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Abstract. We construct a unique global-in-time solution to the two species
Vlasov-Poisson-Boltzmann system in convex domains with the diffuse bound-

ary condition, which can be viewed as one of the ideal scattering boundary

model. The construction follows a new L2-L∞ framework in [3]. In our knowl-
edge this result is the first construction of strong solutions for two species

plasma models with self-consistent field in general bounded domains.

1. Introduction. One of the fundamental models for dynamics of dilute charged
particles (e.g., electrons and ions) is the Vlasov-Maxwell-Boltzmann (VMB) system,
in which particles interact with themselves through collisions and with their self-
consistent electromagnetic field:

∂tF+ + v · ∇xF+ +
e+

m+
(E +

v

c
×B) · ∇vF+ = Q(F+, F+) +Q(F+, F−),

∂tF− + v · ∇xF− −
e−
m−

(E +
v

c
×B) · ∇vF− = Q(F−, F+) +Q(F−, F−).

(1.1)

Here F±(t, x, v) ≥ 0 are the density functions for the ions (+) and electrons (−)
respectively, and e±, m± the magnitude of their charges and masses, c the speed
of light. The self-consistent electromagnetic field E(t, x), B(t, x) in 1.1 is coupled
with F (t, x, v) through the Maxwell system (see [15]). Previous studies for the VMB
system, for example the existence of global in time classical solution, uniqueness,
and asymptotic behavior without boundaries, can be found in [15], [6].

Now formally as the speed of light c → ∞, one can derive the so-called two
species Vlasov-Poisson-Boltzmann (VPB) system, where B(t, x) = 0. And the field
E, that we are interested in, is associated with an electrostatic potential φ as

E(t, x) := −∇xφ(t, x), (1.2)

where the potential is determined by the Poisson equation:

−∆xφ(t, x) =

∫
R3

(F+ − F−)dv := ρ. (1.3)

In this paper we consider the zero Neumann boundary condition for φ:

∂φ

∂n
= 0 for x ∈ ∂Ω. (1.4)
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It turns out that the presence of all the physical constants does not create essen-
tial mathematical difficulties. Therefore, for simplicity we normalize all constants
in 1.1 to be one, and the VPB system takes the form:

∂tF+ + v · ∇xF+ + E · ∇vF+ = Q(F+, F+) +Q(F+, F−),

∂tF− + v · ∇xF− − E · ∇vF+ = Q(F−, F+) +Q(F−, F−).
(1.5)

The collision operator between particles measures “the change rate” in binary hard
sphere collisions and takes the form of

Q(F1, F2)(v) := Qgain(F1, F2)−Qloss(F1, F2)

:=

∫
R3

∫
S2

|(v − u) · ω|[F1(v′)F2(u′)− F1(v)F2(u)]dωdu,
(1.6)

where u′ = u − [(u − v) · ω]ω and v′ = v + [(u − v) · ω]ω. The collision operator
enjoys a collision invariance: for any measurable G1, G2,∫

R3

[
1 v |v|2−3

2

]
Q(G1, G1)dv =

[
0 0 0

]
,

∫
R3

Q(G1, G2) = 0. (1.7)

It is well-known that a global Maxwellian µ satisfies Q(·, ·) = 0 where

µ(v) :=
1

(2π)3/2
exp

(
− |v|

2

2

)
. (1.8)

Throughout this paper, let’s use the notation

ι = + or −, and denote − ι =

{
− , if ι = +

+ , if ι = −.
(1.9)

Being an important equation in both theoretic and application aspects, the Boltz-
mann equation has drawn attentions and there have been a lot of research activities
in analytic study of the equation. Notably the nonlinear energy method has led to
solutions of many open problems [14, 15] including global strong solution of both the
VMB system and the VPB system, when the initial data are close to the Maxwellian
µ. One thing to note is that these results deal with idealized periodic domains or
whole space, in which the solutions can remain bounded in Hk for large k.

In many important physical applications, e.g. semiconductor and tokamak, the
charged dilute gas is confined within a container, and its interaction with the bound-
ary often plays a crucial role both in physics and mathematics. So it’s natural to
consider the equation 1.5 in a bounded domain Ω, and the interaction of the gas with
the boundary is described by suitable boundary conditions [4, 24]. In this paper we
consider one of the physical conditions, a so-called diffuse boundary condition:

Fι(t, x, v) = cµµ(v)

∫
n(x)·u>0

Fι(t, x, u)(n(x) · u)du for (x, v) ∈ γ−. (1.10)

Here, γ− := {(x, v) ∈ ∂Ω×R3 : n(x)·v < 0} and n(x) is the outward unit normal at a

boundary point x. A number cµ is chosen to be
√

2π so that cµ
∫
n(x)·u>0

µ(u)(n(x) ·
u)du = 1. Due to this normalization the distrubution of 1.10 enjoys a null flux
condition at the boundary:∫

R3

Fι(t, x, v)(n(x) · v)du = 0 for x ∈ ∂Ω. (1.11)

One can view this boundary condition as one of the ideal scattering model.
However, in general, higher regularity may not be expected for solutions of the

Boltzmann equation in physical bounded domains. Such a drastic difference of
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solutions with boundaries had been demonstrated as the formation and propagation
of discontinuity in non-convex domains [23, 7], and a non-existence of some second
order derivatives at the boundary in convex domains [16]. Evidently the nonlinear
energy method is not generally available to the boundary problems. In order to
overcome such critical difficulty, Guo developed a L2-L∞ framework in [13] to study
global solutions of the Boltzmann equation with various boundary conditions. The
core of the method lays in a direct approach (without taking derivatives) to achieve a
pointwise bound using trajectory of the transport operator, which leads substantial
development in various directions including [8, 7, 16, 17]. There are also studies on
different type of collisional plasma models such as a Fokker-Planck equation with
some boundary conditions (for example, see [19] and reference therein).

The main goal of the paper is to study the 2 species VPB system coupled of
1.5 with 1.2 and 1.3, which describes the dynamics of electrons in the absence of a
magnetic field. From 1.7 and 1.11, a smooth solution of VPB with the diffuse BC
1.10preserves total mass:∫∫

Ω×R3

Fι(t, x, v)dvdx ≡
∫∫

Ω×R3

Fι(0, x, v)dvdx for all t ≥ 0. (1.12)

We assume that initially F0(x, v) satisfies∫∫
Ω×R3

(F+(0, x, v)− F−(0, x, v))dvdx = 0. (a neutral condition) (1.13)

Then
∫

Ω

{∫
R3(F+(t, x, v)− F−(t, x, v))dv

}
dx = 0 for all t > 0 from 1.12. This

zero-mean condition guarantees a solvability of the Poisson equation 1.3 with the
Neumann boundary condition 1.4.

There are some previous studies for the one-species VPB system (which is ob-
tained by letting F− = 0) with physical boundary conditions. For example the
time asymptotics of a solution to the VPB system is studied [5] under some a priori
assumption on the solutions. In [25] renormalized solutions (no uniqueness) were
constructed for the VPB system with diffuse boundary condition. Recently in [3]
the authors constructed a unique global strong solution to the VPB system with
diffuse boundary condition. They also had a weighted W 1,p, 3 < p < 6 estimate
for the solution of such system. This regularity result was later improved in [2]
where the author obtained a weighted W 1,∞ estimate for the solution under the
appearance of an external field with a favorable sign condition E · n > 0 on the
boundary which will be explained later.

We consider a perturbation around µ:

Fι = µ+
√
µfι. (1.14)

Then the corresponding problem is given by

∂tf+ + v · ∇vf+ −∇φ · ∇vf+ +
v

2
· ∇φf+ (1.15)

− 2
√
µ
Q(
√
µf+, u)− 1

√
µ
Q(µ,

√
µ(f+ + f−)) = Γ(f+, f+ + f−)− v · ∇φ√µ,

∂tf− + v · ∇vf− +∇φ · ∇vf− −
v

2
· ∇φf−

− 2
√
µ
Q(
√
µf−, u)− 1

√
µ
Q(µ,

√
µ(f− + f+)) = Γ(f−, f+ + f−) + v · ∇φ√µ,

f(0, x, v) = f0(x, v),
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−∆xφ(t, x) =

∫
R3

√
µ(f+ − f−)dv,

∂φ

∂n
= 0 for x ∈ ∂Ω, (1.16)

fι(t, x, v) = cµ
√
µ(v)

∫
n(x)·u>0

√
µ(u)fι(t, x, u)(n(x) · u)du for (x, v) ∈ γ−. (1.17)

For g =

[
g1

g2

]
, h =

[
h1

h2

]
, let

Lg := − 1
√
µ

[
2Q(
√
µg1, µ) +Q(µ,

√
µ(g1 + g2))

2Q(
√
µg2, µ) +Q(µ,

√
µ(g1 + g2))

]
:= ν(v)g −Kg. (1.18)

Here the collision frequency is defined as

ν(v) :=
2
√
µ
Qloss(

√
µ, µ) := 2

∫
S2

∫
R3

|(v − u) · ω|µ(u)dudω ∼ 〈v〉, (1.19)

It is well-known that for hard-sphere case,

1
√
µ(v)

Qgain(
√
µg1, µ) =

1
√
µ(v)

Qgain(µ,
√
µg1) =

∫
R3

k2(v, u)g1(u)du,

1
√
µ(v)

Qloss(µ,
√
µg1) =

∫
R3

k1(v, u)g1(u)du,

with

k1(v, u) =π|v − u|e−
|v|2+|u|2

4 ,

k2(v, u) =π|v − u|−1e−
|v−u|2

8 e
− ||v|

2−|u|2|2

8|v−u|2 .

(1.20)

Thus

Kg :=

[
2√
µQgain(

√
µg1, µ) +Q(µ,

√
µ(g1 + g2))

2√
µQgain(

√
µg2, µ) +Q(µ,

√
µ(g1 + g2))

]

:=

[∫
R3 k2(v, u)(3g1(u) + g2(u))du−

∫
R3 k1(v, u)(g1(u) + g2(u))du∫

R3 k2(v, u)(3g2(u) + g1(u))du−
∫
R3 k1(v, u)(g1(u) + g2(u))du

]
.

(1.21)

The nonlinear operator is defined as

Γ(g, h) := Γgain(g, h)− Γloss(g, h)

:=
1
√
µ

[
Qgain(

√
µg1,
√
µ(h1 + h2)−Qloss(

√
µg1,
√
µ(h1 + h2))

Qgain(
√
µg2,
√
µ(h1 + h2)−Qloss(

√
µg2,
√
µ(h1 + h2))

]
.

(1.22)

Then for f =

[
f+

f−

]
, 1.15 becomes

∂tf + v · ∇xf − q∇φ · ∇vf + q
v

2
· ∇φf + Lf = Γ(f, f)− q1v · ∇φ

√
µ, (1.23)

where q =

[
1 0
0 −1

]
, and q1 =

[
1
−1

]
.

Let’s clarify some notations. We denote

wϑ(v) = eϑ|v|
2

. (1.24)

The boundary of the phase space γ := {(x, v) ∈ ∂Ω× R3} can be decomposed as

γ− = {(x, v) ∈ ∂Ω× R3 : n(x) · v < 0}, (the incoming set),

γ+ = {(x, v) ∈ ∂Ω× R3 : n(x) · v > 0}, (the outcoming set),

γ0 = {(x, v) ∈ ∂Ω× R3 : n(x) · v = 0}, (the grazing set).

(1.25)
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For any function z(x, v) : Ω̄× R3 → R, denote

|z|22,+ =

∫
γ+

z2dγ, |z|22,− =

∫
γ−

z2dγ, |z|2γ,2 =

∫∫
∂Ω×R3

z2|n(x) · v|dvdx

Now for any vector-valued function f, g : Ω × R3 → R2, with f =

[
f+

f−

]
, and

g =

[
g+

g−

]
, let’s clarify the following notations:

|f | := |f+|+ |f−|, f · g := f+g+ + f−g−,

〈f, g〉 :=

∫∫
Ω×R3

f · g dvdx =

∫∫
Ω×R3

(f+g+ + f−g−) dvdx,

fp :=

[
fp+
fp−

]
,

∫
f :=

[∫
f+∫
f−

]
, ∂f :=

[
∂f+

∂f−

]
,

|f |pp,+ :=

∫
γ+

|f |pdγ ∼
∫
γ+

(|f+|p + |f−|p)dγ,

|f |pp,− :=

∫
γ−

|f |pdγ ∼
∫
γ−

(|f+|p + |f−|p)dγ, |f |pγ,p :=

∫∫
∂Ω×R3

|f |p|n(x) · v|dvdx,

‖f(t)‖pp :=

∫∫
Ω×R3

|f |pdvdx ∼
∫∫

Ω×R3

(|f+(t)|p + |f−(t)|p)dvdx,

‖f(t)‖∞ := sup
(x,v)∈Ω×R3

|f+(t)|+ |f−(t)|.

1.1. A new distance function. Throughout this paper we extend φf for a nega-
tive time. Let

φf (s, x, v) := φf0
(x, v) for −∞ < s < 0, (1.26)

where φf0
(x, v) satisfies −∆φf0

(x, v) =
∫ 3

R (f0,+ − f0,−)
√
µdv.

The characteristics (trajectory) is determined by the Hamilton ODEs for f+ and
f− separately

d

ds

[
Xf
ι (s; t, x, v)

V fι (s; t, x, v)

]
=

[
V fι (s; t, x, v)

−ι∇xφf (s,Xf
ι (s; t, x, v))

]
for−∞ < s, t <∞, (1.27)

with (Xf
ι (t; t, x, v), V fι (t; t, x, v)) = (x, v).

For (t, x, v) ∈ R× Ω× R3, we define the backward exit time tfb,ι(t, x, v) as

tfb,ι(t, x, v) := sup{s ≥ 0 : Xf
ι (τ ; t, x, v) ∈ Ω for all τ ∈ (t− s, t)}. (1.28)

Furthermore, we define xfb,ι(t, x, v) := Xf
ι (t− tb,ι(t, x, v); t, x, v) and vfb,ι(t, x, v) :=

V fι (t− tb,ι(t, x, v); t, x, v).

Definition 1.1 (Distance Function). For ε > 0, for ι = + or − as in 1.9, define

αf,ε,ι(t, x, v) := χ
( t− tfb,ι(t, x, v) + ε

ε

)
|n(xfb,ι(t, x, v)) · vfb,ι(t, x, v)|

+
[
1− χ

( t− tfb,ι(t, x, v) + ε

ε

)]
.

(1.29)
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Here we use a smooth function χ : R→ [0, 1] satisfying

χ(τ) = 0, τ ≤ 0, and χ(τ) = 1, τ ≥ 1,

d

dτ
χ(τ) ∈ [0, 4] for all τ ∈ R.

(1.30)

Note that αf,ε,ι(0, x, v) ≡ αf0,ε,ι(0, x, v) is determined by f0 and its extension

1.26. For the sake of simplicity, we could drop the superscription f in Xf
ι , V fι , tfb,ι,

xfb,ι, v
f
b,ι unless they could cause any confusion.

Also, denote

αf,ε(t, x, v) :=

[
αf,ε,+(t, x, v) 0

0 αf,ε,−(t, x, v)

]
, (1.31)

and let |αf,ε(t, x, v)| := |αf,ε,+(t, x, v)|+ |αf,ε,−(t, x, v)|.
One of the crucial properties of the new distance function in 1.29 is an invariance

under the Vlasov operator:[
∂t + v · ∇x − ι∇xφf · ∇v

]
αf,ε,ι(t, x, v) = 0. (1.32)

This is due to the fact that the characteristics solves a deterministic system 1.27
(See the proof in the appendix). This crucial invariant property under the Vlasov
operator is one of the key points in our approach.

It is important to note that a different version of the distance function which has
been used in the author’s previous paper [2] to establish the regularity of the one
specie VPB system is not applicable here. In [2], the weight α̃ took the form

α̃(t, x, v) =

[
|v · ∇ξ(x)|2 + ξ(x)2 − 2(v · ∇2ξ(x) · v)ξ(x)− 2(E(t, x) · ∇ξ(x))ξ(x)

]1/2

(1.33)
for x ∈ Ω close to boundary, where x := {x̄ ∈ ∂Ω : d(x, x̄) = d(x, ∂Ω)} is uniquely
defined. And ξ was assumed to be a C3 function ξ : R3 → R such that Ω = {x ∈
R3 : ξ(x) < 0}, ∂Ω = {x ∈ R3 : ξ(x) = 0}, and ∇ξ(x) 6= 0 when |ξ(x)| � 1. And
the domain was assumed to be strictly convex:∑

i,j

∂ijξ(x)ζiζj ≥ Cξ|ζ|2 for all ζ ∈ R3 and for all x ∈ Ω̄ = Ω ∪ ∂Ω.

One of the crucial property this α̃ enjoys is the velocity lemma:

|{∂t + v · ∇x + E · ∇v}α̃(t, x, v)| . |v|α̃, (1.34)

when under the sign condition

E · n > δ > 0, on ∂Ω, (1.35)

where n is the outward normal vector. This can be seen by direct computation:

|{∂t + v · ∇x + E · ∇v}α̃2(t, x, v)| ∼ |v|α̃2 + Cξ(E,∇xE, ∂tE)|v|ξ(x), (1.36)

for some bounded function Cξ. Now under 1.35, we get an extra stronger control
for ξ(x) from α̃2, and therefore the second term on the right-hand side of 1.36 can
be bounded by:

Cξ|v|ξ(x) ≤ Cξ
infy∈∂ΩE(t, y) · ∇ξ(x)

|v|(E(t, x) · ∇ξ(x))ξ(x) ≤ Cξ
δ
α̃2(t, x, v). (1.37)

Thus combing 1.36 and 1.37 we obtain 1.34. This means α̃(t, x, v) retains its full
power under the transport operator, which is crucially used for establishing the
theories in [2].
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Thus it’s clear that without the last term in 1.33, i.e. in the case E · ∇ξ = 0 on
∂Ω, in order to have the ξ(x) control from the second term on the right hand side
of 1.36, we can only obtain

|{∂t + v · ∇x + E · ∇v}α̃2(t, x, v)| . |v|α̃(t, x, v). (1.38)

Therefore α̃(t, x, v) suffers a loss of power under the transport operator, and would
result it’s been inapplicable for the situation here.

Therefore the previous distance function α̃ would work only under a crucial
favorable sign condition 1.35. But for the two species VPB system, it’s clear from
the equation 1.5 that if one requires the sign condition for the field for F+, i.e.
−∇φ ·n > 0, then inevitably one would have +∇φ ·n < 0, so the field for F− would
fail to satisfy the sign condition. We note that the similar α̃ has also been used by
[12], [18] in the study of one-species problem of Vlasov equation.

Thus one of the major benefit for this new distance function α is that it only re-
quires the zero-Neuuman boundary condition E ·n = 0 (see Lemma 2.1, Proposition
4), and therefore with ±∇φ ·n = 0 from 1.4, we can apply this distance function to
the two species VPB system 1.5.

1.2. Main Theorem. The main goal of this paper is the construction of a unique
global strong solution of the two species VPB system with the diffuse boundary
condition when the domain is C3 and convex. Moreover an asymptotic stability of
the global Maxwellian µ is studied.

Here a C3 domain means that for any p ∈ ∂Ω, there exists sufficiently small
δ1 > 0, δ2 > 0, and an one-to-one and onto C3-map

ηp : {x‖ ∈ R2 : |x‖| < δ1} → ∂Ω ∩B(p, δ2),

x‖ = (x‖,1, x‖,2) 7→ ηp(x‖,1, x‖,2).
(1.39)

A convex domain means that there exists CΩ > 0 such that for all p ∈ ∂Ω and ηp
and for all x‖ in 1.39

2∑
i,j=1

ζiζj∂i∂jηp(x‖) · n(x‖) ≤ −CΩ|ζ|2 for all ζ ∈ R2. (1.40)

Theorem 1.2. Assume a bounded open C3 domain Ω ⊂ R3 is convex 1.40. Let
0 < ϑ̃ < ϑ� 1. Assume the neutral condition 1.13 and the compatibility condition

f0,ι(x, v) = cµ
√
µ(v)

∫
n(x)·u>0

f0,ι(x, u)
√
µ(u){n(x) · u}du on γ−. (1.41)

Then there exists a small constant 0 < ε0 � 1 such that for all 0 < ε ≤ ε0 if an
initial datum F0 = µ+

√
µf0 ≥ 0 satisfies

‖wϑf0‖L∞(Ω̄×R3) < ε, (1.42)

and, recall the matrix definition of α in 1.31,

‖wϑ̃α
β
f0,ε
∇x,vf0‖Lp(Ω×R3) < ε for 3 < p < 6, 1− 2

p
< β <

2

3
, (1.43)

and

‖wϑ̃∇vf0‖L3(Ω×R3) <∞, (1.44)
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then there exists a unique global-in-time solution (f, φf ) to 1.15, 1.16, 1.17 such
that F (t) = µ+

√
µf(t) ≥ 0. Moreover there exists λ∞ > 0 such that

sup
t≥0

eλ∞t‖wϑf(t)‖L∞(Ω̄×R3) + sup
t≥0

eλ∞t‖φf (t)‖C2(Ω) . 1, (1.45)

and, for some C > 0,

‖wϑ̃α
β
f,ε∇x,vf(t)‖Lp(Ω×R3) . eCt for all t ≥ 0, (1.46)

and, for 0 < δ = δ(p, β)� 1,

‖∇vf(t)‖L3
x(Ω)L1+δ

v (R3) .t 1 for all t ≥ 0. (1.47)

Furthermore, if (f, φf ) and (g, φg) are both solutions to 1.15, 1.16, 1.17 then

‖f(t)− g(t)‖L1+δ(Ω×R3) .t ‖f(0)− g(0)‖L1+δ(Ω×R3) for all t ≥ 0. (1.48)

The proof of Theorem 1.2 devotes a nontrivial extension of the argument of [3]
now for the two species VPB system. One of the major difference here is the L2

coercivity estimate.
We now illustrate the main ideas in the proof of Theorem 1.2 which largely

follows the framework in [3]. In the energy-type estimate of ∇x,vf in αβf,ε-weighted
Lp-norm, the operator v · ∇x causes a boundary term to be controlled:∫ t

0

∫
∂Ω

∫
n·v≤0

|αβf,ε∇x,vf |
p|n · v|dvdSxds. (1.49)

It turns out this integrand is integrable if

β >
p− 2

p
so that |n · v|pβ−p+1 ∈ L1

loc(R3). (1.50)

On the other hand to control the terms in the bulk we need a bound of φf (t) in
C2
x. A key observation is that∥∥∥∥∫
R3

∇xf
√
µdv

∥∥∥∥
Lpx(Ω)

. sup
x

∑
ι=±

∥∥∥∥∥
√
µ

αβf,ε,ι

∥∥∥∥∥
Lp∗ (R3)

∥∥∥αβf,ε∇xf∥∥∥
Lp(Ω×R3)

,
1

p
+

1

p∗
= 1,

(1.51)
which leads C2,0+-bound of φf by the Morrey inequality for p > 3 as long as

α−βp
∗

f,ε,ι ∈ L
1
loc(R3) for some βp∗ >

p− 2

p− 1
. (1.52)

The proof of 1.52 can be found in [3], where the authors employ a change of variables

v 7→ (xfb(t, x, v), tfb(t, x, v)), and carefully compute and bound the determinant of
the Jacobian matrix to get∫
|v|.1

α−βp
∗

f,ε dv .
∫

boundary

|(x− xfb) · n(xfb)|1−βp∗

|x− xfb|3−βp
∗

dxfb + good terms <∞, (1.53)

which turns to be bounded as long as βp∗ < 1.
In order to run the L2-L∞ bootstrap argument we need to prove the L2 coercivity

property of the solution f (Proposition 6). This is one of the major difference from
[3], as here for the two species VPB system, the null space of the linear operator L
in 1.18 is a six-dimensional subspace of L2

v(R3;R2) spanned by orthonormal vectors{[√
µ

0

]
,

[
0√
µ

]
,

[
vi√

2

√
µ

vi√
2

√
µ

]
,

[ |v|2−3

2
√

2

√
µ

|v|2−3

2
√

2

√
µ

]}
, i = 1, 2, 3, (1.54)
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(see Lemma 1 from [15] for the proof). And the projection of f onto the null space
N(L) can be denoted by

Pf(t, x, v)

:=

{
a+(t, x)

[√
µ

0

]
+ a−(t, x)

[
0√
µ

]
+ b(t, x) · v√

2

[√
µ√
µ

]
+ c(t, x)

|v|2 − 3

2
√

2

[√
µ√
µ

]}
.

(1.55)

Using the standard L2 energy estimate of the equation, it is well-known (See [15])
that L is degenerate: 〈Lf, f〉 & ‖ν1/2(I −P)f‖L2

(Ω×R3)
. Thus it’s clear that in order

to control the L2 norm of f(t), we need a way to bound the missing ‖P(t)‖L2 term.
From there we adopt the ideas from [7] and apply it to our setting (two species

system). By using weak formulation of the equation 1.23, we properly choose a set
of test functions:

ψa ≡
[
−(|v|2 − βa)

√
µv · ∇xϕa+

−(|v|2 − βa)
√
µv · ∇xϕa−

]
,

ψi,jb,1 ≡
[
(v2
i − βb)

√
µ∂jϕ

j
b

(v2
i − βb)

√
µ∂jϕ

j
b

]
, i, j = 1, 2, 3,

ψi,jb,2 ≡
[
|v|2vivj

√
µ∂jϕ

i
b(x)

|v|2vivj
√
µ∂jϕ

i
b(x)

]
, i 6= j,

ψc ≡
[
(|v|2 − βc)

√
µv · ∇xϕc

(|v|2 − βc)
√
µv · ∇xϕc

]
,

(1.56)

where ϕa±(t, x), ϕb(t, x), and ϕc(t, x) solve

−∆ϕa± = a±(t, x), ∂nϕa± |∂Ω = 0,

−∆ϕjb = bj(t, x), ϕjb|∂Ω = 0, and −∆ϕc = c(t, x), ϕc|∂Ω = 0,
(1.57)

and carefully choose βa = 10, βb = 1, and βc = 5 to satisfy 7.11. Integrating against

those test functions
∫ t

0
〈φ, 1.23〉, we can nicely extract the L2 norms of the N(L)

projections of f : ‖a±(t)‖2L2 , ‖b(t)‖2L2 , ‖c(t)‖2L2 through the term 〈v · ∇xf, φ〉. And
therefore we recover the bound for the missing ‖Pf(t)‖2L2 term from the L2 energy
estimate of f .

Finally we use L2-L∞ bootstrap argument to derive an exponential decay of f in
L∞. The main idea here is to control f+ and f− separately along their trajectories
(X+(s), V+(s)) and (X−(s), V−(s)) by using the double Duhamel expansion, and
then use change of variables to get the L2 bound. But here as we are working with
the two species system, it’s important to note that in the process of the double
Duhamel expansion, a mix of trajectories would occur 8.25. That is if we start
with either ι = + or −, both the f+ and f− terms would appear in the first
Duhamel expansion of fι. From there we perform the second Duhamel expansion
by expanding f+ along (X+(s), V+(s)), and expanding f− along (X−(s), V−(s)).
And then we treat them using two different change of variables

u 7→ X+(s′; s,Xι(s; t, x, v), u), u 7→ X−(s′; s,Xι(s; t, x, v), u) (1.58)

accordingly to get the bound with ‖f+‖L2 + ‖f−‖L2 in the bulk. But thanks to the
L2 coercivity (Proposition 6) which gives control to the whole ‖f‖L2 , we can take
the sum

∑
ι=± |fι| and close the estimates.
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2. Preliminary. In this section, we give some basic estimates of initial-boundary
problems of the transport equation in the presence of a time-dependent field E(t, x),
and f here is assumed to be a scalar valued function f(t, x, v) : [0,∞)×Ω×R3 → R
satisfies

∂tf + v · ∇xf + E · ∇vf + ψf = H, (2.1)

where H = H(t, x, v) and ψ = ψ(t, x, v) ≥ 0. We assume that E is defined for all
t ∈ R. Throughout this section (X(s; t, x, v), V (s; t, x, v)) denotes the characteristic
which is determined by 1.27 with replacing −ι∇xφf by E.

