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The CRISPR/Cas (Clustered Regularly Interspaced Short

Palindromic Repeats/CRISPR Associated) system-mediated

precise genome editing has revolutionized genome engineering

due to ease of use and versatility of multiplexing. Catalytically

inactivated Cas variants (dCas) further expand the usefulness

of the CRISPR/Cas system for genetics studies and

translational research without inducing DNA double-strand

breaks. Fusion of diverse effector domains to dCas proteins

empowers the CRISPR/dCas system as a multifunctional

platform for gene expression regulation, epigenetic regulation

and sequence-specific imaging. In this short review, we

summarize the recent advances of CRISPR/dCas-mediated

transcriptional activation and repression, and epigenetic

modifications. We also highlight the future directions and

broader applications of the CRISPR/dCas systems in plants.
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Introduction
Recent advances in sequencing technology have substan-

tially contributed to plant biology. The underlying mech-

anisms of plant growth and development are elucidated

by high-throughput sequencing of genome-wide coding

and non-coding RNA (ncRNA) transcripts. However, one

of the greatest challenges in plants remains to be defining

the causal relationships between gene expression and

phenotypic features. Conventional reverse genetics

approaches for investigating gene function aim to disrupt

gene expression through transgenic overexpression or

RNA interference (RNAi) in plants. However, they lack

the flexibility and scalability to achieve simultaneous

multigene modulations and epigenetic modifications
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[1]. Despite intense research efforts, the molecular func-

tions of many coding RNAs and ncRNAs remain poorly

understood. Transcription is a fundamental and dynamic

step in the regulation of gene expression. Thus, genome

engineering technologies that enable dynamic and pre-

cise regulation of individual or multiple transcripts at the

transcriptional or epigenetic level provide a promising

approach to investigate gene functions.

In the past few years, significant progress has been made in

developing programmable genome engineering technolo-

gies such as zinc-finger nucleases (ZFNs), transcription

activator-like effector nucleases (TALENs) and CRISPR/

Cas systems that enablepermanentDNA modifications ina

designable and sequence-specific manner [2]. Because of

its robustness and flexibility, the CRISPR/Cas systems

represent an efficient and simple method to manipulate

targeted genome sequences [3]. Beyond gene editing,

CRISPR/Cas systems have been repurposed as a program-

mable platform for transcriptional and post-transcriptional

regulation. This is aided by mutating the nuclease domains

to create catalytically inactive Cas proteins (dCas), which

remain competent for RNA-guided DNA binding but

inadequate to induce DNA double-strand breaks [4].

The dCas proteins can be fused with effector proteins

including transcriptional activators, repressors, and epige-

netic modulators, enabling efficient gene-specific

CRISPR-mediated activation (CRISPRa), interference

(CRISPRi), and epigenome modifications, respectively

[5��]. Here, we provide a succinct overview of the up-to-

date advances of CRISPR/dCas based transcriptional and

epigenetic regulation in plants.

Nuclease-deactivated Cas (dCas): a
programmable platform beyond genome
editing
Among class 2 CRISPR-Cas systems, type II Cas9, type V-

A Cas12a (formerly Cpf1) and type V-B Cas12b systems act

as RNA-guided endonucleases [6]. Both Cas9 and Cas12b

require single guide RNAs (sgRNAs), fusions of CRISPR

RNA (crRNA) and trans-activating crRNA (tracrRNA), for

precisely editing the genomic DNA, while Cas12a requires

only a crRNA (Figure 1a) [6]. Cas9 recognizes G-rich

protospacer adjacent motifs (PAMs), whereas Cas12a/b

recognize T-rich PAMs, significantly increasing the target-

ing scope within the genome (Figure 1a) [7]. Beyond

genome editing, CRISPR-Cas9 and Cas12a/b have been

repurposed as multifunctional platforms for transcriptional

regulation, chromatin engineering, and fluorescence based

live-imaging using dCas9 and dCas12a/b fused to effector
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Figure 1

(a)

(b)
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Engineered CRISPR/dCas and CRISPRa systems in plants.

