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ABSTRACT

A few fastradio bursts’ (FRBs) light curves have exhibited large intrinsic modulations of their flux on extremely short (7, ~ 10 us)
time-scales, compared to pulse durations (fgrg ~ 1 ms). Light-curve variability time-scales, the small ratio of rise time of the flux
to pulse duration, and the spectro-temporal correlations in the data constrain the compactness of the source and the mechanism
responsible for the powerful radio emission. The constraints are strongest when radiation is produced far (=>10'° cm) from
the compact object. We describe different physical set-ups that can account for the observed #,/trrg << 1 despite having large
emission radii. The result is either a significant reduction in the radio production efficiency or distinct light-curve features that
could be searched for in observed data. For the same class of models, we also show that due to high-latitude emission, if a flux
fi(vy) is observed at #; then at a lower frequency v, < v; the flux should be at least (v2/v1)*fi at a slightly later time (#, =
t1v1/v;,) independent of the duration and spectrum of the emission in the comoving frame. These features can be tested, once
light-curve modulations due to scintillation are accounted for. We provide the time-scales and coherence bandwidths of the latter
for a range of possibilities regarding the physical screens and the scintillation regime. Finally, if future highly resolved FRB light
curves are shown to have intrinsic variability extending down to ~ps time-scales, this will provide strong evidence in favour of

magnetospheric models.
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1 INTRODUCTION

Fast radio bursts (FRBs) are a few millisecond duration, very bright,
radio signals that have been detected between about 400 MHz and
7 GHz with peak flux density >1Jy. The objects producing these
bursts are typically at distances of a Gpc or more (Lorimer et al. 2007;
Thornton et al. 2013; Spitler et al. 2014; Petroff et al. 2016; Bannister
et al. 2017; Chatterjee et al. 2017; Law et al. 2017; Marcote et al.
2017; Tendulkar et al. 2017; Farah et al. 2018; Gajjar et al. 2018;
Michilli et al. 2018; Shannon et al. 2018; Bannister et al. 2019;
CHIME/FRB Collaboration 2019a, b; Kocz et al. 2019; Ostowski
et al. 2019; Ravi 2019a, b; Ravi et al. 2019).

A wide variety of models for FRBs and their high brightness and
coherent radiation have been suggested in the last several years (Katz
2014, 2016; Lyubarsky 2014; Murase, Kashiyama & Mészdros 2016;
Beloborodov 2017; Cordes et al. 2017; Kumar, Lu & Bhattacharya
2017; Metzger, Berger & Margalit 2017; Zhang 2017; Ghisellini
& Locatelli 2018; Lu & Kumar 2018; Metzger, Margalit & Sironi
2019; Thompson 2019; Wadiasingh & Timokhin 2019; Wang et al.
2019; Kumar & Bosnjak 2020); for a recent review, see (Katz 2018).
However, the origin of FRBs remains an unsolved puzzle. The nature
of the underlying object has been identified to be magnetars only
very recently by observing an FRB in the Galaxy in the radio and
X-ray bands simultaneously (Bochenek et al. 2020; Li et al. 2020;
Mereghetti et al. 2020; Pearlman et al. 2020; Ridnaia et al. 2020;
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Tavani et al. 2020; The CHIME/FRB Collaboration 2020). Although
this observation is a major landmark for FRB science, many emission
models remain valid (Katz 2020; Lu, Kumar & Zhang 2020; Lyutikov
& Popov 2020; Margalit et al. 2020a). Furthermore, new puzzles have
also emerged. For instance, the huge range of the repetition rate — at
one end lies the Galactic FRB and at the other cosmological FRBs
such as FRB 121102 — despite the rather modest difference in the
energy release in the radio band is puzzling. One possibility is that this
is indication of an intrinsic magnetar property that is vastly different
between the source of the Galactic FRB and cosmological ones, such
as the magnetic field (Margalit et al. 2020a) or the rotation period
(Beniamini, Wadiasingh & Metzger 2020). Clearly, new types of
observational constraints would be of great benefit towards advancing
our understanding of FRBs.