Lemma 2.1. Assume that Ω is convex 1.40. Suppose that supt ‖E(t)‖C1
x
<∞ and

n(x) · E(t, x) = 0 for x ∈ ∂Ω and for all t. (2.2)

Assume (t, x, v) ∈ R+ × Ω̄ × R3 and t + 1 ≥ tb(t, x, v). If x ∈ ∂Ω then we further
assume that n(x) · v > 0. Then we have

n(xb(t, x, v)) · vb(t, x, v) < 0. (2.3)

Proof. The proof is the same as that of Lemma 1 in [3]. But since we are going to
use some of the argument for later purpose, let’s present the proof here.

Step 1. Note that locally we can parametrize the trajectory (see Lemma 15 in [16]
or [22] for details). We consider local parametrization 1.39. We drop the subscript
p for the sake of simplicity. If X(s; t, x, v) is near the boundary then we can define
(Xn, X‖) to satisfy

X(s; t, x, v) = η(X‖(s; t, x, v)) +Xn(s; t, x, v)[−n(X‖(s; t, x, v))]. (2.4)

For the normal velocity we define

Vn(s; t, x, v) := V (s; t, x, v) · [−n(X‖(s; t, x, v))]. (2.5)

We define V‖ tangential to the level set
(
η(X‖) +Xn(−n(X‖))

)
for fixed Xn. Note

that
∂
(
η(x‖) + xn(−n(x‖))

)
∂x‖,i

⊥ n(x‖) for i = 1, 2.

We define (V‖,1, V‖,2) as

V‖,i :=
(
V − Vn[−n(X‖)]

)
·
(∂η(X‖)

∂x‖,i
+Xn

[
−
∂n(X‖)

∂x‖,i

])
. (2.6)

Therefore we obtain

V (s; t, x, u) = Vn[−n(X‖)] + V‖ · ∇x‖η(X‖)−XnV‖ · ∇x‖n(X‖). (2.7)

Directly we have

Ẋ(s; t, x, u) = Ẋ‖ · ∇x‖η(X‖) + Ẋn[−n(X‖)]−XnẊ‖ · ∇x‖n(X‖).

Comparing coefficients of normal and tangential components, we obtain that

Ẋn(s; t, x, v) = Vn(s; t, x, v), Ẋ‖(s; t, x, v) = V‖(s; t, x, v). (2.8)

On the other hand, from 2.7,

V̇ (s) = V̇n[−n(X‖)]− Vn∇x‖n(X‖)Ẋ‖ + V‖ · ∇2
x‖
η(X‖)Ẋ‖ + V̇‖ · ∇x‖η(X‖)

− Ẋn∇x‖n(X‖)V‖ −Xn∇x‖n(X‖)V̇‖ −XnV‖ · ∇2
x‖
n(X‖)Ẋ‖.

(2.9)
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From 2.9 · [−n(X‖)], 2.8, and V̇ = E, we obtain that

V̇n(s) = [V‖(s) · ∇2η(X‖(s)) · V‖(s)] · n(X‖(s)) + E(s,X(s)) · [−n(X‖(s))]

−Xn(s)[V‖(s) · ∇2n(X‖(s)) · V‖(s)] · n(X‖(s)).
(2.10)

Step 2. We prove 2.3 by the contradiction argument. Assume we choose (t, x, v)
satisfying the assumptions of Lemma 2.1. Let us assume

Xn(t− tb; t, x, v) + Vn(t− tb; t, x, v) = 0. (2.11)

First we choose 0 < ε� 1 such that Xn(s; t, x, v)� 1 and

Vn(s; t, x, v) ≥ 0 for t− tb(t, x, v) < s < t− tb(t, x, v) + ε. (2.12)

The sole case that we cannot choose such ε > 0 is when there exists 0 < δ � 1 such
that Vn(s; t, x, v) < 0 for all s ∈ (t− tb(t, x, v), t− tb(t, x, v) + δ). But from 2.8 for
s ∈ (t− tb(t, x, v), t− tb(t, x, v) + δ),

0 ≤ Xn(s; t, x, v) = Xn(t− tb(t, x, v); t, x, v) +

∫ s

t−tb(t,x,v)

Vn(τ ; t, x, v)dτ < 0.

Now with ε > 0 in 2.12, temporarily we define that t∗ := t − tb(t, x, v) + ε,
x∗ = X(t − tb(t, x, v) + ε; t, x, v), and v∗ = V (t − tb(t, x, v) + ε; t, x, v). Then
(Xn(s; t, x, v), X‖(s; t, x, v)) = (Xn(s; t∗, x∗, v∗), X‖(s; t∗, x∗, v∗)) and
(Vn(s; t, x, v), V‖(s; t, x, v)) = (Vn(s; t∗, x∗, v∗), V‖(s; t∗, x∗, v∗)).

Now we consider the RHS of 2.10. From 1.40, the first term [V‖(s) ·∇2η(X‖(s)) ·
V‖(s)] · n(X‖(s)) ≤ 0. By an expansion and 2.2 we can bound the second term

E(s,X(s)) · n(X‖(s))

= E(s,Xn(s), X‖(s)) · n(X‖(s))

= E(s, 0, X‖(s)) · n(X‖(s)) + ‖E(s)‖C1
x
O(|Xn(s)|)

= ‖E(s)‖C1
x
O(|Xn(s)|).

(2.13)

From 1.27 and assumptions of Lemma 2.1,

|V‖(s; t, x, v)| ≤ |v|+ tb(t, x, v)‖E‖∞ ≤ |v|+ (1 + t)‖E‖∞.
Combining the above results with 2.10, we conclude that

V̇n(s; t∗, x∗, v∗) . (|v|+ (1 + t)‖E‖∞)2Xn(s; t∗, x∗, v∗),

and hence from 2.8 for t− tb(t, x, v) ≤ s ≤ t∗,
d

ds
[Xn(s; t∗, x∗, v∗) + Vn(s; t∗, x∗, v∗)]

. (|v|+ (1 + t)‖E‖∞)2[Xn(s; t∗, x∗, v∗) + Vn(s; t∗, x∗, v∗)].
(2.14)

By the Gronwall inequality and 2.11, for t− tb(t, x, v) ≤ s ≤ t∗,
[Xn(s; t∗, x∗, v∗) + Vn(s; t∗, x∗, v∗)]

. [Xn(t− tb(t, x, u)) + Vn(t− tb(t, x, u))]eCε(|v|+(1+t)‖E‖∞)2)

= 0.

From 2.12 we conclude that Xn(s; t, x, v) ≡ 0 and Vn(s; t, x, v) ≡ 0 for all s ∈
[t − tb(t, x, u), t − tb(t, x, u) + ε]. We can continue this argument successively to
deduce that Xn(s; t, x, v) ≡ 0 and Vn(s; t, x, v) ≡ 0 for all s ∈ [t − tb(t, x, v), t].
Therefore xn = 0 = vn which implies x ∈ ∂Ω and n(x)·v = 0. This is a contradiction
since we chose n(x) · v > 0 if x ∈ ∂Ω.
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Lemma 2.2. Assume that, for Λ1 > 0, δ1 > 0,

sup
t≥0

eΛ1t‖E(t)‖∞ ≤ δ1 � 1. (2.15)

We also assume 1
C 〈v〉 ≤ ψ(t, x, v) ≤ C〈v〉 for some C > 0. For ε satisfying

ε >
2δ1
Λ1

> 0, (2.16)

there exists a constant Cδ1,Λ1,Ω > 0 such that, for all t ≥ 0,∫ t

0

∫
γ+\γε+

|h|dγds

≤ Cδ1,Λ1,Ω

{
||h0||1 +

∫ t

0

‖h(s)‖1 +
∥∥[∂t + v · ∇x + E · ∇v + ψ]h(s)

∥∥
1
ds

}
.

(2.17)

If E ∈ L∞ does not decay but
‖E(t)‖∞ ≤ δ, (2.18)

then for ε > 0,∫ t

0

∫
γ+\γε+

|h|dγds

≤ Cδ,t,ε,Ω
{
‖h0‖1 +

∫ t

0

‖h(s)‖1 +
∥∥[∂t + v · ∇x + E · ∇v + ψ]h(s)

∥∥
1
ds

}
,

(2.19)

where we have time-dependent constant Cδ,t,ε,Ω > 0.

Proof. See the proof of Lemma 6 in [3].

Lemma 2.3 (Green’s identity). For p ∈ [1,∞), we assume f ∈ Lploc(R+ ×Ω×R3)
satisfies

∂tf + v · ∇xf + E · ∇vf ∈ Lploc(R+;Lp(Ω× R3)), f ∈ Lploc(R+;Lp(γ+)).

Then f ∈ C0
loc(R+;Lp(Ω× R3)) and f ∈ Lploc(R+;Lp(γ−)).

Moreover

‖f(T )‖pp +

∫ T

0

|f |pp,+ = ‖f(0)‖pp +

∫ T

0

|f |pp,−

+ p

∫ T

0

∫∫
Ω×R3

{∂t + v · ∇xf + E · ∇vf}|f |p−2f.

(2.20)

Proof. See the proof of Lemma 5 in [3].

Proposition 1. Assume the compatibility condition

f0(x, v) = g(0, x, v) for (x, v) ∈ γ−. (2.21)

Let p ∈ [1,∞) and 0 < ϑ < 1/4. Assume

∇xf0,∇vf0 ∈ Lp(Ω× R3),

∇x,vtb∂tg,∇x,vvb∇vg,∇x,vxb∂xb
g,∇x,vtbψg ∈ Lp([0, T ]× γ−),

∇xH,∇vH ∈ Lp([0, T ]× Ω× R3),

e−ϑ|v|
2

∇xψ, e−ϑ|v|
2

∇vψ ∈ Lp([0, T ]× Ω× R3),

eϑ|v|
2

f0 ∈ L∞(Ω× R3), eϑ|v|
2

g ∈ L∞([0, T ]× γ−),

eϑ|v|
2

H ∈ L∞([0, T ]× Ω× R3).

(2.22)
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Then for any T > 0, there exists a unique solution f to 2.1 such that ∇x,vf ∈
C0([0, T ];Lp(Ω× R3)) ∩ L1((0, T );Lp(γ)).

Proof. See the proof of Proposition 2 in [3].

Lemma 2.4. Assume E(t, x) ∈ C1
x is given and 2.15 and

sup
t≥0

eΛ2t‖∇xE(t)‖∞ ≤ δ2 � 1, (2.23)

with Λ2 + δ2 + ε ≤ 1.Then there exists C > 0 such that

|∇vX(s; t, x, v)| ≤ CeCδ2(Λ2)−2

|t− s|, for all max(t− tb(t, x, v),−ε) ≤ s ≤ t.
(2.24)

Proof. See the proof of Lemma 9 in [3].

3. L∞ estimate. Let ι = + or − as in 1.9. We set F 0
ι (t, x, v) ≡ µ and φ0 ≡ 0. We

then apply proposition 1 for ` = 0, 1, 2... to get a sequence F ` such that

∂tF
`+1
ι + v · ∇xF `+1

ι − ι∇φ` · ∇vF `+1
ι

= Qgain(F `ι , F
`
ι + F `−ι)−Qloss(F

`+1
ι , F `ι + F `−ι),

−∆φ` =

∫
R3

F `+ − F `−dv,

∫
Ω

φ`dx = 0,
∂φ`

∂n

∣∣∣
∂Ω

= 0,

(3.1)

and, on (x, v) ∈ γ−,

F `+1
ι (t, x, v) = cµµ

∫
n(x)·v>0

F `ι (t, x, u){n(x) · u}du, (3.2)

and F `+1
ι (0, x, v) = F0ι(x, v).

Then f `+1 solves

[∂t + v · ∇x − q∇xφ` · ∇v + ν + q
v

2
· ∇φ`]f `+1

= Kf ` − q1v · ∇φ`
√
µ+ Γgain(f `, f `)− Γloss(f

`+1, f `),

−∆φ` =

∫
R3

(f `+ − f `−)
√
µdv,

∫
Ω

φ`dx = 0,
∂φ`

∂n

∣∣∣
∂Ω

= 0,

(3.3)

Denote the characteristics (X`
ι , V

`
ι ) which solves

d

ds
X`
ι (s; t, x, v) = V `ι (s; t, x, v),

d

ds
V `ι (s; t, x, v) = −ι∇φ`(s,X`

ι (s; t, x, v)).

(3.4)

t`1,ι(t, x, v) := sup{s < t : X`
ι (s; t, x, v) ∈ ∂Ω},

x`1,ι(t, x, v) := X`
ι (t

`
1,ι(t, x, v); t, x, v),

t`−1
2,ι (t, x, v, v1) := sup{s < t`1,ι : X`−1

ι (s; t`1,ι(t, x, v), x`1,ι(t, x, v), v1) ∈ ∂Ω},

x`−1
2,ι (t, x, v, v1) := X`−1

ι (t`−1
2,ι (t, x, v, v1); t`1,ι(t, x, v), x`1,ι(t, x, v), v1),

(3.5)

and inductively
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t
`−(k−1)
k,ι (t, x, v, v1, · · · , vk−1)

:= sup
{
s < t

`−(k−2)
k−1,ι : X`−(k−1)

ι (s; t
`−(k−2)
k−1,ι , x

`−(k−2)
k−1,ι , vk−1) ∈ ∂Ω

}
,

x
`−(k−1)
k,ι (t, x, v, v1, · · · , vk−1)

:= X`−(k−1)
ι (t

`−(k−1)
k,ι ; t

`−(k−2)
k−1,ι , x

`−(k−2)
k−1,ι , vk−1).

(3.6)

Here,

t
`−(i−1)
i,ι := t

`−(i−1)
i,ι (t, x, v, v1, · · · , vi−1),

x
`−(i−1)
i,ι := x

`−(i−1)
i,ι (t, x, v, v1, · · · , vi−1).

Proposition 2. Assume that for sufficiently small M > 0, such that

‖wϑf0‖∞ <
M

2
, (3.7)

then there exits T ∗(M) > 0 such that

sup
0≤t≤T∗

max
`
‖wϑf `(t)‖∞ ≤M. (3.8)

Proof. We define

h`(t, x, v) := wϑ(v)f `(t, x, v). (3.9)

By an induction hypothesis we assume

sup
0≤t≤T∗

‖h`(t)‖∞ ≤M. (3.10)

Then h`+1 solves

[∂t + v · ∇x − q∇xφ` · ∇v + ν + q
v

2
· ∇φ` − q∇xφ

` · ∇vwϑ
wϑ

]h`+1

= Kwϑh
` − q1v · ∇φ`wϑ

√
µ+ wϑΓgain(

h`

wϑ
,
h`

wϑ
)− wϑΓloss(

h`+1

wϑ
,
h`

wϑ
),

−∆φ` =

∫
R3

(f `+ − f `−)
√
µdv,

∫
Ω

φ`dx = 0,
∂φ`

∂n

∣∣∣
∂Ω

= 0,

(3.11)

where Kwϑ( · ) = wϑK( 1
wϑ
·). The boundary condition is

h`+1
ι |γ− = cµwϑ

√
µ

∫
n·u>0

h`ιw
−1
ϑ

√
µ{n · u}du. (3.12)

We define

ν`(t, x, v) :=

[
ν`+(t, x, v) 0

0 ν`−(t, x, v)

]
:=

[
ν(v) + v

2 · ∇φ
` − ∇xφ

`·∇vwϑ
wϑ

0

0 ν(v)− v
2 · ∇φ

` + ∇xφ`·∇vwϑ
wϑ

)

]
.

(3.13)

From 3.10, for M � 1, ‖∇φ`‖∞ � 1 and hence

ν`ι (t, x, v) ≥ 4ν0

5
〈v〉. (3.14)

Let

g` := −q1v · ∇φ`
√
µ+ Γgain(

h`

wϑ
,
h`

wϑ
) :=

[
g`+
g`−

]
. (3.15)
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Note that

|wϑg`| . ‖h`‖∞ + 〈v〉‖h`‖2∞, (3.16)

where we have used

|wϑΓ(
h

wϑ
,
h

wϑ
)| . 〈v〉‖h‖2∞. (3.17)

Consider the trajectories of h`+1
+ and h`+1

− separately from 3.11,

d

ds

{
e−
∫ t
s
ν`ι (τ,X

`
ι (τ),V `ι (τ))dτh`+1

ι (s,X`
ι (s; t, x, v), V `ι (s; t, x, v))

}
= e−

∫ t
s
ν`ι (τ,X

`
ι (τ),V `ι (τ))dτ

{
Kwϑ,ιh

`(s,X`
ι (s), V

`
ι (s)) + wϑg

`
ι (s,X

`
ι (s), V

`
ι (s))

}
.

(3.18)

From 3.18 and 3.12, we have

h`+1
ι (t, x, v)

= 1t`1,ι≤0e
−
∫ t
0
ν`ιh`+1

ι (0, X`
ι (0), V `ι (0))

+

∫ t

max{t`1,ι,0}
e−
∫ t
s
ν`ι [Kwϑ,ιh

` + wϑg
`
ι ](s,X

`
ι (s; t, x, v), V `ι (s; t, x, v))ds

+ 1t`1,ι≥0e
−
∫ t
t`1,ι

ν`ι
h`+1(t`1,ι, X

`
ι (t

`
1,ι; t, x, v), V `ι (t`1,ι; t, x, v)).

(3.19)

We define

w̃ϑ(v) ≡ 1

wϑ(v)
√
µ(v)

. (3.20)

From 3.12,

the last line of 3.19

= 1t`1,ι≥0e
−
∫ t
t`1,ι

ν`ι 1

w̃ϑ(V `ι (t`1,ι))∫
n(x`1,ι)·v1>0

h`ι(t
`
1,ι, x

`
1,ι, v1)w̃ϑ(v1)cµµ{n(x`1,ι) · v1}dv1.

We define V(x) = {v ∈ R3 : n(x) · v > 0} with a probability measure dσ = dσ(x)
on V(x) which is given by

dσ ≡ cµµ(v){n(x) · v}dv. (3.21)

Let

Vj,ι := {vj ∈ R3 : n(x
`−(j−1)
j,ι ) · vj > 0}. (3.22)

Then inductively we obtain from 3.19, 3.18 and 3.12,

|h`+1
ι (t, x, v)|

≤ 1t`1,ι≤0e
−
∫ t
0
ν`ι |h`+1(0, X`

ι (0), V `ι (0))|

+

∫ t

max{t`1,ι,0}
e−
∫ t
s
ν`ι |[Kwϑh

` + wϑg
`](s,X`

ι (s; t, x, v), V `ι (s; t, x, v))|ds

+ 1t`1,ι>0

e
−
∫ t
t`1,ι

ν`ι

w̃ϑ%(V `ι (t`1,ι))

∫
∏k−1
j=1 Vj,ι

|H|,

(3.23)
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where |H| is bounded by

k−1∑
l=1

1{t`−ll+1,ι≤0<t
`−(l−1)
l,ι }|h

`−l(0, X`−l
ι (0; vl), V

`−l
ι (0; vl))|dΣl,ι(0)

+
k−1∑
l=1

∫ t
`−(l−1)
l,ι

max{t`−ll+1,ι,0}
1{t`−ll+1,ι≤0<t

`−(l−1)
l,ι }

×|[Kwϑh
`−l + wϑg

`−l](s,X`−l
ι (s; vl), V

`−l
ι (s; vl)|dΣl,ι(s)ds

+ 1{0<t`−(k−1)
k,ι }|h

`−(k−1)(t
`−(k−1)
k,ι , x

`−(k−1)
k,ι , vk−1)|dΣk−1,ι(t

`−(k−1)
k,ι ),

where

dΣk−1
l,ι (s) = {Πk−1

j=l+1dσj,ι} × {e−
∫ tl,ι
s ν`ι w̃ϑ(vl)dσl,ι}

×Πl−1
j=1{e

−
∫ tj,ι
tj+1,ι

νjι wϑ(vj,b)
√
µ(vj,b)

wϑ(vj)
√
µ(vj)

dσj,ι},
(3.24)

and

X`−l
ι (s; vl) := X`−l

ι (s; t
`−(l−1)
l,ι , x

`−(l−1)
l,ι , vl),

V `−lι (s; vl) := V `−lι (s; t
`−(l−1)
l,ι , x

`−(l−1)
l,ι , vl),

vj,b := V `−jι (t
`−(j−1)
j,ι − tb; t

`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj).

(3.25)

Step 2-2. We claim that there exist T > 0 and k0 > 0 such that for all k ≥ k0

and for all (t, x, v) ∈ [0, T ]× Ω̄× R3, we have∫
∏k−1
j=1 Vj,ι

1{t`−(k−1)
k,ι (t,x,v,v1,··· ,vk−1)>0}dΣk−1

k−1,ι .Ω

{1

2

}k/5
. (3.26)

The proof of the claim is a modification of a proof of Lemma 14 of [16].
For 0 < δ � 1 we define

Vδj,ι := {vj ∈ Vj,ι : |vj · n(x
`−(j−1)
j,ι )| > δ, |vj | ≤ δ−1}. (3.27)

Choose

T =
2

δ2/3(1 + ‖∇φ‖∞)2/3
. (3.28)

We claim that

|t`−(j−1)
j,ι − t`−jj+1,ι| & δ3, for vj ∈ Vδj,ι, 0 ≤ t ≤ T, 0 ≤ t`−(j−1)

j,ι . (3.29)

For j ≥ 1, ∣∣∣ ∫ t`−jj+1,ι

t
`−(j−1)
j,ι

V `−jι (s; t
`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj)ds

∣∣∣2
= |x`−jj+1,ι − x

`−(j−1)
j,ι |2

& |(x`−jj+1,ι − x
`−(j−1)
j,ι ) · n(x

`−(j−1)
j,ι )|

=
∣∣∣ ∫ t`−jj+1,ι

t
`−(j−1)
j,ι

V `−jι (s; t
`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj) · n(x

`−(j−1)
j,ι )ds

∣∣∣
=

∣∣∣ ∫ t`−jj+1,ι

t
`−(j−1)
j,ι

(
vj −

∫ s

t
`−(j−1)
j,ι

∇φ`−j(τ,X`−j
ι (τ))dτ

)
· n(x

`−(j−1)
j,ι )ds

∣∣∣
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≥ |vj · n(x
`−(j−1)
j,ι )||t`−(j−1)

j,ι − t`−jj+1,ι|

−
∣∣∣ ∫ t`−jj+1,ι

t
`−(j−1)
j,ι

∫ s

t
`−(j−1)
j,ι

∇φ`−j(τ,X`−j
ι (τ)) · n(x

`−(j−1)
j,ι )dτds

∣∣∣,
where X`−j

ι (τ) = X`−j
ι (τ ; t

`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj).

Here we have used the fact if x, y ∈ ∂Ω and ∂Ω is C2 and Ω is bounded then
|x− y|2 &Ω |(x− y) · n(x)|. Hence

|vj · n(x
`−(j−1)
j,ι )|

.
1

|t`−(j−1)
j,ι − t`−jj+1,ι|

∣∣∣ ∫ t`−jj+1,ι

t
`−(j−1)
j,ι

V `−jι (s; t
`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj)ds

∣∣∣2
+

1

|t`−(j−1)
j,ι − t`−jj+1,ι|

×
∣∣∣ ∫ t`−jj+1,ι

t
`−(j−1)
j,ι

∫ s

t
`−(j−1)
j,ι

∇φ`−j(τ,X`−j
ι (τ ; t

`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj)) · n(x

`−(j−1)
j,ι )dτds

∣∣∣
. |t`−(j−1)

j,ι − t`−jj+1,ι|
{
|vj |2 + |t`−(j−1)

j,ι − t`−jj+1,ι|
3‖∇φ‖2∞

+
1

2
sup

t`−jj+1,ι≤τ≤t
`−(j−1)
j,ι

|∇φ`−j(τ,X`−j
ι (τ ; t

`−(j−1)
j,ι , x

`−(j−1)
j,ι , vj)) · n(x

`−(j−1)
j,ι )|

}
.

(3.30)

For vj ∈ Vδj,ι, 0 ≤ t ≤ T , and t
`−(j−1)
j,ι ≥ 0,

|vj · n(x
`−(j−1)
j,ι )| . |t`−(j−1)

j,ι − t`−jj+1,ι|{δ
−2 + T 3‖∇φ`−j‖2∞ + ‖∇φ`−j‖∞}.

We choose T as 3.28 then prove 3.29.

Therefore if t
`−(k−1)
k,ι ≥ 0 then there can be at most

{[
CΩ

δ3

]
+ 1
}

numbers of

vm ∈ Vδm,ι for 1 ≤ m ≤ k− 1. Equivalently there are at least k− 2−
[
CΩ

δ3

]
numbers

of vi ∈ Vi,ι\Vδi,ι for 0 ≤ i ≤ m.

Let us choose k = N ×
([
CΩ

δ3

]
+ 1
)

and N =
([
CΩ

δ3

]
+ 1
)
� C > 1. Then we have∫

∏k−1
j=1 Vj,ι

1{t`−(k−1)
k,ι (t,x,v,v1,··· ,vk−1)>0}dΣk−1

k−1

≤

[
CΩ
δ3

]
+1∑

m=1

∫{
there are exactly m of vi ∈ Vδi,ι
and k − 1−m of vi ∈ Vi,ι\Vδi,ι

} k−1∏
j=1

C0µ(vj)
1/4dvj

≤

[
CΩ
δ3

]
+1∑

m=1

(
k − 1
m

){∫
V
C0µ(v)1/4dv

}m{∫
V\Vδ

C0µ(v)1/4dv

}k−1−m

≤
([

CΩ

δ3

]
+ 1

)
{k − 1}

[
CΩ
δ3

]
+1{δ}k−2−

[
CΩ
δ3

]{∫
V
C0µ(v)1/4dv

}[CΩ
δ3

]
+1

≤ {CN} kN
{
k

N

} k
N
{
k

N

}− k
N
N2

20

≤
{
k

N

} k
N

(
−N2

20 +3
)
≤
{

1

2

}k
,

where we have chosen k = N ×
([
CΩ

δ3

]
+ 1
)

and N =
([
CΩ

δ3

]
+ 1
)
� C > 1.
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Step 2-3. We define a notation

k%(v, u) :=
1

|v − u|
exp

{
−%|v − u|2 − % ||v|

2 − |u|2|2

|v − u|2

}
. (3.31)

For 0 < ϑ
4 < %, if 0 < %̃ < %− ϑ

4 then

k%(v, u)
eϑ|v|

2

eϑ|u|2
. k%̃(v, u). (3.32)

See the proof in the appendix.
Moreover, for 0 < ϑ

4 < %, (see the proof of Lemma 7 in [13])∫
R3

k%(v, u)
eϑ|v|

2

eϑ|u|2
du . 〈v〉−1. (3.33)

Also, we have

l−1∏
j=1

sup
vj

wϑ(vj,b)
√
µ(vj,b)

wϑ(vj)
√
µ(vj)

.
l−1∏
j=1

e
∫ tj,ι
tj+1,ι

‖∇φ`−j(s)‖2∞ .
l−1∏
j=1

eM
2(tj,ι−tj+1,ι) . eM

2t,

(3.34)
and

k−1∑
l=1

1{t`−ll+1,ι≤0<t
`−(l−1)
l,ι } = 1{t`−(k−1)

k ≤0}. (3.35)

Then from 3.16, 3.14, and 3.23, 3.24, 3.26, 3.34, and 3.35, if we choose ` ≥ k0 and
0 ≤ t ≤ T where k0 and T in 3.26, and let M2 � ν0, we have

|h`+1
ι (t, x, v)|

≤ ‖e− 3
4 ν0th0‖∞

+

∫ t

max{t`1,ι,0}
e−

3
4 ν0(t−s)

∫
R3

k%(V
`
ι (s; t, x, v), u)|h`(s,X`

ι (s; t, x, v), u)|duds

+ Ck sup
l

∫ t
`−(l−1)
l,ι

max{t`−1
l+1,ι,0}

e−
3
4 ν0(t−s)

∫
R3

∫
R3

k%(V
`−l
ι (s; vl), u)

× |h`−l(s,X`−l
ι (s; vl), u)|{n(xl) · vl}

√
µ(vl)

wϑ(vl)
dvlduds

+

∫ t

max{t`1,ι,0}
〈V `ι (s; t, x, v)〉e−

∫ t
s

ν`ι (τ)

2 dτ‖e− 3
4 ν0(t−s)h`(s)‖2∞ds

+ Ck sup
l

∫ t
`−(l−1)
l,ι

max{t`−ll+1,ι,0}
〈V `−lι (s; vl)〉

× e−
∫ t`−(l−1)
l,ι
s

ν`−lι (τ)

2 dτ‖e− 3
4 ν0(t−s)h`−l(s)‖2∞ds

+

∫ t

max{t`1,ι,0}
‖e− 3

4 ν0(t−s)∇φ`(s)‖∞ds

+ Ck sup
l

∫ t
`−(l−1)
l,ι

max{t`−ll+1,ι,0}
‖e− 3

4 ν0(t−s)∇φ`−l(s)‖∞ds

(3.36)
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+
{

1
2

}k/5
‖e−

3
4 ν0(t−t`−(k−1)

k,ι )h(t
`−(k−1)
k,ι )‖∞,

where we used the abbreviation of 3.25.