(a) A schematic representation of dCas9/12a/12b-mediated CRISPR complexes and their use for transcription regulation. The sgRNA consists of a

trans-activating crRNA (tracrRNA) and CRISPR RNA (crRNA). The HNH and RuvC domains are mutated in dCas9, and RuvC domain is mutated in

dCas12a and dCas12b. Effectors include activators, repressors or epigenetic modifiers. NGG, (T)TTN, TTN represent the PAM nucleotide

sequences for Cas9, Cas12a, and Cas12b, respectively. (b) A schematic representation of the first and second generations of dCas9-based

activators. In dCas9-VP64, the transcriptional activator VP64 is directly fused to dCas9; in dCa9-TV, a potent activator TV, consisting of six copies

of the TALE TAD motif and two copies of VP64 is directly fused to dCas9; in dCas9-SunTag, ten tandem repeats of a small peptide GCN4 are

utilized to recruit multiple copies of scFv fusion with the transcriptional activator VP64. scFv, single-chain variable fragment; in CRISPR-Act2.0, the

sgRNA scaffold is modified to contain two MS2 RNA aptamers to recruit the MS2 bacteriophage coat protein (MCP) fusion with the transcriptional

activator VP64 and the dCas9 is fused to VP64; in dCasEV2.1, two MS2 RNA aptamers are fused to the 3’ end of sgRNA2.1 scaffold and MCP is

fused to a combinatory transcriptional activator VP64–p65–Rta (VPR), and the dCas9 is fused to transcriptional activator EDLL. VP64, four copies

of herpes simplex viral protein 16 (VP16); TAL, TAL effector transcription activation domain; p65, activator domain of nuclear factor kappa B; Rat,

Epstein–Barr virus R transactivator; EDLL, a potent plant transcriptional activation domain from AP2/ERF transcription factors. (c) A schematic

representation of dCas12a/b and Class 1 type I-E CRISPR-Cas-based activators. In dCas12a-TV, a potent activator TV is fused to a dCas12a; in

dCas12b-TV-MS2-VPR, the sgRNA scaffold is modified to contain one MS2 RNA aptamer to recruit the MCP fusion with the transcriptional

activator VPR and the dCas9 is fused to activator TV; in Class 1 type I-E CRISPR-Cas-based activator, the Class 1 type I-E CRISPR-Cas system

from Streptococcus thermophilus DGCC7710 is consisted of CasA, CasB, CasC, CasD, CasE and crRNA, and a plant transcriptional activation

domain CBF1 is fused to the C-terminus of CasA, CasD, and CasE.
domains (Figure 1a) [8]. Based on the similar concept,

several CRISPR–dCas platforms for transcriptional or epi-

genome engineering have been engineered and demon-

strated in plants [9].

CRISPR/dCas-mediated transcriptional
activation
The first-generation CRISPRa systems

In 2013, Gilbert et al. fused four copies of the transcription

activator VP16 (VP64) or a single copy of the p65 activation

domain to dCas9 to generate the first-generation of
Current Opinion in Plant Biology 2019, 60:101980 
CRISPRa, dCas9-VP64 and dCas9-p65, both achieving

targeted reporter gene activation of 12-fold to 15-fold in

eukaryotic cells [4]. Meanwhile, following a similar con-

cept, activation domains including VP64, EDLL and tran-

scriptional activator-like (TAL) effector were fused to the

C-terminus of dCas9 to generate dCas9-VP64, dCas9-

EDLL and dCas9-TAL in plants, respectively [10,11].

