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The rapid development of the CRISPR–Cas9, –Cas12a and –
Cas12b genome editing systems has greatly fuelled basic and 
translational plant research1–6. DNA targeting by these Cas 
nucleases is restricted by their preferred protospacer adja-
cent motifs (PAMs). The PAM requirement for the most popu-
lar Streptococcus pyogenes Cas9 (SpCas9) is NGG (N = A, T, 
C, G)7, limiting its targeting scope to GC-rich regions. Here, 
we demonstrate genome editing at relaxed PAM sites in rice 
(a monocot) and the Dahurian larch (a coniferous tree), using 
an engineered SpRY Cas9 variant8. Highly efficient targeted 
mutagenesis can be readily achieved by SpRY at relaxed 
PAM sites in the Dahurian larch protoplasts and in rice trans-
genic lines through non-homologous end joining (NHEJ). 
Furthermore, an SpRY-based cytosine base editor was devel-
oped and demonstrated by directed evolution of new herbicide 
resistant OsALS alleles in rice. Similarly, a highly active SpRY 
adenine base editor was developed based on ABE8e (ref. 9) 
and SpRY-ABE8e was able to target relaxed PAM sites in rice 
plants, achieving up to 79% editing efficiency with high prod-
uct purity. Thus, the SpRY toolbox breaks a PAM restriction 
barrier in plant genome engineering by enabling DNA editing 
in a PAM-less fashion. Evidence was also provided for second-
ary off-target effects by de novo generated single guide RNAs 
(sgRNAs) due to SpRY-mediated transfer DNA self-editing, 
which calls for more sophisticated programmes for designing 
highly specific sgRNAs when implementing the SpRY genome 
editing toolbox.

The targeting scope of SpCas9 (hereafter Cas9) can be broadened 
with Cas9 orthologs and engineered Cas9 variants. Cas9 orthologs 
with different PAM requirements, such as StCas9 and SaCas9, have 
been demonstrated in plants10,11. Multiple engineered Cas9 variants 
have been adopted for plant genome editing at altered PAM sites, 
including SpCas9-VQR for NGAN or NGNG PAMs12,13, Cas9-NG 
for NG PAMs14–17 and iSpyMacCas9 for NAAR PAMs18. Despite 
this progress, a Cas9 variant without any PAM restrictions had 
remained elusive until very recently. The recently engineered SpRY 
Cas9 variant confers nearly PAM-less genome editing in human 
cells8. Compared to wild-type Cas9, SpRY contains 11 amino acid 
changes (Supplementary Fig. 1). In human cells, SpRY can edit NR 
(R = A, G) PAM sites more efficiently than NY (Y = C, T) PAM 

sites8. SpRY is poised to further revolutionize genome editing in 
many organisms.

To assess SpRY in plants, we first targeted a total of 59 NNN 
PAM sites in rice, a monocot and major crop. Genome editing at 
these target sites was conducted in rice protoplasts and quantified 
by next-generation sequencing (NGS) of PCR amplicons. The data 
indicated SpRY editing, reflected as NHEJ mutations, at nearly all 
the target sites, albeit with variable efficiencies (Fig. 1a–d). By con-
trast, Cas9 only showed editing at the canonical NGG PAM sites 
(Fig. 1b) and to some extent at NAG PAM sites (Fig. 1a), which are 
known to be editable by Cas9 (ref. 19). At NAN PAM sites, SpRY 
showed higher editing efficiency (roughly 20% for the median) at 
NAG and NAT PAM sites than at NAA and NAC PAM sites (roughly 
5–10% for the median) (Fig. 1a and Supplementary Fig. 2). Notably, 
SpRY appeared to be more robust at editing NAG PAM sites than 
Cas9 (Fig. 1a). At NGN PAM sites, SpRY resulted in 5–20% median 
editing efficiency and displayed better editing at NGG PAM sites 
than at NGA, NGC and NGT PAM sites (Fig. 1b and Supplementary 
Fig. 3). At NYN PAM sites with NCN and NTN PAMs, SpRY gen-
erated roughly 5–10% median editing efficiency (Fig. 1c,d and 
Supplementary Figs. 4 and 5). Overall, Cas9 slightly outperformed 
SpRY (roughly 30% as opposed to 20% median editing efficiency) at 
the canonical NGG PAM sites (Fig. 1b), underperformed compared 
to SpRY at the non-canonical NAG PAM sites (Fig. 1a) and exhib-
ited very low to no editing activity at relaxed non-canonical NNN 
PAM sites (Fig. 1a–d). By contrast, SpRY could edit all NNN PAM 
groups and showed relatively higher editing efficiency at NRN PAM 
sites than NYN PAM sites (Fig. 1a–d and Supplementary Figs. 2–5), 
which is consistent with the data from human cells8. There also 
appears to be no strong discrimination at the third nucleotide in the 
PAMs (Fig. 1a–d), supporting the near PAM-less nature of SpRY.