From
∫ t

0
〈V `−lι (s; vl)〉e−

∫ t`−(l−1)
l,ι
s

ν`−lι (τ)

2 dτds . 1 and 3.33, we derive that

‖h`+1(t)‖∞ . ‖h`+1
+ (t)‖∞ + ‖h`+1

− (t)‖∞
.k‖h(0)‖∞ + o(1)‖h(t

`−(k−1)
k )‖∞

+ tmax
l≥0

sup
0≤s≤t

‖h`−l(s)‖∞ + max
l≥0

sup
0≤s≤t

‖h`−l(s)‖2∞.
(3.37)

By taking supremum in ` and choosing M � 1 and 0 ≤ t ≤ T ∗ ≤ T with T ∗ � 1,
we conclude 3.8.

4. Weighted W 1,p estimates.

Proposition 3. The main goal of this section is to prove the following weighted
W 1,p estimate for the sequence f ` in 3.3 Let us choose 0 < ϑ̃ < ϑ� 1 and

p− 2

p
< β <

2

3
, for 3 < p < 6. (4.1)

Assume f l solves 3.3, and for some T > 0

sup
`≥0

sup
0≤t≤T

‖wϑf `(t)‖∞ � 1, (4.2)

sup
`≥0

sup
0≤t≤T

eΛ1t‖∇xφ`(t)‖∞ < δ1, (4.3)

with

0 <
δ1
Λ1
�Ω 1. (4.4)

Then there exists T ∗∗ � 1 and C > 0 such that the sequence 3.3 satisfies

max
`≥0

sup
0≤t≤T∗∗

E`(t) ≤ C{‖wϑf0‖∞+‖wϑ̃f0‖pp+‖wϑ̃α
β
f0,ε
∇x,vf0‖pp+|∇τ,vf0|pp,+} <∞.

(4.5)
where we define, for 0 < ε� 1,

E`+1(t) :=‖wϑf `+1(t)‖∞ + ‖wϑ̃f
`+1(t)‖pp + ‖wϑ̃α

β
f`,ε
∇x,vf `+1(t)‖pp

+

∫ t

0

|wϑ̃α
β
f`,ε
∇x,vf `+1(t)|pp,+ +

∫ t

0

|wϑ̃f
`+1(t)|pp,+.

(4.6)

To prove this, we need the following results:

Proposition 4. Assume φf (t, x) obtained from 1.16 with ∇φf satisfies 2.15 and

sup
t≥0

eΛ2t‖∇2φf (t)‖∞ ≤ δ2 � 1. (4.7)

Then for ι = + or − as in 1.9, for all 0 < σ < 1 and N > 1 and for all s ≥ 0,
x ∈ Ω̄, ∫

|u|≤N

du

αf,ε,ι(s, x, u)σ
.σ,Ω,Λ1,δ1,Λ2,δ2,N 1, (4.8)

and, for any 0 < κ ≤ 2,∫
|u|≥N

e−C|v−u|
2

|v − u|2−κ
1

αf,ε,ι(s, x, u)σ
du .σ,Ω,Λ1,δ1,Λ2,δ2,N,κ 1. (4.9)
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Proof. It is important to note that from 2.15 we have n(x) · ∇φf = 0 for all x ∈ Ω.
Thus for both trajectories (X±(s; t, x, v), V±(s; t, x, v)), their corresponding fields
∓∇xφf satisfy ∓∇xφf ·n(x) = 0. Therefore we can apply Proposition 3 from [3] to
αf,ε,+ and αf,ε,− separately to conclude 4.8 and 4.9.

Lemma 4.1. For any 0 < δ < 1, we claim that if (f, φf ) solves 1.16 then

‖φf (t)‖C1,1−δ(Ω̄) .δ,Ω ‖wϑf(t)‖∞ for all t ≥ 0. (4.10)

Proof. We have, for any p > 1,∥∥∥∥∫
R3

(f+ − f−)
√
µ(v)dv

∥∥∥∥
Lp(Ω)

≤ |Ω|1/p
(∫

R3

wϑ(v)−1
√
µ(v)dv

)
‖wϑf(t)‖∞.

Then we apply the standard elliptic estimate to 1.16 and deduce that

‖φf (t)‖W 2,p(Ω) . ‖wϑf(t)‖∞.

On the other hand, from the Morrey inequality, we have, for p > 3 and Ω ⊂ R3,

‖φf (t)‖C1,1−3/p(Ω) .p,Ω ‖φ(t)‖W 2,p(Ω).

Now we choose p = 3/δ for 0 < δ < 1. Then we can obtain 4.10.

To close the estimate, we use the following lemma crucially.

Lemma 4.2. Assume 4.1. If φf solves 1.16 then

‖φf (t)‖
C

2,1− 3
p (Ω̄)

≤ (C1)1/p
{
‖f(t)‖p + ‖αβf,ε∇xf(t)‖p

}
for p > 3. (4.11)

Proof. Applying the Schauder estimate to 1.16, we deduce

‖φf (t)‖
C

2,1− 3
p (Ω̄)

.p,Ω
∥∥∥ ∫

R3

(f+(t)− f−(t))
√
µdv

∥∥∥
C

0,1− 3
p (Ω̄)

for p > 3. (4.12)

By the Morrey inequality, W 1,p ⊂ C0,1− 3
p with p > 3 for a domain Ω ⊂ R3 with

a smooth boundary ∂Ω, we derive∥∥∥ ∫
R3

(f+(t)− f−(t))
√
µdv

∥∥∥
C

0,1−n
p (Ω̄)

.
∥∥∥ ∫

R3

(f+(t)− f−(t))
√
µdv

∥∥∥
W 1,p(Ω)

.

(∫
R3

µq/2dv

)1/q

‖f(t)‖Lp(Ω×R3) +
∥∥∥ ∫

R3

∇x(f+(t)− f−(t))
√
µdv

∥∥∥
Lp(Ω)

.

(4.13)

By the Hölder inequality, for ι = + or − as in 1.9,∣∣∣ ∫
R3

∇xfι(t, x, v)
√
µ(v)dv

∣∣∣
≤
∥∥∥ √

µ(·)
αf,ε,ι(t, x, ·)β

∥∥∥
L

p
p−1 (R3)

∥∥∥αf,ε,ι(t, x, ·)β∇xfι(t, x, ·)∥∥∥
Lp(R3)

=

(∫
R3

µ(v)
p

2(p−1)

αf,ε,ι(t, x, v)
βp
p−1

dv

) p−1
p

︸ ︷︷ ︸
4.141

‖αf,ε,ι(t, x, ·)β∇xfι(t, x, ·)‖Lp(R3).

(4.14)

Note that p−2
p−1 <

βp
p−1 <

2
3

p
p−1 < 1 from 4.1. We apply Proposition 4 and conclude

that 4.141 . 1. Taking Lp(Ω)-norm on 4.14 and from 4.13, we conclude 4.11.
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We need some basic estimates to prove Proposition 3. Recall the decomposition
of L in 1.18. From 1.19

|∇vν(v)| ≤
∫
R3

∫
S2

|ω|µ(u)dωdu . 1. (4.15)

Recall the definition of k%(v, u) from 3.31. From 1.20 and a direction computa-
tion, for 0 < % < 1

8 ,

|∂vik1(v, u+ v)| = Ck1
∂vi

(
|u|e−

|v|2+|u+v|2
4

)
. k%(v, u+ v), (4.16)

and

∂vik2(v, u+ v) = Ck2∂vi

( 1

|u|
e−
|u|2

8 e
− ||v|

2−|u+v|2|2

8|u|2
)

= −Ck2

|u|
e−
|u|2

8 e
− ||v|

2−|u+v|2|2

8|u|2
||v|2 − |u+ v|2|

4|u|
ui
|u|

.
e−
|u|2

8

|u|
e
− ||v|

2−|u+v|2|2

16|u|2

. k%(v, u+ v).

(4.17)

For g1, g2 : R3 → R, g =

[
g1

g2

]
, we define

Kvg(v) :=

[∫
R3 ∇vk2(v, u)(3g1(u) + g2(u))du−

∫
R3 ∇vk1(v, u)(g1(u) + g2(u))du∫

R3 ∇vk2(v, u)(3g2(u) + g1(u))du−
∫
R3 ∇vk1(v, u)(g1(u) + g2(u))du

]
.

(4.18)
From 3.32, 4.16, and 4.17,

|wϑ̃K∇vg(v)| .
∑
i

∫
R3

|ki(v, u+ v)|
wϑ̃(v)

wϑ̃(u+ v)

× (|wϑ̃∇vg1(u+ v)|+ |wϑ̃∇vg2(u+ v)|)du

.
∫
R3

k%̃(v, u)|wϑ̃∇vg(u)|du,

|wϑ̃Kvg(v)|

.
∑
i

∫
R3

|∇vki(v, u+ v)|
wϑ̃(v)

wϑ(u+ v)
(|wϑg1(u+ v)|+ |wϑg2(u+ v)|)du

.
∫
R3

k%(v, u)
wϑ̃(v)

wϑ(u)
|wϑg(u)|du

. ‖wϑg‖∞.
(4.19)

For g =

[
g1

g2

]
and h =

[
h1

h2

]
, the nonlinear Boltzmann operator Γ(g, h) in 1.22

equals

Γ(g, h) =

[∫
R3

∫
S2 |u · ω|(h1 + h2)(v + u⊥)g1(v + u‖)

√
µ(v + u)dωdu∫

R3

∫
S2 |u · ω|(h1 + h2)(v + u⊥)g2(v + u‖)

√
µ(v + u)dωdu

]
−
[∫

R3

∫
S2 |u · ω|(h1 + h2)(v + u)g1(v)

√
µ(v + u)dωdu∫

R3

∫
S2 |u · ω|(h1 + h2)(v + u)g2(v)

√
µ(v + u)dωdu

]
,

(4.20)
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where u‖ = (u · ω)ω and u⊥ = u− u‖. Following the derivation of 1.20 in Chapter

3 of [10], by exchanging the role of
√
µ and w−1, we have

|wϑΓ(g, h)| . ‖wϑg‖∞
∫
R3

k%̃(v, u)|wϑh(u)|du,

|wϑΓ(g, h)| . ‖wϑh‖∞
(∫

R3

k%̃(v, u)|wϑg(u)|du+ 〈v〉|wϑg(v)|
)
.

(4.21)

By direct computations

∇vΓ(g, h)(v)

= ∇vΓgain(g, h)−∇vΓloss(g, h)

= Γgain(∇vg, h) + Γgain(g,∇vh)− Γloss(∇vg, h)− Γloss(g,∇vh) + Γv(g, h).

(4.22)

Here we have defined

Γv(g, h)(v) :=Γv,gain − Γv,loss

=

[∫
R3

∫
S2 |u · ω|(h1 + h2)(v + u⊥)g1(v + u‖)∇v

√
µ(v + u)dωdu∫

R3

∫
S2 |u · ω|(h1 + h2)(v + u⊥)g2(v + u‖)∇v

√
µ(v + u)dωdu

]
−
[∫

R3

∫
S2 |u · ω|(h1 + h2)(v + u)g1(v)∇v

√
µ(v + u)dωdu∫

R3

∫
S2 |u · ω|(h1 + h2)(v + u)g2(v)∇v

√
µ(v + u)dωdu

]
.

(4.23)

Note that

|wϑ̃Γgain(∇vg, h)|+ |wϑ̃Γgain(g,∇vh)|
. (‖wϑg‖∞ + ‖wϑh‖∞)

{
|wϑ̃Γgain(|∇vg|, w−1

ϑ )|+ |wϑ̃Γgain(w−1
ϑ , |∇vh|)|

}
. (‖wϑg‖∞ + ‖wϑh‖∞)

∫
R3

∫
S2

|(v − u) · ω|
wϑ̃(v)

wϑ(u)

{ |∇vh(u′)|
wϑ(v′)

+
|∇vg(v′)|
wϑ(u′)

}
dωdu.

Then following the derivation of 1.20 in Chapter 3 of [10], by exchanging the role
of
√
µ and w−1

ϑ , we can obtain a bound of

|wϑ̃Γgain(∇vg, h)|+ |wϑ̃Γgain(g,∇vh)|

. (‖wϑg‖∞ + ‖wϑh‖∞)

∫
R3

k%(v, u)
wϑ̃(v)

wϑ̃(u)
(|wϑ̃∇vg(u)|+ |wϑ̃∇vh(u)|)du

. (‖wϑg‖∞ + ‖wϑh‖∞)

∫
R3

k%̃(v, u)(|wϑ̃∇vg(u)|+ |wϑ̃∇vh(u)|)du.

(4.24)

Clearly

|wϑ̃Γloss(g,∇vh)| . ‖wϑg‖∞
∫
R3

wϑ̃(v)

wϑ(v)wϑ̃(u)
|wϑ̃∇vh(u)|µ(u)

1
2 du

. ‖wϑg‖∞
∫
R3

k%̃(v, u)|wϑ̃∇vh(u)|du,

|wϑ̃Γloss(∇vg, h)| . 〈v〉‖wϑh‖∞|wϑ̃∇vg(v)|.

(4.25)

For Γv,loss(g, h) defined in 4.23,

|wϑ̃Γv,loss(g, h)|

.
wϑ̃(v)

wϑ(v)
|wϑg|

∫∫
R3×S2

|(u− v) · ω| 1

wϑ(u)
|wϑh(u)|∇v

√
µ(u)dudω

. 〈v〉|wϑg|‖wϑh‖∞.

(4.26)
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For Γv,gain(g, h), following the derivation of 1.20 in Chapter 3 of [10], by exchanging

the role of
√
µ and w−1

ϑ

|wϑ̃Γv,gain(g, h)| . ‖wϑh‖∞
∫∫

R3×S2

|(u− v) · ω|
wϑ̃(v)

wϑ(v′)

wϑg(v′)

wϑ(u′)
∇v
√
µ(u)dudω

. ‖wϑh‖∞
∫
R3

k%̃(v, u)|wϑg(u)|du.

(4.27)

The next result is about estimates of derivatives on the boundary. Assume 3.2
and 3.3. We claim that for (x, v) ∈ γ−,

|∇x,vf `+1(t, x, v)| . 〈v〉
√
µ(v)

(
1 +

1

|n(x) · v|

)
× 4.29. (4.28)

with∫
n(x)·u>0

{
(〈u〉+ |∇xφ`|+ |∇xφ`−1|)|∇x,vf `(t, x, u)|+ 〈u〉(|f `+1|+ |f `|)

+ (1 + ‖wϑf `‖∞ + ‖wϑf `−1‖∞)

∫
R3

k%(u, u
′)(|f `(u′)|+ |f `−1(u′)|)du′

+ (〈u〉(|f `+1|+ |f `|) + µ(u)
1
4 )(|∇xφ`|+ |∇xφ`−1|)

}√
µ(u){n(x) · u}du.

(4.29)

From 3.3,

∂nf
`+1(t, x, v)

=
−1

n(x) · v

{
∂tf

`+1 +
2∑
i=1

(v · τi)∂τif `+1 − q∇xφl · ∇vf `+1 + q
v

2
· ∇xφlf `+1

+ νf `+1 −Kf ` − Γgain(f `, f `) + Γloss(f
`+1, f `) + q1v · ∇xφl

√
µ

}
.

(4.30)

Let τ1(x) and τ2(x) be unit tangential vectors to ∂Ω satisfying τ1(x) · n(x) =
0 = τ2(x) · n(x) and τ1(x) × τ2(x) = n(x). Define the orthonormal transformation
from {n, τ1, τ2} to the standard basis {e1, e2, e3}, i.e. T (x)n(x) = e1, T (x)τ1(x) =
e2, T (x)τ2(x) = e3, and T −1 = T T . Upon a change of variable: u′ = T (x)u, we
have

n(x) · u = n(x) · T t(x)u′ = n(x)tT t(x)u′ = [T (x)n(x)]tu′ = e1 · u′ = u′1,

then the RHS of the diffuse BC 3.2 equals

cµ
√
µ(v)

∫
u′1>0

f `(t, x, T t(x)u′)
√
µ(u′){u′1}du′.

Then we can further take tangential derivatives ∂τi as, for (x, v) ∈ γ−,

∂τif
`+1(t, x, v)

= cµ
√
µ(v)

∫
n(x)·u>0

∂τif
`(t, x, u)

√
µ(u){n(x) · u}du

+ cµ
√
µ(v)

∫
n(x)·u>0

∇vf `(t, x, u)
∂T t(x)

∂τi
T (x)u

√
µ(u){n(x) · u}du.

(4.31)
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We can take velocity derivatives directly to 1.17 and obtain that for (x, v) ∈ γ−,

∇vf `+1(t, x, v) = cµ∇v
√
µ(v)

∫
n(x)·u>0

f `(t, x, u)
√
µ(u){n(x) · u}du,(4.32)

∂tf
`+1(t, x, v) = cµ

√
µ(v)

∫
n(x)·u>0

∂tf
`(t, x, u)

√
µ(u){n(x) · u}du.

For the temporal derivative, we use 1.23 again to deduce that

∂tf
`+1(t, x, v)

=cµ
√
µ(v)

∫
n(x)·u>0

{
− u · ∇xf ` + q∇xφ`−1 · ∇vf ` − q

u

2
· ∇xφl−1f ` + νf `

−Kf l−1 + Γgain(f `−1, f `−1)− Γloss(f
`, f `−1)

− q1u · ∇xφ`−1√µ
}√

µ(u){n(x) · u}du.
(4.33)

From 4.30-4.33, 1.20, and 4.21, we conclude 4.28.

Proof of Proposition 3. Step 1. Note that by our choice of f1, we have ∂tf
1(t,

x, v)|γ− = 0. Therefore combing 4.31, 4.30, and 4.32 and the assumption that
|∇τ,vf0|pp,+ <∞, we get 4.5 is valid for ` ≤ 1.

Thus it suffices to prove the following induction statement: there exist T ∗∗ � 1
(and T ∗∗ < T ∗(M)) and C > 0 such that

if max
0≤m≤`

sup
0≤t≤T∗∗

Em(t)

≤C{‖wϑf0‖∞ + ‖wϑ̃f0‖pp + ‖wϑ̃α
β
f0,ε
∇x,vf0‖pp + |∇τ,vf0|pp,+} <∞,

then sup
0≤t≤T∗∗

E`+1(t)

≤C{‖wϑf0‖∞ + ‖wϑ̃f0‖pp + ‖wϑ̃α
β
f0,ε
∇x,vf0‖pp + |∇τ,vf0|pp,+}.

(4.34)

Define

νφ`(t, x, v) :=

[
ν(v) + v

2 · ∇xφ
` 0

0 ν(v)− v
2 · ∇xφ

`

]
. (4.35)

From the assumption 4.2, we have that ν(v)+ v
2 ·∇xφ

` & ν(v)
2 , and ν(v)− v

2 ·∇xφ
` &

ν(v)
2 .
From 1.16, 1.20, and 4.21, we can easily obtain that, for 0 < %� 1

‖wϑ̃f
`+1(t)‖pp +

∫ t

0

‖ν1/p

φ`
wϑ̃f

`+1‖pp +

∫ t

0

|wϑ̃f
`+1|pp,+

. ‖wϑ̃f(0)‖pp + ‖wϑ̃f
`‖∞

∫ t

0

∫
Ω×R3

〈v〉|wϑ̃f
`+1|p

+ (1 + ‖wϑf `‖∞)

∫ t

0

∫∫
Ω×R3

|wϑ̃f
`+1(v)|p−1

∫
R3

k%(v, u)
wϑ̃(v)

wϑ̃(u)
|wϑ̃f

`(u)|du

+ o(1)

∫ t

0

‖wϑ̃f
`+1‖pp +

∫ t

0

‖∇φ`‖pp +

∫ t

0

|wϑ̃f
`+1|pp,−.

(4.36)
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Note that by the Hölder inequality, 3.33, and 3.32,∫
R3

|wϑ̃f
`+1(v)|p−1

∫
R3

k%̃(v, u)|wϑ̃f
`(u)|dudv

. ‖wϑ̃f
`+1‖

1
p−1

Lpv

∥∥∥∥∫
R3

k%̃(v, u)1/qk%̃(v, u)1/p|wϑ̃f
`(u)|du

∥∥∥∥
Lpv

. ‖wϑ̃f
`+1‖

1
p−1

Lpv

(∫
R3

k%̃(v, u)du

)1/q
∥∥∥∥∥
(∫

R3

k%̃(v, u)|wϑ̃f
`(u)|pdu

)1/p
∥∥∥∥∥
Lpv

. o(1)‖wϑ̃f
`+1‖p

Lpv
+ ‖wϑ̃f

`‖p
Lpv
.

(4.37)

From a standard elliptic theorem and 1.16, we have∫ t

0

‖∇φ`‖pp .
∫ t

0

‖wϑ̃f
`‖pp. (4.38)

Now we focus on
∫ t

0
|wϑ̃f `+1|pp,− in 4.36. We plug in 3.2 and then decompose

γε+ ∪ γ+\γε+ where ε is small but satisfies 2.16. This leads∫ t

0

|wϑ̃f
`+1|pp,−

.
∫ t

0

∫
∂Ω

(∫
γε+(x)

wϑ̃|f
`|√µ{n · u}du

)p

+

∫ t

0

∫
∂Ω

(∫
γ+(x)\γε+(x)

wϑ̃|f
`|√µ{n · u}du

)p

.
(∫

γε+

√
µ{n · u}du

)p/q ∫ t

0

|wϑ̃f
`|pp,+ +

∫ t

0

∫
γ+\γε+

|wϑ̃f
`√µ|p

. o(1)

∫ t

0

|wϑ̃f
`|pp,+ +

∫ t

0

∫
γ+\γε+

|wϑ̃f
`√µ|p.

From 3.3, Lemma 2.2, 4.21, and 4.37∫ t

0

|wϑ̃f
`+1|pp,−

. ‖wϑ̃f(0)‖pp + o(1)

∫ t

0

|wϑ̃f
`|pp,+ + (1 + ‖wϑf `−1‖∞)

∫ t

0

‖(wϑ̃f
`‖pp + wϑ̃f

`−1‖pp).

(4.39)

Collecting terms from 4.36, 4.37, 4.38, and 4.39, we conclude that for sup`≥0

‖wϑ̃f `‖∞ � 1,

‖wϑ̃f
`+1(t)‖pp +

∫ t

0

‖ν1/p

φ`
wϑ̃f

`+1‖pp +

∫ t

0

|wϑ̃f
`+1|pp,+

. ‖wϑ̃f(0)‖pp + (1 + ‖wϑf `‖∞)

∫ t

0

(‖wϑ̃f
`‖pp + ‖wϑ̃f

`−1‖pp +

∫ t

0

|wϑ̃f
`|pp,+)

. wϑ̃f(0)‖pp +
(
o(1) + t(1 + ‖wϑf `‖∞)

)
max

m=`,`−1
sup

0≤t≤T∗∗
Em.

(4.40)
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Step 2. By taking derivatives ∂ ∈ {∇xi ,∇vi} to 3.3,

[∂t + v · ∇x − q∇xφ` · ∇v + νφ`,wϑ̃ ](wϑ̃∂f
`+1) = wϑ̃G

`+1, (4.41)

where

G`+1 =− ∂v · ∇xf `+1 + q∂∇φ` · ∇vf `+1 + ∂Γgain(f `, f `)− ∂Γloss(f
`+1, f `)

− ∂
[
ν(v) + q

v

2
· ∇φ`(t, x)

]
f `+1 − ∂Kf ` − q1∂(v · ∇xφ`

√
µ).

(4.42)

Here we have used

νφ`,wϑ̃ = νφ`,wϑ̃(t, x, v)

:=

ν(v) + v
2 · ∇φ

`(t, x) +
∇xφ`·∇vwϑ̃

wϑ̃
0

0 ν(v)− v
2 · ∇φ

`(t, x) +
∇xφ`·∇vwϑ̃

wϑ̃

 .
(4.43)

Denote

νφ`,wϑ̃+ = ν(v) +
v

2
· ∇φ`(t, x) +

∇xφ` · ∇vwϑ̃
wϑ̃

, νφ`,wϑ̃−

= ν(v)− v

2
· ∇φ`(t, x) +

∇xφ` · ∇vwϑ̃
wϑ̃

.

From 1.32 and 4.41, for ι = + or − we have

1

p
|wϑ̃α

β
f`,ε,ι

∂f `+1
ι |p−1

[
∂t + v · ∇x−ι∇xφ` · ∇v + νφ`,wϑ̃ι

]
|wϑ̃α

β
f`,ε,ι

∂f `+1
ι |

= αβp
f`,ε,ι

|wϑ̃∂f
`+1
ι |p−1

[
∂t + v · ∇x−ι∇xφ` · ∇v + νφ`,wϑ̃ι

]
|wϑ̃∂f

`+1
ι |

= wp
ϑ̃
αβp
f`,ε,ι

|∂f `+1
ι |p−1G`+1

ι .

(4.44)

From 4.15, 4.43, 4.18, and 4.23

|G| . |∇xf `+1|+ |∇2φ`||∇vf `+1|

+ |Γgain(∂f `, f `)|+ |Γgain(f `, ∂f `)|+ |Γloss(f
`+1, ∂f `)|

+ |Γloss(∂f
`+1, f `)|+ |K∂f `|+ |f `+1|+ |Γv,gain(f `, f `)|+ |Γv,loss(f

`+1, f `)|

+ |Kvf
`|+ wϑ(v)−1/2(|∇φ`|+ |∇2φ`|)(1 + ‖wϑf `+1‖∞).

(4.45)

Now we apply Lemma 2.3 to 4.44 to both f `+1
+ and f `+1

− separately and add them
together to obtain

‖wϑ̃α
β
f`,ε

∂f `+1(t)‖pp +

∫ t

0

‖ν1/p

φ`,wϑ̃
wϑ̃α

β
f`,ε

∂f `+1‖pp +

∫ t

0

|wϑ̃α
β
f`,ε

∂f `+1|pp,+

≤ ‖wϑ̃α
β
f`,ε

∂f(0)‖pp

+

∫ t

0

|wϑ̃α
β
f`,ε

∂f `+1|pp,−︸ ︷︷ ︸
4.46γ−

+

∫ t

0

∫∫
Ω×R3

p|αβp
f`,ε

wp
ϑ̃
(∂f `+1)p−1|G`+1|︸ ︷︷ ︸

4.46G

.