Although the first-generation CRISPRa systems were able

to achieve target loci upregulation with a sgRNA or multi-

ple sgRNAs, the activation potency typically remained low

(up to 12-fold), indicating the needs for improvement.
www.sciencedirect.com
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The second-generation CRISPRa systems

To improve CRISPRa, a total of four second-generation

CRISPRa systems have been developed in plants using

different strategies (Figure 1b) [12��,13�,14��,15]. Li et al.
developed and showcased a potent CRISPRa system,

dCas9-TV, in rice and Arabidopsis [12��]. In the dCas9-

TV system, the dCas9 is fused to six copies of the TALE

transcription activation domain (TAD) and two copies of

VP64 [12��]. Papikian et al. adapted the dCas9-SunTag

system for targeted gene activation in Arabidopsis [14��].
In the dCas9-SunTag system, a tandem array of ten

GCN4 peptides is fused to dCas9, and a single-chain

variable fragment (scFv), the GCN4 antibody, is fused to

the superfolder-GFP (sfGFP) and transcriptional activa-

tor VP64. Therefore, multiple copies of VP64 can be

recruited to the target locus, through the CRISPR/dCas9

system [14��]. In addition to direct fusion to dCas9, the

activation domains can also be recruited through the

sgRNA scaffold [16]. The sgRNA2.0 scaffold containing

two RNA aptamers, such as MS2 hairpins that specifically

bind MS2 coat protein (MCP), was engineered for tran-

scriptional activation in mammalian cells [17]. Based on

the sgRNA2.0 strategy, Lowder et al. developed another

effective second-generation CRISPRa system in plants,

CRISPR-Act2.0, which is composed of sgRNA2.0, dCas9-

–VP64, and MS2–VP64 [13�]. Additionally, using a novel

sgRNA scaffold, scaffold RNA 2.1 (scRNA 2.1), which

contains the anchoring sites for transcriptional activator

VPR (VP64-p65-Rta), Selma et al. achieved high

transcriptional activation in N. benthamiana [15]. Afore-

mentioned four second-generation CRISPRa systems

conferred significantly stronger transcriptional activation

than dCas9-VP64. However, it remains ambiguous which

system is the most potent across various plant species.

CRISPRa systems based on Cas12a/b

Recently, several groups have demonstrated dCas12a-

based gene activation in mammalian cells by directly

fusing activator to dCas12a or engineered split dCas12a

[18�,19,20]. The split dCas12a activator induced greater

activation efficiency than analogous dCas9-based activa-

tors [18�]. However, an attempt to engineer a potent plant

dCas12a activator failed since the dCas12a-TV activator

only resulted in a low activation of 4.7-fold in Arabidopsis
cells (Figure 1c) [12��]. As a proof-of-concept experiment

for developing dCas12b activator, Teng et al. tested the

dAaCas12b fused to a VP64 or VPR activator for activation

in mammalian cells, demonstrating only a low activation

potency [21]. Ming et al. screened a total of 12 transcrip-

tional activation configurations in rice protoplasts and

revealed that the combination of dAaCas12b-TV, Aac.3

sgRNA scaffold, and MS2-VPR represents a strong

dAaCas12b-based transcriptional activation system

(Figure 1c), achieving fivefold to eightfold transcriptional

activation in plants [7]. Notably, the activation potency of

dCas12a/b activators was significantly lower compared to

dCas9 [7,21]. This discrepancy may be caused by the
www.sciencedirect.com 
considerable difference in their structures, components

and mechanisms of action [22,23], suggesting further

efforts on developing the dCas12-based gene activation

platform is warranted.

CRISPRa based on Type I CRISPR systems

While most genome engineering systems are based on

Type II CRISPR systems that contain single Cas proteins

such as Cas9 and Cas12a/b, two recent works repurposed

the complex Type I CRISPR system for gene activation

in human cells [24] and in maize [25]. In the latter case,

the class 1 type I-E CRISPR system from S. thermophilus
was used for developing a plant CRISPRa system, con-

sisting of five Cas proteins (CasA-E) (Figure 1c). Young

et al. fused C-terminal acidic plant transcriptional activa-

tion domain from the Arabidopsis cold binding factor 1

(CBF1) to CasA, CasD and CasE individually and dem-

onstrated activation of the reporter gene, DsRed, in each

case (Figure 1c) [25]. Impressively, simultaneous recruit-

ment of the activator by these three Cas proteins resulted

in much higher gene activation (�100 fold), likely due to

additive or synergistic effects [25]. Hence, the use of

Type I CRISPR system to recruit multiple copy of the

same transcriptional activator or different transcriptional

activators represents another promising strategy for

developing efficient CRISPRa systems in plants.