To examine the characteristics of SpRY editing, we compared 
NHEJ editing profiles of SpRY and Cas9 at NAG PAM sites and 
NGG PAM sites using NGS data from rice protoplast amplicons. 
The analysis of deletion positions showed a large overlap between 
SpRY and Cas9 (Fig. 1e). However, a closer look at deletion sizes 
revealed a higher frequency of larger deletions by SpRY (Fig. 1f). 
For example, SpRY resulted in a higher frequency of 5 bp deletions 
at both target sites when compared to Cas9 (Fig. 1f). Further analy-
sis of SpRY editing profiles at additional 14 NAN, NGN, NCN and 
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NTN PAM sites consistently revealed a high frequency of 3–7 bp 
deletions (Supplementary Figs. 6–9), which are larger than the 
1–3 bp deletions typical of Cas9 and similar to Cas12a with 5–10 bp 
deletions2,20. This feature indicates that SpRY is probably more suit-
able than Cas9 for knocking out microRNA genes21 or engineering 
quantitative trait variation through promoter editing22. We also 
compared SpRY to Cas9-NG and xCas9 (ref. 23) at NGN PAM sites in 
rice protoplasts. On average, SpRY demonstrated editing efficiency 
comparable to Cas9-NG, but yielded much higher editing efficiency 
than xCas9 at the NGN sites in rice protoplasts (Supplementary  
Fig. 10). Taken together, SpRY appears to be PAM-less for genome 
editing in rice. With SpRY’s PAM-less feature, we would expect 
vector self-editing. In fact, the larger deletions by SpRY could be 
attributed to editing guided by newly generated sgRNAs after vector 
self-editing, which warranted further investigation in stable trans-
genic plants. Nevertheless, the ability to generate larger deletions 
by SpRY may aid gene knockout and cis regulatory element editing 
applications.

CRISPR–Cas genome editing systems have been widely applied 
in angiosperms, including monocots and dicots1,4,5. Genome editing 
has, however, not been demonstrated in gymnosperms, which con-
tain many plant species of evolutionary and ecological importance. 
We hence sought to apply SpRY for genome editing in a gymno-
sperm species. To this end, we targeted three genomic sites in the 
Dahurian larch (Larix gmelinii), a coniferous tree (Fig. 1g). An aver-
age editing efficiency of 72.5% was achieved by SpRY at a canonical 
GGG PAM site in the Dahurian larch protoplasts (Fig. 1h). Robust 
editing efficiency was detected at two relaxed GAG and TGT PAM 
sites, with average editing efficiencies of roughly 17.0 and 12.0%, 
respectively (Fig. 1h and Supplementary Fig. 11). Genome editing 
by SpRY in the Dahurian larch protoplasts was further confirmed 
by Sanger sequencing (Fig. 1i). These data indicate the promis-
ing applications of SpRY for PAM-less genome editing in diverse  
plant species.

