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Sequence-specific nucleases such as ZFNs, TALENs and 
CRISPR–Cas systems have greatly accelerated plant research 
and breeding1–4. While these tools are widely used for generat-

ing loss-of-function mutants, plant researchers still largely rely on 
the conventional gene overexpression approach for gain-of-function 
analysis. Under this approach, genomic DNA or cDNA for the gene 
of interest must be cloned under a strong RNA Polymerase II (Pol 
II) promoter. Furthermore, the molecular cloning process results 
in the overexpression of large genes or large numbers of genes 
being laborious. CRISPR activation (CRISPRa), based on deacti-
vated Cas (dCas) proteins coupled with activator domains, was first 
demonstrated in human cells5,6 and provides a promising alterna-
tive to the conventional gene overexpression approach in plants7,8. 
Theoretically, CRISPRa could enable the specific activation of any 
target gene in the genome due to its RNA-guided nature. In addi-
tion, CRISPRa is even more advantageous over the conventional 
overexpression system if multiple genes are involved.

The first-generation CRISPRa system in plants was based on 
dCas9–VP64 (refs. 9,10). To boost the activation level of CRISPRa, 
several groups have recently generated three second-generation 
CRISPRa systems—namely, dCas9–SunTag11,12, dCas9–TV13,14 and 
dCasEV2.1 (refs. 15,16). For the dCas9–SunTag system, dCas9 was 
fused to a tandem array of GCN4 peptides that could recruit the 
VP64 transcriptional activator11,12. While dCas9–TV relied on the 
fusion of dCas9 with six copies of the transcription activator-like 
effector (TALE) TAL Activation Domain (TAD) motif coupled with 
VP128 (6xTAL–VP128 (TV))13, dCasEV2.1 employed a gRNA2.1 
scaffold with anchoring sites for VPR (VP64–p65–Rta) transcrip-
tional activator16. These three second-generation CRISPRa systems 

conferred stronger transcriptional activation than dCas9–VP64. 
However, these systems were tested in different plant species or with 
different genes and expression systems, making it unclear which 
system is the most potent in plants. Our previous study showed 
that CRISPR–Act2.0, another second-generation CRISPRa system, 
yielded stronger transcriptional activation than dCas9–VP64 in 
plants but was less potent than mTALE–Act, a gene activation system 
based on the TALE, albeit with both using VP64 as the activator17. 
This suggests room for further improvement of CRISPR–Act2.0.

In this study, we developed a third-generation CRISPRa system, 
CRISPR–Act3.0, with much higher activation potency than any 
of the various second-generation CRISPRa systems in rice. With 
CRISPR–Act3.0, we further developed highly potent multiplexed 
gene activation systems, elucidated design rules for effective target 
gene activation and demonstrated the simultaneous activation of 
many enzyme-encoding genes in the β-carotene biosynthesis path-
way and the proanthocyanidin biosynthesis pathway in rice as well 
as multigene activation in Arabidopsis. Importantly, we adapted this 
activation strategy to CRISPR–Cas12b and a near-PAM-less SpCas9 
variant, SpRY, which greatly expands the targeting scope for gene 
activation. We envision that such an improved CRISPRa toolbox 
would greatly aid functional genomics research as well as multigene 
activation applications required in plant metabolic engineering and 
synthetic biology.

Results
Development of the CRISPR–Act3.0 system. Our previous 
CRISPR–Act2.0 system used an engineered gRNA2.0 (gR2.0) 
scaffold that contains two MS2 RNA aptamers for recruiting the  
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activator VP64 through the MS2–MCP interaction17. We reasoned 
that if we installed more MS2 aptamers into the single guide RNA 
(sgRNA) scaffold, the system could recruit more VP64, which might 
lead to improved gene activation. We adopted sgRNA scaffolds con-
taining 8 unique MS2 RNA aptamers (gR8xMS2)18 and 16 unique 
MS2 RNA aptamers (gR16xMS2)19, as both scaffolds were previ-
ously demonstrated to recruit many copies of fluorescent proteins 
for live cell imaging of mammalian cells (Supplementary Fig. 1a). 
We compared these two new VP64-recruiting systems coupled with 
CRISPR–Act2.0 for gene activation in rice protoplasts. Two inde-
pendent genes, OsGW7 and OsER1, were targeted for activation13. 
We also compared OsU3 (rice U3, a Pol III promoter) and ZmUbi 
(maize ubiquitin 1, a Pol II promoter) for expressing the sgRNAs. 
To guide proper sgRNA maturation in the ZmUbi promoter sys-
tem, we used the tRNA processing system20. To our surprise, nei-
ther gR8xMS2 nor gR16xMS2 showed higher gene activation levels 
than the CRISPR–Act2.0 system, on the basis of quantitative PCR 
with reverse transcription (RT–qPCR) analysis (Supplementary 
Fig. 1b,c). We found that the guide RNA level of gR16xMS2 was 
much lower than those of gR2.0 and gR8xMS2 with either promoter 
(Supplementary Fig. 1d), indicating that the instability of gR16xMS2 
might be the bottleneck for its activation efficiency18. In addition, 
compared with OsU3, ZmUbi produced higher guide RNA levels 
(Supplementary Fig. 1d). To recruit more VP64 with these three 
sgRNA scaffolds, we modified a split GFP system21. In our system, 
a deactivated plant codon-optimized Cas9 (dpcoCas9)22 is fused to 
seven tandemly arrayed GFP11 peptides and co-expressed with a 
GFP1-10–VP64 fusion protein (Supplementary Fig. 2a). Upon GFP 
reconstitution, a single dCas9/sgRNA complex is expected to recruit 
many VP64 to a target site. Testing this strategy in rice protoplasts, 
however, did not yield gene activation for either OsGW7 or OsER1 
(Supplementary Fig. 2b,c).

