = and @& to the above inequality and using |[V2¢(t)| L =
sup, supgese |(@ - V)Vo(t, z)|, we get

IV26(0)l L () < €PN Vad(t)]coa-p1 q,) + e P2 V2G(t)] co.0s (o)

Finally from 8.2 and the above estimate we conclude 8.1. O

Now we are ready to prove the global-in-time result.

Proof of Theorem 1.2. Step 1. For 0 < M <« 1 and 0 < 4, < 1, we first
assume that an initial datum satisfies

lwa folloo + lwg follp + Hwﬁai,gvx,vaHp < 0. M,
lwg Vo foll L3xms) + V27 (0)]lo0 < 0.

We will choose M, d, later. For the sake of convenience we choose a large constant
L > max (M,[|[V2¢£(0)||o). In order to use the continuation argument along the
lines of the local existence theorem, Theorem 6.1, we set

(8.5)

T =sup {t > 0+ "0y £ (1) 1o + 5 £ (D), < M.

t
and ljuga] Vo1 + [ g0 Vo f O <00 g
and [[Vo f(#)ll 13 145 3y < 00,
and [ V26, (t)] < L}.
Here for fixed § < 1, we choose A, such that

/\2 1%

204/ CCoM < Moo < min (2, 4> , for M <1, (8.7)
where Ag is obtained in Proposition 6. Note that from 4.10 the condition 4.4 holds
for M <« 1.

Step 2. We claim that

sup € 5| V2¢(t)|loe < CoM, with Cy = Co + (C1C,)/75,. (8.8)
0<t<T

Here Cq appears in 4.10, and C in 4.11, and C), in Proposition 3.
From 4.10 and 8.6, for 0 <t < T, for all D; >0

65 ®)llora-p1 @) < Callws f(t)lloo < CaMe™ =", (8.9)

On the other hand, from Proposition 3, replacing f* and f** by f in 4.63, 4.75,
and by Gronwall’s inequality and 8.5, we derive that for 0 <¢ < T

t
LI + [wgol Vo fO)E + / wga? Vo f(s)

< Cper D s (5, M)P.

p
P (8.10)

Now we use Lemma 4.2, from 4.11, for p >3 and 0 <t < T,

bt s < (CL0)YPerCrUtDIt o 5 M 8.11
f 2

||C2,1* P (Q)
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Finally we use an interpolation between CH1=D1(Q) and 02’17%((_2) and derive
an estimate of C?(Q): Applying Lemma 8.1 and 8.1 with Dy = 1 — %, from 8.10
and 8.9, we derive that for all 0 < D1 <1,3<p<6,Ag>0,and 0 <t < T,

V265 (t)|loe < e P Prolicg A 4 = 10— ) R0=5 GO+ DIE (0 ) P5, M. (8.12)

Then we choose

by Cyp

S 4 —2(14 L Aoo

le_(s) and then Dy = BT (8.13)
5 0

Ao =

In conclusion we have, for all 0 <t < T,
V264 (t)]|oo < e FH[Co + (C1C,) /P8, 1M

As long as M < L then ||[V2¢¢(t)|lo < L for all 0 < ¢ < T and hence the claim 8.8
holds.

Step 3. We claim that there exists T, > 1 such that, for N € N, t € [NTw, (N +
NT], and (N +1)Tw < T,

[[ws f () lloo
< (t = NToo)e 100Ny f(NTo) oo +0(1)  sup e 100" Jany f(5) oo

NToo<s<t

t -
+Or, / e 10| £(s)] 2 ds
NTOO x,v

t

+Cr / e 109V () [ sods.
NTo

(8.14)

For the sake of simplicity we present a proof of 8.14 for N = 0. The proof for N > 0
can be easily obtained by considering f(NT,,) as an initial datum.