To see whether SpRY can readily generate edited plants, we 
transformed 12 SpRY transfer DNA (T-DNA) vectors and two 
Cas9 control T-DNA vectors in rice by Agrobacterium-mediated 
transformation. SpRY resulted in 62.5% editing efficiency at the 
OsPDS-AGG-02 site, which was slightly lower than Cas9’s editing 
efficiency (79.0%) at this canonical NGG PAM site (Fig. 2a and 
Supplementary Fig. 12). At a NAG PAM site (OsPDS-CAG-01), 
SpRY displayed higher editing efficiency than Cas9 (23.5% as 
opposed to 13.6%) (Fig. 2a). Editing efficiencies in T0 lines by SpRY 
at ten relaxed PAM sites (TAA, GAA, GAT, CAC, TGC, GGT, TTG, 
CTG, ACT and TCA) were 93.8, 13.3, 100, 63.2, 95.7, 40.9, 46.7, 
5.3, 8.7 and 12.5%, respectively (Fig. 2a). The genotypes of targeted 
mutations these T0 rice plants were revealed by Sanger sequencing, 
which showed high-frequency biallelic editing in many lines (Fig. 2a  
and Supplementary Figs. 13–16). Albino T0 plants due to biallelic 
editing of OsPDS by SpRY at these PAM sites were readily recovered 

(Fig. 2b). These data indicate SpRY is robust for targeted mutagen-
esis at relaxed PAM sites in rice T0 lines, consistent with the pro-
toplast data (Fig. 1a). Altogether, we demonstrated robust targeted 
mutagenesis by SpRY in stable rice plants in a PAM-less fashion.

However, the PAM-less nature of SpRY makes the system vul-
nerable to vector self-editing. The canonical sgRNA scaffold con-
tains the GTT trinucleotide immediately after the protospacer 
sequence. In rice protoplasts, SpRY resulted in roughly 5% median 
editing efficiency at NTT PAM sites (Fig. 1d), indicating that the 
GTT trinucleotide PAM is targetable by SpRY, which is further 
supported by SpRY induced larger deletions at the target sites  
(Fig. 1f). By genotyping the T0 lines resulting from the 12 SpRY 
T-DNA constructs, we indeed found evidence of T-DNA self-editing 
for 11 constructs (Fig. 2a), including the one targeting an AGG PAM 
site. By contrast, Cas9 did not result in T-DNA self-editing at the 
two target sites (Fig. 2a). Both single-site and multi-site self-editing 
events were found in T0 lines, and in some cases the T0 lines con-
tained both on-target editing and T-DNA self-editing (Fig. 2c–e and 
Supplementary Fig. 17). On-target editing efficiencies at NRN PAM 
sites (for example, AGG and GGT PAMs) are generally higher than 
T-DNA self-editing efficiencies at the vector’s own GTT PAM site, 
while T-DNA self-editing efficiencies at this GTT PAM site seem 
to be higher than on-target editing efficiencies at NYN PAM sites 
(Fig. 2a). Hence, these data not only reveal SpRY’s high tendency 
for self-editing, but also further confirm SpRY’s general preference 
for editing NRN PAMs over NYN PAMs. At all four NYN PAM 
sites tested (TTG, CTG, ACT and TCA), much higher frequencies 
of T-DNA self-editing were observed (80.0, 36.8, 52.2 and 79.2%) 
than target site editing (46.7, 5.3, 8.7 and 12.5%). These data sup-
ported the idea that the GTT PAM on the T-DNA was favoured 
by SpRY over many NYN PAMs, which may partly contribute to 
lower on-target editing at NYN PAM sites. Since we have success-
fully obtained targeted mutants for all NNN SpRY vectors in the T0 
generation. we conclude that SpRY is a potent nuclease for editing 
PAM-less sites, despite self-editing.

The PAM-less nature of SpRY would potentially increase the 
chance of off-targeting on two levels. The first level of off-targeting 
is solely based on sequence similarity to the target sites. To assess 
this type of off-targeting, we selected five constructs for editing 
GAA, TTG, GGT, AGG and ACT PAMs. Between 15 and 23 rice 
T0 transgenic lines for each construct were genotyped by Sanger 
sequencing at all top off-target sites with 1–3 mismatches, iden-
tified by Cas-OFFinder24. We have shown previously that Sanger 
sequencing is sensitive enough to capture off-target mutations 
identified by whole genome sequencing6. No off-target mutations 
were detected at these sites (Supplementary Table 1). The second  
level of off-targeting may result from the de  novo generated 
sgRNAs due to T-DNA self-editing. To assess this, we chose eight 
edited T0 plants that carried small self-editing deletions resulting 
from four different SpRY constructs (nos. 3136, 3139, 3144 and 