These earlier attempts suggested that some strategies that suc-
cessfully recruit fluorescent proteins for DNA imaging do not result 
in gene activation through the recruitment of transcription acti-
vators such as VP64. This could be due to the complex process of 
gene activation, as it requires further recruitment of transcription 
machinery based on the activators. The SunTag system has been 
previously established for gene activation in both human cells11 and 
plants10. In the SunTag system, the tandemly arrayed GCN4 epit-
opes are directly fused to the C-terminus dCas9 to recruit VP64 
through a single-chain antibody, scFv11,12. We hypothesized that 
coupling the SunTag system with the MS2–MCP interaction would 
recruit more VP64 (Fig. 1a). To test this strategy, we compared both 
gR2.0 (refs. 17,23) and gR8xMS2 (ref. 18) scaffolds with two different 
lengths of SunTag (four or ten repeats of GCN4 epitopes, 4xGCN4 
and 10xGCN4). We assessed these configurations in rice protoplasts 
by activating OsGW7 and OsER1. With the gR2.0 scaffold, both the 
4xGCN4 and 10xGCN4 tags resulted in pronounced gene activa-
tion at both targets, which was tenfold higher than the level induced 

by the CRISPR–Act2.0 system (Fig. 1b). The gR8xMS2 scaffold also 
generated significant activation, though less potent than the gR2.0 
scaffold (Fig. 1b). These results reinforced the notion that more MS2 
aptamers did not necessarily translate into higher gene activation.

Encouraged by the success in combining the SunTag system with 
the MS2 system, we next developed two new activators: two repeats 
of TAD (2xTAD) and 2xTAD coupled with a VP64 (2xTAD–VP64). 
We compared these activators with the previously reported activa-
tors VP64, TV13 and VPR15 to test this platform by targeting OsER1 
in rice protoplasts (Fig. 1c). With the 4xGCN4 SunTag, the systems 
with 2xTAD and 2xTAD–VP64 activators showed the highest gene 
activation (>100-fold) (Fig. 1c). With the 10xGCN4 SunTag, the 
2xTAD activator system resulted in the highest activation of the tar-
get gene, ~250-fold (Fig. 1c). This result pointed to a highly efficient 
gene activation system that combines dCas9–VP64, gR2.0 scaffold, 
10xGCN4 SunTag and the newly developed 2xTAD activator. We 
consider this new system as a third-generation CRISPRa system 
and named it CRISPR–Act3.0. To benchmark CRISPR–Act3.0, we 
compared it with three additional second-generation CRISPRa 
systems previously developed by other research groups, including 
dCas9–SunTag11,12, dCas9–TV13 and dCasEV2.1 (ref. 16) (Fig. 1d). 
To ensure close comparison, the same vector backbones and pro-
moters were used. By targeting the same two genes (OsGW7 and 
OsER1) with the same sgRNAs, we found that dCas9–TV resulted 
in ~40-fold activation of both genes, an activation level compa-
rable to the previous report on using dCas9–TV to activate these 
genes13. With this level of gene activation, the dCas9–TV system 
outperformed the dCas9–SunTag and dCasEV2.1 systems (Fig. 1d). 
Strikingly, CRISPR–Act3.0 generated activation four to six times 
stronger than dCas9–TV at both target genes, with over 250-fold 
for OsGW7 and over 100-fold for OsER1, regardless of the pro-
moter (OsU3 or ZmUbi) used to drive the single sgRNA expres-
sion (Fig. 1d). To further benchmark CRISPR–Act3.0, we targeted a 
third gene in rice, OsBBM1, whose overexpression in egg cells was 
recently shown to help the asexual propagation of rice seeds24. To 
rule out the possibility that the superior performance of CRISPR–
Act3.0 is position-dependent, we targeted three distinct positions 
in the OsBBM1 promoter (Supplementary Fig. 3a). We found that 
CRISPR–Act3.0 resulted in significantly higher activation effi-
ciency at two target sites and considerably improved activation at 
one target site compared with the other three activation systems: 
6-fold to 24-fold higher at two target sites and 1.3-fold to 2.9-fold 
higher at the third site (Supplementary Fig. 3b). Since both the 
gR2.0 and gRNA2.1 scaffolds contain two MS2 stem loops (albeit 
at different positions)16,17,23, we compared them and found that 
gRNA2.1 worked poorly in the CRISPR–Act3.0 configuration for 
gene activation compared with gRNA2.0 (Supplementary Fig. 3c). 
Together, our work established gR2.0-based CRISPR–Act3.0 as a 
third-generation CRISPRa system that is much more potent than 
earlier systems based on our assays in rice protoplasts.

Fig. 1 | Development of the CRISPR–Act3.0 system. a, Schematic illustration of the CRISPR–Act3.0 strategy. The dSpCas9 is fused with a VP64, and 
the coupled gR2.0 contains two MS2 RNA aptamers (in pink) for recruiting the MS2 bacteriophage coat protein (MCP), which is fused to the SunTag. 
The single-chain variable fragment (scFv) of GCN4 antibody is fused to a super folder green fluorescent protein (sfGFP), which serves as a linker for the 
scFv and activator fusion. b, Comparison of different sgRNA scaffolds and 4xGCN4 or 10xGCN4 epitopes for gene activation. c, Comparison of different 
activators for gene activation. The different letters indicate significantly different mean values at P < 0.05 (one-way analysis of variance (ANOVA) with 
post-hoc Tukey test). d, Comparison between CRISPR–Act3.0 and three other potent second-generation CRISPR-activation systems. In Act3.0–ZmUbi, a 
Pol II promoter, ZmUbi, was used for sgRNA expression, coupled with the tRNA processing system. The other systems used OsU3 for sgRNA expression. 
The dashed horizontal line indicates the highest gene activation level from the second-generation CRISPRa systems compared. e, Activation of an mCherry 
gene by an sgRNA. Tested promoters with intact 5′ UTR sequences are fused to the mCherry coding sequence. f, Detection of mCherry signals without 
(−Act3.0) and with the CRISPR–Act3.0 activation system (+Act3.0) in rice cells. The mCherry signals were detected using a fluorescence microscope 
24 hours after rice protoplast transformation. g, Statistical analysis of mCherry-positive cells with and without the CRISPR–Act3.0 activation system. All 
data are presented as the mean ± s.d. (n = 5 independent scopes). **P < 0.01, two-tailed Student’s t-tests. For the RT–qPCR assays (b–d), T-DNA vectors 
without sgRNAs served as the negative control (CTRL). OsTubulin is used as the endogenous control gene. All data are presented as the mean ± s.d. (n = 3 
independent experiments). *P < 0.05, **P < 0.01, two-tailed Student’s t-tests.