A key observable that has yet to be fully exploited to decipher
the underlying physics is the bursts’ temporal variability. Due to
the potential contributions due to propagation effects, separating
temporal modulations due to external and internal affects is crucial.
We investigate in this work what we can learn about the object and the
radiation process from the temporal variability of FRB light curves.

2 PHYSICAL PROCESSES AND PARAMETERS
THAT CONTROL LIGHT-CURVE VARIABILITY

The light curve of several FRBs shows variations on very rapid time-
scales. For instance, FRB 170827 had an overall duration of ~0.4 ms
with strong variations on a time-scale of ~30 ps (Farah et al. 2018).
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Figure 1. A shell moving with Lorentz factor y starts to produce coherent
radio emission after crossing a radius Ry. The emission is assumed to be
almost instantaneous in the comoving frame (occurring at a time #;) and with
comoving frame spectrum that is narrowly peaked at frequency v;. Photons
emitted along the line of sight have a Doppler factor that decreases with angle
— D(62) < D(8;) for 6, > 0. Radiation from higher latitudes, i.e. 6 > 0,
arrives at lower frequencies and later times.

Another FRB, 181112, had a pulse with a very rapid rise ~10 ps,
followed by a significantly shallower decay ~0.15ms (Cho et al.
2020). The data suggest that the variability time-scale is intrinsic to
the source, making it a diagnostic for the burst mechanism. There
are several important time-scales in the FRB phenomenology: (i)
the pulse rise time, (ii) the pulse decay time, (ii) the overall pulse
duration, and (iv) the time between pulses. Understanding these time-
scales should be useful for revealing the underlying FRB physics.

Let us consider a relativistic outflow moving with Lorentz factor
y > 1 that produces a radio burst at a distance R from its launching
point. If the comoving size of the outflow (in both the radial and
transverse directions) is = R/y — which is expected since the outflow
from an average FRB cannot be confined by the magnetic field of a
magnetar at R > 10° cm — then a natural time-scale for the variability,
and the rise of the light curve, is given by

R
fo(R) ~ 7}/2 (D

to corresponds to three separate and important time-scales in the
observer’s frame. It is the observed time separation between (i)
two photons emitted at the front of the expanding outflow at times
separated by R/c in the magnetar rest frame (or the lab frame), (ii)
two photons emitted at the same time but separated by a radial
distance R/y (corresponding to the causally connected thickness of
the outflow) in the comoving frame, and (iii) two photons emitted
from the same radius and at the same time, but with an angular
separation of 1/y between them (corresponding to the edge of the
relativistic beaming cone).

The natural time-scale for the observed light-curve decline is
also ~19. However, the burst duration for FRB 181112 was longer
than the rise time by a factor = 10. Similarly for FRB 170827 the
overall duration was much longer than the variability time-scale.
These observations suggest that the light-curve profile is reflecting
the activity of the central engine of FRBs (and/or the interaction of
the outflow with the external environment). The radius of the front
of the relativistic outflow therefore increases by a factor of at least
a few during the course of the pulse which will generally affect the
emission properties. Indeed, some FRB sub-pulses exhibit downward
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frequency drifts (Gajjar et al. 2018; Hessels et al. 2019; CHIME/FRB
Collaboration 2019a), in which the peak frequency of the spectrum
decreases over time. Within the framework of the baryonic shock
model for FRBs, these drifts can be directly related to the external
density profile (Margalit, Metzger & Sironi 2020b). That being said,
the recently discovered FRB 200428, exhibits a significant lack of
emission at frequencies below ~550 MHz for the second pulse (The
CHIME/FRB Collaboration 2020), and a lack of frequency down-
drift, which are not expected according to the shock model. As we
show in detail in Section 2.1, even if one were to terminate the
maser emission process suddenly when the outflow is at radius R
and produced 550 MHz photons, the observer will continue to get
photons of lower frequencies which have been Doppler boosted a bit
less than higher frequency photons due to the curved geometry of
the shock front; cutting off the flux below 550 MHz in the observer
frame imposes severe limitations on the physical conditions at the
emission region if the radiation is produced at large distance from
the magnetar (R > 10'° cm).