Strategies to improve CRISPRa efficiency
Development of robust transcriptional activators

The potency of CRISPRa can be significantly enhanced

by recruiting effective transcriptional activators using

different strategies (Figure 2). The first approach involves

developing novel transcriptional activation domains. The

herpes simplex viral protein 16-like activation domain

(VP16), and multiple tandem copies of VP16 (VP64,

VP128, and VP160) have been widely used in mammalian

cells and plants (Figure 2a) [11,13�,14��,17,26]. Recently,

Dong et al. screened a series of candidate transcriptional

activation domains and demonstrated that SoxS activator

can induce robust gene activation by recruiting the RNA

polymerase in E. coli [27]. The second strategy to enhance

CRISPRa activation potency is based on fusing various

activators in tandem to dCas proteins (Figure 2a). The

VPR activator, an improved activation module, is com-

posed of a hybrid tripartite activator, VP64, p65AD, and

Epstein–Barr virus R transactivator (Rta) [28]. The

dCas9-VPR/-MS2:VPR can induce higher gene activation

than dCas9-VP64 in both mammalian cells and plants

[15,28,29]. TV activator is composed of six copies of the

TALE TAD motif (TAL) and two copies of VP64 con-

ferring significantly stronger transcriptional activation

than VP64 activator [12��]. In addition, the enhancement

of gene activation can be achieved by the recruitment of

many activator copies (Figure 2a). In dCas9–SunTag

system, multiple VP64 copies can be recruited by a single

dCas9, resulting in strong activation of endogenous genes

in mammalian cells and in Arabidopsis [14��,30]. It is
Current Opinion in Plant Biology 2019, 60:101980
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Figure 2

(a) (b)

(c)
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Strategies for enhancing the potency of CRISPRa.

(a) Developing robust transcriptional activators. The activation potency of CRISPRa could be significantly improved by recruiting potent activation

domains. VP64, TAL, p65, Rat, hsf1 and SoxS are non-plant activation domains, and EDLL, ERF2m and CBF1 are plant derived activation

domains. Fusion of dCas proteins with various activation domains in tandem and many activator copies based on SunTag can enhance CRISPRa

activation potency. VP64, four copies of herpes simplex viral protein 16 (VP16); TAL, TAL effector transcription activation domain; p65,

transactivator domain of nuclear factor kappa B; Rat, Epstein–Barr virus R transactivator; hsf1, human heat shock factor 1; EDLL, a potent plant

transcriptional activation domain from AP2/ERF transcription factors; ERFm, a modified plant transcriptional activation domain from ethylene

response factor; CBF1, a C-terminal acidic plant transcriptional activation domain from the Arabidopsis cold binding factor 1. (b) Optimization of

CRISPR RNA scaffolds for CRISPRa. The sgRNA scaffolds with MS2, PP7, boxB or com RNA aptamer can recruit their cognate RNA-binding

proteins fused to activation domains to activate gene expression. Multiple orthogonal RNA-binding modules can be adopted into one sgRNA

scaffold, which allows for recruitment of the same or different activators. (c) Optimization of targeting location for CRISPRa. CRISPRa is affected

by the position of the sgRNA relative to the transcription-start site (TSS) of the target gene. MS2, PP7, boxB, com represent RNA aptamers.
anticipated that CRISPRa in plants can be further

improved when highly potent transcriptional activators

are used.

Optimization of CRISPR RNA scaffolds

Previous studies have demonstrated that the efficiency of

CRISPRa can be improved by engineering sgRNA scaf-

folds [16,17]. In sgRNA2.0 scaffold, two copies of MS2

RNA aptamer were added into the tetraloop and stem-

loop 2 regions of the sgRNA sequence (Figure 2b),

respectively, which protrude outside of the Cas9–sgRNA

ribonucleoprotein complex [17]. Each MS2 aptamer can

bind to bacteriophage MS2-coat protein (MCP) fused to

an activator, indicating multiple activators can be

recruited by the sgRNA2.0 scaffold (Figure 2b). The

sgRNA 2.0-based CRISPR-Act2.0 system resulted in

higher transcriptional activation than dCas9-VP64
Current Opinion in Plant Biology 2019, 60:101980 
[13�,17]. Besides MS2, other RNA aptamers such as