Nature Plants | www.nature.com/natureplants

http://www.nature.com/natureplants


ArticlesNATuRe PlAnTS

We next sought to visualize the CRISPR–Act3.0-mediated 
activation by using an mCherry reporter system. Two randomly 
selected promoters, ProOsTPR-like and ProOsCCR1, were used to 

drive mCherry expression, generating two corresponding mCherry 
reporter constructs (Fig. 1e). As a positive control, mCherry was 
driven by the strong ZmUbi promoter. Each promoter except the 
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positive control was targeted by one sgRNA to evaluate the robust-
ness of CRISPR–Act3.0. Notably, the co-transformation of rice 
protoplasts with the CRISPR–Act3.0 construct and the reporter 
construct in both cases resulted in red fluorescent cells indica-
tive of strong mCherry expression; in contrast, such signals were 
absent without the use of either sgRNA (Fig. 1f). Further quanti-
fication showed that 80% of cells were mCherry-positive from the 
ZmUbi::mCherry positive control. About 40% and 50% of cells 
co-transformed with the CRISPR–Act3.0 and the mCherry report 
constructs were mCherry-positive, respectively (Fig. 1g), sug-
gesting that CRISPR–Act3.0-induced activation potency can be 
indicated by fluorescence intensity. In addition, CRISPR–Act3.0 
activated the transcription of the endogenous genes OsTPR-like and 
OsCCR1 in rice with ~60-fold and ~20-fold activation, respectively 
(Supplementary Fig. 3d). Taken together, these data demonstrated 
robust gene activation by CRISPR–Act3.0 with a single sgRNA.

Multiplexed gene activation in rice. The tRNA-based processing 
system is highly compact and efficient for multiplexing sgRNAs in 
plants20,25, yeast26, Drosophila27 and human cells28. To enable efficient 
multiplexed gene activation in rice, we developed a streamlined 
cloning system for one-step assembly of up to six tRNA–gRNA2.0 
cassettes (Fig. 2a) or U3–gRNA2.0 cassettes (based on a conventional 
gRNA2.0 system) (Supplementary Fig. 4). One Pol II promoter, 
ZmUbi, was employed to drive the expression of all tRNA–gRNA2.0 
cassettes, and in contrast, one U3 promoter was used for each indi-
vidual U3–gRNA2.0 cassette expression (Fig. 2a and Supplementary 
Fig. 4). To compare this multiplexed tRNA–gRNA2.0 (M-tRNA) 
system with the conventional multiplexed U3–gRNA2.0 (M-U3) 
system where sgRNAs were expressed in independent transcription 
units17, we targeted three genes (OsGW7, OsER1 and OsPXL2) in 
rice for simultaneous activation (Fig. 2b). These two multiplex con-
structs, M-tRNA and M-OsU3, were compared with individual gene 
activation constructs (I-OsU3). At the three target genes, M-tRNA 
resulted in comparable levels of fold activation to I-OsU3 and better 
activation than M-OsU3 for multiplexed gene activation (Fig. 2b). 
We next compared single sgRNA and multiplexed sgRNAs for gene 
activation at two independent loci. At OsGW7, multiplexing three 
gRNAs generated higher gene activation than single gRNAs alone 
(Supplementary Fig. 5a). At OsTPR-like, multiplexing three sgRNAs 
generated a similar level of gene activation to the best-performing 
single sgRNA (Supplementary Fig. 5b). These data suggest that mul-
tiplexing a few sgRNAs represents a safe strategy to achieve robust 
gene activation, consistent with earlier observations in plants16,17,29.

However, we also found that highly efficient singular sgRNAs 
could be identified using a protoplast-based prescreen process. 
In most cases, the activation level with a single sgRNA would be 

strong enough for the target gene, which reserves much room for 
multiplexing many genes, as only one sgRNA is used for one gene. 
To demonstrate this one-sgRNA-for-one-gene strategy, we sought 
to apply CRISPR–Act3.0 to target metabolic pathway genes with 
the M-tRNA system. In the first demonstration, we targeted seven 
enzyme-encoding genes in the β-carotene pathway in rice. For each 
gene, three to four sgRNAs were tested in rice protoplasts in the pre-
screen step. The prescreen data in rice protoplasts showed that four 
of seven genes could be activated tenfold or higher (Supplementary 
Fig. 6a). We then picked the best-performing sgRNAs for each tar-
get gene and assembled them into one M-Act3.0 vector based on the 
M-tRNA system according to a higher-order assembly method30. 
Gene activation of up to 20-fold was found for all seven target genes 
using the M-Act3.0 vector in rice protoplasts (Supplementary Fig. 6b).  
In the second demonstration, we targeted six enzyme-encoding 
genes in the proanthocyanidin pathway in the indica rice variety 
Kasalath (Supplementary Fig. 7a). For each gene, three to six sgRNAs 
were tested in rice protoplasts in the prescreen step, and in all cases 
except OsCHI, at least one sgRNA could be identified with >30-fold 
gene activation levels (Supplementary Fig. 7b). Stacking the six 
high-activity sgRNAs with the M-tRNA system (Fig. 2a) led to pro-
nounced simultaneous gene activation for five out of six target genes 
(Fig. 2c). We also targeted three regulatory genes (OsRc, OsTTG1 
and OsTT2) in the proanthocyanidin pathway31 (Supplementary 
Fig. 8a). Two sgRNAs were employed for each target gene. These 
regulatory genes were individually activated by M-Act3.0, and two 
of them were activated by 40-fold simultaneously with the M-tRNA 
system (Supplementary Fig. 8b,c).