2.1 Limits on intrinsic variability time and sharpness of
spectral features

We consider a broad class of models for FRBs where a relativistic
outflow from a compact object moving with Lorentz factor y
produces coherent radio emission at a distance R from the launching
site (see schematic illustration in Fig. 1). We show in this section that
there are constraints on the variability time-scale of the light curve,
and how rapidly the specific flux can change with frequency, for this
class of models that are obtained from very general considerations.
The data should be analysed to check for these constraints and narrow
down the landscape of models for FRBs.

Photons emitted isotropically in the comoving frame of the outflow
moving with Lorentz factor y are relativistically beamed within a
cone of opening angle ~2/y as seen by a lab frame observer. Thus,
a lab frame observer sees a small patch of size R/y of a spherical
source of radius R that is expanding in the radial direction with a
Lorentz factor y. From the point of view of an observer, the flux of
photons from those points of the outflow where the angle 6 between
the velocity vector and the observer line of sight is larger than y !
— called high-latitude emission — falls off rapidly with 8. The high
latitude emission limits how fast the observed flux can decline with
time when the source is turned off suddenly, and it also severely
restricts sharp truncations of the observed spectrum. Even in the
extreme case, where the intrinsic spectrum is a delta-function in the
source comoving frame peaking at a frequency vy in the observer
frame, the declining Doppler boost from increasing latitudes (6)
leads to a substantial flux at v < v in the observer frame.

To calculate these effects, consider a relativistically moving source
that radiates almost monochromatic photons at frequency v in a
narrow band 8V, at time 1), and over a short interval of time 87 all
prime () quantities are measured in the rest frame of the relativistic
source which is taken to be effectively 2D, i.e. its radial width is small
and variations across it are ignored. These photons will be observed
at a frequency

v="D(@); where D®)=[y(l— Bcoso) !, )

is the Doppler factor, and 0 is the angular position of a point on the
source wrt the line joining the observer and the centre of the compact
object that produced the relativistic outflow (as depicted in Fig. 1);
we assume that the emission is being produced well outside the light
cylinder so that the velocity vector at every point in the source is in
the radial direction. The photon arrival time at the observer is related
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to the comoving frame time by a Doppler shift factor:
t=1/D. 3)

Photons emitted within a time interval 87 from a circular ring that
extends from 6 to 6 + 660 will arrive within a time interval §¢ and a
frequency band v in the observer frame, which are given by

5t =1,yB086 +6t'/D and v =DV +vyDesH), (4

where we expanded the Doppler factor in terms of the small angle 6
so that

2y
D~ ——. (5)
14 @y)?
The observed flux is given by
f@t,v) = /dQQbS c0SOops I, Wwhere Oys =6 R/d, (6)

1, is the specific intensity in the observer frame, R is the distance
from the compact object where the relativistic outflow produces the
coherent radiation, and d is the angular-diameter distance to the
object from us. Making use of the Lorentz invariance of 7,/v* and
azimuthal symmetry, we arrive at

RI,
f,v)=2m TZUDS 080. 7
The value of 050 depends on the extent of the ring from which
photons can contribute to the observed v at time 7. There are two
physically distinct situations: either 8¢'/f; > §v’/v; (intrinsically
narrow band) or §¢'/t) < 8v’/v; (intrinsically wide band).

Let us consider first the spectrum in the comoving frame to be
intrinsically narrow. In this situation, we can then take the angular
width of the ring to be sufficiently small so that the time interval
over which photons arrive at the observer, 6¢, given by equation (4),
is due to the emission time interval 8¢ . The maximum extent of the
ring is then governed by the requirement that photons emitted across
the ring, within the narrow band, have the same frequency in the
observer frame, or y D 056 = §v'/v),. In this case, the expression for
the observed flux reduces to

2w R*I,8V 12 v?
tv)~ |2 | D = f(tg, )2 = f(to, o). 8
ft,v) [ Y, } A Vo)t2 A VO)vg (3)
where
1o 1 ,
vV =V (?> , I = i, vo = 2Y v, 9)

and f(1y, vo) is the flux received from 6 = 0 at time #, and frequency
Vo.