(4.46)
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First we consider 4.46G . Directly, the contribution of |∇xf `+1|+ |∇2φ`||∇vf `+1|
of 4.45 in 4.46G is bounded by

(1 + sup
0≤s≤t

‖∇2φ`‖∞)

∫ t

0

‖wϑ̃α
β
f`,ε

∂f `+1‖pp. (4.47)

From 4.19, 4.24, and 4.25, the contribution of |Γgain(f `, ∂f `)|+ |Γgain(∂f `, f `)|+
|Γloss(f

`+1, ∂f l)|+ |K∂f `| of 4.45 in 4.46G is bounded by

(1 + sup
0≤s≤t

‖wϑf `(s)‖∞ + sup
0≤s≤t

‖wϑf `+1(s)‖∞)

×
∫ t

0

∫∫
Ω×R3

|αβ
f`,ε

wϑ̃∂f
`+1(v)|p−1

∫
R3

|αf`,ε(v)βk%(v, u)wϑ̃(v)∂f `(u)|dudvdxds.

(4.48)

The estimate of 4.48 is carried out in Step 3.
From 4.25, the contribution of |Γloss(∂f

`+1, f `)| of 4.45 in 4.46G is bounded by

sup
0≤s≤t

‖wϑf `(s)‖∞
∫ t

0

‖ν1/p
φf ,wϑ̃

wϑ̃α
β
f`,ε

∂f `+1‖pp. (4.49)

For the |f `+1| contribution of 4.45 in 4.46G , we bound∫ t

0

∫∫
Ω×R3

p|wp
ϑ̃
αβp
f`,ε

(∂f `+1)p−1||f `+1|dxdvds

.
∫ t

0

∫∫
Ω×R3

|ν1/p
φf ,wϑ̃

wϑ̃α
β
f`,ε

∂f `+1|p−1|wϑ̃f
`+1|
|αf`,ε(s, x, v)|β

〈v〉(p−1)/p
dxdvds

. o(1)

∫ t

0

∫∫
Ω×R3

|ν1/p
φf ,wϑ̃

wϑ̃α
β
f`,ε

∂f `+1|p + (1 + δ1/Λ1)

∫ t

0

∫∫
Ω×R3

|wϑ̃f
`+1|p.

(4.50)

Here we have used the fact that, from 1.24 and 4.3

|αf`,ε(s, x, v)|
≤ 2(1s+1≥tb(s,x,v)|vb(s, x, v)|+ 1s≤tb(s,x,v)+1)

. 1 + |v|+
∫ 0

−1

|∇φ`(τ,X(τ ; s, x, v))|dτ +

∫ s

0

|∇φ`(τ,X(τ ; s, x, v))|dτ

. (1 + ‖wϑf0‖∞ + δ1/Λ1)〈v〉,

(4.51)

and from 4.1,
|α
f`,ε

(s,x,v)|β

〈v〉(p−1)/p . (1 + δ1/Λ1)× 〈v〉β
〈v〉(p−1)/p . (1 + δ1/Λ1).

From 4.26, the contribution of |Γv,loss(f
`+1, f `)| of 4.45 in 4.46G is bounded by

‖wϑf `+1‖∞
∫ t

0

∫∫
Ω×R3

p|wϑ̃α
β
f`,ε

∂f `+1|p−1

× |αf`,ε(v)|β〈v〉wϑ̃(v)wϑ(v)−1‖wϑf `(s, x, ·)‖Lp(R3)

. ‖wϑf `+1‖∞
{∫ t

0

∫∫
Ω×R3

|αβ
f`,ε

∂f `+1|p +

∫ t

0

∫∫
Ω×R3

|wϑf `|p
}
,

(4.52)

where we have used, from 4.51, |αf`,ε(v)|β〈v〉wϑ̃(v)wϑ(v)−1 . 1.
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From 4.19 and 4.27, the contribution of |Γv,gain| and |Kvf | in 4.46G is bounded
by

(1 + sup
0≤s≤t

‖wϑf `‖∞)

∫ t

0

∫∫
Ω×R3

|αβp
f`,ε

(wϑ̃∂f
`+1(v))p−1|

∫
R3

k%(v, u)
wϑ̃(v)

wϑ̃(u)
|f `(u)|

. o(1)

∫ t

0

∫∫
Ω×R3

|ν1/p

φ`
αβ
f`,ε

∂f `+1|p + (1 + sup
0≤s≤t

‖wϑf `(s)‖∞)

∫ t

0

∫∫
Ω×R3

|wϑ̃f
`|p,

(4.53)

where we have used, for 1/p+ 1/p∗ = 1 and 0 < %̃� %, from 3.32, 3.33,∫
R3

|αf`,ε(v)βp(wϑ̃∂f
`+1(v))p−1|

∫
R3

k%̃(v, u)wϑ̃(u)|f `(u)|dudv

.
∫
R3

|αf`,ε(v)βp(wϑ̃∂f
`+1(v))p−1|

∫
R3

k%̃(v, u)1/p∗k%̃(v, u)1/p|wϑ̃f
`(u)|dudv

.
∫
R3

|αf`,ε(v)|β

〈v〉
p−1
p

|〈v〉1/pwϑ̃α
β
f`,ε

∂f `+1(v)|p−1

×
(∫

R3

k%̃(v, u)du

)1/p∗ (∫
R3

k%̃(v, u)|wϑ̃f
`(u)|pdu

)1/p

dv

.

(∫
R3

|〈v〉1/pwϑ̃α
β
f`,ε

∂f `+1(v)|pdv
) p−1

p
(∫

R3

∫
R3

k%̃(v, u)|wϑ̃f
`(u)|pdudv

) 1
p

.

(∫
R3

|ν1/p

φ`
wϑ̃α

β
f`,ε

∂f `+1|p
) p−1

p
(∫

R3

|wϑ̃f
`|p
) 1
p

.

Note that from the standard elliptic estimate and 1.16,

‖φ`(t)‖W 2,p(Ω) .

∥∥∥∥∫
R3

(f `+ − f `−)(t, x, v)
√
µ(v)dv

∥∥∥∥
Lp(Ω)

. ‖f `(t)‖Lp(Ω×R3). (4.54)

Then from 4.54 we bound the part of wϑ̃(v)−1/2(|∇φ`| + |∇2φ`|)(1 + ‖wϑf `+1‖∞)
of 4.45 in 4.44 by

(1 + ‖wϑf `+1‖∞)

∫ t

0

∫∫
Ω×R3

p|wϑ̃α
β
f`,ε

∂f `+1|p−1 |αf`,ε(v)|β

wϑ̃(v)1/2
(|∇φ`|+ |∇2φ`|)

. (1 + ‖wϑf `+1‖∞)

∫ t

0

∫∫
Ω×R3

|wϑ̃α
β
f`,ε

∂f `+1|p−1w
−1/4

ϑ̃
(|∇φ`|+ |∇2φ`|)

. (1 + ‖wϑf `+1‖∞)

{
o(1)

∫ t

0

∫∫
Ω×R3

|wϑ̃α
β
f`,ε

∂f `+1|p

+

∫ t

0

∫∫
Ω×R3

|wϑ̃α
β
f`−1,ε

∂f `|p +

∫ t

0

∫
Ω

‖φ`‖pW 2,p

∫
R3

w
−p/4
ϑ̃

}

. o(1)(1 + ‖wϑf `+1‖∞)

∫ t

0

∫∫
Ω×R3

|wϑ̃α
β
f`,ε

∂f `+1|p

+

∫ t

0

∫∫
Ω×R3

|wϑ̃α
β
f`−1,ε

∂f `|p +

∫ t

0

∫∫
Ω×R3

|f `|p.

(4.55)

where we have used, from 4.51, αf`,ε(v)βwϑ(v)−1/2 . wϑ(v)−1/4.
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Step 3. We focus on 4.48. With N > 0, we split the u-integration of 4.48 into the
integrations over {|u| ≤ N} and {|u| ≥ N}.

For {|u| ≥ N} and 0 < %̃� %, by Holder inequality with 1
p + 1

p∗ = 1∫
|u|≥N

|αβ
f`,ε

(v)k%̃(v, u)∂f `(u)|

≤ |αβ
f`,ε

(v)|

(∑
ι=±

∫
|u|≥N

k%̃(v, u)
1

αf`−1,ε,ι(u)βp∗

)1/p∗

×

(∫
|u|≥N

k%̃(v, u)|αβ
f`−1,ε

∂f `(u)|p
)1/p

. αβ
f`,ε

(v)

(∫
|u|≥N

k%̃(v, u)|αβ
f`−1,ε

∂f `(u)|pdu

)1/p

,

(4.56)

where have used Proposition 4 with βq < p−1
p

p
p−1 = 1 from 4.1.

Then the contribution of {|u| ≥ N} in 4.48 is bounded by∫ t

0

∫
Ω

∫
v∈R3

|ν1/p
φf

wϑ̃α
β
f`,ε

∂f `+1(v)|p−1 |αf`,ε(v)|β

〈v〉
p−1
p

×
∫
|u|≥N

k%(v, u)
wϑ̃(v)

wϑ̃(u)
|wϑ̃∂f

`(u)|dudvdxds

≤
∫ t

0

∫
Ω

(∫
v

|ν1/p
φf

wϑ̃α
β
f`,ε

∂f `+1(v)|p
)1/q

×
(∫
|u|≥N

|wϑ̃α
β
f`−1,ε

∂f `(u)|p
∫
v

k%̃(v, u)

)1/p

. o(1)

∫ t

0

‖ν1/p
φf

wϑ̃α
β
f`,ε

∂f `+1(s)‖ppds+

∫ t

0

‖wϑ̃α
β
f`−1,ε

∂f `(s)‖ppds,

(4.57)

where we have used, from 4.51,
|α
f`,ε

(v)|β

〈v〉
p−1
p

. 1 for β in 4.1, 3.32, and 3.33.

The contribution of {|u| ≤ N} in 4.48 is bounded by, from the Hölder inequality,∫ t

0

∫
Ω

∫
R3

|ν1/p
φf

wϑ̃α
β
f`,ε

∂f `+1(v)|p−1

×
∫
|u|≤N

∑
ι=±

k%(v, u)
wϑ̃(v)

wϑ̃(u)

|αf`,ε(v)|β |wϑ̃α
β
f`−1,ε

∂f `(u)|
〈v〉(p−1)/pαf`−1,ε,ι(u)β

dudvdxds

≤
∫ t

0

‖ν1/p
φf

wϑ̃α
β
f`,ε

∂f `+1(s)‖p−1
p

×
[ ∫

Ω

∫
R3

(∫
|u|≤N

∑
ι=±

k%̃(v, u)
|wϑ̃α

β
f`−1,ε

∂f `(u)|
αf`−1,ε,ι(u)β

du
)p

dvdx
]1/p

ds. (4.58)

where we have used 3.32 and the fact |αf`,ε|β/〈v〉
p−1
p . 1 from 4.51 and 4.1.
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By the Hölder inequality, we bound an underlined u-integration inside 4.58 as

‖wϑ̃α
β
f`−1,ε

∂f `(·)‖Lp(R3) ×
(∑
ι=±

∫
R3

e−p
∗%̃|v−u|2

|v − u|p∗
1|u|≤N

αf`−1,ε,ι(u)βp∗
du

)1/q

, (4.59)

where 1/p+ 1/p∗ = 1.
It is important to note that for ι = + or −,(∫

R3

e−p
∗%̃|v−u|2

|v − u|p∗
1|u|≤N

αf`−1,ε,ι(u)βp∗
du

)1/p∗

≤
∣∣∣∣ 1

| · |p∗
∗

1|·|≤N

αf`−1,ε,ι(·)p
∗β

∣∣∣∣1/p∗ . (4.60)

By the Hardy-Littlewood-Sobolev inequality with

1 +
1

p/p∗
=

1

3/p∗
+

1
3
2
p−1
p

,

we have∥∥∥∥∥
∣∣∣∣ 1

| · |p∗
∗

1|·|≤N

αf`−1,ε,ι(·)p
∗β

∣∣∣∣1/p∗
∥∥∥∥∥
Lp(R3)

=

∥∥∥∥ 1

| · |p∗
∗

1|·|≤N

αf`−1,ε,ι(·)p
∗β

∥∥∥∥1/p∗

Lp/p∗ (R3)

.

∥∥∥∥ 1|·|≤N

αf`−1,ε,ι(·)p
∗β

∥∥∥∥1/p∗

L
3(p−1)

2p (R3)

.

(∫
R3

1|v|≤N

αf`−1,ε,ι(v)
p
p−1β

3(p−1)
2p

dv

) 2p
3(p−1)

p−1
p

=

(∫
R3

1|v|≤N

αf`−1,ε,ι(v)3β/2
dv

)2/3

.

(4.61)

For 3 < p < 6, we have 3
2
p−2
p < 1 and 2

3 < p−1
p . Importantly from 4.1 we have

3β
2 < 1. Now we apply 4.8 in Proposition 4 to conclude that(∫

R3

1|v|≤M

αf`−1,ε,ι(v)3β/2
dv

)2/3

.p,β,M,Ω 1.

Finally from 4.58, 4.59, 4.60, 4.61, and 4.57 we bound

(4.48) .o(1)

∫ t

0

‖ν1/p
φ wϑ̃α

β
f`,ε

∂f `+1‖pp

+ (1 + sup
0≤s≤t

‖wϑf `(s)‖∞ + sup
0≤s≤t

‖wϑf `+1(s)‖∞)

∫ t

0

‖wϑ̃α
β
f`−1,ε

∂f `‖pp.

(4.62)

Collecting terms from 4.47, 4.48, 4.49, 4.50, 4.52, 4.53, 4.55, 4.57, and 4.62 we
have

4.46G .o(1)

∫ t

0

‖ν1/p

φ`
wϑ̃α

β
f`,ε

∂f `+1‖pp

+ (1 + sup
0≤s≤t

‖∇2φ`(s)‖∞)

∫ t

0

‖wϑ̃α
β
f`,ε

∂f `+1‖pp

+ (1 + sup
0≤s≤t

‖wϑf `(s)‖∞ + δ1/Λ1)

∫ t

0

‖wϑ̃f
`+1‖pp

(4.63)
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+(1 + sup0≤s≤t ‖wϑf `(s)‖∞ + sup0≤s≤t ‖wϑf `+1(s)‖∞)

×
∫ t

0
(‖wϑ̃f `‖pp + ‖wϑ̃α

β
f`−1,ε

∂f `‖pp).

Step 4. We focus on 4.46γ− . From 4.28 and 4.29,∫
n(x)·v<0

|n(x) · v|βp|wϑ̃∇x,vf
`+1(t, x, v)|p|n(x) · v|dv

.
∫
n(x)·v<0

〈v〉pµ(v)
p
2wp

ϑ̃

(
|n(x) · v|βp+1 + |n(x) · v|(β−1)p+1

)
× |4.29|pdv.

(4.64)

Note that for 0 < ϑ̃�p 1 we have µ(v)
p
2wp

ϑ̃
. eC|v|

2

for some C > 0 when |v| � 1.

On the other hand, from 4.1, we have

(β − 1)p+ 1 >
p− 2

p
p− p+ 1 = −1, |n(x) · v|(β−1)p+1 ∈ L1

loc(R3). (4.65)

Now we bound |4.29|p. For the first line of 4.29, we split the u-integration into
γε+(x) ∪ γ+(x)\γε+(x) where ε is small but satisfies 2.16. By the Hölder inequality{∑
ι=±

∫
n(x)·u>0

|wϑ̃α
β
f`−1,ε

∇x,vf `(s, x, u)|{wϑ̃αf`,ε,ι(u)}−β〈u〉
√
µ(u){n(x) · u}du

}p
.

{∫
γε+(x)

|wϑ̃α
β
f`−1,ε

∇x,vf `(s, x, u)|p{n(x) · u}du
}

×
{∑
ι=±

∫
γε+(x)

{wϑ̃αf`−1,ε,ι(u)}−βp
∗
|n(x) · u|µ

q
4 du

}p/p∗
︸ ︷︷ ︸

+

{∫
γ+(x)\γε+(x)

|wϑ̃α
β
f`−1,ε

∇x,vf `(s, x, u)|pµ
p
8 {n(x) · u}du

}

×
{∑
ι=±

∫
γ+(x)\γε+(x)

{wϑ̃αf`−1,ε,ι(s, x, u)}−βp
∗
|n(x) · u|µ

p∗
8 du

}p/p∗
︸ ︷︷ ︸, p

∗ :=
p

p− 1
.

(4.66)

Note that αf`,ε,ι(s, x, u) 6= |n(x) · u| for (x, u) ∈ γ+ in general. From 4.1, βp∗ < 1.

From 4.8 and 4.9 with v = 0, we have α−βp
∗

f`−1,ε,ι
|n(x)·u| . α−βp

∗

f`−1,ε,ι
∈ L1

loc({u ∈ R3}).
Since 1γε+(x)(v) ↓ 0 almost everywhere in R3 as ε ↓ 0, by the dominant convergence

theorem, for 4.4, we choose ε := 2δ1
Λ1
�Ω 1

4.66 . o(1)

∫
γε+(x)

|wϑ̃α
β
f`−1,ε

∇x,vf `(s, x, u)|p{n(x) · u}du

+

∫
γ+(x)\γε+(x)

|wϑ̃α
β
f`−1,ε

∇x,vf `(s, x, u)|pµ(u)p/8{n(x) · u}du.
(4.67)

Now applying Lemma 2.2 and 4.44 to f `+ and f `− separately and adding them
together, the last term of 4.67 has a bound as
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0

∫
∂Ω

∫
γ+(x)\γε+(x)

|wϑ̃α
β
f`−1,ε

∇x,vf `(s, x, u)|pµ(u)p/8{n(x) · u}dudSxds

. ‖wϑ̃α
β
f0,ε
∇x,vf(0)µ1/8‖pp +

∫ t

0

‖wϑ̃α
β
f`−1,ε

∇x,vf `‖pp + 4.69,

(4.68)

where, from 4.41, 4.42,∫ t

0

∫∫
Ω×R3

|[∂t + v · ∇x − q∇xφ`−1 · ∇v + νφ`,wϑ̃ ](wϑ̃µ
1/8αβ

f`−1,ε
∇x,vf `)p| (4.69)

≤
∫ t

0

∫∫
Ω×R3

p|αβp
f`−1,ε

(∇x,vf `)p−1||wϑ̃µ
1/8|p

∣∣G`∣∣ (4.70)

+

∫ t

0

∫∫
Ω×R3

|∇xφ`|µ0+|αβ
f`−1,ε

∇x,vf `|p. (4.71)

Clearly 4.70 . 4.63|`←→`−1. And, from 4.3,

4.71 . δ1

∫ t

0

‖wϑ̃α
β
f`−1,ε

∇x,vf `‖pp.

Now we consider the third term of 4.29. From the trace theorem W 1,p(Ω) →
W 1− 1

p ,p(∂Ω) and 4.54

‖∇φm‖Lp(∂Ω) . ‖∇φm‖
W

1− 1
p
,p

(∂Ω)
. ‖∇φm‖W 1,p(Ω) . ‖wϑ̃f

m‖Lp(Ω×R3). (4.72)

Then∫
∂Ω

{∫
n(x)·u>0

(〈u〉(|f `+1|+ |f `|) + µ(u)
1
4 )

× (|∇xφ`|+ |∇xφ`−1|)
√
µ(u){n(x) · u}du

}p
dSx

. (1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)

(
`+1∑
m=`

‖∇φm‖pLp(∂Ω)

)
. (1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)(‖wϑ̃f

`‖pLp(Ω×R3) + ‖wϑ̃f
`+1‖pLp(Ω×R3)).

(4.73)

For the second term of 4.29, by the Hölder inequality with 1
p+ 1

q = 1 for 3 < p < 6,{∫
n·u>0

(
〈u〉(|f |` + |f |`+1) + (1 + ‖wϑf `‖∞ + ‖wϑf `−1‖∞)

×
∫
R3

k%(u, u
′)1/q

|n · u′|1/p
k%(u, u

′)1/p(|f `(u′)|+ f `−1(u′))|n · u′|1/pdu′
)√

µ{n · u}du

}p
.

(∫
n·u>0

(|f `+1|p + |f `|p){n · u}√µdu

)p
+ (1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)

×
∫
R3

(∫
R3

k%(u, u
′)|n · u′|−q/pdu′

)p/q
×
∫
R3

k%(u, u
′)(|f `(u′)|p + |f `+1(u′)|p)|n · u′|du′du

. (1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)

∫
n·u>0

(|f `+1|p + |f `|p){n · u}du

(4.74)
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. (1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)(|wϑf `‖∞ + ‖wϑf `+1‖∞).

Collecting terms from 4.64, 4.67, 4.69, 4.73, and 4.74 we derive that

4.46γ−

. ‖wϑ̃α
β
f0,ε
∇x,vf(0)µ(u)1/8‖pp

+ o(1)

(∫ t

0

|wϑ̃α
β
f`−1,ε

∂f `|pp,+
)

+

∫ t

0

(1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)

+

(
o(1) + sup

0≤s≤t
‖wϑf `−1(s)‖∞ + sup

0≤s≤t
‖wϑf `(s)‖∞ + sup

0≤s≤t
‖wϑf `+1(s)‖∞

)

×
∫ t

0

∑̀
m=`−1

‖ν1/p
φf

wϑ̃α
β
fm−1,ε∂f

m‖pp

+
`+1∑
m=`

(1 + sup
0≤s≤t

‖wϑfm(s)‖∞ + sup
0≤s≤t

‖∇2φm−1(s)‖∞)

∫ t

0

‖αβfm−1,εwϑ̃∂f
m‖pp

+ (1 +

`+1∑
m=`

sup
0≤s≤t

‖wϑfm(s)‖∞)

∫ t

0

`+1∑
m=`

(
‖wϑ̃f

m‖pp + |wϑ̃f
m|pp,+

)
.

(4.75)

Step 5. From 4.40, 4.46, 4.63, 4.75 we have

sup
0≤s≤t

E`+1(s)

≤C0 max
0≤m≤`+1

sup
0≤s≤t

Em(s)

{
‖wϑ̃α

β
f0,ε
∇x,vf0‖pp

+ t

(
1 + ‖wϑf `−1‖∞ +

`+1∑
m=`−1

‖wϑfml‖∞ + ‖∇2φ`−1‖∞ + ‖∇2φ`‖∞

)}
+ o(1) max

0≤m≤`
sup

0≤s≤t
Em(s).

(4.76)

On the other hand, from Lemma 4.2,

‖∇2φ`(t)‖∞ + ‖∇2φ`−1(t)‖∞ . [E`(t) + E`−1(t)]1/p. (4.77)

Therefore from 4.76, 4.77, and the induction hypothesis in 4.34, we first choose a
small o(1), then large C � C0, and finally small 0 < T ∗∗ � 1 to conclude

sup
0≤s≤t

E`+1(s) ≤ C
10
‖wϑ̃α

β
f0,ε
∇x,vf0‖pp +

1

10
sup

0≤s≤t
sup
m≤`
Em(s)

≤C{‖wϑf0‖∞ + ‖wϑ̃f0‖pp + ‖wϑ̃α
β
f0,ε
∇x,vf0‖pp}.

This proves 4.34.

5. L3
xL

1+
v bound of ∇vf `.

Proposition 5. Assume the inital condition satisfies 3.7, 4.5, and

‖wϑ̃∇vf0‖L3
x,v

<∞. (5.1)

Then for T ∗∗ � 1, the sequence 3.3 satisfies

sup
`

sup
0≤t≤T∗∗

‖∇vf `(t)‖L3
x(Ω)L1+δ

v (R3) . 1 for all t ≥ 0. (5.2)
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Proof. Step 1. Note that from 3.3 and 4.32, we have

[∂t + v · ∇x − q∇xφ` · ∇v + ν(v) + q
v

2
· ∇xφ`]∂vf `+1

=− ∂xf `+1 − q 1

2
∂xφ

`f `+1 − ∂vνf `+1 + ∂v(Kf
`) + ∂v(Γgain(f `, f `))

− ∂v(Γloss(f
`+1, f `))− q1(∂xφ

`√µ− v2
i

2
∂xφ

`√µ)

(5.3)

with the boundary bound for (x, v) ∈ γ−∣∣∂vf `+1
∣∣ . |v|√µ ∫

n·u>0

|f `|√µ{n · u}du on γ−. (5.4)

From 4.15, 4.19, 4.24, 4.25, 4.26, and 4.27, we obtain the following bound along
the characteristics for f+ and f− seperately. For ι = + or − as in 1.9,

|∂vf `+1
ι (t, x, v)|

≤ 1t`1,ι(t,x,v)>t|∂vf `+1(0, X`
ι (0; t, x, v), V `ι (0; t, x, v))| (5.5)

+ 1t`1,ι(t,x,v)<tµ(vb)
1
4

∫
n(xb)·u>0

|f `+1(t− t`1,ι, xb, u)|√µ{n(xb) · u}du (5.6)

+

∫ t

max{t−t`1,ι,0}
|∂xf `(s,X`

ι (s; t, x, v), V `ι (s; t, x, v))|ds (5.7)

+

∫ t

max{t−t`1,ι,0}
(1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞) (5.8)

×
∫
R3

k%(V
`
ι (s), u)|∂vf `(s,X`

ι (s), u)|duds

+

∫ t

max{t−t`1,ι,0}
‖f `+1(s)‖∞|∇xφ`(s,X`

ι (s; t, x, v))|µ1/4ds, (5.9)

where δ1 is in 4.3. Here we used that from 4.25, on the RHS of 5.3, |Γloss(∂vf
`+1, f `)|

. 〈v〉‖wθf `‖∞|∂vf `+1| ≤ ν(v)
8 |∂vf

`+1|, and thus can be absorbed to the LHS.

Note that if |v| > 2 δ1Λ1
, then from 4.3 and 4.4, for 0 ≤ s ≤ t,

|V `ι (s; t, x, v)| ≥ |v| −
∫ t

0

|∇xφ`(τ ; t, x, v)|dτ

≥ |v| − δ1/Λ1

≥ |v|
2
.

(5.10)

Therefore

sup
s,t,x

∥∥∥∥ 1

wϑ̃(V `ι (s; t, x, v))

∥∥∥∥
Lrv

. 1 for any 1 ≤ r ≤ ∞. (5.11)

We derive

‖5.5‖L3
xL

1+δ
v

.

∫
Ω

(∫
R3

|wϑ̃∂vf
`+1(0, X`

ι (0), V `ι (0))|3
)(∫

R3

dv

|wϑ̃(V `ι (0))|(1+δ) 3
2−δ

) 2−δ
1+δ

1/3

(5.12)
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.
(∫∫

Ω×R3 |wϑ̃(V `ι (0; t, x, v))∂vf
`+1(0, X`

ι (0; t, x, v), V `ι (0; t, x, v))|3dvdx
)1/3

. |wϑ̃∂vf(0)‖L3
x,v
,

where we have used a change of variables (x, v) 7→ (X`
ι (0; t, x, v), V `ι (0; t, x, v)) and

5.11.
Clearly

‖5.6‖L3
xL

1+δ
v

. sup
0≤s≤t

‖wϑf `+1(s)‖∞. (5.13)

From W 1,2(Ω) ⊂ L6(Ω) ⊂ L2(Ω) for a bounded Ω ⊂ R3, and the change of
variables (x, v) 7→ (X`

ι (s; t, x, v), V `ι (s; t, x, v)) for fixed s ∈ (max{t− tb, 0}, t),

‖5.9‖L3
xL

1+δ
v

. ‖wϑf `+1‖∞
∫ t

0

‖µ1/8∇xφ`(s,X`
ι (s; t, x, v))‖L3

x,v
‖µ1/8‖

L

3(1+δ)
2−δ

v

. ‖wϑf `+1‖∞
∫ t

0

‖∇xφ`(s)‖L3
x

.‖wϑf `+1‖∞
∫ t

max{t−tb,0}
‖φ`(s)‖W 2,2

x

. ‖wϑf `+1‖∞
∫ t

0

‖wϑ̃f
`(s)‖2.

(5.14)

Step 2. We claim

‖5.7‖L3
xL

1+δ
v

.
∫ t

0

‖wϑ̃α
β
f`−1,ε

∂xf
`(s)‖Lpx,v . (5.15)

Now we have for 3 < p < 6, by the Hölder inequality 1
1+δ = 1

p+pδ
p−1−δ

+ 1
p ,∥∥∥∥∥∥

∥∥∥∥∥
∫ t

max{t−t`1,ι,0}
|∂xf `(s,X`

ι (s; t, x, v), V `ι (s; t, x, v))|ds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

.