Furthermore, we used Agrobacterium-mediated transformation 
to introduce an M-Act3.0 vector targeting the six enzyme-encoding 
genes in the proanthocyanidin pathway and the no-sgRNA control 
vector into the indica rice variety Kasalath. The M-Act3.0 system 
resulted in a similar activation pattern for all target genes except 
OsLAR in both rice protoplast cells and transgenic callus (Fig. 2c,d 
and Supplementary Fig. 9a), and four out of six target genes were 
activated by 5-fold to 140-fold (Fig. 2d). However, only OsF3H had 
a significant activation of ~20-fold in M-Act3.0 transgenic seedlings 
(leaves) (Fig. 2e and Supplementary Fig. 9b), and the other five tar-
get genes could only be activated twofold to eightfold (Fig. 2e). In 
addition, no difference in phenotype in both callus and seedlings 
was observed between the M-Act3.0 and CTRL transgenic lines 
(data not shown). Taken together, we have developed a multiplexed 
CRISPR–Act3.0 system and demonstrated its use for the simultane-
ous activation of many genes in the agriculturally relevant crop, rice. 
Our data also suggest that the potency of CRISPRa is shaped by the 
endogenous gene regulatory mechanisms, which may vary among 
genes and pathways.

Fig. 2 | Multiplexed gene activation by CRISPR–Act3.0 in rice. a, Schematic illustrations of assembling sgRNAs for multiplexed gene activation. Multiple 
sgRNAs are inserted into the BsaI-digested gR2.0 (guide RNA scaffold containing two MS2 RNA aptamers) entry plasmids and then assembled using 
Golden Gate cloning. The final T-DNA expression vector is constructed by Gateway cloning-mediated assembly of dCas9-activator and tRNA–gR2.0 
array cassettes into a destination vector of choice. Two to six sgRNAs are easily assembled on the basis of this strategy. Spectinomycin-R, spectinomycin 
resistance gene; kanamycin-R, kanamycin resistance gene; RB, right border; LB, left border; Ter, terminator. b, Comparison of different multiplexed gene 
activation strategies based on CRISPR–Act3.0 for simultaneous gene activation. I-OsU3, singular gene activation with individual gR2.0 expression 
cassettes each driven by an OsU3 promoter. M-tRNA, multiple tRNA-mediated gR2.0 expression cassettes driven by the Pol II promoter ZmUbi. M-OsU3, 
multiple tandem repeats of independent OsU3-based gR2.0 expression cassettes. T-DNA vectors without sgRNAs served as the negative control. 
OsTubulin is used as the endogenous control gene. All data are presented as the mean ± s.d. (n = 3 independent experiments). The different letters indicate 
significantly different mean values at P < 0.05 (one-way ANOVA with post-hoc Tukey test). c, Simultaneous activation of multiple enzyme-encoding genes 
of the proanthocyanidin pathway in rice protoplasts. M-Act3.0, CRISPR–Act3.0-mediated multiplexed gene activation using the M-tRNA system. T-DNA 
vectors without sgRNAs served as the negative control. OsTubulin is used as the endogenous control gene. All data are presented as the mean ± s.d. 
(n = 3 independent experiments). d, Expression analysis of proanthocyanidin biosynthetic genes in T0 positive transgenic callus. e, Expression analysis 
of proanthocyanidin biosynthetic genes in T0 positive transgenic seedlings (leaves). Act3.0-M#3, 4 and 8 represent different transgenic callus (d) and 
seedlings (e) with CRISPR–Act3.0-mediated multiplexed gene activation using the M-tRNA system. For the RT–qPCR assays (d,e), T0 lines containing 
T-DNA vectors without sgRNAs served as the negative control. OsTubulin is used as the endogenous control gene. All data are presented as the 
mean ± s.d. (n = 3 technical replicates).
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It is worth noting that the final transfer DNA (T-DNA) vec-
tor expressing dpcoCas9–Act3.0 and M-tRNA components 
could cause DNA rearrangements in Agrobacterium tumefaciens 
EHA105 despite the fact that different promoters (ZmUbi, UBQ10 
(ubiquitin-10) or a cauliflower mosaic virus 35S) were used to 
drive the dpcoCas9 expression (Supplementary Fig. 10a–e).  
However, such DNA rearrangements were found in the combi-
nation of dpcoCas9–Act3.0 and M-U3 systems (Supplementary  