As 3.9 we define h(t,x,v) := wyf(t,x,v). Then h solves 3.3 and 3.12 with
exchanging all (R, h**1 ¢%) to (h,h,¢f). We define

Vo wo,+ 0
Vo we (t,z,v) = [ d)fa” Vg
Frwe,—

v(v) + 5 - Voy — 2oL Yoo 0

0 v(v) = § - Vg 4 TelL¥on
(8.15)

From 8.6 and 4.10, for 0 <t < T

% — 20| Vsl } (0)

{vo - (% — 29)M }(v) (8.16)

4V0

5
Then h solves 3.18 along the trajectory with deleting all superscriptions of ¢ and
¢ + 1 and exchanging ¢ to Vg w, and with new g

V¢f,w0,:t 2 {1/0 -

Y

Y

h

h
g:i=—-qu- V¢f\f—|—r(f19 ;ﬁ)' (8.17)
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We define a stochastic cycles for ¢ = + or — as in 1.9,
(tl,b(taxvvavla to 7vl—l)7xl¢(taxavavl7 co avl—l))a

by deleting all superscriptions in 3.5 and 3.6. Then by deleting all superscriptions
of £ and ¢ + 1 from 3.36, we obtain the bound for h,:

|hu(t, ,0))|

< Jle” 0% hg||o + O(k) sup [le™ T p(s)||%,
0<s<t

t 14k/5
+0(k) / le= 000V o (s)]lowds + {5} sup [l H (o) |
0 Wy 2

0<s<t
t P
+/ 67%”0“75)/ ko (V,(s;t,x,v),u)|h(s, X,(s;t,2,v),u)|duds
max{t1,,,0} R3
8.18;
tl,L 3
+ O(k) sup/ e~ av0o(t=9)
max{t;41,,,0}

// V. (st 2, v1), u)|h(s, X, (s;t, 21, v1), w)||n(z) - v/ p(v;)dudvds .
R3 JR3

8.182

(8.18)
For any large m > 1 we define
kgym(’U?u) = 1\v7u|2%,|v\§mkg(v7u)7 (819)

such that sup,, [ps [Ke,m (v, u) — ko(v,u)|du < £, and [kgm (v, u)| Sim 1.
Furthermore we split the time interval as, for each ¢,

{max{t;41,,0} <s <t} ={max{t;41,,0} <s<t;, =6} U{ti, — 6 <s <t}
(8.20)

where we choose a small constant 0 < § <, 1 later in 8.26.
For 8.18;, we have

t—48 t
8.181 S/ +/
max {t1,,,0} t—4&

t—5
5/ e_%”‘)(t_s)/3 k,(V.(s;t,z,v),u)|h(s, X,(s;t, z,v),u)|duds
R

max {t1,,,0}
+8 sup [e” 100 In(s)]
0<s<t

t—6
,S/ 67%1)0“75)/ kom(Vi(s;t,z,v),u)|h(s, X, (s;t, x,v), u)|duds
R3

max {t1,,,0}
1

+ (= +9) sup. le= 500~ h(s)]| oo
m

0<s<
(8.21)

Now for 8.185 we separate into several cases:
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Case 1: For |v| > 3, we have |V,(s; 1, 2, v)| > 7, so

m
4

1
/ / (s;ty, zp,v),w)|(n(zy) - v/ (o) dudy, < —.
lvr| >3 JR3 m
Thus

tl,L 3
/ e_Zl’O(t_S) /
max{t;41,,,0} |vg| >3

[>
X Ko (V, (s5t0, 2, v1), w)|h(s, X, (s; t, xp, vp), w)||n(xy) - v/ p(v)dudvds

1
S— sup (e 10 h(s) oo,
~moo<s<t

R3

Case 2: For |v| < &, |u| > m, we have |V, (s;t;, 21, v) —u| > 7 so
1
sup [ deVilsi ), ] nar) - o Vo) S -
o< Jul>m m

Thus

/tz B
max{t;41, “0} v | <Z Jul>m
X ko (Vi (s5t0, 21, v1), w)|h(s, X, (s; b, xp, vr), w)||n(xy) - v/ p(v)dudvds