One of the key results of this calculation is as follows. Let us
consider a radio telescope that detects flux f; from an FRB at
frequency v; at time #,. The flux from the same FRB at a lower
frequency v, and at a slightly later time #, = #;(v;/v;) should be at
least f;(v,/v,)?. This result applies so long as the coherent radiation
is produced under optically thin conditions in a relativistic outflow
outside the light cylinder of the NS so that ¢; ~ R/2cy?. This result
is derived under the highly conservative conditions which assume
that the radiation mechanism is turned off suddenly at time #, and
the spectrum in the comoving frame of the source is infinitesimally
narrow. A violation of these conditions can only increase the observed
flux at v,.

We consider next the case where the comoving spectrum is broad-
band §v' /vy > 8t’/t). Here, the observed bandwidth §v can be taken
to be primarily due to §v', and the extent of the ring is set by 8 such
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that y8D0OSO = 51’ /1. The flux is then

2w R?I',8¢'
niv} D? (10)

d*ypi;
Since the spectrum is assumed now to be broad-band, we can take
as an example /), o V=P This leads to f(¢, v) &« D*™#, which is the
well-known result for high latitude emission (Kumar & Panaitescu
2000). If we consider a frequency v, such that v, < v; and we
observe at a delayed time #, = #(v,/v;) (as above), then we find

f(t,v)%{

fe () T(e)T_(m)_ (1),
fv)  \n i \n /) \n

exactly as in the previous case.

A corollary of this result is that if we see the flux from an FRB
drop to zero sharply below a given frequency, and if we can rule out
that this cut-off is due to scintillation, then that tells us that the FRB
radiation is not being produced in a relativistic outflow outside the
light cylinder unless the angular size of the outflow at R is smaller
than y ! as viewed from the NS.

Another implication is that for a sufficiently broad-band detector,
the FRB flux cannot drop off faster than 1/¢* if the radiation mecha-
nism is operating in a relativistic outflow outside the light cylinder.
We emphasize that these two key results are purely geometric in
origin, and completely independent of the details of the radiation
mechanism as long as the process involves a relativistic outflow of
angular size not smaller than y ~!. Thus, the flux estimate we have
provided at v, is an absolute minimum. Observations of FRBs over
a sufficiently broad frequency band, §v/v ~ 1, should be able to
constrain the radiation mechanism using these results.

As a specific example, we have already pointed out the case
of the Galactic FRB 200428 in Section 2, in which the emission
appears to cut-off abruptly below ~550 MHz for the second pulse.
This sharp cut-off of the spectrum potentially rules out those models
that invoke radiation at » > 10'°cm so that the pulse duration is
of order R/(2cy?) in the observer frame. We briefly mention two
other FRB observations, which also appear to be in conflict with
the basic expectations of radiation produced in a relativistic outflow.
First, three bursts from FRB 121102 were detected by VLA at 2.5—
3.5 GHz but not by Arecibo at 1.15-1.73 GHz, despite Arecibo being
more sensitive than Very Large Array (VLA) by a factor ~5 (Law
et al. 2017). Given that the Arecibo band is a factor ~2 smaller than
the VLA, the expected flux from a relativistic outflow in the Arecibo
band should have been at most ~4 times less than the VLA flux if
the angular size of the outflow is larger than y ~!. For the same FRB,
Majid et al. (2020) detected a burst at 2.25 GHz but not at 8.36 GHz
despite the observations being simultaneous. This may be consistent
with the considerations above if the spectrum cuts off above ~3 GHz.
However, this also requires that the frequency drift with time is very
modest, which is not trivially achieved, and may require significant
fine tuning of parameters in the model.

A few examples of light curves calculated numerically following
the method we have described are shown in Fig. 2.

2.2 Photons re-encountering emitting shell

Photons emitted along the line of sight from a latitude 6 > 1/y have
a velocity component along the radial direction that is smaller than
the shell that emitted them (see Fig. 3). These photons will remain
inside the shell of a finite thickness for a while and exit it at the
rear end at a later time, then re-enter the shell at a larger radius and
eventually escape through the front end of the shell. The frequency
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Figure 2. Pulse light curves from a relativistic outflow moving with a Lorentz
factor y and emitting a monochromatic spectrum (i.e. §v'/vy < 87'/1))
between Ry and Ry + AR with AR/Ry = 0.05. The emission is either isotropic
in the comoving frame (y, = 1; solid) or anisotropic, due to relativistic
beaming with a Lorentz factor y’ = 10 in the comoving frame (dotted).
The calculation follows the description in Beniamini & Granot 2016 (with k,
m, a = 0). Time is measured relative to the arrival time of the first photon
and flux is shown in arbitrary units. The observed frequency is taken to be
v=1,0.1,0.01,... x vy = 2yv6 from black to light blue, respectively.