∥∥∥∥∥∥
∥∥∥∥∥
∫ t

max{t−t`1,ι,0}

|wϑ̃α
β
f`−1,ε

∂xf
`(s,X`

ι (s; t, x, v), V `ι (s; t, x, v))|
wϑ̃αf`−1,ε,ι(s,X`

ι (s; t, x, v), V `ι (s; t, x, v))β
ds

∥∥∥∥∥
L1+δ
v (R3)

∥∥∥∥∥∥
L3
x

.

∥∥∥∥ wϑ̃(v)−1

αf`−1,ε,ι(t, x, v)β

∥∥∥∥
L

p+pδ
p−1−δ
v (R3)

×

∥∥∥∥∥
∥∥∥∥∫ t

0

|wϑ̃α
β
f`−1,ε

∂xf
`(s,X`

ι (s; t, x, v), V `ι (s; t, x, v))|ds
∥∥∥∥
Lpv(R3)

∥∥∥∥∥
L3
x

.

∥∥∥∥ wϑ̃(v)−1

αf`−1,ε,ι(t, x, v)β

∥∥∥∥
L

p+pδ
p−1−δ
v (R3)

×
∫ t

0

‖wϑ̃α
β
f`−1,ε

∂xf
`(s)‖Lpx,vds,

(5.16)

where we have used αf`−1,ε,ι(t, x, v) = αf`−1,ε,ι(s,X
`
ι (s; t, x, v), V `ι (s; t, x, v)) for t−

tb(t, x, v) ≤ s ≤ t and the change of variables (x, v) 7→ (X`
ι (s; t, x, v), V `ι (s; t, x, v))

and the Minkowski inequality.
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For β in 1.43, we have β p
p−1 < 1 since 2

3 < p−1
p for 3 < p. Therefore, we can

choose 0 < δ � 1 so that β in 1.43 satisfies

β × p+ pδ

p− 1− δ
< 1. (5.17)

We apply Proposition 4 to conclude that

sup
t,x

∥∥∥∥ wϑ̃(v)−1

αf`−1,ε,ι(t, x, v)β

∥∥∥∥
p+pδ
p−1−δ

L
p+pδ
p−1−δ
v (R3)

= sup
t,x

∫
R3

e−ϑ̃
p+pδ
p−1−δ |v|

2

αf`−1,ε,ι(t, x, v)β
p+pδ
p−1−δ

dv . 1.

(5.18)
Finally, from 5.16, 5.18, and 1.46, we conclude the claim 5.15.

Step 3. We consider 5.9. We split the u-integration of 5.9 into two parts with
N � 1 as ∫

|u|≤N
k%(V

`
ι (s), u)|∇vf `(s,X`

ι (s), u)|du (5.19)

+

∫
|u|≥N

k%(V
`
ι (s), u)|∇vf `(s,X`

ι (s), u)|du. (5.20)

First we bound 5.19. From the change of variables

(x, v) 7→ (X`
ι (s; t, x, v), V `ι (s; t, x, v)) for t− t`1,ι ≤ s ≤ t,∥∥∥∥∥

∫
|u|≤N

k%(V
`
ι (s; t, x, v), u)|∇vf `(s,X`

ι (s; t, x, v), u)|du

∥∥∥∥∥
L3
xL

3
v

=

∥∥∥∥∥
∫
|u|≤N

k%(v, u)|∇vf `(s, x, u)|du

∥∥∥∥∥
L3
xL

3
v

.

(5.21)

If |v| ≥ 2N then |v − u|2 & |v|2 and k%(v, u) . e−C|v|
2

|v−u|2 for |v| ≥ 2N and |u| ≤ N .

For 0 < δ � 1 with 3(1+δ)
1−2δ > 3,

5.21

. CN

∥∥∥∥∥∥
∥∥∥∥∥
∫
|u|≤N

k%(v, u)|∇vf `(s, x, u)|du

∥∥∥∥∥
L

3(1+δ)
1−2δ
v ({|v|≤2N})

∥∥∥∥∥∥
L3
x

+

∥∥∥∥∥∥
∥∥∥e−C|v|2∥∥∥

L
3/2
v

∥∥∥∥∥
∫
|u|≤N

1

|v − u|
|∇vf `(s, x, u)|du

∥∥∥∥∥
L

3(1+δ)
1−2δ
v ({|v|≥2N})

∥∥∥∥∥∥
L3
x

.

∥∥∥∥∥
∥∥∥∥ 1

|v − ·|
∗ |∇vf `(s, x, ·)|

∥∥∥∥
L

3(1+δ)
1−2δ
v

∥∥∥∥∥
L3
x

.

(5.22)

Then by the Hardy-Littlewood-Sobolev inequality with 1 + 1
3(1+δ)
1−2δ

= 1
3 + 1

1+δ , we

derive that

5.22 .
∥∥∥‖∇vf `(s, x, v)‖L1+δ

v

∥∥∥
L3
x

= ‖∇vf `(s)‖L3
xL

1+δ
v
.

Combining the last estimate with 5.21, 5.22, we prove that

‖5.19‖L3
xL

1+δ
v

. ‖∇vf `(s)‖L3
xL

1+δ
v
. (5.23)
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Now we consider 5.20. Choose 0 < δ′ � 1. We have

5.20

≤
∫
|u|≥N

1

wϑ̃(V `ι (s; t, x, v))1−δ′
wϑ̃(V `ι (s; t, x, v))

wϑ̃(u)

k%(V
`
ι (s; t, x, v), u)

αf`−1,ε,ι(s,X`
ι (s; t, x, v), u)β

× 1

wϑ̃(V `ι (s; t, x, v))δ′
wϑ̃(u)|αf`−1,ε(s,X

`
ι (s; t, x, v), u)β∇vf `(s,X`

ι (s; t, x, v), u)|du.

By the Hölder inequality with 1
p + 1

p∗ = 1 with 3 < p < 6

|5.20|

.
1

wϑ̃(V `ι (s; t, x, v))1−δ′

×
∥∥∥∥wϑ̃(V `ι (s; t, x, v))

wϑ̃(u)

k%(V
`
ι (s; t, x, v), u)

αf`−1,ε,ι(s,X`
ι (s; t, x, v), u)β

∥∥∥∥
Lp∗ ({|u|≥N})

×
∥∥∥∥ wϑ̃(u)

wϑ̃(V `ι (s; t, x, v))δ′
αf`−1,ε(s,X

`
ι (s; t, x, v), u)β∇vf `(s,X`

ι (s; t, x, v), u)

∥∥∥∥
Lpu(R3)

.

(5.24)

Then by the Hölder inequality with 1
1+δ = 1

p + 1
(1+δ)p
p−(1+δ)

,

‖5.20‖L1+δ
v

.

∥∥∥∥ 1

wϑ̃(V `ι (s; t, x, v))1−δ′

∥∥∥∥
L

(1+δ)p
p−(1+δ)
v

× sup
v

∥∥∥∥wϑ̃(V `ι (s; t, x, v))

wϑ̃(u)

k%(V
`
ι (s; t, x, v), u)

αf`−1,ε,ι(s,X`
ι (s; t, x, v), u)β

∥∥∥∥
Lp∗ ({|u|≥N})

×

∥∥∥∥∥
∥∥∥∥ wϑ̃(u)

wϑ̃(V `ι (s; t, x, v))δ′
αf`−1,ε(s,X

`
ι (s; t, x, v), u)β∇vf `(s,X`

ι (s; t, x, v), u)

∥∥∥∥
Lpu

∥∥∥∥∥
Lpv

.

Note that, from 3.32, k%(v, u) e
ϑ̃|v|2

eϑ̃|u|2
. k%̃(v, u) for some 0 < %̃ < %. Hence we

derive, using 5.11∥∥∥‖5.20‖L1+δ
v

∥∥∥
L3
x

.Ω sup
X`ι ,V

`
ι

∥∥∥∥∥e−
ϑ̃
10 |V

`
ι −u|

2

|V `ι − u|
1

αf`−1,ε,ι(s,X`
ι , u)β

∥∥∥∥∥
Lp∗ ({|u|≥N})

×
∥∥∥∥ w̃(u)

w̃(V `ι (s; t, x, v))δ′
αf`−1,ε(s,X

`
ι (s; t, x, v), u)β∇vf `(s,X`

ι (s; t, x, v), u)

∥∥∥∥
Lpu,v,x

.

Finally using 4.9 in Proposition 4 with p−2
p−1 < βp∗ < 1 from 1.43 and applying the

change of variables (x, v) 7→ (X`
ι (s; t, x, v), V `ι (s; t, x, v)), we derive that∥∥∥‖5.20‖L1+δ

v

∥∥∥
L3
x

.Ω

∥∥∥∥∥
∥∥∥∥ 1

wϑ̃(v)δ′
wϑ̃(u)αf`−1,ε(s, x, u)β∇vf `(s, x, u)

∥∥∥∥
Lpv

∥∥∥∥∥
Lpu,x

(5.25)
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.
∥∥∥ 1
wϑ̃(v)δ′

∥∥∥
Lpv

∥∥wϑ̃(u)αf`−1,ε(s, x, u)β∇vf `(s, x, u)
∥∥
Lpu,x

.
∥∥∥wϑ̃αβf`−1,ε

∇vf `(s)
∥∥∥
Lp
.

Combining 5.24 and 5.25 we conclude that

‖5.20‖L3
xL

1+δ
v

. ‖wϑ̃α
β
f`−1,ε

∇vf `(s)‖Lpx,v . (5.26)

Finally from 5.23 and 5.26, and using the Minkowski inequality, we conclude that

‖5.9‖L3
vL

1+δ
x

. (1 + ‖wϑf `‖∞ + ‖wϑf `+1‖∞)

×
∫ t

0

[
‖∇vf `(s)‖L3

xL
1+δ
v

+ ‖wϑ̃α
β
f`−1,ε

∇vf `(s)‖Lpx,v
]
ds.

(5.27)

Collecting terms from 5.5-5.9, and 5.12, 5.6, 5.14, 5.15, 5.27, we derive

sup
0≤s≤t

‖∇vf `+1(s)‖L3
xL

1+δ
v

. sup
0≤s≤t

‖∇vf `+1
+ (s)‖L3

xL
1+δ
v

+ sup
0≤s≤t

‖∇vf `+1
− (s)‖L3

xL
1+δ
v

. ‖wϑ̃∇vf(0)‖L3
x,v

+ sup
0≤s≤t

‖wϑf `+1(s)‖∞ + sup
0≤s≤t

‖wϑf `(s)‖∞

+ t(1 + sup
0≤s≤t

‖wϑf `+1(s)‖∞ + sup
0≤s≤t

‖wϑf `(s)‖∞)

× ( sup
0≤s≤t

‖wϑ̃α
β
f,ε∇x,vf

`(s)‖p + ‖∇vf `(s)‖L3
xL

1+δ
v

).

(5.28)

Therefore from 3.8 and 4.5, we can choose T ∗∗ � 1 and conclude 5.2.

6. Local existence.

Theorem 6.1. Let 0 < ϑ̃ < ϑ � 1. Assume that for sufficiently small M > 0,
F0 = µ+

√
µf0 ≥ 0 satisfying 3.7, 4.5, 5.1 and the compatibility condition 1.41.

Then there exists T ∗(M) > 0 and a unique solution F (t, x, v) = µ+
√
µf(t, x, v) ≥

0 to 1.15, 1.16, and 1.17 in [0, T ∗(M))× Ω× R3 such that

sup
0≤t≤T∗

‖wϑf(t)‖∞ ≤M. (6.1)

Moreover

sup
0≤t≤T∗

‖∇vf(t)‖L3
xL

1+δ
v

<∞ for 0 < δ � 1, (6.2)

and

sup
0≤t≤T∗

{
‖wϑ̃α

β
f,ε∇x,vf(t)‖pp +

∫ t

0

|wϑ̃α
β
f,ε∇x,vf(t)|pp,+

}
<∞. (6.3)

Furthermore, ‖wϑf(t)‖∞, ‖∇vf(t)‖L3
xL

1+δ
v

and ‖wϑ̃α
β
f,ε∇x,vf(t)‖pp +

∫ t
0
|wϑ̃α

β
f,ε

∇x,vf(t)|pp,+ are continuous in t.

Proof. Step 1. We claim that for T ∗∗ � 1, the whole sequence 3.3 satisfies

f ` → f strongly in L∞((0, T );L1+(Ω× R3)). (6.4)
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Note that f `+1 − f ` satisfies (f `+1 − f `)|t=0 = 0, so

∂t[f
`+1 − f `] + v · ∇x[f `+1 − f `]− q∇xφ` · ∇v[f `+1 − f `]

+ q
v

2
· ∇xφ`[f `+1 − f `] + ν[f `+1 − f `]

=q∇xφf`−f`−1 · ∇vf `−1

+ Γgain(f `, f `)− Γloss(f
`+1, f `)− Γgain(f `−1, f `−1) + Γloss(f

`, f `−1)

+K[f ` − f `−1]− q v
2
· ∇xφf`−f`−1f `−1 − q1v · ∇xφf`−f`−1

√
µ.

(6.5)

By Lemma 2.3 for L1+δ-space with 0 < δ � 1, we obtain

‖[f `+1 − f `](t)‖1+δ
1+δ +

∫ t

0

‖ν1/1+δ

φ`
[f `+1 − f `]‖1+δ

1+δ +

∫ t

0

|[f `+1 − f `]|1+δ
1+δ,+

≤ ‖[f `+1 − f `](0)‖1+δ
1+δ +

∫ t

0

∫∫
Ω×R3

|RHS of 6.5||f `+1 − f `|δ

+

∫ t

0

|[f `+1 − f `]|1+δ
1+δ,−,

(6.6)

where νφ` is defined as 4.35.

Now for 0 < δ � 1, by the Hölder inequality with 1 = 1
3(1+δ)

2−δ
+ 1

3 + 1
1+δ
δ

and the

Sobolev embedding W 1,1+δ(Ω) ⊂ L
3(1+δ)

2−δ (Ω) when Ω ⊂ R3,∫ t

0

∫∫
Ω×R3

|∇xφf`−f`−1 · ∇vf `−1||f `+1 − f `|δ

.
∫ t

0

‖∇xφf`−f`−1‖
L

3(1+δ)
2−δ

x

‖∇vf `−1‖L3
xL

1+δ
v

∥∥|f `+1 − f `|δ
∥∥
L

1+δ
δ

x,v

. sup
0≤s≤t

‖∇vf `−1(s)‖L3
xL

1+δ
v
×
∫ t

0

‖[f `+1 − f `](s)‖1+δ
1+δds.

(6.7)

A simple modification of 4.37 and 4.38 as∫ t

0

∫
x

∫
v

∫
u

k%(v, u)|f `(u)− f `−1(u)||f `+1(v)− f `(v)|δ

.
∫ t

0

∫
x

∫
v

∫
u

k%(v, u)
1

1+δ |f `(u)− f `−1(u)|k%(v, u)
δ

1+δ |f `+1(v)− f `(v)|δ

.
∫ t

0

∫
x

∫
v

(|f `(v)− f `−1(v)|1+δ + |f `+1(v)− f `(v)|1+δ)

∫
u

k%(v, u)

.
∫ t

0

‖f ` − f `−1‖1+δ
1+δ +

∫ t

0

‖f `+1 − f `‖1+δ
1+δ,

leads to ∫ t

0

∫∫
Ω×R3

|the 2ndand 3rd line of RHS of 6.5||f `+1 − f `|δ

. sup
0≤s≤t

{
1 + ‖wϑf `+1(s)‖∞ + ‖wϑf `(s)‖∞

}
×
(∫ t

0

‖f ` − f `−1‖1+δ
1+δ +

∫ t

0

‖f `+1 − f `‖1+δ
1+δ

)
.

(6.8)
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Then following the proof of 4.39 and applying 6.7 to 6.8, we can obtain∫ t

0

|[f `+1 − f `]|1+δ
1+δ,−

. o(1)

∫ t

0

|[f ` − f `−1]|1+δ
1+δ,+ + ‖[f ` − f `−1](0)‖1+δ

1+δ

+ sup
0≤s≤t

{
1 + ‖∇vf `−2(s)‖L3

xL
1+δ
v

+ ‖wϑf `(s)‖∞ + ‖wϑf `−1(s)‖∞
}

×
(∫ t

0

‖f ` − f `−1‖1+δ
1+δ +

∫ t

0

‖f `−1 − f `−2‖1+δ
1+δ

)
.

(6.9)

Using 3.8, 5.2, 6.6, 6.7, 6.8, 6.9 and [f `+1 − f `]|t=0 = 0 we get

sup
0≤s≤t

‖f `+1(s)− f `(s)‖1+δ
1+δ +

∫ t

0

|f `+1 − f `|1+δ
1+δ,+

≤ [O(t) + o(1)](
sup

0≤s≤t
‖f ` − f `−1‖1+δ

1+δ +

∫ t

0

|f ` − f `−1|1+δ
1+δ,+ + sup

0≤s≤t
‖f `−1 − f `−2‖1+δ

1+δ

)
.

(6.10)

Thus adding 6.10 with the same estimate 6.10|f`+2−f`+1 we get

sup
0≤s≤t

‖f `+1(s)− f `(s)‖1+δ
1+δ +

∫ t

0

|f `+1 − f `|1+δ
1+δ,+

+ sup
0≤s≤t

‖f `+2(s)− f `+1(s)‖1+δ
1+δ +

∫ t

0

|f `+2 − f `+1|1+δ
1+δ,+

≤ [O(t) + o(1)]

(
sup

0≤s≤t
‖f ` − f `−1‖1+δ

1+δ +

∫ t

0

|f ` − f `−1|1+δ
1+δ,+

+ sup
0≤s≤t

‖f `−1 − f `−2‖1+δ
1+δ

)
.

Therefore, inductively we have

sup
0≤s≤t

‖f `+1(s)− f `(s)‖1+δ
1+δ +

∫ t

0

|f `+1 − f `|1+δ
1+δ,+ ≤ [O(t) + o(1)]

m
.

Hence we derive stability

sup
0≤s≤t

‖f `(s)− fm(s)‖1+δ
1+δ ≤ [O(t) + o(1)]

min{m,`}
, (6.11)

and this concludes 6.4.

Step 2. We combine 3.8 and 6.4 to get unique weak-∗ convergence (up to sub-

sequence if necessary), (wϑf
`, wϑf

`+1)
∗
⇀ (wϑf, wϑf) weakly−∗ in L∞(R × Ω ×

R3;R2) ∩ L∞(R× γ;R2). For ϕ =

[
ϕ+

ϕ−

]
∈ C∞c (R× Ω̄× R3;R2),

∫ T

0

〈f `+1, [−∂t − v · ∇x + ν]ϕ〉+ 〈qf `+1,∇xφ` · ∇vϕ+
v

2
· ∇xφ`ϕ〉︸ ︷︷ ︸

6.12φ

(6.12)
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=
∫ T

0
〈Kf `, ϕ〉 − 〈q1v · ∇xφ`

√
µ, ϕ〉+ 〈Γgain(f `, f `), ϕ〉︸ ︷︷ ︸

6.12gain

−〈Γloss(f
`+1, f `), ϕ〉︸ ︷︷ ︸

6.12loss

+
∫ T

0
〈f `+1, ϕ〉γ+

−
∫ T

0
〈cµ
√
µ
∫
n·u>0

f `
√
µ{n · u}du, ϕ〉γ− .

Except the underbraced terms in 6.12 all terms converges to limits with f instead
of f `+1 or f `.

We define, for (t, x, v) ∈ R× Ω̄× R3 and for 0 < δ � 1,

f `δ (t, x, v) := κδ(x, v)f `(t, x, v)

:= χ
( |n(x) · v|

δ
− 1
)[

1− χ(δ|v|)
]
χ
( |v|
δ
− 1
)
f `(t, x, v).

(6.13)

Note that fδ(t, x, v) = 0 if either |n(x) · v| ≤ δ, |v| ≥ 1
δ , or |v| ≤ δ.

From 3.8∣∣∣∣∣
∫ T

0

6.12loss −
∫ T

0

〈Γloss(f, f), ϕ〉

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

〈
∫
R3

|v − u|{f `+(u)− f+(u) + f `−(u)− f−(u)}
√
µ(u)duf `+1(v), ϕ(t, x, v)〉dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

〈
∫
R3

|v − u|(f+(u) + f−(u))
√
µ(u)du{f `+1(v)− f(v)}, ϕ(t, x, v)〉dt

∣∣∣∣∣ .
The second term converges to zero from the weak−∗ convergence in L∞ and 3.8.
The first term is bounded by, from 3.8,[∫ T

0

∥∥∥∥∫
R3

κδ(x, u)(f `(t, x, u)− f(t, x, u))〈u〉
√
µ(u)du

∥∥∥∥2

L2(Ω×R3)

]1/2

× sup
0≤t≤T

‖wϑf `+1(t)‖∞ +O(δ).

(6.14)

On the other hand, from Lemma A.1, we have an extension f̄ `(t, x, v) of κδ(x, u)
f `(t, x, u). We apply the average lemma (see Theorem 7.2.1 in page 187 of [10], for
example) to f̄ `(t, x, v). From 3.3 and 3.8

sup
`

∥∥∥∥∫
R3

f̄ `(t, x, u)〈u〉
√
µ(u)du

∥∥∥∥
H

1/4
t,x (R×R3)

<∞. (6.15)

Then by H1/4 ⊂⊂ L2, up to subsequence, we conclude that∫
R3

κδ(x, u)f `(t, x, u)〈u〉
√
µ(u)du→

∫
R3

κδ(x, u)f(t, x, u)〈u〉
√
µ(u)du

strongly in L2
t,x.

So we conclude that 6.14→ 0 as `→∞.
For 6.12gain let us use a test function ϕ1(v)ϕ2(t, x). From the density argument,

it suffices to prove a limit by testing with ϕ(t, x, v).
We use a standard change of variables (v, u) 7→ (v′, u′) and (v, u) 7→ (u′, v′) (for

example see page 10 of [10]) to get
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0

6.12gain −
∫ T

0

〈Γgain(f, f), ϕ〉

=

∫ T

0

〈Γgain(f `, f ` − f), ϕ〉+

∫ T

0

〈Γgain(f ` − f, f), ϕ〉

=
∑
ι=±

∫ T

0

∫∫
Ω×R3

(∫
R3

∫
S2

(f `+(u)− f+(u) + f `−(u)− f−(u)) (6.16)

×
√
µ(u′)|(v − u) · ω|ϕ1,ι(v

′)dωdu

)
f `ι (v)ϕ2,ι(t, x)dvdxdt

+
∑
ι=±

∫ T

0

∫∫
Ω×R3

(∫
R3

∫
S2

(f `ι (u)− fι(u)) (6.17)

×
√
µ(v′)|(v − u) · ω|ϕ1,ι(u

′)dωdu

)
(f+(v) + f−(v))ϕ2,ι(t, x)dvdxdt.

For N � 1 we decompose the integration of 6.17 and 6.18 using

1 ={1− χ(|u| −N)}{1− χ(|v| −N)}
+ χ(|u| −N) + χ(|v| −N)− χ(|u| −N)χ(|v| −N).

(6.18)

Note that {1 − χ(|u| − N)}{1 − χ(|v| − N)} 6= 0 if |v| ≤ N + 1 and |u| ≤ N + 1,
and if χ(|u| −N) + χ(|v| −N) − χ(|u| −N)χ(|v| −N) 6= 0 then either |v| ≥ N or
|u| ≥ N . From 3.8, the second part of 6.17 and 6.18 from 6.18 are bounded by∫ T

0

∫∫
Ω×R3

∫
R3

∫
S2

[· · · ]× {χ(|u| −N) + χ(|v| −N)− χ(|u| −N)χ(|v| −N)}

≤ sup
`
‖wϑf `‖∞‖wϑf‖∞ × {e−

ϑ
2 |v|

2

e−
ϑ
2 |u|

2

}{1|v|≥N + 1|u|≥N}

≤ O(
1

N
).

Now we only need to consider the parts with {1− χ(|u| −N)}{1− χ(|v| −N)}.
Then

6.17

=
∑
ι=±

∫ T

0

∫∫
Ω×R3

∫
R3

(f `+(t, x, u)− f+(t, x, u) + f `−(t, x, u)− f−(t, x, u))

× {1− χ(|u| −N)}
(∫

S2

√
µ(u′)|(v − u) · ω|ϕ1,ι(v

′)dω

)
du

× {1− χ(|v| −N)}f `ι (t, x, v)ϕ2,ι(t, x)dvdxdt.

(6.19)

Now, let us define

Φv,ι(u) := {1−χ(|u|−N)}
∫
S2

√
µ(u′)|(v−u) ·ω|ϕ1,ι(v

′)dω for |v| ≤ N+1. (6.20)

For 0 < δ � 1 we have O(N
3

δ3 ) number of vi ∈ R3 such that {v ∈ R3 : |v| ≤

N+1} ⊂
⋃O(N

3

δ3
)

i=1 B(vi, δ). Since 6.20 is smooth in u and v and compactly supported,
for 0 < ε� 1 we can always choose δ > 0 such that

|Φv,ι(u)− Φvi,ι(u)| < ε if v ∈ B(vi, δ). (6.21)
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Now we replace Φv,ι(u) in the second line of 6.19 by Φvi,ι(u) whenever v ∈
B(vi, δ). Moreover we use κδ-cut off in 6.13. If v is included in several balls then
we choose the smallest i. From 6.21 and 3.8 the difference of 6.19 and the one with
Φvi(u) can be controlled and we conclude that

6.19 = {O(ε) +O(δ)} sup
`
‖wϑf `‖2∞

+
∑
ι=±

∫ T

0

∫
Ω

∑
i

∫
R3

1v∈B(vi,δ)

×
∫
R3

κδ(x, u)(f `+(t, x, u)− f+(t, x, u) + f `−(t, x, u)− f−(t, x, u))Φvi,ι(u)du

× {1− χ(|v| −N)}f `ι (t, x, v)ϕ2,ι(t, x)dvdxdt.

(6.22)

From Lemma A.1 and the average lemma

max
1≤i≤O(N

3

δ3
)

sup
`

∥∥∥∥∫
R3

κδ(x, u)f `(t, x, u)Φvi,ι(u)du

∥∥∥∥
H

1/4
t,x (R×R3)

<∞. (6.23)

For i = 1 we extract a subsequence `1 ⊂ I1 such that∫
R3

κδ(x, u)f `1(t, x, u)Φvi,ι(u)du→
∫
R3

κδ(x, u)f(t, x, u)Φvi,ι(u)du

strongly in L2
t,x.

(6.24)

Successively we extract subsequences I
O(N

3

δ3
)
⊂ · · · ⊂ I2 ⊂ I1. Now we use the

last subsequence ` ∈ I
O(N

3

δ3
)

and redefine f ` with it. Clearly we have 6.24 for all i.

Finally we bound the last term of 6.22 by

Cϕ2,N max
i

∫ T

0

∑
ι=±

∥∥∥∥∫
R3

κδ(x, u)(f `(t, x, u)− f(t, x, u))Φvi,ι(u)du

∥∥∥∥
L2
t,x

sup
`
‖wϑf `‖∞

→ 0 as `→∞.

Together with 6.22 we prove 6.17→ 0. Similarly we can prove 6.18→ 0.
Now we consider 6.12φ. From

−(∆φ` −∆φ) =

∫
κδ(f

`
+ − f+ + f `− − f−)

√
µ+

∫
(1− κδ)(f `+ − f+ + f `− − f−)

√
µ,

we have

‖∇xφ` −∇xφ‖L2
t,x
≤
∥∥∥∥∫ κδ(f

` − f)
√
µ

∥∥∥∥
L2
t,x

+O(δ) sup
`
‖wϑf `‖∞. (6.25)

Then following the previous argument, we prove ∇xφ` → ∇xφ strongly in L2
t,x as

` → ∞. Combining with wϑf
` ∗
⇀ wϑf in L∞, we prove

∫ T
0

6.12φ converges to∫ T
0
〈qf, {∇xφ · ∇vϕ + v

2 · ∇xφϕ}〉. This proves the existence of a (weak) solution
f ∈ L∞.