1 .
<S— sup [em 10U In(s)]
m o<s<t

Case 3: For || < % and |u| < m, we split the time integration as ftl"

max{tprl’L,O} =
ft“_é oy ftl * 5 and use 8.19 to conclude that

max{t;{1,.,

8.189

tl,L_5
<O(k) sup/ e_%”‘)(t_s)/ /
U Jmax{ti41,,,0} [vi|<m Jlul<m

X Kom (Vi (st i, v1), w)|h(s, X, (s; b, xp, vp), w)||n(zxy) - i/ p(vr)dudvds

1
+O(k)(= +6) sup [ T°0=In(s)]
m 0<s<t

tl,L75 5
T

l max{t;+1,,,0}

x/l / [h(s, X, (s;t1, 1, v1), w)||n(zy) - vi] v/ (vy)dudods
vi|<m Jful<m

1
+O(k)(— +4) sup e 1EIh(s)] .
m 0<s<t

(8.22)
Combining 8.18, 8.21, and 8.22 we get

|h,(t, z,v)]
< e #0%ho |l + O(k) supge o, e~ 50D h(s)|12,
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t
£ 0 [ 196 4 (5t
0 “o

+{ome+ L+ {3}7} s et

0<s<t

t—6
+ / e_%”O(t_s)/3 kom(Vi(s;t,x,v), w)|h(s, X, (s;t, z,v), u)|duds
R

max{ty,,,0}

tmfé 3
+ O (K) sup/ e~ vo(t=s)

l max{t;41,,,0}

X / / |h(s, X, (s;t1, 21, v1), u)|dv;duds.
[u]<m J{vi|<m

(8.23)
Now for |h(s, X,(s;t,z,v),u)| we use similar bounds for |hy (s, X,(s;t, z,v),u)]
and |h_(s, X,(s;t,x,v),u)| separately and add them together to get
|h(s, X, (s;t,2,v),u)]
=lhi(s, X, (s;t,x,v),u)| + |h_(s, X, (s;t,2,v), u)]

< Jle” 3% hg|| oo + O(K) sup [le” 70— n(s")||%,

0<s’<s

+O(k) / le= 106~V (')]|oods”
0 W

1 1yk/5 3 ,
0] - 711/0(575) /
{ (k) <5 m> {2} }0218125|6 h(s")oo

s—0
+ogm) [ |
max{t; ,,0} |u[<m

1,4+

X |hy(s', X1 (858, X, (s;t,m,0),u),u)|du'ds’

s—9
+o(m) [ eimte=) (8:24)
max{t’l’770} [u’|<m

x |h_(s', X_(s'55,X,(s;t,2,v),u),u)|du'ds’

ty =6 5 ,
+ O (E) Sup/ e vo(s=s)

L max{t;,+1’+,0}

X / / |hy (8", X, (85t 2y, v)0), u')|doy du’ds”
lu'|<m J|v}, |<m

t;,yifls

+ O (E) sup/ e~ avo(s=s")

LU max{t;,+l)_,()}

X / / |h_(s", X, (s"; t), zp,v)), u')|doj,du’ds’,
fwrl<m 1o, |<m

where
ty ¢ =ty (s, X.(s;t,2,0),u,0], - ,vp_y),
ty _ =ty (s, X.(s;t,2,0),u,v1, - ,vp_y),
xp o= xp 4 (5, X, (st 2,0), 0,00, 0 _y)

xflﬁ_ =ap (s, X,(s;t,z,v),u, v}, v _q).



TWO SPECIES COLLISIONAL PLASMA 1423

Plugging 8.24 into 8.23 we conclude that
|hu(t, 2, 0)]