Fig. 1 | PAM-less gene editing by SpRY in the protoplasts of rice and the Dahurian larch. a–d, Comparison of Cas9 and SpRY at editing NAN (16 sites) 
(a), NGN (19 sites) (b), NCN (12 sites) (c) and NTN (12 sites) (d) PAM sites in rice cells. Editing efficiency was quantified by NGS of PCR amplicons. 
Left panel, editing at PAM subgroups. Right panel, editing at the whole PAM group. Each dot represents a biological replicate. Each target contains three 
biological replicates. Different capital letters indicate significant differences (P < 0.05; one-way analysis of variance, Bonferroni post hoc test). Samples 
with the same uppercase letters have no significant difference. The median, interquartile range (IQR) and 1.5× IQR are shown. The maxima, centre and 
minima of each box refer to the upper quartile (Q3), median (Q2) and lower quartile (Q1). The maxima and minima of whiskers refer to Q3 + 1.5× IQR, 
Q1 − 1.5× IQR. e, Comparison of deletion positions between Cas9 and SpRY at three NGG and four NAG PAM sites in rice cells. Each dot represents a 
biological replicate. Each target contains three biological replicates. Data are presented as mean values ± s.d. (n = 12 for NAG PAM sites, n = 9 for NGG 
PAM sites). f, Comparison of deletion sizes between Cas9 and SpRY at three NGG and four NAG PAM sites in rice cells. Each dot represents a biological 
replicate. Each target contains three biological replicates. Data are presented as mean values ± s.d. (n = 12 for NAG PAM sites, n = 9 for NGG PAM 
sites). g, A photograph of the Dahurian larch (L. gmelinii) seedlings sourced for the protoplast assay. h, RFLP analysis of editing efficiency of SpRY at 
LarACT-GGG-01 and LarACT-GAG-01 sites in the L. gmelinii protoplasts. The upper bands uncut by MfeI denote edited mutations. Editing results of three 
biological replicates are shown. The sizes of the DNA marker from the top to the bottom are 1,000, 750, 500, 250 and 100 bp. i, Detection of targeted 
mutations by SpRY in L. gmelinii protoplasts by Sanger sequencing. The red arrowheads indicate the cleavage positions of SpRY on the target sequences.
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3146) (Supplementary Table 2). These lines carried newly gener-
ated sgRNAs with altered protospacers (for example, 17 and 21 nt) 
due to T-DNA self-editing. We assessed 42 top off-target sites pre-
ferred by these new sgRNAs and found one T0 line (no. 3139-3-1)  
contained an off-target mutation caused by a de  novo gener-
ated sgRNA that has 17 nucleotides perfect match to this off site 
(Supplementary Table 2 and Supplementary Fig. 14b). No muta-
tions were found at the remaining 41 putative off-target sites in 

the seven T0 lines, even though some sites only have one nucleo-
tide mismatch to the protospacers (Supplementary Table 2). Thus, 
despite self-editing, we did not find strong and concerning evi-
dence for off-target effects of SpRY.

The PAM-less feature of SpRY renders many previously inacces-
sible bases amenable to base editing. We fused PmCDA1-UGI to the 
C terminus of SpRY-D10A nickase, generating a PAM-less cytosine 
base editor termed SpRY-PmCDA1 (Supplementary Fig. 1). Testing 
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Fig. 2 | Comparison of genome editing and self-cleavage by SpRY in stable rice lines. a, Summary of genome editing and vector self-cleavage editing for 
14 T-DNA constructs in rice T0 lines. The data presented here include editing of two PAM sites (OsPDS-AGG-02 and OsPDS-CAG-01) by both Cas9 and 
SpRY as well as editing at ten relaxed PAM sites by SpRY. b, Examples of albino phenotype due to biallelic editing of OsPDS. Scale bar, 2 cm. c, Schematic 
representation of genotyping results of both genome editing and self-cleavage events for four SpRY constructs in T0 rice lines. d,e, Genotypes of rice T0 
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of SpRY-PmCDA1 in rice protoplasts at 26 target sites demonstrated 
PAM-less base editing as it resulted in C-to-T base editing at many 
sites with NAN, NGN, NCN and NTN PAMs, although the editing 
efficiencies varied (Fig. 3a and Supplementary Fig. 18). Consistent 
with NHEJ mutagenesis data, SpRY-PmCDA1 showed higher edit-
ing efficiency at NRN PAMs than at NYN PAMs (Fig. 3a). Analysis 