PP7, boxB, and com can be introduced into sgRNA

scaffolds for the recruitment of effector proteins

(Figure 2b) [16,31�]. Zalatan et al. reported that a heter-

ologous MS2-PP7 scRNA scaffold induced substantially

stronger activation compared to a single type of RNA

aptamer [16], demonstrating a promising approach to

recruit multiple activation effectors by employing diverse

RNA aptamers in a single sgRNA scaffold (Figure 2b). In

addition, this strategy allows for orthogonal transcrip-

tional regulation, such as simultaneous activation and

repression of different target loci in the same cell or

organism.

Optimization of targeting location

Previous studies have reported that the potency of CRIS-

PRa is highly sensitive to the distance between the
www.sciencedirect.com
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sgRNA target site and transcription start site (TSS)

(Figure 2c). Konermann et al. revealed that sgRNAs

targeting the �200 bp to +1 bp window upstream of the

TSS confer the highest activation level in mammalian

cells [17]. In bacteria, effective gene activation requires

sgRNAs to be situated in a narrower window of the 60–80

bp upstream of the TSS on the non-coding strand and 80–

90 bases upstream on the coding strand [27]. Gong et al.
demonstrated that sgRNAs within the 350 bp upstream

region of the TSS are the most effective for dCas9-TV-

based transcriptional activation in rice [32]. In humans,

numerous prediction algorithms have been used to

develop genome-wide sgRNA libraries for CRISPRa/i

based on position, sequence features, and off-target activ-

ity of sgRNAs [33]. These prediction algorithms allow for

the selection of highly specific and active sgRNAs in

human cells. However, there is currently little guidance

on how to design efficient sgRNAs for CRISPRa/i in

plants, suggesting further efforts on developing such

algorithms in plants are needed.

CRISPR/dCas-mediated transcriptional
repression
CRISPR interference (CRISPRi) represents a new

reprogrammable tool for targeted gene repression

[34]. By binding to the promoter region proximal to

the TSS, the dCas proteins or dCas proteins fused to

transcriptional repression domains can interfere with

transcription initiation or elongation by blocking RNA

polymerase and transcription factor binding. In plants,

only a few cases of CRISPRi application have been

reported [7,10,11,12��]. dCas9-3xSRDX (SUPERMAN

Repression Domain X) and dCas9-SRDX transcriptional

repressors have been demonstrated in Arabidopsis and N.
benthamiana (Figure 3), respectively, both leading to a
Figure 3

CRISPR/dCas-mediated repression and epigenetic manipulation.

Schematic representation of dCas9/12a/12b-3xSRDX repressors and dCas-

be recruited to the target site via the dCas/sgRNA complex. Transcription r

with different repressor domains. Based on SunTag system, multiple copies

recruited to a specific locus by the dCas/sgRNA complex. dCas, catalytical

Domain X; TET1cd, TEN-ELEVEN TRANSLOCATION1 of demethylase; NtDR

ScFv, single-chain variable fragment.

www.sciencedirect.com 
transcript level reduction to approximately 40% of the

control [10,11]. Based on the same strategy, dCas12a-

mediated and dCas12b-mediated repressors have been

demonstrated in Arabidopsis and rice (Figure 3), respec-

tively [7,36]. However, the low efficiency of current

CRISPRi tools limits the widespread use of CRISPRi

for programmed gene repression in plants. The strate-

gies for improving CRISPRa efficiency could be

adopted to optimize the CRISPRi potency [35�,37–41].