< (1 + t)e” 0 hg|| o + Om (k) sup e~ fol=s)p ()12,
0<s<

9 [ 1096, (6
{oms+omt +o, <>{2} 7 s et

0<s<t
o [ [
|u’|<m

/ |hy(s', Xy (858, X, (85t 2,v),u),u)|duds’du’ds
|lu|<m

f [ f e
|[u'|[<m

/ |h_ (s, X (858, X,(s;t,2,v),u),u)|duds du’ds
|lu|<m

tlbfé
—|—O(/<:)sup/ e~ avolt= s)/ / h,(s, X, (s;t, 1, vp), u)|dvduds
|lu|<m \v1|<m

sup// e~ Fvolt—s")
NS

x/ / |hy (8", X, (8"5 ), 2y, v)0), u')|doy,du’ds’ds
|u’|<m |v,|<m

aup [ / —tas)
IRA

X / / |h_(s", X, (s"; ), xp,v)),u')|dvj,du’ds’ds.
[w[<m J vy, [<m

(8.25)
Choose T, > 1 and k> 1 in 3.26 and 3.28. Then we choose
1
=k and § = — 8.26
m= i and 5= 5 (8.20
so that Oy, (k)§ + O(k) 2 + O, (D){3}/° < 1.
Note that
6Xi(8;tl,1’l,vl)
8@1
= — (i — s)ld3x3
0X it
/ / ( (7t 21, 01) -Vw) (vwd)L(Tl,Xi(Tl;thxly'Ul))) dr'dr,
t J 6’0[ Wy
(8.27)

Now we use Lemma 2.4. Note that from 8.8, the condition 4.7 of Lemma 2.4
is satisfied with Ay = °° and 09 = C9M. From Lemma 2.4 and 2.24 we have for
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L=+ or —,

4CCoM

XL /;tv ) Iy N2
‘lel”l) < Ce Gl |t — 7). (8.28)

8’Ul
From 8.28 and 8.8, the second term of RHS in 8.27 is bounded by

acoym  fl ph Aeo 1
CCyMe )2 / / (i —7")e” 2 Tdr'dr
S T

4CCH M 4CCa (8.29)
726 (Xoo) |tl — S|
(M)
From our choice of A in 8.7, we have
4CCyM 4cCaMm 1
—— e O < —,
(Ao )? 10
Therefore from 8.27, for 0 < s <, — ¢
det (aXL(S; tl,xl,vl))
avl
= det (—(t; — 5)Idgxs + o(1)) (8.30)
Z |t — s’
> 0.
We can obtain the exactly same lower bound of det (%), det
l/
(8X+<s ;s,)ig;(s;t,x,vxu)), and det (8X7(s ;S’)é;(s”’“)’“)) for 0 < s < s—6 and

0<s <t —6.
Now we apply the change of variables
v = X (st w5 0),
v o X (st xp, ),
u o~ Xi(s'5s X, (s;t,m,0),u),
u — X (855 X,(s;t,z,0),u),
and conclude 8.14 from 8.25 and 8.26.

By choosing The > 1 so that (1 + Tho)e %07~ < ¢=3%0T and applying 8.14
successively, we achieve that

[[wg f (1)

< Cre” FHlwy £(0)]| oo + 0(1)

6l/() TOC

sup e ") lwy £(s) oo
0<s<t

t t
O / 9| (s) lads + Cr_ e / 9|V ()| ods,
0 0

1— e vTe

(8.31)

8.31,2 8.314,

where we have used

eV0Too

voTso —10Ts —1oNTso
e 1+e +---+e = .
{ } 1 — e*VOToo
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Step 4. From Proposition 6 and 7.1 we have
[ F(D)]13 + e Vo()]3

t t
4 [ s @I + 17 VormlBar+ |G, a2
0 0
S oll + V65 .

Hence

83122 < te” MM EA N folla + Vg, |12}
. v, A
S e G| folla + Vg, ll2}-
Now we consider 8.31,,. In order to close the estimate in 8.31 we need to improve
the decay rate of ||V¢(s)|loc. We claim that, for 65 ,, > 0 (which is specified in
8.38,

(8.33)

IVadi(s)lloe S 67(1”2'“?”""5{3;113 = f(s)]]2 + sup le*="f(s)lloc}.  (8.34)

By Morrey’s inequality for € R? and r > 3
IVadilloo S IVadsllcoi-s/ra) S IVadsllwrr(o)- (8.35)