of protoplast editing data at the 26 sites revealed an editing win-
dow spanning from the first nucleotide to the sixth nucleotide in 
the protospacer from the 5′ end (Supplementary Fig. 19), consis-
tent with previous PmCDA1 studies25,26. Further analysis of three 
SpRY-PmCDA1 constructs in stable transgenic rice plants demon-
strated efficient base editing at all three relaxed PAM sites (10.0, 42.1 
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Fig. 3 | PAM-less C-to-T base editing in rice. a, Summary of C-to-T base editing by SpRY-PmCDA1 at 26 relaxed PAM sites in rice protoplasts. Each dot 
represents a biological replicate and each sgRNA contains three biological replicates. Independent-sample two-tailed t-tests, *P < 0.05 and **P < 0.01. 
Samples with the same uppercase letters have no significant difference. The median, IQR and 1.5× IQR are shown. The maxima, centre and minima each 
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of herbicide resistant calli and seedlings. Monoallelic editing bases are indicated by black arrows and biallelic editing bases are indicated by blue arrows.
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and 72.2%, respectively) (Fig. 3b and Supplementary Fig. 20). At 
the OsDEP1-GGT-01 site, three T0 lines (15.8%) contained byprod-
uct deletions (Fig. 3b) and two T0 lines (10.5%) displayed vector 
self-editing (Supplementary Fig. 20). At the OsALS-sgRNA22 site, 
seven T0 lines (38.9%) had byproduct editing and two lines showed 
T-DNA self-editing (Fig. 3b). At all three target sites, on-target base 
editing was much favoured over T-DNA self-editing (Fig. 3b). On 
the basis of the data in rice protoplasts and stable plants, we con-
cluded that SpRY confers precise C-to-T base editing without PAM 
restrictions.

We reasoned PAM-less base editing would greatly facilitate 
direct protein evolution in  vivo. To demonstrate this capability, 
we pooled a small library of 12 sgRNAs for targeting three select 
regions in OsALS with SpRY-PmCDA1 for evolving herbicide resis-
tance in rice (Fig. 3d). Agrobacteria carrying SpRY-PmCDA1 and 
12 sgRNAs were used to transform rice calli followed by herbi-
cide selection on 0.4 μM bispyribac sodium MS medium. Multiple 
resistant calli or seedlings emerged on the sgRNA-positive plates, 
while no surviving calli were found on the sgRNA-negative plates  
(Fig. 3e). Sequencing of independent surviving calli revealed the 
molecular basis of new herbicide resistant OsALS alleles, where 
C-to-T base changes on the non-coding strand resulted in missense 
mutations G628E/R/K and G629S (Fig. 3f). All these events were 
induced by an sgRNA with a relaxed AGC PAM (Fig. 3f), and the 
C-to-T conversion happened in the PmCDA1 editing window (first 
to the sixth nucleotide of the protospacer)18,25–27. This experiment 
demonstrates the powerful application of SpRY-PmCDA1 PAM-less 
base editor for directed protein evolution in plants28–31.