Fig. 10c–e). In contrast, we found that CRISPR–Act3.0 based 
on dzCas9 (a maize codon-optimized dSpCas9)9,32 did not cause 
any DNA rearrangement in the plasmids in A. tumefaciens 
(Supplementary Fig. 10f–h). The dzCas9-based CRISPR–Act3.0 
system induced a comparable activation efficiency to the dpco-
Cas9-based CRISPR–Act3.0 system (Supplementary Fig. 11), con-
sistent with previous reports that both pcoCas9 and zCas9 proteins 
were efficient for genome editing33.
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Multiplexed gene activation in dicot plants. To assess CRISPR–
Act3.0 in dicot plants, we simultaneously targeted two genes, AtFT 
(regulating flowering)34 and AtTCL1 (regulating trichome develop-
ment)35, in the model plant Arabidopsis using the dpcoCas9-based 
CRISPR–Act3.0 system. Each gene was targeted with two sgRNAs, 
and the four corresponding sgRNAs were assembled on the basis of 
the streamlined cloning system (Fig. 3a and Supplementary Fig. 4). 
All T1 transgenic plants clearly displayed an early flowering phe-
notype (Fig. 3b), an anticipated phenotype for robust AtFT overex-
pression34,36. The phenotype was further quantified by counting the 
number of rosette leaves upon flowering. The control plants showed 
about four times more rosette leaves than the AtFT overexpression 
lines (Fig. 3c). A plant life cycle analysis showed that transgenic plants 
on average reduced their seed-to-seed life cycle by ~30 days com-
pared with the no-sgRNA transgenic control plants (Fig. 3d). The 
expression levels of AtFT and AtTCL1 were activated by 130-fold to 
240-fold and 3-fold to 8-fold, respectively, in early flowering T1 plants 
(Fig. 3e). It is worth noting that relatively low levels of gene activation 
for AtTCL1 could be due to the lack of prescreening sgRNA activi-
ties. We further examined the elevated expression levels of AtFT and 
AtTCL1 as well as the resulting early flowering and reduced trichome 
development in the T2 and T3 generations. A high percentage of the 
early flowering phenotype (~85%) was identified in both T2 and T3 
populations of Act3.0-#4 and Act3.0-#10 lines (Fig. 3e,f). In addition, 
the numbers of trichomes per leaf of Act3.0-#4 and Act3.0-#10 lines 
were significantly decreased in both T2 and T3 populations (Fig. 3g). 
Consistent with the phenotypes, similar levels of gene activation for 
both AtFT (80-fold to 500-fold) and AtTCL1 (3-fold to 20-fold) were 
found in both T2 and T3 populations (Fig. 3e,f). These results sug-
gest that CRISPR–Act3.0 is a robust gene activation tool in a dicot 
plant species and that multiplexed CRISPR–Act3.0-mediated modi-
fications of phenotypes can be stably transmitted across multiple 
generations. Translation of the success in CRISPR–Act3.0-mediated 
endogenous FT activation in Arabidopsis into crops would have 
transformative impacts in accelerating crop breeding.

Since zCas9 resulted high-efficiency genome editing in dicot 
plants such as Arabidopsis32 and carrot37, the dzCas9–Act3.0 system 
presumably should work well for gene activation in dicot plants. We 
tested dzCas9–Act3.0 in tomato. Four different sgRNAs (gR1 to gR4) 
were designed to target the promoter of the SFT gene in tomato. On 
the basis of a protoplast assay, gR1 and gR2 each resulted in 240-fold 
transcription activation, while gR3 and gR4 generated ~30-fold and 
20-fold transcription activation, respectively (Fig. 3h). The data 
suggest that dzCas9–Act3.0 is very potent in tomato and that the 
levels of target gene activation are determined by the sgRNAs and 
their target positions.

Design rules for efficient sgRNAs in CRISPR–Act3.0 applica-
tions. Our work here, along with earlier studies in plants, has shown 

that gene activation efficiency varies among different sgRNAs for 
the same target gene9,11,13,16,17,29. When designing sgRNAs, we had 
already focused on the most effective promoter region, which is 0 
base pairs (bp) to −250 bp from the transcription start site (TSS), 
according to earlier studies in humans5,6,12,15,23. To provide further 
guidance in sgRNA design for implementing CRISPR–Act3.0 in 
plants, we investigated the protoplast-based gene activation data 
from 56 sgRNAs targeting the −3-bp to −261-bp region from the 
TSS of 16 genes in rice. We found that most sgRNAs were effective 
in the 0-bp to −200-bp region from the TSS (Fig. 4a). Interestingly, 
sgRNAs targeting the noncoding strand of DNA were overrep-
resented (13/19; sgRNAs targeting the noncoding strand / total 
sgRNAs, P < 0.05, two-tailed binomial probability test) among these 
active sgRNAs with the threshold of 20-fold activation (Fig. 4a), sug-
gesting that sgRNAs targeting the noncoding-strand DNA are pre-
ferred to achieve higher activation activity. Further analyses showed 
that sgRNAs with GC content between 45% and 60% resulted in 
higher frequencies of robust gene activation (the average activation 
was 34.8-fold within the optimum range and 12.4-fold outside the 
optimum range, P < 0.05, Kruskal–Wallis test) (Fig. 4b). This trend 
matches prior reports that sgRNAs with extreme GC contents are 
less active for gene editing38. We note that these design guidelines, 
although useful for the initial implementation of CRISPR–Act3.0, 
require further corroboration and investigation with larger datasets, 
ideally from different plant species.

Expanding the targeting scope of CRISPR–Act3.0. The narrow 
high-activity targeting window, high-activity GC contents and pref-
erence for targeting noncoding-strand DNA would collectively limit 
the sgRNA choice in designing and implementing CRISPR–Act3.0 
in plants. It is also important to avoid targeting cis-regulatory ele-
ments so that the binding of the CRISPR–Act3.0 components will 
not interfere with the recruitment of endogenous transcription fac-
tors and regulators necessary for transcription. In light of all these 
issues, it could be challenging to find many potentially good target 
sites for CRISPR–Act3.0 based on SpCas9, which recognizes NGG 
protospacer adjacent motifs (PAMs)39. The limited target choices 
when targeting AtTCL1 in Arabidopsis may partly explain the rel-
atively low level of gene activation that we observed for this gene  
(Fig. 3e). Many promoters in plants are AT rich40, making them diffi-
cult to target with SpCas9. Recently, we developed CRISPRa systems 
based on dCas12b proteins, which recognize VTTV (V stands for A, 
C and G) PAMs41. The most efficient Cas12b activation system used 
an Aac.3 sgRNA scaffold that contains one MS2 stem loop41 (Fig. 5a).  
We were curious whether we could transfer the SpCas9-based 
CRISPR–Act3.0 strategy into Cas12b systems. To this end, we 
adopted and engineered three additional sgRNA scaffolds, includ-
ing Aa.3.8.3 (ref. 42), Aac.4 and Aa.3.8.5 (Fig. 5a and Supplementary 
Fig. 12), which were meant to use one or two MS2 stem loops to 