Figure 3. Schematic figure describing the geometry of a photon emitted at
aradius R and latitude 6 > 1/y that re-enters the emitting shell (moving with
a Lorentz factor y) after a (source frame) time At. The line of sight to the
observer is towards the left of the figure.

of the photons in the local comoving frame of the shell changes
with time. One might imagine possibilities where these high latitude
photons are unable to escape from the shell. For instance, escape is
not possible if the photon frequency in the local comoving frame
is lower than the plasma frequency (Plotnikov & Sironi 2019). We
calculate below the local comoving frequency of the photon at the
time when it re-enters the shell.

To show this explicitly, we consider a photon emitted at radius
R and 6 > 1/y, along the line of sight to the observer. For clarity,
we consider first the case in which the shell is moving at a constant
velocity B (corresponding to a Lorentz factor y). After a (source
frame) time Az, the photon momentum vector is at an angle ¥ (see
Fig. 3) relative to the local shell’s velocity vector (i.e. the radial
direction). Equating the x, y coordinates of the photon and the shell
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at a time At > 0 we find

(R+ BcAt)cosyy = Rcos + cAt; (R + BcAt)sinyr = Rsinf.
(12)

With little loss of generality, we can expand these expressions in the
limit of ¥ > 1 and small angles. The second equality then gives an
approximate expression for Y ~ 6R/(R + BcAt). Plugging this into
the first equality in equation (12), we find

R 5, 1
Atx —(y 07 —1); y~_——. (13)
c 0y?
Finally, we consider the frequency of the photon in the local
comoving frame at the moment of re-encounter, v/, relative to the
same quantity at the time of emission, v,. This is done by use of
a double Doppler boost (from the local comoving frame at time of
emission to the observer frame and then from that frame to the local
frame at the time of the re-encounter),

C1—Boosy 14972 140
T 1—Bcosf  1+y20% 1+ (y0)

=~

(14)

C‘t

a

Equation (14) shows that for a constant shell velocity l‘j—; < 1. At
large latitudes v/ /v, ~ (y6)~2.

Before discussing the implications of this result, we consider first
the more general case of a shell that is decelerating (or accelerating)
with radius. We consider y to be a power-law function of R: y2ocR™".
We denote by y, Ry [+, Rt = Ro(y/y0)~¥™] the Lorentz factor and
radius of the shell when the photon is emitted from (re-encountered
by) the shell. For this more general case, equation (12) is re-written

as

Ricosyr = Rycosyr + cAt; Rgsinyy = Rysin6. (15)

To solve these equations, we must relate y¢ to At. The source frame
time interval, A, can be related to the observer frame time interval,
At=1(R;) — (Ry) via At = At — AR/c. Using tocR/y? and y ocR™™"2,
we find y = yo(t/tg) ">+ D and hence At = t(Ry)[(y/y o)~ 2"+ m
— 1]. Plugging this back into equation (15), we find an implicit
equation for yy:

%

—2/m
) and & = (n0)*. (16)
Yo

x"’“—l:&o—s—oforxz (

X
Substituting this back into equation (15), we can calculate At, i,
and finally the frequency change

vi vl —Brcosy Nﬁl-*-)/leljz
v,  y 1—pycosh e 1 +y26?

Similar to the constant velocity case, the result in the more general
case where the shell velocity changes with radius is that the photon
frequency in the comoving frame is lower when the photon re-enters
the shell. The values of v./v. obtained for different & and m are
shown in Fig. 4.