Then applying the standard elliptic estimate to 1.16, we get

192600 wracey 5 | [ (o0 = -0 viae

S e sup [[e?2 f(#)]2,
>0

L2(Q)
(8.36)
e | U R RUINCY BT eSO
R3 Lr(Q) t20
(8.37)
Now we use the standard interpolation: For p > r > 3,
2.1 p 1-02
||Vw¢f||W1vT(Q) 5 ||va:¢f(t)||m2/1,2(g)”V:v(bf(t)llwl,i(g)a
for
11
T "5 _ 2 p—3
O2.rp = LA (8.38)
- zlv 3 p—2
Then we derive
sup [|el?2rpAat (102l g (1) o
t>0
9277”,1, 1_92,7‘,1)
< (swllesll)  (sup et~ (8.39)
>0 t>0
< sup [[e*2 f (1)l + o(1) sup X" £ (1) oo-
t>0 t>0

From our choice 8.7 and 0 < p — 3 < 1,

92”,)\2 + (1 — 9277‘,1)))\00 > (1 + 92’7‘,])))\00. (840)
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From 8.39

~

t
1, 5 [ e o (5 s
0

t
1 — 20 (t—s) ,—(1402,1,p) Ao || pAoo S d
+ of )/0 e 2 e lle*>=*wy f(8)]|cods (8.41)

<em min(%7z\oo)><t{Hf0||2 + ||V¢f0||2} from 8.32

+ o(1)e™™nCT A%t gupy [l 5wy £(5) | no-
0<s<t

Multiplying e*>~* and taking sup,s, to 8.31 with Ay, < min (’:1—0, %), and from
8.33 and 8.41, we obtain that
sup e ||wy f(t)]loc < [lwo f(O)lloc + [l follz + Vs, ll2 +0(1) sup e*=*[|wy f(5)]oc-
>0 0<s<t
(8.42)
By absorbing the last (small) term, we conclude that

sup e wy f(t)]loo < €5 M. (8.43)
0<t<T

If we choose 0. < 1/€ then by the local existence theorem (Theorem 6.1) and
continuity of wy f (t)]|eo, [lwg FE)I[E+[wsa] Vawf(S)E+ fy [w5e] Van ()4,
and ||VUf(t)||L§E(Q)L},+‘S(R3)7 we conclude that T' = oco.

Then the estimates of 1.46 and 1.47 are direct consequence of Proposition 3,
Lemma 4.2, and Proposition 5.

And 1.48 can be derived from 6.5-6.11 by replacing f*, f/*! with £, g. O

Appendix A. Auxiliary results and proofs.

Proof of 1.32. Let v =+ or —, from 1.27, for ¢ — tp ,(¢,2,v) < s <,
Tb,. (s, X+ (s;t,2,v), Va(s;t,x,v)) = zp,(t, z,v),
Vb (8, Xa(s5t,2,v), Vi(s;t, z,v)) = vp,, (¢, 2,0).
Therefore
[0t +v -V FVaoy - Viage +(t,z,v)

d
= gaﬁg,i(s, Xi(s;t,x,v), Vi(s;t,z,v)) ‘S:t

= %O‘f,s,i(txav) =0.

From 1.28 and 1.27,
th. (s, Xx(s:t,2,0v), Vi(s;t,z,v)) = tp,(t,z,0) — (t — 5).
Therefore

[at +v-VgF vr¢f : Vv}(t - tb,b(twrvv))

d
= $[3 —tb (s, X (sit,m,0), Va(sit, z,v))]|

d
= £[t —tp,(t,z,v)] =0.