Step 7. We claim 6.3. By the weak lower-semicontinuity of Lp we know that (if
necessary we further extract a subsequence out of the subsequence of Step 6 )

wϑ̃α
β
f`,ε
∇x,vf `+1 ⇀ F , sup

0≤t≤T∗∗
‖F(t)‖pp ≤ lim inf sup

0≤t≤T∗∗
‖wϑ̃α

β
f`,ε
∇x,vf `+1(t)‖pp,
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and ∫ T∗∗

0

|F|pp,+ ≤ lim inf

∫ T∗∗

0

|wϑ̃α
β
f`,ε
∇x,vf `+1(t)|pp,+.

We need to prove that

F = wϑ̃α
β
f,ε∇x,vf almost everywhere except γ0. (6.26)

We claim that, up to some subsequence, for any given smooth test function
ψ ∈ C∞c (Ω̄× R3\γ0;R2)

lim
`→∞

∫ t

0

∫∫
Ω×R3

wϑ̃α
β
f`,ε
∇x,vf `+1ψdxdv =

∫ t

0

∫∫
Ω×R3

wϑ̃α
β
f,ε∇x,vfψdxdv.

(6.27)
We note that we need to extract a single subsequence, let say {`∗} ⊂ {`}, satisfying
6.27 for all test functions in C∞c (Ω̄ × R3\γ0;R2). Of course the convergent rate
needs not to be uniform and it could vary with test functions.

For each N ∈ N we define a set

SN :=
{

(x, v) ∈ Ω̄×R3 : dist(x, ∂Ω) ≤ 1

N
and |n(x) ·v| ≤ 1

N

}
∪{|v| > N}. (6.28)

For a given test function we can always find N � 1 such that

supp(ψ) ⊂ (SN )c := Ω̄× R3\SN . (6.29)

We will exam 6.27 by the identity obtained from the integration by parts∫ t

0

〈wϑ̃α
β
f`,ε

,∇x,vf `+1ψ〉

= −
∫ t

0

〈αβ
f`,ε

f `+1,∇x,v(wϑ̃ψ)〉 (6.30)

+
∑
ι=±

∫ t

0

∫∫
γ

nαβ
f`,ε,ι

f `+1
ι (wϑ̃ψ) (6.31)

−
∫ t

0

〈∇x,vαβf`,ε, f
`+1(wϑ̃ψ)〉. (6.32)

We finish this step by proving the convergence of 6.30 and 6.31. From 1.29 and 3.8,
if (x, v) ∈ (SN )c then

sup
`≥0
|αβ
f`,ε,ι

(t, x, v)| . |v|β + (t+ ε)β sup
`≥0
‖∇φf`‖β∞

. Nβ + (T ∗∗ + ε)β sup
`≥0
‖wϑf `‖β∞ ≤ CN < +∞.

Hence we extract a subsequence (let say {`N}) out of subsequence in Step 6 such

that αβ
f`N ,ε,ι

∗
⇀ Aι ∈ L∞ weakly− ∗ in L∞((0, T ∗∗)× (SN )c) ∩ L∞((0, T ∗∗)× (γ ∩

(SN )c)). Note that αβ
f`N ,ε,ι

satisfies [∂t + v · ∇x−ι∇xφ`N · ∇v]αβf`N ,ε,ι = 0 and

αβ
f`N ,ε,ι

|γ− = |n · v|β . By passing a limit in the weak formulation we conclude that

[∂t+v ·∇x−ι∇xφf ·∇v]Aι = 0 and Aι|γ− = |n ·v|β . By the uniqueness of the Vlasov

equation (∇φf ∈W 1,p for any p <∞) we derive Aι = αβf,ε,ι almost everywhere and
hence conclude that

αβ
f`N ,ε,ι

∗
⇀ αβf,ε,ι weakly− ∗ in L∞((0, T ∗∗)× (SN )c) ∩ L∞((0, T ∗∗)× (γ ∩ (SN )c)).

(6.33)
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Now the convergence of 6.30 and 6.31 is a direct consequence of strong convergence
of 6.4 and the weak−∗ convergence of 6.33.

Step 8. We devote the entire Step 8 to prove the convergence of 6.32.

Step 8-a. Let us choose (x, v) ∈ (SN )c. From 1.24

If tf
`

b,ι ≥ t+ ε then αf`,ε,ι(t, x, v) = 1. (6.34)

From now we only consider that case

tf
`

b,ι(t, x, v) ≤ ε+ t. (6.35)

If |v| ≥ 2(ε+ T ∗∗) sup` ‖∇φ`‖∞ then

|V f
`

ι (s; t, x, v)| ≥ |v| −
∫ t

s

‖∇φ`(τ)‖∞dτ

≥ (ε+ T ∗∗) sup
`
‖∇φ`‖∞ for all ` and s ∈ [−ε, T ∗∗].

(6.36)

For this case we need a version of velocity lemma of α̃ in 1.33, which shows up
in the author’s previous paper [2], but this time with neutral boundary condition
±∇φ` · n = 0 on ∂Ω. So α̃ now takes the form

α̃(t, x, v) :=
√
ξ(x)2 + |∇ξ(x) · u|2 − 2(u · ∇2

xξ(x) · u)ξ(x). (6.37)

From a direct computation,

[∂t + u · ∇x − ι∇φ`(t, x) · ∇u]{ξ(x)2 + |∇ξ(x) · u|2 − 2(u · ∇2
xξ(x) · u)ξ(x)}

= 2{u · ∇ξ}ξ
(((((((((((
+2{u · ∇2ξ · u}{u · ∇xξ} − 2u · (u · ∇∇2ξ · u)ξ

(((((((((((
−2{u · ∇2ξ · u}{u · ∇ξ} + 2{−ι∇φ` · ∇ξ}{∇ξ · u} − 4{−ι∇φ` · ∇2ξ · u}ξ

. |u · ∇ξ|2 + |ξ|2 + {|u|+ 1

|u|
}(−2(u · ∇2

xξ(x) · u)ξ(x)) + |∇φ` · ∇ξ||∇ξ · u|.

(6.38)

From the Neumann BC (n(x) · E(t, x) = 0 on x ∈ ∂Ω), we have

|∇φ`(t, x) · ∇ξ(x)|

≤ |∇φ`(t, x∗) · ∇ξ(x∗)|+ ‖∇φ`(t)‖C1(Ω̄)‖ξ‖C2(Ω̄)|x− x∗|

.Ω ‖∇φ`(t)‖C1(Ω̄)|ξ(x)|,
(6.39)

where x∗ ∈ ∂Ω such that |x− x∗| = infy∈∂Ω |x− y|.
By controlling the last term of 6.38 by 6.39 and using 6.36, we conclude that

d

ds
α̃(s,Xf`

ι (s; t, x, u), V f
`

ι (s; t, x, u))2

.Ω

(
1 + |V f

`

ι (s; t, x, u)|+ 1

|V f`ι (s; t, x, u)|

)
α̃(s,Xf`

ι (s; t, x, u), V f
`

ι (s; t, x, u))2

.Ω,R,N

(
1 + |V f

`

ι (s; t, x, u)|
)
α̃(s,Xf`

ι (s; t, x, u), V f
`

ι (s; t, x, u))2,
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so

|α̃(s,Xf`

ι (s; t, x, v), V f
`

ι (s; t, x, v))|

≥ 1

CΩ
α̃(t, x, v)e

−CΩ
|t−s|

(ε+T∗∗) sup` ‖∇φ`‖∞

≥ e
− CΩ

sup` ‖∇φ`‖∞

CΩ
× 1

N
for all ` and s ∈ [−ε, T ∗∗].

Especially at s = t− tf
`

b,ι(t, x, v), from 6.37,

|n(xf
`

b,ι) · v
f`

b,ι| ≥
e
− CΩ

sup` ‖∇φ`‖∞

CΩ
× 1

N
for all `. (6.40)

Step 8-b. From now on we assume 6.35 and

|v| ≤ 2(ε+ T ∗∗) sup
`
‖∇φ`‖∞,

or, from 1.27, |V f
`

ι (s; t, x, v)| ≤ 3(ε+ T ∗∗) sup
`
‖∇φ`‖∞ for s ∈ [−ε, T ∗∗].

(6.41)

Let (Xf`

n,ι, X
f`

‖,ι, V
f`

n,ι, V
f`

‖,ι ) satisfy 2.8, 2.6, and 2.10 with E = −ι∇φ`.
Let us define

τ1 := sup
{
τ ≥ 0 : V f

`

n,ι(s; t, x, v) ≥ 0 for all s ∈ [t− tf
`

b,ι(t, x, v), τ ]
}
. (6.42)

Since (Xf`

ι (s; t, x, v), V f
`

ι (s; t, x, v)) is C1 (note that ∇φ` ∈ C1
t,x) in s we have

V f
`

n,ι(τ1; t, x, v) = 0.

We claim that, there exists some constant δ∗∗ = Oε,T∗∗,sup` ‖∇φ`‖C1
( 1
N ) in 6.48

which does not depend on ` such that

If 0 ≤ V f
`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v) < δ∗∗and 6.41, then

V f
`

n,ι(s; t, x, v) ≤ eC|s−(t−tf
`

b,ι(t,x,v))|2V f
`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v)

for s ∈ [t− tf
`

b,ι, τ1].

(6.43)

For the proof we regard the equations 2.8, 2.6, and 2.10 as the forward-in-time

problem with an initial datum at s = t − tf
`

b,ι(t, x, v). Clearly we have Xf`

n,ι(t −
tf
`

b,ι(t, x, v); t, x, v) = 0 and V f
`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v) ≥ 0 from Lemma 2.1. Again

from Lemma 2.1, if V f
`

n,ι(t − t
f`

b,ι(t, x, v); t, x, v) = 0 then Xf`

n,ι(s; t, x, v) = 0 for all

s ≥ t− tf
`

b,ι(t, x, v). From now on we assume V f
`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v)] > 0. From

2.10, as long as t− tf
`

b,ι(t, x, v) ≤ s ≤ T ∗∗ and

V f
`

n,ι(s; t, x, v) ≥ 0 and Xf`

⊥,ι(s; t, x, v) ≤ 1

N
� 1, (6.44)

then we have

V̇ f
`

n (s) = [V f
`

‖,ι (s) · ∇
2η(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))︸ ︷︷ ︸
≤0 from 1.40
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− ∇φ`(s,Xf`(s)) · [−n(Xf`

‖,ι(s))]︸ ︷︷ ︸
=O(1) sup` ‖∇φ`‖C1×Xf

`
n,ι(s) from 2.13

−Xf`

n,ι(s)[V
f`

‖,ι (s) · ∇
2n(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))︸ ︷︷ ︸
=O(1){3(ε+T∗∗) sup` ‖∇φ`‖∞}2×X

f`
n,ι(s) from 6.41

≤ C(1 + ε+ T ∗∗)2(sup
`
‖∇φ`‖C1 sup

`
‖∇φ`‖∞)×Xf`

n,ι(s).

(6.45)

Let us consider 6.45 together with Ẋf`

n (s; t, x, v) = V f
`

n (s; t, x, v). Then, as long
as s satisfies 6.44,

V f
`

n,ι(s)

= V f
`

n,ι(t− t
f`

b,ι) +

∫ s

t−tf
`

b,ι

V̇ f
`

n (τ)dτ

≤ V f
`

n,ι(t− t
f`

b,ι) +

∫ s

t−tf
`

b,ι

C(1 + ε+ T ∗∗)2(sup
`
‖∇φ`‖C1 sup

`
‖∇φ`‖∞)×Xf`

n,ι(τ)dτ

= V f
`

n,ι(t− t
f`

b,ι)

+

∫ s

t−tf
`

b,ι

C(1 + ε+ T ∗∗)2(sup
`
‖∇φ`‖C1 sup

`
‖∇φ`‖∞)

∫ τ

t−tf
`

b,ι

V f
`

n,ι(τ
′)dτ ′dτ.

Following the same argument of the proof of Lemma 2.4, we derive that

V f
`

n,ι(s) ≤ V f
`

n,ι(t− t
f`

b,ι)

+ C(1 + ε+ T ∗∗)2(sup
`
‖∇φ`‖C1 sup

`
‖∇φ`‖∞)

∫ s

t−tf
`

b,ι

|s− (t− tf
`

b,ι)|V
f`

n,ι(τ
′)dτ ′.

From the Gronwall’s inequality, we derive that, as long as 6.44 holds,

V f
`

n,ι(s; t, x, v)

≤ V f
`

n,ι(t− t
f`

b,ι(t, x, v))eC(1+ε+T∗∗)2(sup` ‖∇φ
`‖C1 sup` ‖∇φ

`‖∞)×|s−(t−tf
`

b,ι(t,x,v))|2 .

(6.46)

Now we verify the conditions of 6.44 for all −ε ≤ t− tf
`

b,ι(t, x, v) ≤ s ≤ T ∗∗. Note

that we are only interested in the case of V f
`

n,ι(t − t
f`

b,ι(t, x, v); t, x, v) < δ∗∗. From
the argument of 6.45, ignoring negative curvature term,

|Xf`

n,ι(s; t, x, v)|

≤ (ε+ T ∗∗)|V f
`

n,ι(t
f`

b,ι; t, x, v)|

+ C[1 + (ε+ T ∗∗)2 sup
`
‖∇φ`‖∞] sup

`
‖∇φ`‖C1

∫ s

t−tf
`

b,ι

∫ τ

t−tf
`

b,ι

|Xf`

n,ι(τ ; t, x, v)|dτds

≤ (ε+ T ∗∗)|V f
`

n,ι(t
f`

b,ι; t, x, v)|+ C

∫ s

t−tf
`

b,ι

|τ − (t− tf
`

b,ι)||X
f`

n,ι(τ ; t, x, v)|dτ.

Then by the Gronwall’s inequality we derive that, in case of 6.35,

|Xf`

n,ι(s; t, x, v)| ≤ Cε+T∗∗ |V f
`

n,ι(t− t
f`

b,ι; t, x, v)| for all − ε ≤ t− tf
`

b,ι ≤ s ≤ t ≤ T
∗∗.

(6.47)
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If we choose

δ∗∗ =
o(1)

|T ∗∗ + ε|
× 1

N
, (6.48)

then 6.46 holds for −ε ≤ t − tf
`

b,ι(t, x, v) ≤ s ≤ T ∗∗. Hence we complete the proof
of 6.43.

Step 8-c. Suppose that 6.41 holds and 0 ≤ V f`n,ι(t− t
f`

b,ι(t, x, v); t, x, v) < δ∗∗ with

δ∗∗ of 6.48. Recall the definition of τ1 in 6.42. Inductively we define τ2 := sup
{
τ ≥

0 : V f
`

n,ι(s; t, x, v) ≤ 0 for all s ∈ [τ1, τ ]
}

and τ3, τ4, · · · . Clearly such points can be

countably many at most in an interval of [t− tf
`

b,ι, t]. Suppose limk→∞ τk = t. Then

choose k0 � 1 such that |τk0 − t| � |V f
`

n,ι(t − t
f`

b,ι; t, x, v)|. Then, for s ∈ [τk0 , t],
from 6.45 and 6.41,

|V f
`

n,ι(t; t, x, v)| . |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|. (6.49)

Now we assume that τk0 < t ≤ τk0+1. From the definition of τi in 6.42 we split
the case in two.

Case 1: Suppose V f
`

n,ι(s; t, x, v) > 0 for s ∈ (τk0
, t).

From 6.45 and 6.47

V f
`

n,ι(t; t, x, v) .
∫ T∗∗

τk0

Xf`

n,ι(s) . |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|. (6.50)

Case 2: Suppose V f
`

n,ι(s; t, x, v) < 0 for s ∈ (τk0
, t).

Suppose

− V f
`

n,ι(t; t, x, v) = |V f
`

n,ι(t; t, x, v)| ≥ |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|A for any 0 < A <
1

2
.

(6.51)
From 6.45, now taking account of the curvature term this time, we derive that

−V f
`

n,ι(t; t, x, v) ≤
∫ t

τk0

(−1)[V f
`

‖,ι (s) · ∇
2η(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))ds

+ C|V f
`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v)|,
where we have used 6.41 and 6.47. From 6.51 the above inequality implies that, for

|V f`n,ι(t− t
f`

b,ι(t, x, v); t, x, v)| � 1,

|V f
`

n,ι(t− t
f`

b,ι; t, x, v)|A .
∫ t

τk0

(−1)[V f
`

‖,ι (s) · ∇
2η(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))ds.

Note that | ddsV
f`

‖,ι (s)| and | ddsX
f`

‖,ι(s)| are all bound from ∇φ` ∈ C1, 6.41, and 6.47.

Hence we have
1

2
|V f

`

n,ι(t− t
f`

b,ι; t, x, v)|A

.
∫ t−|V f

`

n,ι(t−t
f`

b,ι;t,x,v)|A

τk0

(−1)[V f
`

‖,ι (s) · ∇
2η(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))ds.

(6.52)

On the other hand, if t − |V f`n,ι(t − t
f`

b,ι; t, x, v)|A ≤ τk0 then |t − τk0 | ≤ |V f
`

n,ι(t −
tf
`

b,ι; t, x, v)|A, which implies that, from 6.45, 6.41, and 6.47,
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|V f
`

n,ι(t; t, x, v)| . |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|A for any 0 < A <
1

2
. (6.53)

Now we consider Xf`

n,ι(t; t, x, v). From 6.45 and Ẋf`

n (s; t, x, v) = V f
`

n (s; t, x, v)
together with 6.47 and 6.41

Xf`

n,ι(t; t, x, v)

. |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|+
∫ t

τk0

∫ τ

τk0

[V f
`

‖,ι (s) · ∇
2η(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))︸ ︷︷ ︸
≤0

dsdτ

. |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|+ |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|A

×
∫ t−|V f

`

n,ι(t−t
f`

b,ι;t,x,v)|A

τk0

[V f
`

‖,ι (s) · ∇
2η(Xf`

‖,ι(s)) · V
f`

‖,ι (s)] · n(Xf`

‖,ι(s))ds

. |V f
`

n,ι(t− t
f`

b,ι; t, x, v)| − |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|2A from 6.52

. |V f
`

n,ι(t− t
f`

b,ι; t, x, v)| − |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|1−

< 0,

(6.54)

for |V f`n,ι(t− t
f`

b,ι; t, x, v)| � 1. Clearly this cannot happen since x ∈ Ω̄ and xn ≥ 0.
Therefore our assumption 6.51 was wrong and we conclude 6.53.

Step 8-d. From 6.43, 6.49, 6.50, and 6.53 in Step 8-a and Step 8-b, we conclude

that the same estimate 6.53 for |V f`n,ι(t − t
f`

b,ι; t, x, v)| � 1 in the case of 6.35 and
6.41. Finally from 6.34, 6.40, 6.43, and 6.53 we conclude that

|V f
`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v)| ≥
(

1

N

)1/A

(t, x, v) ∈ [0, T ∗∗]× (SN )c. (6.55)

From (2.36), (2.37), (2.40), and (2.41) in Lemma 2.4 in [21], and combing with
6.41 we have

∇x,vtf
`

b,ι .Ω
1

|vn(xf
`

b,ι)|
|vf

`

b,ι||t
f`

b,ι|
2e‖∇

2φ`‖∞(tf
`

b,ι)
2/2 .Ω |V f

`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v)|,

∇x,vvn(xf
`

b,ι)

.Ω
1

|vn(xf
`

b,ι)|

(
|v||tf

`

b,ι|
2e‖∇

2φ`‖∞(tf
`

b,ι)
2/2 + |vf

`

b,ι||t
f`

b,ι|
3(1 + tf

`

b,ι)e
‖∇2φ`‖∞(tf

`

b,ι)
2/2

)
.Ω |V f

`

n,ι(t− t
f`

b,ι(t, x, v); t, x, v)|.
(6.56)

Therefore from above we have

|∇x,vαβf`,ε,ι(t, x, v)| .χ β|αβf`,ε,ι(t, x, v)|β−1|∇x,vtf
`

b,ι +∇x,vvn(xf
`

b,ι)|

.χ |V f
`

n,ι(t− t
f`

b,ι; t, x, v)|β−1|V f
`

n,ι(t− t
f`

b,ι; t, x, v)|−1.
(6.57)

Combing 6.55 and 6.57 we achieve

sup
`∈N, (x,v)∈(SN )c,

−ε≤t−tf
`

b,ι(t,x,v)≤t≤T∗∗

|∇x,vαβf`,ε,ι(t, x, v)| . 1

|V f`n,ι(t− tf
`

b,ι; t, x, v)|2−β
.ε,N,T∗∗ 1.
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Hence we extract another subsequence out of all previous steps for ι = + first, and
then from that subsequence extract further another subsequence for ι = − (and
redefine this as {`N}) such that

∇x,vαβf`N ,ε,ι
∗
⇀ ∇x,vαβf,ε,ι weakly− ∗ in L∞((−ε, T ∗∗)× (SN )c). (6.58)

Note that the limiting function is identified from 6.33. Clearly the convergence of
6.32 is an easy consequence of strong convergence of 6.4 and the weak−∗ convergence
of 6.58.

Step 8-c. Inductively we extract {`N} ⊇ {`N+1} ⊇ {`N+2} ⊇ · · · by following all
the process in Step 7 to Step 8-b. Then finally we define the subsequence, by the
Cantor’s diagonal argument,

`∗ = ``. (6.59)

Then clearly 6.27 holds with this subsequence for any test function ψ. For any
ψ ∈ C∞c (Ω̄×R3\γ0;R2) there exists Nψ ∈ N such that supp(ψ) ⊂ (SNψ )c. Then all
the proofs work.

This implies 6.26 from 6.30, 6.31, 6.32. Positivity F = µ+
√
µf ≥ 0 comes from

Step 1 and Step 6.

Step 5. Choose t > t′ ≥ 0. Instead of expanding hι(t, x, v) at t = 0 as 3.19, we
expand at t′. Then by the iteration we have 3.23 replacing 0 by t′. Collecting all
terms at time t′, we have

‖hι(t)‖∞ ≤‖hι(t′)‖∞
{

1t1,ι≤t′e
−
∫ t
t′ νι

+ 1t1,ι≥t′
e
−
∫ t
t1,ι

νι

w̃ϑ(Vι(t1,ι))

∫
∏k−1
j=1 Vj,ι

k−1∑
l=1

1{t`−ll+1,ι≤t′<t
`−(l−1)
l,ι }dΣlι(t

′)

}
.

(6.60)

Since 3.21 is a probability measure and |e−
∫ t
t′ νι − 1| � |t− t′| for |t− t′| � 1,

|6.60− ‖hι(t′)‖∞| ≤ O(|t− t′|) +

∫
∏k−1
j=1 Vj,ι

1{tkι (t,x,v,u1,··· ,uk−1)>0}dΣk−1
k−1,ι.

Then by 3.23 we have ‖h(t)‖∞−‖h(t′)‖∞ < 1
2k

+Ok(|t− t′|). For large k, choosing
|t− t′| � 1, we can prove ‖h(t)‖∞ − ‖h(t′)‖∞ � 1 as |t− t′| � 1.

Now we can expand h(t′, x, v) at t by 3.19. Following the same argument we
have ‖h(t′)‖∞ − ‖h(t)‖∞ � 1 as |t− t′| � 1. Hence ‖wϑf(t)‖∞ is continuous in t.

The continuity of ‖∇vf(t)‖L3
xL

1+δ
v

and ‖wϑ̃α
β
f,ε∇x,vf(t)‖pp+

∫ t
0
|wϑ̃α

β
f,ε∇x,vf(t)|pp,+

is an easy consequence of 5.5-5.9, and 4.46, 4.75, 4.63 as well.

7. L2 coercivity.

Proposition 6. Suppose (f, φ) solves 1.15, 1.16, and 1.17. Then there is 0 < λ2 �
1 such that for 0 ≤ s ≤ t,

‖eλ2tf(t)‖22 + ‖eλ2t∇φ(t)‖22

+

∫ t

s

‖eλ2τf(τ)‖2ν + ‖eλ2τ∇φf (τ)‖22dτ +

∫ t

s

|eλ2τf |22,+

. ‖eλ2sf(s)‖22 + ‖eλ2s∇φf (s)‖22

+ sup
s≤τ≤t

‖wϑf(τ)‖∞
∫ t

s

‖eλ2τf(τ)‖2ν .

(7.1)
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The null space of linear operator L is a six-dimensional subspace of L2
v(R3;R2)

spanned by orthonormal vectors{[√
µ

0

]
,

[
0√
µ

]
,

[
vi√

2

√
µ

vi√
2

√
µ

]
,

[ |v|2−3

2
√

2

√
µ

|v|2−3

2
√

2

√
µ

]}
, i = 1, 2, 3, (7.2)

and the projection of f onto the null space N(L) is denoted by

Pf(t, x, v)

:=

{
a+(t, x)

[√
µ

0

]
+ a−(t, x)

[
0√
µ

]
+ b(t, x) · v√

2

[√
µ√
µ

]
+ c(t, x)

|v|2 − 3

2
√

2

[√
µ√
µ

]}
.

(7.3)

In order to prove the proposition we need the following:

Lemma 7.1. There exists a function G(t) such that, for all 0 ≤ s ≤ t, G(s) .
‖f(s)‖22 and ∫ t

s

‖Pf(τ)‖2ν +

∫ t

s

‖∇φf‖22

. G(t)−G(s) +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

|(1− Pγ)f(τ)|22,+

+

∫ t

s

‖ν−1/2Γ(f, f)‖22 +

∫ t

s

‖wϑf(τ)‖∞‖Pf(τ)‖22.

(7.4)

Proof of Proposition 6. Step 1. Without loss of generality we prove the result

with s = 0. We have an L2-estimate from
∫ t

0
〈2eλ2tf, 1.23〉

‖eλ2tf(t)‖22 − ‖f(0)‖22 +

∫ t

0

|eλ2τ (1− Pγ)f j |22,+

+

∫ t

0

∫∫
Ω×R3

v · ∇φfe2λ2τ (f2
+ − f2

−) + 2

∫ t

0

eλ2τ 〈f, Lf〉

= 2

∫ t

0

e2λ2τ 〈f,Γ(f, f)〉 − 2

∫ t

0

e2λ2τ

∫
Ω

∇φf ·
∫
R3

v
√
µ(f+ − f−)

+ 2λ2

∫ t

0

‖eλ2τf(τ)‖22,

where

Pγf :=

[
Pγf+

Pγf−

]
:=

[
cµ
√
µ(v)

∫
n(x)·u>0

f+(u)
√
µ(u){n(x) · u}du

cµ
√
µ(v)

∫
n(x)·u>0

f−(u)
√
µ(u){n(x) · u}du

]
. (7.5)

On the other hand multiplying
√
µ(v)φf (t, x) with a test function ψ(t, x) to 1.23

and applying the Green’s identity, (from the charge conservation) we obtain∫
Ω

∇φf (t, x) ·
∫
R3

v
√
µ(f+ − f−)dvdx

=−
∫

Ω

φf (t, x)

(∫
R3

v · ∇x
√
µ(f+ − f−)dv

)
dx

+

∫∫
∂Ω×R3

φf (t, x)(f+ − f−)
√
µ{n · v}dvdSx

=

∫
Ω

φf (t, x)∂τ

(∫
R3

(f+ − f−)
√
µdv

)
dx
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+

∫∫
∂Ω×R3

φf (t, x)(f+ − f−)
√
µ{n · v}dvdSx.

From 1.11, the last boundary contribution equals zero. Now we use 1.16 and deduce
that ∫ t

0

e2λ2τ

∫
Ω

φf (t, x)∂τ

(∫
R3

(f+ − f−)(τ)
√
µdv

)
dxdτ

= −
∫ t

0

e2λ2τ

∫
Ω

φf (t, x)∂τ∆xφf (τ, x)dxdτ

=
1

2

∫ t

0

e2λ2τ

∫
Ω

∂τ |∇xφf (τ, x)|2dxdτ

=
1

2

(∫
Ω

e2λ2t|∇xφf (t, x)|2dx

)
− 1

2

(∫
Ω

|∇xφf (0, x)|2dx

)
− λ2

∫ t

0

e2λ2τ

∫
Ω

|∇xφf (τ, x)|2dxdτ.