The implication of this result is that if the peak frequency is
close to the plasma frequency in the comoving frame, then photons
originating from sufficiently large 6y will have frequency below the
plasma frequency when they re-enter the shell, and they will not be
able to travel through the shell and reach the observer. At the same
time, the effect described in this section can only constrain photons
emitted at @ > 1/y. Since the Doppler factor changes by a factor of
2 between 6 = 0 and 0 = 1/y, there will still be a minimum span
of in the observed frequency by a factor of 2 resulting from photons
coming from those different latitudes. The spectral width of the flux
in the observer frame should therefore still be at least of order unity

an
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Figure 4. Change in the comoving frequency of photons [log;,(v;/v.)] that
are emitted at > 1/yp and when they re-encounter the shell at a later
time. Results are shown for different emission angles and different degrees of
deceleration/acceleration of the shell that is characterized by the parameter
m defined as y ocR™"2.

even when the spectrum in the shell comoving frame is intrinsically
very narrow and centred close to the plasma frequency.

2.3 Alternative scenarios leading to rapid variability

We discuss a few possible deviations from the picture above that
can allow for variability on a time-scale shorter than that given by
equation (1). We consider their potential viability for explaining
the observed variability of FRB light curves. As we show below,
the efficiency of converting relativistic outflow energy (Eggrgtot) t0
FRB radiation (Egrpobs), € = ErrB ot/ EFrB.obs, generally decreases
whenever a mechanism is introduced that reduces the variability
time of the FRB light curve to a value smaller than that given by
equation (1). € can be considered as a product of different efficiency
factors, such as the efficiency of converting blast wave energy to heat,
the efficiency of the radiation mechanism (fraction of dissipated
energy converted to radiation), a k-correction factor (fraction of
emitted energy leading to the signal in the observed frequency band),
etc. € being the product of these efficiency factors is smaller than the
smallest factor. We stress that the considerations in this work are
largely independent of the radiation mechanism. The synchrotron
maser mechanism, for example, is extremely inefficient, with &4 &
1073 to 1072 for moderate magnetization (Plotnikov & Sironi 2019).
As a result the overall efficiency, ¢ will be further reduced by this
factor in addition to the other inefficiencies described below.

2.3.1 Small emitting clumps

The rise, or the variability, time-scale can be smaller than R/(2cy?)
provided that the radiation is produced in a very small patch of the
outflow of comoving size <<R/y. However, in this case, as we show
below, the emitting region will have a small covering factor relative
to the outflow, which leads to the efficiency of converting the outflow
energy to radiation being small (see also Sari & Piran 1997).
Consider a shell with radius R which consists of multiple small
emitting clumps, each spanning a narrow range of latitudes. For
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an emitting clump, extending between 6, and 0, such that 1 >
01, 62, >0. We denote the mean angle of emission and angular
width of the clump as § = %|91 + 65|, 860 = |6, — 0| respectively.
In particular, we note that for arbitrary 6, 6,, §6 < 26. We also
define a dimensionless number, ¢, such that the lateral size of a
clump is ry = ¢R/y (i.e. ¢ = y46). The time difference between
photons emitted simultaneously from 6, and 6, is then given by

. ROs9 _ RS6>  R¢?

ot ~ = 18
2¢ 2y2%c (18)

A short time variability can be maintained if §7 < fy which requires
¢ < 1. The fastest degree of variability in this model arises when the
clump lies very close to the line of sight, § ~ 80 ~ ¢y~! < y~!. In
this situation, the inequality in equation (18) becomes an equality and
one obtains §#/tyoc¢?, and using equation (9), §v/voocs . However,
this situation is geometrically fine tuned given that the region from
which clumps could be seen by the observer is up to a latitude of y !
(which would correspond to slower variability). In other words, only
an order unity of clumps can have § ~ ¢ while there are expected
to be ¢ 2 > 1 clumps with § &~ y~!. One important scenario where
only emission from a small region of angular size § ~ ¢y ~! is visible
to the observer, is the case of a synchrotron maser from strongly
magnetized relativistic shocks. In this situation, the shock front is
moving away from the shocked plasma with a Lorentz factor ~/o
(Pétri & Lyubarsky 2007), where o is the upstream magnetization
of the flow. The result is that the radiation in the shocked plasma
co-moving frame is beamed within an angle & ~ 0.7/,/o around the
shock normal direction (Babul & Sironi 2020). Since beaming is in
the radial direction, the situation is equivalent to the one described
above, where ¢ ~ 0.7/./0 (see Section 2.3.4 for details).! Provided
that the magnetization is large, this can lead to rapid variability (¢ <
1). However, it also results in a significant decrease in the efficiency.
The efficiency is limited by the geometric efficiency, &,. The latter
is given by the ratio of the area of the patch that is producing maser
emission and the area of the shell visible to the observer, i.e.