Fig. 3 | Multiplexed gene activation by CRISPR–Act3.0 in dicot plants. a, Schematic of CRISPR–Act3.0-mediated multiplexed gene activation in 
Arabidopsis. AtFT and AtTCL1 are targeted by two sgRNAs each for activation. gR, sgRNA. b, Early flowering phenotype in the T1 population of CRISPR–
Act3.0 transgenic plants (Act3.0) and CTRL plants. c, Number of rosette leaves in the CTRL and the CRISPR–Act3.0 transgenic Arabidopsis plants upon 
flowering. The box plot boundaries represent the 25th and 75th percentiles, the centre lines indicate the medians and the whiskers extend 1.5 times the 
interquartile range from the 25th and 75th percentiles. Individual data points are represented by dots. All data are presented as the mean ± s.d. (n = 14 
independent plants). d, AtFT activation shortens the life cycle of Arabidopsis. C, no-sgRNA transgenic control plants; A, CRISPR–Act3.0 transgenic 
plants; d, days; seeds, the seeds germinate; silique, the first silique is produced; maturing, the siliques become mature. e,f, Analysis of the early flowering 
phenotype and target gene expression (AtFT and AtTCL1) in T2 (e) and T3 (f) generations. Two independent CRISPR–Act3.0 populations and one CTRL 
population are shown for each generation. All data are presented as the mean ± s.d. (n = 3 technical replicates). EF-1α is used as the endogenous control 
gene. g, Trichome density on the first two true leaves of Act3.0 transgenic and CTRL plants in both T2 and T3 generations. Two independent CRISPR–
Act3.0 populations and one CTRL population are shown for each generation. All data are presented as the mean ± s.e. (n = 19 and 14 individual plants for 
the T2 and T3 generations, respectively). The different letters indicate significantly different mean values at P < 0.05 (one-way ANOVA with post-hoc 
Tukey test). Scale bars, 0.5 mm. h, Determination of the dzCas9–Act3.0-based activation efficiency in tomato protoplasts. Four individual sgRNAs 
targeting SFT were designed and tested. T-DNA vectors without sgRNAs served as the negative control. SlUbi3 is used as the endogenous control gene.  
All data are presented as the mean ± s.d. (n = 3 independent experiments).
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recruit 10xGCN4 and 2xTAD through the MS2–MCP interac-
tion. We targeted OsGW7 as well as a morphogenic gene, OsBBM1  
(ref. 24), in rice protoplasts. For both genes, Aac.3, Aa.3.8.3 and 
Aa.3.8.5 sgRNA scaffolds resulted in twofold higher activation than 
our previously established dAaCas12b–TV–MS2–VPR activation 
system41 (Fig. 5a). Notably, the Aac.4 sgRNA scaffold that contains 
two MS2 stem loops generated fourfold to fivefold higher activation 
than the dAaCas12b–TV–MS2–VPR system (Fig. 5a). We have thus 

engineered an improved CRISPRa system based on AaCas12b and 
the Aac.4 sgRNA scaffold.

However, we realized that the improved Cas12b activation sys-
tem was not as strong as the SpCas9-based CRISPR–Act3.0 system. 
We therefore decided to relax the PAM requirements of SpCas9 in 
CRISPR–Act3.0. One promising SpCas9 variant is Cas9–NG, which 
recognizes NG PAMs in human cells43 and in plants44–48. Another 
promising SpCas9 variant is SpRY, which was recently claimed as 

a
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near-PAM-less since it can edit NR (R stands for G and A) PAM 
sites with high efficiency and NY (Y stands for C and T) PAM sites 
with relatively low efficiency49. To compare both SpCas9 variants, 
we engineered dzCas9–NG–Act3.0 and dSpRY–Act3.0 (based on 
the same maize codon-optimized Cas9) (Fig. 5b) and compared 
them with the dzCas9–Act3.0 targeting nearly the same location 
at four NGN (NGA, NGT, NGC and NGG) PAM sites in the pro-
moter of OsGW7 (Fig. 5c). Because SpCas9 can target NGA PAMs50, 
dzCas9–Act3.0 generated robust activation (>20-fold) as expected 
at the canonical NGG PAM site and the non-canonical NGA PAM 
sites (Fig. 5d). Interestingly, we also observed high levels of activa-
tion with dzCas9–Act3.0 at the NGC PAM site but not at the NGT 
PAM site (Fig. 5d). Impressively, dSpRY–Act3.0 resulted in >20-fold 
target gene activation at all four NGN PAM sites (Fig. 5d). By con-
trast, dzCas9–NG–Act3.0 generated lower than 20-fold activation 
at three NGN PAM sites (Fig. 5d). We then compared these systems 
at a second gene, OsBBM1, at four overlapping targeting sites with 
four NGN (NGA, NGT, NGC and NGG) PAM sites closer to the 
TSS (Fig. 5e). At this gene, dzCas9–Act3.0 was able to activate tran-
scription only through an NGG PAM-targeting sgRNA (Fig. 5f).  
By contrast, dSpRY–Act3.0 activated the targets at all four NGN 
PAM sites (with fold activation ranging from 10 to 200) and outper-
formed dzCas9–NG–Act3.0 at all these target sites (Fig. 5f). These 
results demonstrated that dSpRY–Act3.0 targets NGN PAMs more 
efficiently than dzCas9–NG–Act3.0. However, for targeting NGG 
PAM sites, dzCas9–Act3.0 induced a higher efficiency than dSpRY–
Act3.0. To determine whether dSpRY–Act3.0 could target NAN, 
NTN and NCN PAMs for gene activation, we picked 12 target sites 
with NNN PAMs (4 NAN, 4 NTN and 4 NCN) further from the TSS 
of OsBBM1, and these target sites were largely overlapped for close 
comparisons (Fig. 5e). The data showed that with dSpRY–Act3.0, 
11 out of 12 sgRNAs resulted in the activation of OsBBM1 (Fig. 5g). 
Together, dSpRY–Act3.0 seems to enable near-PAM-less gene acti-
vation in plants, consistent with its near-PAM-less gene editing in 
human cells49.