Hence we derive

‖eλ2tf(t)‖22 + ‖eλ2t∇φf (t)‖22 +

∫ t

0

∫∫
Ω×R3

e2λ2τv · ∇φf (f2
+ − f2

−)

+ 2C

∫ t

0

∫∫
Ω×R3

‖eλ2τ (I−P)f‖2ν +

∫ t

0

|eλ2τ (1− Pγ)f j |22,+

. ‖f(0)‖22 + ‖∇φf (0)‖22 +

∫ t

0

‖eλ2τν−1/2Γ(f, f)‖22

+ {λ2 + o(1)}
∫ t

0

‖eλ2τf‖2ν + λ2

∫ t

0

‖eλ2τ∇xφf‖22.

Now we apply Lemma 7.1 and add o(1) × 7.4 to the above inequality and choose
0 < λ2 � 1 to conclude 7.1 except the full boundary control.

Step 2. Note that from 7.5, Pγf± = z±(t, x)
√
µ(v) for a suitable functions

z±(t, x) on the boundary. Then for ι = + or −, for 0 < ε� 1

|Pγfι|2γ,2 =

∫
∂Ω

|zι(t, x)|2dx×
∫
R3

µ(v)|n(x) · v|dv

.
∫
∂Ω

|zι(t, x)|2dx×
∫
γ+(x)\γε+(x)

µ(v)3/2|n(x) · v|dv

= |1γ+\γε+µ
1/4Pγfι|22,+.

Since Pγf = f − (1−Pγ)f on γ+ we have |1γ+\γε+µ
1/4Pγf |22,+ . |1γ+\γε+µ

1/4f |22,+ +

|(1− Pγ)f |22,+. Therefore∫ t

0

|Pγf |2γ,2 .
∫ t

0

|1γ+\γε+µ
1/4f |22,+ +

∫ t

0

|(1− Pγ)f |22,+. (7.6)

Note that ∣∣[∂t + v · ∇x − q∇φ · ∇v](µ1/4f)
∣∣

. µ1/4{|v||∇xφ|f + |v||∇xφ|+ |Lf |+ |Γ(f, f)|}.

By the trace theorem Lemma 2.2,



TWO SPECIES COLLISIONAL PLASMA 1411∫ t

0

|1γ+\γε+µ
1/4f |22,+

. ‖f0‖2 + (1 + ‖wf‖∞)

∫ t

0

‖f‖22 +

∫ t

0

‖∇φ‖22.
(7.7)

Adding o(1)× 7.6 to the result of Step 1 and using 7.7 we conclude 7.1.

Proof of Lemma 7.1. From the Green’s identity, a solution f of 1.23 satisfies

〈f(t), ψ(t)〉 − 〈f(s), ψ(s)〉 −
∫ t

s

〈f, ∂tψ〉︸ ︷︷ ︸
7.8T

+

∫ t

s

∫
γ

(ψ · f)(v · n(x))︸ ︷︷ ︸
7.8B

−
∫ t

s

〈Pf, v · ∇xψ〉︸ ︷︷ ︸
7.8C

−
∫ t

s

〈(I−P)f, v · ∇xψ〉+

∫ t

s

〈q√µf,∇xφf · ∇v(
1
√
µ
ψ)〉︸ ︷︷ ︸

7.8P

=

∫ t

s

〈ψ, {−L(I−P)f + Γ(f, f)}〉 −
∫ t

s

〈ψ, q1v · ∇xφf
√
µ〉︸ ︷︷ ︸

7.8φf

.

(7.8)

We use a set of test functions:

ψa ≡
[
−(|v|2 − βa)

√
µv · ∇xϕa+

−(|v|2 − βa)
√
µv · ∇xϕa−

]
,

ψi,jb,1 ≡
[
(v2
i − βb)

√
µ∂jϕ

j
b

(v2
i − βb)

√
µ∂jϕ

j
b

]
, i, j = 1, 2, 3,

ψi,jb,2 ≡
[
|v|2vivj

√
µ∂jϕ

i
b(x)

|v|2vivj
√
µ∂jϕ

i
b(x)

]
, i 6= j,

ψc ≡
[
(|v|2 − βc)

√
µv · ∇xϕc

(|v|2 − βc)
√
µv · ∇xϕc

]
,

(7.9)

where ϕa±(t, x), ϕb(t, x), and ϕc(t, x) solve

−∆ϕa± = a±(t, x), ∂nϕa± |∂Ω = 0,

−∆ϕjb = bj(t, x), ϕjb|∂Ω = 0, and −∆ϕc = c(t, x), ϕc|∂Ω = 0,
(7.10)

and βa = 10, βb = 1, and βc = 5 such that for all i = 1, 2, 3,∫
R3

(|v|2 − βa)(
|v|2 − 3

2
√

2
)v2
i µ(v)dv = 0,∫

R3

(v2
i − βb)µ(v)dv = 0,∫

R3

(|v|2 − βc)v2
i µ(v)dv = 0.

(7.11)

Step 1. Estimate of 7.8φf : From 7.9 and 7.11, we have 7.8φf ≡ 0 for ψi,jb,1, ψi,jb,2,
and ψc. For ψ = ψa, because from definition φ = ϕa+ − ϕa− , 7.8φf equals

7.8φf
∣∣
ψ=ψa

=

∫
R3

−(|v|2 − βa)(v1)2µdv

∫ t

s

∫
Ω

(∇ϕa+ −∇ϕa−) · ∇φf

= C1

∫ t

s

‖∇φf‖22,
(7.12)
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where

C1 =

∫
R3

−(|v|2 − βa)(v1)2µdv = 5. (7.13)

Now we look at 7.8C . For ψ = ψc, from oddness in velocity integration and 7.11,
7.8C becomes ∫ t

s

〈Pf, v · ∇xψc〉 = −C2

∫ t

s

‖c(τ)‖22, (7.14)

where C2 = 2
∫
R3(|v|2 − βc)v2

i ( |v|
2−3

2
√

2
)µ(v)dv = 20π3/2.

For ψ = ψa, from oddness in velocity integration and 7.11, 7.8C becomes∫ t

s

〈Pf, v · ∇xψa〉 = −C1

∫ t

s

‖a+(τ)‖22 + ‖a−(τ)‖22, (7.15)

where C1 = 5 as in 7.13.
For fixed i, j, we choose test function ψ = ψi,jb,1 in 7.9 where βb and ϕb are defined

in 7.11 and 7.10. From oddness in velocity integration and definition of βb, 7.8C in
7.8 yields

7.8C |ψi,jb,1 :=

∫ t

s

〈Pf, v · ∇ψi,jb,1〉 = −C3

∫ t

s

∫
Ω

bi(∂ij∆
−1bj), (7.16)

where C3 := 2
∫
R3(v2

i − βb)
v2
i√
2
µdv = 4

√
π.

Next, we try test function ψi,jb,2 with i 6= j to obtain

7.8C |ψi,jb,2 :=

∫ t

s

〈Pf, ψi,jb,2〉 = 2

∫ t

s

∫∫
Ω×R3

(b · v√
2

)
√
µv · ∇ψi,jb,2

= −C4

∫ t

s

∫
Ω

(
bj(∂ij∆

−1bi) + bi(∂jj∆
−1bi)

)
.

(7.17)

by oddness in velocity integral where C4 := 14
√
π. Note that the RHS of 7.16 cancel

out with the first term in the RHS of 7.17, therefore combining them we get∑
i,j

−C4

C3
× 7.8C |ψi,jb,1

+

∑
i6=j

7.8C |ψi,jb,2

 = −C4

∑
i,j

∫ t

s

∫
Ω

bi(∂jj∆
−1bi)

= −C4

∫ t

s

‖b(τ)‖22.

Estimate of 7.8P : From 7.9,

7.8P =

∫ t

s

〈q√µf,∇xφf · ∇v(
1
√
µ
ψ)〉, ψ = ψa±,b,c,

.
∫ t

s

‖wϑf‖∞
∫

Ω

∇xφf · ∇xϕa±,b,c .
∫ t

s

‖wϑf(τ)‖∞‖Pf(τ)‖22,
(7.18)

by elliptic estimate ‖∇xϕa±,b,c‖2 . ‖ϕa±,b,c‖H2 . ‖Pf‖2.

Step 2. Estimate of c : For boundary integral 7.8B , we decompose fγ = Pγf +
1γ+(1− Pγ)f . Then from 7.11 and trace theorem |∇ϕc|2 . ‖ϕc‖H2 . ‖c‖2,
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s

∫
γ

ψc · f(v · n(x)) =

∫ t

s

∫
γ

ψc · 1γ+
(1− Pγ)fdγ

. ε

∫ t

s

‖c(τ)‖22 + Cε

∫ t

s

|(1− Pγ)f(τ)|22,+, ε� 1.

(7.19)

If we define

Re :=

∫ t

s

〈ψ, {L(I−P)f − Γ(f, f)}〉+

∫ t

s

〈(I−P)f, v · ∇xψ〉, (7.20)

then from 7.12, 7.18, elliptic estimate and Young’s inequality we have

Re|ψc . ε

∫ t

s

‖c‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

‖ν−1/2Γ(f, f)(τ)‖22, (7.21)

We also use even/oddness in velocity integration, 7.11, and Young’s inequality to
estimate,

7.8T |ψc =

∫ t

s

〈f, ∂tψc〉 =

∫ t

s

〈(I−P)f, ∂tψc〉

. ε

∫ t

s

‖∇∆−1∂tc(τ)‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν .
(7.22)

Now, we choose a new test function ψtc :=

[
( |v|

2−3

2
√

2
)
√
µ∂tϕc(t, x)

( |v|
2−3

2
√

2
)
√
µ∂tϕc(t, x)

]
. Note that ∂tϕc

solves −∆∂tϕc = ∂tc(t, x) with ∂tϕc(t, x)|∂Ω = 0. We taking difference quotient for
∂tf and it replace first three terms in the LHS of 7.8. With help of Poincaré
inequality ‖∂tϕc‖2 . ‖∇∂tϕc‖2, we can also compute 7.8φf

∣∣
ψ=ψtc

= 0, and

7.8P
∣∣
ψ=ψtc

=

∫ t

s

〈q√µf,

[
∇xφf · v√

2
∂tϕc

∇xφf · v√
2
∂tϕc

]
〉

.
∫ t

s

‖wϑf‖∞
(
ε‖∇∆−1∂tc(τ)‖22 +

(
‖a+(τ)‖22 + ‖a−(τ)‖22

))
,

(7.23)

∫ t

s

〈Pf, v · ∇ψtc〉+

∫ t

s

〈(I−P)f, v · ∇ψtc〉

. ε

∫ t

s

‖∇∆−1∂tc(τ)‖22 +

∫ t

s

‖b(τ)‖22 +

∫ t

s

‖(I−P)f‖2ν .
(7.24)

Since ψtc vanishes when it acts with Lf and Γ(f, f), and boundary integral 7.8B
vanishes by Dirichlet boundary condition of ϕc , from 7.23, 7.24, and 7.8, we obtain∫ t

s

〈∂tf, ψtc〉 =

∫ t

s

∫
Ω

∂tϕc(τ, x)∂tc(τ, x)dx =

∫ t

s

‖∇∆−1∂tc(τ)‖22

. ε

∫ t

s

‖∇∆−1∂tc(τ)‖22

+

∫ t

s

(
‖a+(τ)‖22 + ‖a−(τ)‖22 +

∫ t

s

‖b(τ)‖22 +

∫ t

s

‖(I−P)f‖2ν
)
.

(7.25)
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We combine 7.8, 7.12, 7.18, 7.19, 7.21, 7.22, and 7.25 with ε� 1 to obtain∫ t

s

‖c(τ)‖22 . Gc(t)−Gc(s) +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

|(1− Pγ)f(τ)|22,+

+

∫ t

s

‖ν−1/2Γ(f, f)(τ)‖22 +

∫ t

s

‖wϑf(τ)‖∞‖Pf(τ)‖22

+ ε

∫ t

s

(
‖a+(τ)‖22 + ‖a−(τ)‖22 + ‖b(τ)‖22

)
,

(7.26)

for ε� 1 where Gc(t) := 〈f(t), ψc(t)〉 . ‖f(t)‖22.

Step 3. Estimate of a : From mass conservation
∫

Ω
a±(t, x)dv = 0, ϕa± in 7.10 is

well-defined. Moreover, we choose ϕa± so that has mean zero,
∫

Ω
ϕa±(t, x)dx = 0.

Therefore, Poincaré inequality ‖ϕa±‖2 . ‖∇ϕa±‖2 holds and these are also true for
∂tϕa± which solves same elliptic equation with Neumann boundary condition.

For boundary integral 7.8B , we decompose fγ = Pγf + 1γ+(1 − Pγ)f . From
Neumann boundary condition ∂nϕa = 0 and oddness in velocity integral,

∫
γ
ψa ·

Pγf(v · n(s)) = 0 and we obtain similar esimate as 7.19,∫ t

s

∫
γ

ψa · f(v · n(x)) =

∫ t

s

∫
γ

ψa · 1γ+(1− Pγ)fdγ

. ε

∫ t

s

‖a(τ)‖22 + Cε

∫ t

s

|(1− Pγ)f(τ)|22,+, ε� 1.

(7.27)

For 7.8T , from oddness,

7.8T |ψa =

∫ t

s

〈f, ∂tψa〉 =

∫ t

s

∫∫
Ω×R3

((b · v)

[√
µ√
µ

]
+ (I−P)f) · ∂tψa

. ε

∫ t

s

(‖∇∆−1∂ta+(τ)‖22 + ‖∇∆−1∂ta−(τ)‖22)

+

∫ t

s

‖b(τ)‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν .

(7.28)

Now let us estimate
∫ t
s
‖∇∆−1∂ta+(τ)‖22 + ‖∇∆−1∂ta−(τ)‖22 which appear in 7.22

type estimate. We use new test function ψta =

[
∂tϕa+

(x)
√
µ

∂tϕa−(x)
√
µ

]
. It’s easy to check

7.8φf
∣∣
ψ=ψta

=

∫ t

s

∫∫
Ω×R3

q1
√
µv · ∇xφf · ψta = 0,

7.8P
∣∣
ψ=ψta

=

∫ t

s

∫∫
Ω×R3

q
√
µf · ∇xφf · ∇v

[
∂tϕa+

∂tϕa−

]
= 0,

(7.29)

and from the null condition on boundary 1.11, we have 7.8B |ψ=ψta
= 0. Moreover,∫ t

s

〈Pf, v · ∇xψta〉+

∫ t

s

〈I−Pf, v · ∇xψta〉

. ε

∫ t

s

(‖∇∆−1∂ta+(τ)‖22 + ‖∇∆−1∂ta−(τ)‖22)

+

∫ t

s

‖b(τ)‖22 +

∫ t

s

‖I−Pf(τ)‖2ν ,

(7.30)
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and from 1.7 ∫ t

s

〈ψta,Γ(f, f)〉 = 0. (7.31)

Now taking difference quotient, we obtain from 7.29, 7.30, and 7.30, for almost t,∫ t

s

〈∂tf, ψta〉 =

∫ t

s

∫
Ω

∂tϕa+
∂ta+ + ∂tϕa−∂ta−dx

=

∫ t

s

(‖∇∆−1∂ta+(τ)‖22 + ‖∇∆−1∂ta−(τ)‖22)

.
∫ t

s

‖b(τ)‖22 +

∫ t

s

‖I−Pf(τ)‖2ν +

∫ t

s

‖ν−1/2Γ(f, f)‖22.

(7.32)

Finally we change c into a in 7.21 and combine with 7.8, 7.12) 7.15, 7.18, 7.27, 7.28,
and 7.32 with ε� 1 to obtain∫ t

s

‖a(τ)‖22 +

∫ t

s

‖∇φf (τ)‖22

. Ga(t)−Ga(s) +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

|(1− Pγ)f(τ)|22,+

+

∫ t

s

‖ν−1/2Γ(f, f)(τ)‖22 +

∫ t

s

‖wϑf(τ)‖∞‖Pf(τ)‖22 +

∫ t

s

‖b(τ)‖22,

(7.33)

for ε� 1 where Ga(t) :=
∫∫

Ω×R3 f(t)ψa(t) . ‖f(t)‖22.

Step 4. Estimate of b : For fixed i, j, we choose test function ψ = ψi,jb,1 in 7.9 where
βb and ϕb are defined in 7.11 and 7.10. For boundary integration, contribution of
Pγf vanishes by oddness.

7.8B |ψi,jb,1 :=

∫ t

s

∫
γ

ψi,jb,1 · 1γ+
(1− Pγ)f(v · n(x)) . ε

∫ t

s

‖b(τ)‖22 +

∫ t

s

|(1− Pγ)f |22,+,

(7.34)

and similar as 7.22 and 7.21, we use oddness and definition of βb to vanish contri-
bution of a and b. We obtain

7.8T |ψi,jb,1 . ε

∫ t

s

‖∇∆−1∂tbj(τ)‖22 +

∫ t

s

‖c(τ)‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν , (7.35)

Re|ψi,jb,1 . ε

∫ t

s

‖b(τ)‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

‖ν−1/2Γ(f, f)(τ)‖22. (7.36)

Next, we try test function ψi,jb,2 with i 6= j. We also have the following three
estimates using oddness of velocity integral,

7.8B |ψi,jb,2 :=

∫ t

s

∫
γ

ψi,jb,1 · 1γ+
(1− Pγ)f(v · n(x)) . ε

∫ t

s

‖b(τ)‖22 +

∫ t

s

|(1− Pγ)f |22,+,

7.8T |ψi,jb,2 . ε

∫ t

s

‖∇∆−1∂tbi(τ)‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν ,

Re|ψi,jb,2 . ε

∫ t

s

‖b(τ)‖22 +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

‖ν−1/2Γ(f, f)(τ)‖22.

(7.37)
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To obtain estimate for ‖∇∆−1∂tbj‖2, we use a test function

ψtb,j :=

[
vj√

2

√
µ∂tϕ

j
b(t, x)

vj√
2

√
µ∂tϕ

j
b(t, x)

]
.

Note that ∂tϕ
j
b solves −∆∂tϕ

j
b = ∂tbj(t, x) with ∂tϕ

j
b(t, x)|∂Ω = 0. We taking

difference quotient for ∂tf in 1.16 and with help of Poincaré inequality, we get

7.8φf
∣∣
ψ=ψtb,j

= 0,

7.8P
∣∣
ψ=ψtb,j

=

∫ t

s

∫∫
Ω×R3

√
µf ·

[
∂jφf · ∂tϕjb
∂jφf · ∂tϕjb

]
.
∫ t

s

‖wϑf‖∞(ε‖∇∆−1∂tbj(τ)‖22 + ‖a+(τ)‖22 + a−(τ)‖22).

(7.38)

Moreover,∫ t

s

〈Pf, v · ∇ψtb,j〉+

∫ t

s

〈(I−P)f, v · ∇ψtb,j〉

. ε

∫ t

s

‖∇∆−1∂tbj(τ)‖22 +

∫ t

s

(‖a+(τ)‖22 + ‖a−(τ)‖22 + ‖c(τ)‖22)

+

∫ t

s

‖(I−P)f‖2ν .

(7.39)

Since ψtb,j vanishes when it acts with Lf and Γ(f, f), and boundary integral 7.8B

vanishes by Dirichlet boundary condition of ∂tϕ
j
b , from 7.38, 7.39, and 7.8, we

obtain ∫ t

s

∫
Ω

∂tϕ
j
b(τ, x)∂tbj(τ, x)dx =

∫ t

s

‖∇∆−1∂tbj(τ)‖22

. ε

∫ t

s

‖∇∆−1∂tbj(τ)‖22 +

∫ t

s

(‖a+(τ)‖22 + ‖a−(τ)‖22 + ‖c(τ)‖22)

+

∫ t

s

‖(I−P)f(τ)‖2ν .

(7.40)

Now we combine 7.8, 7.12, 7.18, 7.16, 7.34, 7.35, 7.36, 7.17, and 7.37 for all i, j
with proper constant weights. In particular, we note that RHS of 7.16 is cancelled
by the first term on the RHS of 7.17. Therefore,∫ t

s

‖b(τ)‖22 = −
∑
i,j

∫ t

s

∫
Ω

bi(∂jj∆
−1bi)

. Gb(t)−Gb(s) +

∫ t

s

‖(I−P)f(τ)‖2ν +

∫ t

s

|(1− Pγ)f(τ)|22,+

+

∫ t

s

‖ν−1/2Γ(f, f)(τ)‖22 +

∫ t

s

‖wϑf(τ)‖2∞‖Pf(τ)‖22

+

∫ t

s

‖c(τ)‖22 + ε

∫ t

s

(‖a+(τ)‖22 + ‖a−(τ)‖22), Gb(t) . ‖f(t)‖22, ε� 1.

(7.41)

Finally we combine 7.26, 7.33, and 7.41 with ε� 1 to conclude 7.4.
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8. Global existence and exponential decay. The following time-dependent
interpolation estimate is crucial in the proof of Theorem 1.2.

Lemma 8.1. Assume Ω ⊂ R3 with a smooth boundary ∂Ω. For 0 < D1 < 1,
0 < D2 < 1, Λ0 > 0, and for all t ≥ 0,

‖∇2
xφ(t)‖L∞(Ω) .Ω,D1,D2

eD1Λ0t‖φ(t)‖C1,1−D1 (Ω) + e−D2Λ0t‖φ(t)‖C2,D2 (Ω) (8.1)

Proof. Let Ω1 be an open bounded subset of R3 containing the closure Ω̄. Suppose
φ(t) ∈ C2,D2(Ω). From a standard extension theorem (e.g. see Lemma 6.37 of [9]
in page 136) there exists a function φ̄(t) ∈ C2,D2(Ω1) and φ̄(t) ≡ 0 in R3\Ω1 such
that φ(t) ≡ φ̄(t) in Ω and

‖φ̄(t)‖C1,1−D1 (Ω1) ≤ CΩ,Ω1,D1,D2
‖φ(t)‖C1,1−D1 (Ω),

‖φ̄(t)‖C2,D2 (Ω1) ≤ CΩ,Ω1,D1,D2
‖φ(t)‖C2,D2 (Ω),

(8.2)

where CΩ,Ω1,D1,D2
does not depend on φ(t) and t.

Choose arbitrary points x, y in R3. For 0 ≤ s ≤ 1, (1− s)x+ sy ∈ xy. Note that

[(y − x) · ∇]∇φ̄(t, (1− s)x+ sy)

=
[(y − x) · ∇]∇φ̄(t, (1− s)x+ sy)− [(y − x) · ∇]∇φ̄(t, x)

|(1− s)x+ sy − x|D2
|(1− s)x+ sy − x|D2

+
( y − x
|y − x|

· ∇
)
∇φ̄(t, x)|y − x|

= O(|x− y|1+D2)sD2 [∇2φ̄(t)]C0,D2 +
( y − x
|y − x|

· ∇
)
∇φ̄(t, x)|y − x|.

Taking an integration on s ∈ [0, 1], we obtain that∣∣∣∣( y − x|y − x|
· ∇
)
∇φ̄(t, x)

∣∣∣∣
≤ 1

|y − x|

∣∣∣∣∫ 1

0

[(y − x) · ∇]∇φ̄(t, (1− s)x+ sy)ds

∣∣∣∣+
1

1 +D2
|x− y|D2 [∇2φ̄(t)]C0,D2 .

(8.3)

On the other hand, from an expansion along s,

∇φ̄(t, y)−∇φ̄(t, x) =

∫ 1

0

[(y − x) · ∇]∇φ̄(t, (1− s)x+ sy)ds.

We plug this identity into 8.3 and deduce that for 0 < D1 < 1∣∣∣∣( x− y
|x− y|

· ∇
)
∇φ̄(t, x)

∣∣∣∣
≤ |∇φ̄(t, x)−∇φ̄(t, y)|

|x− y|
+

1

1 +D2
|x− y|D2 [∇2φ̄(t)]

C
0,D2
x

≤ 1

|x− y|D1
[∇φ̄(t)]C0,1−D1 +

1

1 +D2
|x− y|D2 [∇2φ̄(t)]

C
0,D2
x

.

(8.4)

Now let us choose

|x− y| = e−Λ0t, ω̂ :=
x− y
|x− y|

∈ S2.

From 8.4

|
(
ω̂ · ∇

)
∇φ̄(t, x)| ≤ eD1Λ0t[∇φ̄(t)]C0,1−D1 +

1

1 +D2
e−D2Λ0t[∇2φ̄(t)]

C
0,D2
x

.
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Taking supremum in x and ω̂ to the above inequality and using ‖∇2
xφ̄(t)‖L∞x =

supx supω̂∈S2 |
(
ω̂ · ∇

)
∇φ̄(t, x)|, we get

‖∇2
xφ̄(t)‖L∞(Ω1) ≤ eD1Λ0t[∇xφ̄(t)]C0,1−D1 (Ω1) + e−D2Λ0t[∇2φ̄(t)]C0,D2 (Ω1).

Finally from 8.2 and the above estimate we conclude 8.1.

Now we are ready to prove the global-in-time result.

Proof of Theorem 1.2. Step 1. For 0 < M � 1 and 0 < δ∗ � 1, we first
assume that an initial datum satisfies

‖wϑf0‖∞ + ‖wϑ̃f0‖p + ‖wϑ̃α
β
f0,ε
∇x,vf0‖p ≤ δ∗M,

‖wϑ̃∇vf0‖L3(Ω×R3) + ‖∇2
xφf (0)‖∞ <∞.

(8.5)

We will choose M, δ∗ later. For the sake of convenience we choose a large constant
L � max

(
M, ‖∇2

xφf (0)‖∞
)
. In order to use the continuation argument along the

lines of the local existence theorem, Theorem 6.1, we set

T = sup
t

{
t ≥ 0 : ‖eλ∞swϑf(t)‖∞ + ‖wϑ̃f(t)‖p ≤M,

and ‖wϑ̃α
β
f,ε∇x,vf(t)‖pp +

∫ t

0

|wϑ̃α
β
f,ε∇x,vf(t)|pp,+ <∞,

and ‖∇vf(t)‖L3
x(Ω)L1+δ

v (R3) <∞,

and ‖∇2
xφf (t)‖∞ ≤ L

}
.

(8.6)

Here for fixed δ � 1, we choose λ∞ such that

20
√
CC2M ≤ λ∞ ≤ min

(
λ2

2
,
ν0

4

)
, for M � 1, (8.7)

where λ2 is obtained in Proposition 6. Note that from 4.10 the condition 4.4 holds
for M � 1.

Step 2. We claim that

sup
0≤t≤T

e
λ∞

2 t‖∇2
xφf (t)‖∞ ≤ C2M, with C2 := CΩ + (C1Cp)

1/pδ∗. (8.8)

Here CΩ appears in 4.10, and C1 in 4.11, and Cp in Proposition 3.
From 4.10 and 8.6, for 0 ≤ t ≤ T , for all D1 > 0

‖φf (t)‖C1,1−D1 (Ω̄) ≤ CΩ‖wϑf(t)‖∞ ≤ CΩMe−λ∞t. (8.9)

On the other hand, from Proposition 3, replacing f ` and f `+1 by f in 4.63, 4.75,
and by Gronwall’s inequality and 8.5, we derive that for 0 ≤ t ≤ T

‖f(t)‖pp + ‖wϑ̃α
β
f,ε∇x,vf(t)‖pp +

∫ t

0

|wϑ̃α
β
f,ε∇x,vf(s)|pp,+

≤ Cpe
Cp(1+L)t × (δ∗M)p.