e<e~T L1 (19)

A less fine-tuned possibility is that masing clumps are randomly
distributed across the shell. In this case, a typical clump has § ~ !,
and plugging back to equation (18) we find a variability time-scale of
8t/ty ~ ¢ and correspondingly v/vy = ¢, which are both still narrow.
However, the process remains inefficient. This is because in order
to maintain a high degree of variability, i.e. to avoid the situation
where emission from many clumps overlap and broaden the pulse
width, the largest number of clumps that can contribute to a pulse
of duration #y = 8¢ ¢! is N = ¢~!. Comparing the total area of the
masing clumps to that of the visible shell we then get & < &, ~ N¢? ~

I

2.3.2 Narrow range of emission radii

Consider an outflow that starts emitting when it reaches some radius
Ry, and stops at Ry = Ry + AR. If AR <« Ry (and taking for simplicity
y to be roughly constant between R, and Ry) this scenario can lead

!Notice also that in the shock front frame (as opposed to downstream plasma
frame) the radiation is roughly isotropic, implying that the arrival time is well
described by equation (1) so long as one takes y to be the Lorentz factor of
the shock front in that equation.
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to a flux rising on a time-scale of (see Beniamini & Granot 2016)

AR
tr = — 1o(Ro), (20)
Ry
where #; is given by equation (1). The flux decreases on a much
longer time-scale of

Ry
ta = to(Ry) = 2oy 21)

The ratio of the rise time and the decline time ratio is roughly AR/Ry,
and this can be very small if we take AR ~ 0.05 — 0.1Ry. A decrease
in the range of radii over which the material is emitting results in a
decreased dissipation efficiency, &g, in this scenario. The latter is
given by the ratio of the comoving shell thickness that is accessible
within a time #/, and the total comoving thickness of the shell, L':

"AR
€ < E&diss = min (é B 1)7 (22)
2 yL’

where depending on the energy extraction mechanism, 8 < 1 is
either the (comoving) velocity of matter falling into the reconnection
layer or the propagation speed of a shock. If we further assume that
L' > Ryly (since the latter is the causally connected width), we find
& < gqiss < 0.58 ARIRy < 1.

An illustration of a typical pulse light curve that would be obtained
in this case is shown as a solid black curve in Fig. 5. The flux is rising
for ¢t < ¢, and declining afterward. Note however, that the majority
of the decline occurs in earnest only at # 2> 4. The latter corresponds
to the time at which the observed signal becomes dominated by
photons that are emitted at latitudes greater than 1/y relative to the
line of sight to the observer (which is also when the decrease in the
Doppler factor becomes very rapid). This behaviour is much more
readily noticeable in a log—log plot, which could be used in future
observations to test such a scenario. More generally, since the model
described in this sub-section is geometrical in nature, its predictions
are robust and a reasonably good representation of the light curve
can be obtained without needing to ‘put in by hand’ any unknown
temporal activity by the central engine. Note also that in this scenario
the FRB spectrum does not significantly change during the observed
pulse, as the radius of the outflow does not evolve significantly during
the emission process.

Although attractive for explaining the light curve of FRB 181112,
an obvious drawback of this scenario is that it does not provide a
satisfying explanation for the light curve of those FRBs that feature
‘sub-pulses’ that exhibit comparable rise and decay time-scales,
which are both much shorter than the overall pulse width. We also
emphasize that in this model, the engine must still be varying on
a rapid time-scale of the order of 0.1—1 ms, or the observed time
difference between consecutive pulses.