Discussion
In plant functional genomics, a central question is to define the 
causal relationships between gene expression and phenotypic 
features in plants. CRISPRa represents a promising approach to 
streamline and expedite such research by targeting gene activation 
in plants8. To improve the activation potency, targeting flexibility  

and scalability of CRISPRa in plants, we applied an engineering 
approach to systemically exploit different sgRNA scaffolds and 
transcription activators to develop the next-generation CRISPRa 
systems. We successfully developed CRISPR–Act3.0, which consists 
of dCas9–VP64, a gR2.0 scaffold with 2xMS2 stem loops, 10xGCN4 
SunTag fused to RNA binding protein MCP and 2xTAD activa-
tors fused to scFv (Fig. 1a). We benchmarked CRISPR–Act3.0 as 
a third-generation CRISPRa system in plants as it outperformed 
all the second-generation CRISPRa systems in rice assays (Fig. 1d 
and Supplementary Fig. 3b)11,13,16,17. In CRISPR–Act3.0, multiple 
2xTAD activators were recruited by the sgRNA scaffold through the 
MS2–MCP interaction. This feature may allow us to further develop 
complex CRISPRa systems with additional functionality through 
engineering orthogonal sgRNA scaffolds8.

To make the CRISPR–Act3.0 systems user-friendly, we devel-
oped an efficient toolbox for multiplexed sgRNA assembly of up 
to six gRNA2.0 cassettes in one step based on PCR-free modular 
Golden Gate cloning and Gateway cloning systems9,17,30,51 (Fig. 2a  
and Supplementary Fig. 4). We demonstrated that CRISPR–
Act3.0 coupled with the M-tRNA system enabled multiplexed 
gene activation with the simultaneous activation of several 
enzyme-encoding genes involved in the β-carotene pathway as 
well as in the proanthocyanidin pathway in rice (Fig. 2c–e and 
Supplementary Figs. 6–8), suggesting promising application of 
CRISPR–Act3.0 in plant metabolic engineering. We also demon-
strated CRISPR–Act3.0 for the simultaneous modification of two 
independent traits (flowering and trichome development) through 
multiplexed gene activation in Arabidopsis (Fig. 3). Strikingly, the 
Arabidopsis plants with the AtFT activation nearly reduced the 
plant life cycle by half (for example, ~30 days) (Fig. 3d). The phe-
notypes of early flowering and reduced trichome numbers due to 
simultaneous gene activation were stably transmitted to the T3 
generation (Fig. 3e,f). These results suggest that CRISPR–Act3.0 
holds great promise to accelerate crop breeding. Furthermore, we 
showed potent activation of a morphogenic gene in rice, OsBBM1, 
with up to 300-fold activation (Fig. 5f and Supplementary Fig. 3b). 
Our demonstration will promote the future use of CRISPR–
Act3.0 for activating endogenous morphogenic genes to promote 
genotype-independent plant regeneration, as opposed to using 
heterologous morphogenic gene expression systems52–54. While 
both dpcoCas9–Act3.0 and dzCas9–Act3.0 showed comparable 
activation potency, we observed that the dzCas9–Act3.0 system 
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is more robust, as it does not cause plasmid DNA recombination 
when combined with M-tRNA or M-U3 sgRNAs and expressed 
in A. tumefaciens strains (Supplementary Fig. 10). We therefore 
recommend that researchers use dzCas9–Act3.0 for plant gene 
activation in their studies.

Previous studies have demonstrated that CRISPRa potency is 
highly sensitive to sgRNA target position relative to the TSS23,29,55. 
The optimal targeting window for CRISPRa in mammalian cells, 
bacteria and plants has been reported to be the 200 bp, 60–90 bp 
and 350 bp upstream region of the TSS23,29,55. However, only limited 
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introduced into 180 μl of rice protoplasts by PEG-mediated transfection. The 
transfected protoplasts were incubated at 32 °C in the dark for 24 h and then 
collected for detecting mCherry signals using a fluorescence microscope. To 
determine the expression levels of the targeted genes, plasmid DNA (40 μg per 
construct) was introduced into 360 μl of rice protoplasts (2 × 106 cells per ml) 
or tomato protoplasts (1 × 106 cells per ml) by PEG-mediated transfection. The 
transfected protoplasts were incubated at 32 °C (rice) or 25 °C (tomato) in the dark. 
At 48 h after transfection, the protoplasts were collected for RNA extraction.

Rice stable transformation. To obtain transgenic plants, the T‐DNA 
constructs were transformed into the A. tumefaciens strain EHA105. The 
Agrobacterium-mediated transformation of callus cells of Kasalath was 
performed as previously reported41. The transgenic rice plants were grown in an 
environmental chamber at 29 °C under a 16-h-light/8-h-dark cycle.

Arabidopsis transformation. The Columbia-0 (Col-0) ecotype of Arabidopsis 
thaliana was used in this study. To obtain transgenic lines, the T‐DNA constructs 
were transformed into the Agrobacterium strain GV3101, which were then 
transformed into wild-type plants of Arabidopsis using the floral dip method59. 
Seeds for the T1 to T3 generations were sterilized using 50% bleach and 0.05% 
Tween, vernalized at 4 °C in the dark for 3 days and then plated on MS-hygromycin 
plates. After one week, the transgenic plants were transferred to hygromycin-free 
plates for a week of recovery before being moved to soil. Transgenic Arabidopsis 
plants were grown in a growth chamber at 22 °C under a 16-h-light/8-h-dark cycle 
and 60% relative humidity.