CRISPR/dCas-mediated epigenetic
manipulation
Epigenetic modifications such as histone modifications

and DNA methylation are important means of transcrip-

tional regulation [42]. CRISPR/dCas9-based epigenome

editors have been developed to facilitate site-specific

epigenetic modulation by recruiting a diverse array of

epigenetic-effector domains [14��,43,44], offering an

unprecedented opportunity for investigating the relation-

ships between specific phenotypes and chromatin fea-

tures. Gallego-Bartolomé et al. developed a site-specific

DNA demethylation system in Arabidopsis based on the

dCas9-SunTag-TET1cd (Figure 3), where the human

demethylase TEN-ELEVEN TRANSLOCATION1

(TET1cd) was recruited by the SunTag [45]. By targeting

the FWA promoter, the authors successfully achieved

heritable site-specific DNA demethylation, resulting in

a late-flowering phenotype [45]. Papikian et al. further

applied the dCas9-SunTag system to develop a targeted

DNA methylation tool (Figure 3) [14��]. By fusing to the

Nicotiana tabacum DRM methyltransferase catalytic

domain (NtDRMcd), the dCas9-SunTag system con-

ferred efficient methylation within the FWA promoter

and led to early flowering plants [14��]. Another study

enabled manipulation of Arabidopsis flowering time by
Current Opinion in Plant Biology

SunTag system-mediated epigenetic modifiers. 3xSRDX repressor can

epression by dCas proteins can be improved by fusing dCas proteins

 of epigenetic modifiers, TET1cd or NtDRMcd, fused to scFv are

ly inactivated Cas; 3xSRDX, three copies of SUPERMAN Repression

Mcd, Nicotiana tabacum DRM methyltransferase catalytic domain;

Current Opinion in Plant Biology 2019, 60:101980
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Figure 4

(a)

(b)
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Future applications of the CRISPR–dCas technology in plants.

(a) Overview of rewiring metabolic engineering using CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) systems. CRISPR–dCas

platform can be used to perturb numerous parts of a pathway simultaneously, thus redirecting flux and enhancing the output of the desired

product from a branched metabolic pathway. Working together with dCas proteins, sgRNA constructs with MS2 hairpin recruit MCP fused to

VP64 to activate the gene expression of A, B, C and E, sgRNA construct with com hairpin recruits Com fused to 3xSRDX to repress the gene

expression of D. (b) CRISPRa/i-based high-throughput screen for key genes controlling plants development and environmental stress responses.

The sgRNA library may target a whole genome, gene family, or cluster of genes with related functions. The sgRNAs can be transformed into

plants along with a chosen dCas protein fused with an activator or repressor. The target sites of sgRNAs in the select population with interesting

traits can be revealed using deep sequencing. dCas, catalytically inactivated Cas; MCP, MS2 coat protein; VP64, four copies of the transcription

activator VP16; 3xSRDX, three copies of SUPERMAN Repression Domain X; Com, non-cognate-binding proteins of com; MS2, RNA aptamer

binding to MCP; com, RNA aptamer binding to Com; sgRNA, single guide RNA.
altering the epigenetic status within the flowering time

gene FLOWERING LOCUS T (FT) promoter based on

the sgRNA 2.0 scaffold strategy [44]. However, these

dCas9-based epigenome editors generally lead to global

off-target effects by leaving epigenetic modification foot-

prints [14��,43,46,47]. Future research is needed to

improve targeting specificity of these epigenome editors.

Conclusions and future perspectives
In this review we have summarized the adoption of the

CRISPR/dCas systems for transcriptional and epigenetic

regulation, allowing for precise modification of gene

expression and epigenetic marks. Importantly, the

CRISPR/dCas platforms offer a simple method for

manipulating the expression of multiple genes and is,

thus, important for rewiring metabolic engineering and

producing valuable metabolites in plants (Figure 4a).

Furthermore, the CRISPR/dCas platforms, so far demon-

strated in mammalian cells, enable genome-wide screen-

ing [48–50], which could allow for high-throughput screen

of key genes controlling plant development and
Current Opinion in Plant Biology 2019, 60:101980 
environmental stress responses (Figure 4b). Future

efforts towards improvement of the repression and acti-

vation efficiency as well as the specificity of epigenetic

manipulation are expected. The development of induc-

ible and cell/tissue-type-specific CRISPR/dCas tools will

further broaden the application scope of the CRISPR/

dCas systems in plants.
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