These prove 1.32. O

s=t
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Proof of 3.32. The proof follows the argument of Lemma 7 in [13]. Note

2
eﬁ‘vl

1 * — |uP?
k@(v’u)W = T exp {—g|v —u

2ol T o - vluF}.

v —ul?
Let v —u =n and w = v — 7. Then the exponent equals

[n|*> = 2v - n|?
—oln* - e HJv —n> = J*}

2 v -nf? 2
= —20n|" +4ov-n—4o FE —H{Inl* —2v-n}

{v-n}?
|

If 0 < ¥ < 4p then the discriminant of the above quadratic form of |n| and % is

= (—20—)|n*+ (4o +20)v-n—4p

(4o + 209)% — 4(—20 — V)(—4p) = 49* — 160V < 0.
Hence, the quadratic form is negative definite. We thus have, for 0 < g0 < 0 — %
the following perturbed quadratic form is still negative definite
[[nl* —2v - nf?
In[?
Therefore we conclude 3.32. O

—(e=0)nf>—(e—2) — > —2v-n} <0.

Recall k5(x,v) in 6.13. Let us denote f5(t,x,v) := rs(x,v) f(t, z,v). We assume
that f(s,z,v) = e*fo(x,v) for s < 0. Then | fsl|rz@mxaxrs) S [ fllr2®, xaxrs) +
Il follL2caxre)s [1fsllzz@xy) S Iy llL2 e xy) + [1follz2¢y)-

Lemma A.1. Assume Q is conver in 1.40 and supg<;<r | E(t)| =) < 0o. Let
E(t,z) = 1o(z)E(t,z) for x € R®. There ewists f(t,r,v) € L?>(R x R? x R3;R?),
an extension of fs, such that

flaxgs = f5 and fly = fs|ly and fli—o = fsli=o-

Moreover, in the sense of distributions on R x R? x R3 — R2,

[0 +v -V +qE -V, ]f =h, (A1)
where
h(t,z,v) = k5(2,v)Licp0,00)[0r + v - Vo +qE - V| f
+ ks(x, v)lte(,oo’o]et[l +v- Vi +qE -Vl fors(z,v) (A.2)
+ f(t,z,v)[v- Ve + @ B - Vylks(2,0),
where tEX,:cEX,t?X,:er are defined in A.5.
Moreover,

Pl mxrexrs) S 1[0 +v - Vi +qE - Vo] fllL2®y xaxrs) + | fll2mxoxrs)

A3
1o~ Ve + 4B - Vol foll 2. (A.3)

Proof. In the sense of distributions
Oifs +v-Vaufs +qE -Vyfs =hin A2. (A4)
Clearly |[v-V, + @ E - Vylks(z,v)] Ss 1.
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For z € R*\Q we define
tEX (z,v) :=sup{s > 0: 2 — 70 € R¥}\Q for all 7€ (0,s)},

_ A5
tFX (z,v) :=sup{s > 0: x +1v € R¥\Q for all 7€ (0,s)}, (4.5)
and 28X (z,v) = — th(_t,x,v))v, oFX (v,0) = 2 + tFX (¢, z,0))v.
We define, for z € R3\(Q,
fE(tv T, 1)) :1m§X(t,z,v)€BQfé(t - tEX(x7 U)v xEX ('ra U)7 U) (A 6)

+1zfx(t,m,v)eaﬂf5(t + thX(x7 ’U), :L'fEX (iC, ’U), ’U).

Recall that, from 6.13, fs = 0 when n(z)-v = 0, and hence fg = 0 for n(z) -v = 0.
Since © is convex if v # 0 then {xZX(z,v) € 0Q} N {2FX(z,v) € 9Q} = 0. Note
that
fe(t,z,v) = f,(t,z,v) = f5(t,z,v) for z € O0. (A7)
And since for any s > 0,
(t + 5 — tEX (x + sv,0), 2% (2 + sv,v),v) = (t — t£X (z,v), 2EX (z,v),v),
(t + s+ thX(x + SU,U),IfEX(l‘ + S’U,’U),’U) = (t - thX(xa ’U),:Z?tEX(JC,’U), U)v

so in the sense of distribution, in R x [R3\Q)] x R?

Otfe +v-Vufe =0. (A.8)

We define
f(t,z,0) = 1g(x) f5(t, 2,v) + 1gs\g(2) fE(t, z,0). (A.9)
From A.4, A7, and A.8 we prove A.1. The estimates of A.3 are direct conse-
quence of Lemma 2.2. O
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