DNA extraction, RNA extraction and qPCR analysis. Leaf and callus tissues 
of transgenic rice were collected for DNA extraction using the CTAB method60. 
The CRISPR–Act3.0 components in the transgenic tissues were detected using 
PCR with four pairs of primers. Leaf and callus tissues of transgenic rice, whole 
transgenic Arabidopsis seedlings or approximately 1 to 5 × 105 rice or tomato 
protoplast cells were used for RNA extraction. Total RNA was extracted from 
protoplast cells using TRIzol reagent (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. DNA was first removed from the total RNA 
samples by treatment with DNase I (RNase-free) (New England Biolabs). Then, 
500–1,000 ng of total RNA was used for cDNA synthesis using the SuperScript III 
First-Strand Synthesis Kit (Invitrogen). The qPCR analysis was performed using 
the AzuraQuant Green Fast qPCR Mix (Azura Genomics) coupled with the CFX96 
Touch Real-Time PCR Detection System (Bio-Rad) to detect transcript expression 
levels. OsTubulin, EF-1α and SlUbi3 were used as the endogenous control genes for 
rice, Arabidopsis and tomato, respectively, and fold changes were calculated by the 
2−ΔΔCt method. All primers used in this study are listed in Supplementary Table 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The 25 Golden Gate and Gateway compatible vectors for the CRISPR–Act3.0 
systems are available from Addgene: pYPQ131–tRNA2.0 (no. 158393), pYPQ132–
tRNA2.0 (no. 158394), pYPQ133–tRNA2.0 (no. 158395), pYPQ134–tRNA2.0 
(no. 158396), pYPQ135–tRNA2.0 (no. 158397), pYPQ136–tRNA2.0 (no. 158398), 
pYPQ142–ZmUbi–tRNA (no. 158578), pYPQ143–ZmUbi–tRNA (no. 158400), 
pYPQ144–ZmUbi–tRNA (no. 158402), pYPQ145–ZmUbi–tRNA (no. 158403), 
pYPQ146–ZmUbi–tRNA (no. 158404), pYPQ141–ZmUbi–RZ–Aac.4 (no. 
158406), pYPQ141–ZmUbi–RZ–Aa3.8.5 (no. 158407), pYPQ–dpcoCas9–Act3.0 
(no. 158408), pYPQ–dpcoCas9–TV (no. 158409), pYPQ–dpcoCas9–SunTag 
(no. 158410), pYPQ–dpcoCas9–EV2.1 (no. 158411), pYPQ–dAaCas12b–Act3.0 
(no. 158413), pYPQ–dzCas9–Act3.0 (no. 158414), pYPQ–dzCas9–NG–Act3.0 
(no. 158415), pYPQ–dSpRY–Act3.0 (no. 158416), pYPQ134B2.0 (no. 167158), 
pYPQ135B2.0 (no. 167159), pYPQ136B2.0 (no. 167160) and pYPQ141D–gRNA2.1 
(no. 167161).
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lysing activation data from 16 genes with 56 sgRNAs, we identified 
the 0-bp to −200-bp region from the TSS as a high-activity win-
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which is similar to that of the dCas9–TV system13,29. Interestingly, 
we found that sgRNAs targeting the noncoding strand of DNA and 
with balanced GC contents are more likely to result in high levels of 
gene activation (Fig. 4a,b). However, to ensure efficient activation, a 
prescreen step for the best sgRNAs using a cell-based assay is always 
recommended. These observations also suggest that it is important 
to broaden the targeting scope for the successful implementation of 
CRISPRa in plants.

Towards this end, we developed an improved dAaCas12b-based 
activation system for targeting VTTV PAMs41 with a new engineered 
sgRNA scaffold, Aac.4 (Fig. 5a), although the activation potency was 
still not as strong as that of dCas9-based CRISPR–Act3.0. To further 
broaden the targeting scope of dCas9-based CRISPR–Act3.0, we 
developed dzCas9–NG–Act3.0 based on Cas9–NG43 and dSpRY–
Act3.0 based on SpRY49. Our data suggest that dSpRY–Act3.0 can 
achieve near-PAM-less gene activation, which worked well particu-
larly at NGN and NAN PAMs (Fig. 5d–g). Consistently, three recent 
studies demonstrated that SpRY could be used in genome editing 
at all NNN PAMs and exhibited a preference for NGN and NAN 
PAMs in rice56–58. Notably, high-frequency SpRY-mediated T-DNA 
self-editing was observed. The T-DNA self-targeting property could 
have compromised the activation potency of dSpRY–Act3.0 in our 
rice protoplast assays, due to the high copy numbers of plasmids 
used. Consequently, dSpRY–Act3.0 may induce higher activation 
efficiency in stable plants, although this needs to be tested. Taken 
together, these results demonstrate the high flexibility and adapt-
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adapted to other CRISPR–Cas systems. The development of the 
dAaCas12b–Act3.0 and dSpRY–Act3.0 systems greatly reduces the 
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targeting sites.

In conclusion, we have developed a highly efficient CRISPR–
Act3.0 toolbox for multiplexed gene activation in plants. This tool-
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pathways, investigating gene regulatory networks and conducting 
genome-wide screens for identifying key genes in regulating plant 
development and stress responses.

Methods
Construction of Golden Gate and Gateway compatible CRISPR–Act3.0 vectors. 
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vector pYPQ203 (Addgene no. 86207) for rice, pYPQ202 (Addgene no. 86198) for 
Arabidopsis, pCGS710 (a gift from C. Starker and D. Voytas from the University of 
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sgRNA expression entry clone using Gateway LR clonase II (Invitrogen). The 
detailed procedure is described in the Supplementary Methods.
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