(8.10)

Now we use Lemma 4.2, from 4.11, for p > 3 and 0 ≤ t ≤ T ,

‖φf (t)‖
C

2,1− 3
p (Ω̄)

≤ (C1Cp)
1/pe

1
pCp(1+L)t × δ∗M. (8.11)
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Finally we use an interpolation between C1,1−D1(Ω̄) and C2,1− 3
p (Ω̄) and derive

an estimate of C2(Ω̄): Applying Lemma 8.1 and 8.1 with D2 = 1 − 3
p , from 8.10

and 8.9, we derive that for all 0 < D1 < 1, 3 < p < 6, Λ0 > 0, and 0 ≤ t ≤ T ,

‖∇2
xφf (t)‖∞ ≤ e−[λ∞−D1Λ0]tCΩM + e−[(1− 3

p )Λ0− 1
pCp(1+L)]t(C1Cp)

1/pδ∗M. (8.12)

Then we choose

Λ0 =

λ∞
2 +

Cp
p (1 + L)

1− 3
p

and then D1 =
λ∞
2Λ0

. (8.13)

In conclusion we have, for all 0 ≤ t ≤ T ,

‖∇2
xφf (t)‖∞ ≤ e−

λ∞
2 t[CΩ + (C1Cp)

1/pδ∗]M.

As long as M � L then ‖∇2
xφf (t)‖∞ ≤ L for all 0 ≤ t ≤ T and hence the claim 8.8

holds.

Step 3. We claim that there exists T∞ � 1 such that, for N ∈ N, t ∈ [NT∞, (N+
1)T∞], and (N + 1)T∞ ≤ T ,

‖wϑf(t)‖∞
≤ (t−NT∞)e−

3
4 ν0(t−NT∞)‖wϑf(NT∞)‖∞ + o(1) sup

NT∞≤s≤t
e−

3
4 ν0(t−s)‖wϑf(s)‖∞

+ CT∞

∫ t

NT∞

e−
3
4 ν0(t−s)‖f(s)‖L2

x,v
ds

+ CT∞

∫ t

NT∞

e−
3
4 ν0(t−s)‖∇φf (s)‖∞ds.

(8.14)

For the sake of simplicity we present a proof of 8.14 for N = 0. The proof for N > 0
can be easily obtained by considering f(NT∞) as an initial datum.

As 3.9 we define h(t, x, v) := wϑf(t, x, v). Then h solves 3.3 and 3.12 with
exchanging all (h`, h`+1, φ`) to (h, h, φf ). We define

νφf ,wϑ(t, x, v) :=

[
νφf ,wϑ,+ 0

0 νφf ,wϑ,−

]
=

[
ν(v) + v

2 · ∇φf −
∇xφf ·∇vwϑ

wϑ
0

0 ν(v)− v
2 · ∇φf +

∇xφf ·∇vwϑ
wϑ

]
.

(8.15)

From 8.6 and 4.10, for 0 ≤ t ≤ T

νφf ,wϑ,± ≥
{
ν0 −

‖∇φf‖∞
2

− 2ϑ‖∇φf‖∞
}
〈v〉

≥
{
ν0 − (

1

2
− 2ϑ)M

}
〈v〉

≥ 4ν0

5
〈v〉.

(8.16)

Then h solves 3.18 along the trajectory with deleting all superscriptions of ` and
`+ 1 and exchanging ν` to νφf ,wϑ and with new g

g := −q1v · ∇φf
√
µ+ Γ(

h

wϑ
,
h

wϑ
). (8.17)
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We define a stochastic cycles for ι = + or − as in 1.9,

(tl,ι(t, x, v, v1, · · · , vl−1), xl,ι(t, x, v, v1, · · · , vl−1)),

by deleting all superscriptions in 3.5 and 3.6. Then by deleting all superscriptions
of ` and `+ 1 from 3.36, we obtain the bound for hι:

|hι(t, x, v)|

≤ ‖e− 3
4 ν0th0‖∞ +O(k) sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖2∞

+O(k)

∫ t

0

‖e− 3
4 ν0(t−s)∇φ h

wϑ

(s)‖∞ds+
{1

2

}k/5
sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞

+

∫ t

max{t1,ι,0}
e−

3
4 ν0(t−s)

∫
R3

k%(Vι(s; t, x, v), u)|h(s,Xι(s; t, x, v), u)|duds︸ ︷︷ ︸
8.181

+ O(k) sup
l

∫ tl,ι

max{tl+1,ι,0}
e−

3
4 ν0(t−s)

×
∫
R3

∫
R3

k%(Vι(s; tl, xl, vl), u)|h(s,Xι(s; tl, xl, vl), u)||n(xl) · vl|
√
µ(vl)dudvlds︸ ︷︷ ︸

8.182

.

(8.18)

For any large m� 1 we define

k%,m(v, u) = 1|v−u|≥ 1
m ,|v|≤m

k%(v, u), (8.19)

such that supv
∫
R3 |k%,m(v, u)− k%(v, u)|du . 1

m , and |k%,m(v, u)| .m 1.
Furthermore we split the time interval as, for each `, l

{max{tl+1,ι, 0} ≤ s ≤ tl,ι} = {max{tl+1,ι, 0} ≤ s ≤ tl,ι − δ} ∪ {tl,ι − δ ≤ s ≤ tl,ι},
(8.20)

where we choose a small constant 0 < δ �k 1 later in 8.26.
For 8.181, we have

8.181 ≤
∫ t−δ

max {t1,ι,0}
+

∫ t

t−δ

.
∫ t−δ

max {t1,ι,0}
e−

3
4 ν0(t−s)

∫
R3

k%(Vι(s; t, x, v), u)|h(s,Xι(s; t, x, v), u)|duds

+ δ sup
0≤s≤t

‖e− 3
4 ν0(t−s)h(s)‖∞

.
∫ t−δ

max {t1,ι,0}
e−

3
4 ν0(t−s)

∫
R3

k%,m(Vι(s; t, x, v), u)|h(s,Xι(s; t, x, v), u)|duds

+ (
1

m
+ δ) sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞.

(8.21)

Now for 8.182 we separate into several cases:



TWO SPECIES COLLISIONAL PLASMA 1421

Case 1: For |vl| > m
2 , we have |Vι(s; tl, xl, vl)| > m

4 , so∫
|vl|>m

2

∫
R3

k%(Vι(s; tl, xl, vl), u)|(n(xl) · vl|
√
µ(vl)dudvl .

1

m
.

Thus ∫ tl,ι

max{tl+1,ι,0}
e−

3
4 ν0(t−s)

∫
|vl|>m

2

∫
R3

× k%(Vι(s; tl, xl, vl), u)|h(s,Xι(s; tl, xl, vl), u)||n(xl) · vl|
√
µ(vl)dudvlds

.
1

m
sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞.

Case 2: For |vl| ≤ m
2 , |u| > m, we have |Vι(s; tl, xl, vl)− u| > m

4 so

sup
|vl|≤m2

∫
|u|>m

k%(Vι(s; tl, xl, vl), u)|(n(xl) · vl|
√
µ(vl)du .

1

m
.

Thus ∫ tl,ι

max{tl+1,ι,0}
e−

3
4 ν0(t−s)

∫
|vl|≤m2

∫
|u|>m

× k%(Vι(s; tl, xl, vl), u)|h(s,Xι(s; tl, xl, vl), u)||n(xl) · vl|
√
µ(vl)dudvlds

.
1

m
sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞.

Case 3: For |vl| ≤ m
2 and |u| ≤ m, we split the time integration as

∫ tl,ι
max{tl+1,ι,0} =∫ tl,ι−δ

max{tl+1,ι,0}+
∫ tl,ι
tl,ι−δ and use 8.19 to conclude that

8.182

.O(k) sup
l

∫ tl,ι−δ

max{tl+1,ι,0}
e−

3
4 ν0(t−s)

∫
|vl|≤m

∫
|u|≤m

× k%,m(Vι(s; tl, xl, vl), u)|h(s,Xι(s; tl, xl, vl), u)||n(xl) · vl|
√
µ(vl)dudvlds

+O(k)(
1

m
+ δ) sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞

.Om(k) sup
l

∫ tl,ι−δ

max{tl+1,ι,0}
e−

3
4 ν0(t−s)

×
∫
|vl|≤m

∫
|u|≤m

|h(s,Xι(s; tl, xl, vl), u)||n(xl) · vl|
√
µ(vl)dudvlds

+O(k)(
1

m
+ δ) sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞.

(8.22)

Combining 8.18, 8.21, and 8.22 we get

|hι(t, x, v)|
≤ ‖e− 3

4 ν0th0‖∞ +O(k) sup0≤s≤t ‖e−
3
4 ν0(t−s)h(s)‖2∞
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+O(k)

∫ t

0

‖e− 3
4 ν0(t−s)∇φ h

wϑ

(s)‖∞ds

+

{
O(k)(δ +

1

m
) +

{1

2

}k/5}
sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞

+

∫ t−δ

max{t1,ι,0}
e−

3
4 ν0(t−s)

∫
R3

k%,m(Vι(s; t, x, v), u)|h(s,Xι(s; t, x, v), u)|duds

+Om(k) sup
l

∫ tl,ι−δ

max{tl+1,ι,0}
e−

3
4 ν0(t−s)

×
∫
|u|≤m

∫
|vl|≤m

|h(s,Xι(s; tl, xl, vl), u)|dvlduds.

(8.23)

Now for |h(s,Xι(s; t, x, v), u)| we use similar bounds for |h+(s,Xι(s; t, x, v), u)|
and |h−(s,Xι(s; t, x, v), u)| separately and add them together to get

|h(s,Xι(s; t, x, v), u)|
=|h+(s,Xι(s; t, x, v), u)|+ |h−(s,Xι(s; t, x, v), u)|

≤ ‖e− 3
4 ν0sh0‖∞ +O(k) sup

0≤s′≤s
‖e− 3

4 ν0(s−s′)h(s′)‖2∞

+O(k)

∫ s

0

‖e− 3
4 ν0(s−s′)∇φ h

wϑ

(s′)‖∞ds′

+

{
O(k)

(
δ +

1

m

)
+
{1

2

}k/5}
sup

0≤s′≤s
‖e− 3

4 ν0(s−s′)h(s′)‖∞

+O(m)

∫ s−δ

max{t′1,+,0}
e−

3
4 ν0(s−s′)

∫
|u′|≤m

× |h+(s′, X+(s′; s,Xι(s; t, x, v), u), u′)|du′ds′

+O(m)

∫ s−δ

max{t′1,−,0}
e−

3
4 ν0(s−s′)

∫
|u′|≤m

× |h−(s′, X−(s′; s,Xι(s; t, x, v), u), u′)|du′ds′

+Om(k) sup
l,l′

∫ t′
l′,+−δ

max{t′
l′+1,+

,0}
e−

3
4 ν0(s−s′)

×
∫
|u′|≤m

∫
|v′
l′ |≤m

|h+(s′, Xι(s
′; t′l′ , x

′
l′ , v
′
l′), u

′)|dv′l′du′ds′

+Om(k) sup
l,l′

∫ t′
l′,−−δ

max{t′
l′+1,−,0}

e−
3
4 ν0(s−s′)

×
∫
|u′|≤m

∫
|v′
l′ |≤m

|h−(s′, Xι(s
′; t′l′ , x

′
l′ , v
′
l′), u

′)|dv′l′du′ds′,

(8.24)

where

t′l′,+ = tl′,+(s,Xι(s; t, x, v), u, v′1, · · · , v′l′−1),

t′l′,− = tl′,−(s,Xι(s; t, x, v), u, v′1, · · · , v′l′−1),

x′l′,+ = xl′,+(s,Xι(s; t, x, v), u, v′1, · · · , v′l′−1)

x′l′,− = xl′,−(s,Xι(s; t, x, v), u, v′1, · · · , v′l′−1).
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Plugging 8.24 into 8.23 we conclude that

|hι(t, x, v)|

≤ ‖(1 + t)e−
3
4 ν0th0‖∞ +Om(k) sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖2∞

+Om(k)

∫ t

0

‖e− 3
4 ν0(t−s)∇φ h

wϑ

(s)‖∞ds

+

{
Om(k)δ +O(k)

1

m
+Om(1)

{1

2

}k/5}
sup

0≤s≤t
‖e− 3

4 ν0(t−s)h(s)‖∞

+O(m2)

∫ t

0

∫
|u′|≤m

∫ s−δ

0

e−
3
4 ν0(t−s′)

×
∫
|u|≤m

|h+(s′, X+(s′; s,Xι(s; t, x, v), u), u′)|duds′du′ds

+O(m2)

∫ t

0

∫
|u′|≤m

∫ s−δ

0

e−
3
4 ν0(t−s′)

×
∫
|u|≤m

|h−(s′, X−(s′; s,Xι(s; t, x, v), u), u′)|duds′du′ds

+O(k) sup
l

∫ tl,ι−δ

0

e−
3
4 ν0(t−s)

∫
|u|≤m

∫
|vl|≤m

|hι(s,Xι(s; tl, xl, vl), u)|dvlduds

+O(k) sup
l,l′

∫ t

0

∫ t′
l′,+−δ

0

e−
3
4 ν0(t−s′)

×
∫
|u′|≤m

∫
|v′
l′ |≤m

|h+(s′, Xι(s
′; t′l′ , x

′
l′ , v
′
l′), u

′)|dv′l′du′ds′ds

+O(k) sup
l,l′

∫ t

0

∫ t′
l′,−−δ

0

e−
3
4 ν0(t−s′)

×
∫
|u′|≤m

∫
|v′
l′ |≤m

|h−(s′, Xι(s
′; t′l′ , x

′
l′ , v
′
l′), u

′)|dv′l′du′ds′ds.

(8.25)

Choose T∞ � 1 and k � 1 in 3.26 and 3.28. Then we choose

m = k2 and δ =
1

m3k
, (8.26)

so that Om(k)δ +O(k) 1
m +Om(1){ 1

2}
k/5 � 1.

Note that

∂X±(s; tl, xl, vl)

∂vl
=− (tl − s)Id3×3

∓
∫ s

tl

∫ τ

tl

(
∂X±(τ ′; tl, xl, vl)

∂vl
· ∇x

)(
∇xφ h

wϑ

(τ ′, X±(τ ′; tl, xl, vl))
)

dτ ′dτ,

(8.27)

Now we use Lemma 2.4. Note that from 8.8, the condition 4.7 of Lemma 2.4
is satisfied with Λ2 = λ∞

2 and δ2 = C2M . From Lemma 2.4 and 2.24 we have for
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ι = + or −, ∣∣∣∣∂Xι(τ
′; tl, xl, vl)

∂vl

∣∣∣∣ ≤ Ce 4CC2M

(λ∞)2 |tl − τ ′|. (8.28)

From 8.28 and 8.8, the second term of RHS in 8.27 is bounded by

CC2Me
4CC2M

(λ∞)2

∫ tl

s

∫ tl

τ

(tl − τ ′)e−
λ∞

2 τ ′dτ ′dτ

≤ 4CC2M

(λ∞)2
e

4CC2M

(λ∞)2 |tl − s|.
(8.29)

From our choice of λ∞ in 8.7, we have

4CC2M

(λ∞)2
e

4CC2M

(λ∞)2 <
1

10
.

Therefore from 8.27, for 0 ≤ s ≤ tl − δ

det

(
∂Xι(s; tl, xl, vl)

∂vl

)
= det (−(tl − s)Id3×3 + o(1))

& |tl − s|3

& δ.

(8.30)

We can obtain the exactly same lower bound of det
(
∂Xι(s;t

′
l′ ,x
′
l′ ,v
′
l′ )

∂v′
l′

)
, det(

∂X+(s′;s,Xι(s;t,x,v),u)
∂u

)
, and det

(
∂X−(s′;s,Xι(s;t,x,v),u)

∂u

)
for 0 ≤ s′ ≤ s − δ and

0 ≤ s′ ≤ t′l′ − δ.
Now we apply the change of variables

vl 7→ Xι(s; tl, xl, vl),

v′l′ 7→ Xι(s; t
′
l′ , x

′
l′ , v
′
l′),

u 7→ X+(s′; s,Xι(s; t, x, v), u),

u 7→ X−(s′; s,Xι(s; t, x, v), u),

and conclude 8.14 from 8.25 and 8.26.
By choosing T∞ � 1 so that (1 + T∞)e−

3
4 ν0T∞ ≤ e−

1
2 ν0T∞ , and applying 8.14

successively, we achieve that

‖wϑf(t)‖∞

≤ CT∞e
− ν02 t‖wϑf(0)‖∞ + o(1)

eν0T∞

1− e−ν0T∞
sup

0≤s≤t
e−ν0(t−s)‖wϑf(s)‖∞

+ CT∞e
ν0
2

∫ t

0

e−
ν0
2 (t−s)‖f(s)‖2ds︸ ︷︷ ︸

8.31L2

+CT∞e
ν0
2

∫ t

0

e−
ν0
2 (t−s)‖∇φf (s)‖∞ds︸ ︷︷ ︸
8.31φf

,

(8.31)

where we have used

eν0T∞{1 + e−ν0T∞ + · · ·+ e−ν0NT∞} =
eν0T∞

1− e−ν0T∞
.
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Step 4. From Proposition 6 and 7.1 we have

‖eλ2tf(t)‖22 + ‖eλ2t∇φ(t)‖22

+

∫ t

0

‖eλ2τf(τ)‖2ν + ‖eλ2τ∇φf (τ)‖22dτ +

∫ t

0

|eλ2τf |22,+

. ‖f0‖22 + ‖∇φf0‖22.

(8.32)

Hence

8.31L2 . te−min(
ν0
2 ,λ2)×t{‖f0‖2 + ‖∇φf0‖2}

. e−min(
ν0
4 ,

λ2
2 )×t{‖f0‖2 + ‖∇φf0

‖2}.
(8.33)

Now we consider 8.31φf . In order to close the estimate in 8.31 we need to improve
the decay rate of ‖∇φf (s)‖∞. We claim that, for θ2,r,p > 0 (which is specified in
8.38,

‖∇xφf (s)‖∞ . e−(1+θ2,r,p)λ∞s{sup
t≥0
‖eλ2tf(s)‖2 + sup

t≥0
‖eλ∞tf(s)‖∞}. (8.34)

By Morrey’s inequality for Ω ⊂ R3 and r > 3

‖∇xφf‖∞ . ‖∇xφf‖C0,1−3/r(Ω) . ‖∇xφf‖W 1,r(Ω). (8.35)

Then applying the standard elliptic estimate to 1.16, we get

‖∇xφf (t)‖W 1,2(Ω) .

∥∥∥∥∫
R3

(f+(t)− f−(t))
√
µdv

∥∥∥∥
L2(Ω)

. e−λ2t sup
t≥0
‖eλ2tf(t)‖2,

(8.36)

‖∇xφf (t)‖W 1,p(Ω) .

∥∥∥∥∫
R3

(f+(t)− f−(t))
√
µdv

∥∥∥∥
Lp(Ω)

. e−λ∞t sup
t≥0
‖eλ∞tf(t)‖∞.

(8.37)
Now we use the standard interpolation: For p > r > 3,

‖∇xφf‖W 1,r(Ω) . ‖∇xφf (t)‖θ2,r,pW 1,2(Ω)‖∇xφf (t)‖1−θ2,r,pW 1,p(Ω),

for

θ2,r,p :=

1
r −

1
p

1
2 −

1
p

>
2

3
· p− 3

p− 2
. (8.38)

Then we derive

sup
t≥0
‖e[θ2,r,pλ2+(1−θ2,r,p)λ∞]t∇xφf (t)‖∞

.

(
sup
t≥0
‖eλ2tf(t)‖2

)θ2,r,p (
sup
t≥0
‖eλ∞tf(t)‖∞

)1−θ2,r,p

. sup
t≥0
‖eλ2tf(t)‖2 + o(1) sup

t≥0
‖eλ∞tf(t)‖∞.

(8.39)

From our choice 8.7 and 0 < p− 3� 1,

θ2,r,pλ2 + (1− θ2,r,p)λ∞ ≥ (1 + θ2,r,p)λ∞. (8.40)
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From 8.39

8.31φf .
∫ t

0

e−
ν0
2 (t−s)e−(1+θ2,r,p)λ∞s‖eλ2sf(s)‖2ds

+ o(1)

∫ t

0

e−
ν0
2 (t−s)e−(1+θ2,r,p)λ∞s‖eλ∞swϑf(s)‖∞ds

. e−min(
ν0
4 ,λ∞)×t{‖f0‖2 + ‖∇φf0

‖2} from 8.32

+ o(1)e−min(
ν0
4 ,λ∞)×t sup

0≤s≤t
‖eλ∞swϑf(s)‖∞.

(8.41)

Multiplying eλ∞t and taking supt≥0 to 8.31 with λ∞ ≤ min
(
ν0

4 ,
λ2

2

)
, and from

8.33 and 8.41, we obtain that

sup
t≥0

eλ∞t‖wϑf(t)‖∞ . ‖wϑf(0)‖∞+ ‖f0‖2 + ‖∇φf0
‖2 + o(1) sup

0≤s≤t
eλ∞s‖wϑf(s)‖∞.

(8.42)
By absorbing the last (small) term, we conclude that

sup
0≤t≤T

eλ∞t‖wϑf(t)‖∞ ≤ Cδ∗M. (8.43)

If we choose δ∗ � 1/C then by the local existence theorem (Theorem 6.1) and

continuity of ‖wϑf(t)‖∞, ‖wϑ̃f(t)‖pp+‖wϑ̃α
β
f,ε∇x,vf(s)‖pp+

∫ t
0
|wϑ̃α

β
f,ε∇x,vf(s)|pp,+,

and ‖∇vf(t)‖L3
x(Ω)L1+δ

v (R3), we conclude that T =∞.

Then the estimates of 1.46 and 1.47 are direct consequence of Proposition 3,
Lemma 4.2, and Proposition 5.

And 1.48 can be derived from 6.5-6.11 by replacing f `, f `+1 with f, g.

Appendix A. Auxiliary results and proofs.

Proof of 1.32. Let ι = + or −, from 1.27, for t− tb,ι(t, x, v) < s ≤ t,

xb,ι(s,X±(s; t, x, v), V±(s; t, x, v)) = xb,ι(t, x, v),

vb,ι(s,X±(s; t, x, v), V±(s; t, x, v)) = vb,ι(t, x, v).

Therefore

[∂t + v · ∇x ∓∇xφf · ∇v]αf,ε,±(t, x, v)

=
d

ds
αf,ε,±(s,X±(s; t, x, v), V±(s; t, x, v))

∣∣
s=t

=
d

ds
αf,ε,±(t, x, v) = 0.

From 1.28 and 1.27,

tb,ι(s,X±(s; t, x, v), V±(s; t, x, v)) = tb,ι(t, x, v)− (t− s).

Therefore

[∂t + v · ∇x ∓∇xφf · ∇v](t− tb,ι(t, x, v))

=
d

ds
[s− tb,ι(s,X±(s; t, x, v), V±(s; t, x, v))]

∣∣
s=t

=
d

ds
[t− tb,ι(t, x, v)] = 0.

These prove 1.32.
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Proof of 3.32. The proof follows the argument of Lemma 7 in [13]. Note

k%(v, u)
eϑ|v|

2

eϑ|u|2
=

1

|v − u|
exp

{
−%|v − u|2 − % ||v|

2 − |u|2|2

|v − u|2
+ ϑ|v|2 − ϑ|u|2

}
.

Let v − u = η and u = v − η. Then the exponent equals

−%|η|2 − % ||η|
2 − 2v · η|2

|η|2
− ϑ{|v − η|2 − |v|2}

= −2%|η|2 + 4%v · η − 4%
|v · η|2

|η|2
− ϑ{|η|2 − 2v · η}

= (−2%− ϑ)|η|2 + (4%+ 2ϑ)v · η − 4%
{v · η}2

|η|2
.

If 0 < ϑ < 4% then the discriminant of the above quadratic form of |η| and v·η
|η| is

(4%+ 2ϑ)2 − 4(−2%− ϑ)(−4%) = 4ϑ2 − 16%ϑ < 0.

Hence, the quadratic form is negative definite. We thus have, for 0 < %̃ < % − ϑ
4 ,

the following perturbed quadratic form is still negative definite

−(%− %̃)|η|2 − (%− %̃)
||η|2 − 2v · η|2

|η|2
− ϑ{|η|2 − 2v · η} ≤ 0.

Therefore we conclude 3.32.

Recall κδ(x, v) in 6.13. Let us denote fδ(t, x, v) := κδ(x, v)f(t, x, v). We assume
that f(s, x, v) = esf0(x, v) for s < 0. Then ‖fδ‖L2(R×Ω×R3) . ‖f‖L2(R+×Ω×R3) +
‖f0‖L2(Ω×R3), ‖fδ‖L2(R×γ) . ‖fγ‖L2(R+×γ) + ‖f0‖L2(γ).

Lemma A.1. Assume Ω is convex in 1.40 and sup0≤t≤T ‖E(t)‖L∞(Ω) < ∞. Let

Ē(t, x) = 1Ω(x)E(t, x) for x ∈ R3. There exists f̄(t, x, v) ∈ L2(R × R3 × R3;R2),
an extension of fδ, such that

f̄ |Ω×R3 ≡ fδ and f̄ |γ ≡ fδ|γ and f̄ |t=0 ≡ fδ|t=0.

Moreover, in the sense of distributions on R× R3 × R3 → R2,

[∂t + v · ∇x + qĒ · ∇v]f̄ = h, (A.1)

where

h(t, x, v) = κδ(x, v)1t∈[0,∞)[∂t + v · ∇x + qE · ∇v]f
+ κδ(x, v)1t∈(−∞,0]e

t[1 + v · ∇x + qE · ∇v]f0κδ(x, v)

+ f(t, x, v)[v · ∇x + q1E · ∇v]κδ(x, v),

(A.2)

where tEXb , xEXb , tEXf , xEXf are defined in A.5.
Moreover,

‖h‖L2(R×R3×R3) . ‖[∂t + v · ∇x + qE · ∇v]f‖L2(R+×Ω×R3) + ‖f‖L2(R×Ω×R3)

+ ‖[v · ∇x + qE · ∇v]f0‖L2(Ω×R3).
(A.3)

Proof. In the sense of distributions

∂tfδ + v · ∇xfδ + qE · ∇vfδ = h in A.2. (A.4)

Clearly |[v · ∇x + q1E · ∇v]κδ(x, v)| .δ 1.
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For x ∈ R3\Ω̄ we define

tEXb (x, v) := sup{s ≥ 0 : x− τv ∈ R3\Ω̄ for all τ ∈ (0, s)},
tEXf (x, v) := sup{s ≥ 0 : x+ τv ∈ R3\Ω̄ for all τ ∈ (0, s)},

(A.5)

and xEXb (x, v) = x− tEXb (t, x, v))v, xEXf (x, v) = x+ tEXf (t, x, v))v.
We define, for x ∈ R3\Ω̄,

fE(t, x, v) =1xEXb (t,x,v)∈∂Ωfδ(t− tEXb (x, v), xEXb (x, v), v)

+1xEXf (t,x,v)∈∂Ωfδ(t+ tEXf (x, v), xEXf (x, v), v).
(A.6)

Recall that, from 6.13, fδ ≡ 0 when n(x) · v = 0, and hence fE ≡ 0 for n(x) · v = 0.
Since Ω is convex if v 6= 0 then {xEXb (x, v) ∈ ∂Ω} ∩ {xEXf (x, v) ∈ ∂Ω} = ∅. Note
that

fE(t, x, v) = fγ(t, x, v) = fδ(t, x, v) for x ∈ ∂Ω. (A.7)

And since for any s > 0,

(t+ s− tEXb (x+ sv, v), xEXb (x+ sv, v), v) = (t− tEXb (x, v), xEXb (x, v), v),

(t+ s+ tEXf (x+ sv, v), xEXf (x+ sv, v), v) = (t− tEXf (x, v), xEXf (x, v), v),

so in the sense of distribution, in R× [R3\Ω̄]× R3

∂tfE + v · ∇xfE = 0. (A.8)

We define

f̄(t, x, v) := 1Ω(x)fδ(t, x, v) + 1R3\Ω̄(x)fE(t, x, v). (A.9)

From A.4, A.7, and A.8 we prove A.1. The estimates of A.3 are direct conse-
quence of Lemma 2.2.
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