Last but not least, we wanted to develop an efficient SpRY 
adenine base editing (ABE) system for PAM-less A-to-G base 
editing. Recently, an improved ABE8e was reported to have very 
high A-to-G editing efficiency in human cells9, which catalyses 
deamination more than 1,000 times faster than early ABEs32. We 
first generated ABE8e and ABEmax (hereafter ABE)33 based on 
Cas9 and compared both ABEs at the canonical NGG PAM sites 
in rice protoplasts (Supplementary Fig. 21). Indeed, we observed 
much higher A-to-G base editing with ABE8e than with ABE  
(Fig. 4a,b and Supplementary Fig. 21). Next, we made the SpRY 
version of ABE8e (SpRY-ABE8e) (Supplementary Fig. 1), which 
showed detectable A to G editing across many relaxed PAM sites in 
rice protoplasts (Fig. 4a,b and Supplementary Fig. 22a). The high 
activity editing window for SpRY-ABE8e appeared to span from 
the fourth to the eighth nucleotide in the protospacer from the  
5′ end (Fig. 4c and Supplementary Fig. 22b), consistent with ABE8e 
editing data in human cells9. It is of note that the efficiency of 
A-to-G base editing is generally much lower than C-to-T base edit-
ing in protoplasts18,30, which could be due to low activity of A-to-G 
base editing pathway in non-replicating cells. To further assess 
SpRY-ABE8e, we generated stable transgenic rice T0 lines for two 
constructs and found 79.0% A-to-G editing at the OsPDS-TAA04 
site and 45.0% A-to-G editing at the OsPDS-TTG-01 site (Fig. 4d  
and Supplementary Fig. 23). Notably, no byproducts were found 
among edited lines (Fig. 4d) and homozygous edited lines were 
easily identified at different relaxed PAM sites (Fig. 4e and 
Supplementary Fig. 23). High-frequency T-DNA self-editing was 
also observed for these two constructs (42.1 and 70.0%) (Fig. 4f).  
In addition, testing at a third target site (OsPDS-CCA-02) by 
SpRY-ABE8e revealed only T-DNA self-editing (27.8%) (Fig. 4d). 
Such prevalent self-editing could potentially contribute to sec-
ondary off-targeting due to de novo generated sgRNAs with 20-nt 
protospacers. To investigate this secondary off-targeting effect, 
we genotyped 39 top off-targeting sites in 13 T0 lines derived 
from three independent SpRY-ABE8e constructs. Two second-
ary off-target events were detected in two independent T0 lines 
(nos. 3185-1-1 and 3185-14-1) and these events were caused 
by the same de  novo generated sgRNA that contained only one 

nucleotide mismatch at the core 2–20 nt protospacer sequence to 
the off-target site (Supplementary Table 2). Both events carried 
a single A-to-G mutation at the off-target sites (Supplementary 
Fig. 24). No secondary off-target mutations were detected at the 
remaining 37 putative off-target sites. Thus, SpRY-ABE8e offers 
robust A-to-G base editing at relaxed PAM sites in stable trans-
genic rice plants, albeit with frequent self-editing.

This study demonstrates a comprehensive SpRY toolbox for 
targeted mutagenesis and base editing in a nearly PAM-less man-
ner in plants. Despite vector self-editing, the SpRY editing tools 
displayed high editing efficiency and specificity. SpRY vector 
self-editing seems to alter NHEJ editing profiles towards slightly 
larger deletions, which may aid certain genome editing applications. 
We applied SpRY for efficient genome editing in gymnosperms. 
Furthermore, we successfully applied the SpRY-PmCDA1 C-to-T 
base editor for directed evolution of herbicide resistance in rice. 
Finally, the SpRY-ABE8e base editor was very efficient in generating 
A-to-G base editing with high product purity in stable rice plants. 
The potential secondary off-target effects of SpRY were assessed in 
targeted mutagenesis and A-to-G base editing. Given the tendency 
of SpRY for generating larger deletions, many de  novo generated 
sgRNAs may fail to function due to truncated protospacers. By 
contrast, high-purity SpRY base editing systems will generate fully 
functional new sgRNAs with roughly 20-nt protospacers that can 
contribute to secondary off-target mutations in the genome. Since 
both targeted mutagenesis and base editing outcomes can be readily 
predicted34,35, the secondary off-targeting effects should be predicted 
and considered when designing and implementing the SpRY-based 
genome editing experiments.

On the basis of the data in this study, we make a practical rec-
ommendation that Cas9 should be used for editing the canonical 
NGG PAM sites and SpRY should be used for editing all other 
non-canonical PAM sites due to its more robust performance over 
Cas9-NG and xCas9 at such sites (Supplementary Fig. 10). Hence, 
augmented by its PAM-less feature, the SpRY genome editing tool-
box developed here will have many promising applications in plant 
biology.

Methods
Construction of Gateway-compatible SpRY vectors. Details about construction 
of SpRY Gateway entry vectors are described in the Supplementary Methods. All 
target sites were listed in Supplementary Table 3. The oligos and gBlocks in this 
study were summarized in Supplementary Table 4.

Assembly of T-DNA expression vectors. The T-DNA expression vectors  
were assembled from a single Multi-site Pro LR reaction (1-5-2) with the 
attR1-attR2 destination vector pYPQ203 (Addgene no. 86207), an attL1-attR5 
Cas9 entry clone and an attL5-attL2 CRISPR RNA expression entry clone using 
Gateway LR clonase II (Invitrogen). Additional T-DNA vectors were also made 
by conventional cloning. The detailed procedure is described in Supplementary 
Methods. The resulting 146 T-DNA vectors used in this study were listed in 
Supplementary Table 5.

Protoplast transformation and stable transformation. The Japonica rice cultivar 
Nipponbare was used in this study. Polyethylene glycol (PEG) transfection of rice 
protoplasts was performed at 32 °C based on our previously published protocol36–38. 
For Larix protoplast transformation, Larix seeds were in dark for 14 d at 26 °C 
to induce callus. Larix callus tissues were transferred into the enzyme solution 
and hydrolysed for 6 h. The enzyme/protoplasts solution was filtered with 70-μm 
nylon mesh. The protoplasts were centrifuged at 60g for 2 min. Supernatant was 
removed and the protoplasts were resuspended in W5 solution. The protoplast cells 
were rested for 30 min. Then, the W5 solution was removed and the protoplasts 
were resuspended at 2 × 105 ml−1 in mannitol magnesium solution. Vector DNA 
and mannitol magnesium were added to make up 30 μl, and then added to 200 μl 
of protoplasts (2 × 105 protoplasts). The mixture was incubated in PEG solution 
for 30 min. The transfection mixture was diluted with 1 ml of W5 solution and 
centrifuged at 60g for 2 min to remove the supernatant. The protoplasts were then 
gently suspended with the W5 solution in each well of a 12-well tissue culture plate. 
Protoplast cells were collected for detection after 2 d of dark incubation at 28 °C. 
Rice stable transformation was carried out by following the same procedure that we 
published previously39,40.
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Mutagenesis analysis. For assessing mutagenesis in protoplasts, protoplasts of 
rice, tobacco or larch were collected 48 h after transfection. DNA was extracted 
using the cetyl trimethylammonium bromide method as previous reported37,38. 
Cas9-induced mutations were generally first detected and quantified by restriction 
fragment length polymorphism (RFLP) analysis and then followed by NGS. For 
NGS, the genomic regions flanking the target sites were PCR-amplified using 
barcoded primers. The PCR amplicons were sequenced by Novogene with an 
Illumina HiseqX platform. CRISPRMatch41 was used to analyse the sequencing 
data. For assessing mutagenesis in stable transgenic rice T0 lines, single strand 
conformation polymorphism, RFLP and Sanger sequencing were used as in 
our previous studies21,39,40,42. Sanger sequencing was also used to detect possible 
mutations for vector self-editing as well as off-target mutations at putative 
off-target sites, which were predicted by Cas-OFFinder24.

Screen for herbicide resistant rice lines. After Agrobacterium-mediated 
transformation, the rice calli were selected on 50 mg l−1 of hygromycin medium for 
2 weeks at 32 °C in light. Actively grown calli were selected on medium containing 
50 mg l−1 of hygromycin and 0.4 μmol l−1 of bispyribac sodium at 28 °C with a 16 h 
light/8 h dark cycle. After 3–4 weeks, transgenic and herbicide resistant seedlings 
were identified.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Regarding accession codes, the five Gateway-compatible Cas9 entry  
vectors are available from Addgene: pYPQ166-SpRY (no. 161520, zSpRY), 
pYPQ266E (no. 161521, SpRY-D01A-PmCDA1-UGI), pYPQ262m  
(no. 161522, wtTadA-TadA*-zSpCas9-D10A), pYPQ262-ABE8e  
(no. 161523, TadA8e-zSpCas9-D10A) and pYPQ262B-ABE8e (no. 161524, 
TadA8e-zSpRY-D10A). The high-throughput sequencing data sets have been 
submitted to the National Center for Biotechnology information database under 
Sequence Read Archive Bio Project ID PRJNA665932.
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