2.3.3 Radial evolution of the spectral peak

Here we imagine a similar set-up to the one explored in Section 2.3.2,
but we allow for the peak frequency to change with radius, such that

R 8
Vv, = u(;(IT) @3)
0

and (in order to have an appreciable evolution of the peak frequency)
we relax the assumption regarding a narrow range of emitting radii,
adopted above. We assume that the source is coasting at a constant
speed with Lorentz factor y, and maser emission is suddenly turned
on when the shell is at radius Ry; note however that the results
regarding the rise time presented below persist even if the emissivity
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Figure 5. Pulse light curves from the same set-up as in Fig. 2, but for a
narrow range of emission radii AR/Ry < 1 and observations at the peak
frequency, vo.

changes only gradually with radius. Since y is time independent, the
observer frame time is directly related to the radius ¢ &~ R/(2cy?)xR.
The observed frequency relates to the peak frequency as

= () Gaw) e
v, \w /) \w(Ry/) ’

where vy = 2y v;. If the emitted spectrum is intrinsically narrow in
the comoving frame, this can lead to a sharp peak in the observed
band, as we show below. It is important to stress however that the
observer frame spectrum will not be narrow (it will be subject to the
same constraints presented in Section 2.1 and will be broadened even
further due to the evolution of the peak frequency in the comoving
frame).

There are three relevant cases of interest to consider in this case.
For clarity, we initially differentiate between the cases using the limit
R¢ > Ry and then comment, when discussing case (i), on the changes
when R¢/Ry is finite.
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(i) (v <vpand é < 0) or (v > vy and § > 0). In this case, the peak
frequency sweeps through the observed band. From equation (24),
we obtain the time of the observed peak when v = v,

L
h=|— to(Ro). (25)
Vo

From this expression, we see that for a finite Ri/R, the peak frequency
sweeps through the observing band only when (v/vy)"® < Ri/Ry. If
this condition is not satisfied then the appropriate physical regime is
(i) if v < vo? or (iii) if v > vy.

Another relevant time-scale, t,, is that corresponding to the arrival
time of photons that were Doppler boosted from the peak of the
spectrum in the source comoving frame to v in the observer frame;
1, is given by

. {to(Ro)(vO/v) for§ <0
* 7 L to(Ro)(wo/v)(Re/ Ro)'™?

In particular 7, < 1, for —1 < § < 0, and #, > #, otherwise. The flux
in between min (#,, #,) and max (zp, t,) evolves as a power law. To
see this, We can relate the angles and radii being Doppler boosted to
the given observed frequency through v = D(@)v)(R/Ro)’. Plugging
into the relation 7(R) = 1y(R)/D(6), we find D x (o which,
assuming a constant peak emissivity as a function of radius (L] ;=

foré >0° (26)

const), leads to® f o D? o Il

If the spectrum is intrinsically narrow, with 61" < vy, the result will
be a rapidly rising light curve. The observed rise time is given by
the difference between v and v, — 1’ passing through the observed
band:

o (vlo)ro(RO) for —1<68<0
t = 0
V

H LO (L)W fo(Ro) else

Yo

€2

The sharp rise of the spectrum comes at the price of a reduced ‘K-
correction efficiency’, ex (defined here as the fraction of emitted
photon energy resulting as a signal in the observed band). This is
because as v is driven further from v there is an increasing fraction
of the emitted radiation that will be missed by the observer. The
expression for the K-correction efficiency can be straightforwardly
derived for the three different sub-regimes (§ < —1, —1 < § < 0,
8 > 0) by integrating the light curve to compute the total energy
received in the observed frequency band and comparing that to the
total bolometric energy emitted by the source. As an illustration, for
8§ < —1, the result is

o 26+ l)zpv[(z*/tp)% —1]
(8 — Dto(Ro)vol(Re/ R+ — 11’

€ = €k (28)
where the factor [(R/Ro)’*' — 11/(8 + 1) arises due to the fact
that the bolometric luminosity L o« v,L,, & R’ and similarly the
factor in the numerator is due to integration over the observed flux
[« ¢~51. The efficiency implied by equation (28) is generally very
small. This can be more easily seen in the limit Ry > Ry, t. > 1,

2Note however, that although the qualitative behaviour is as described in
(ii), the specific expressions for the peak and rise times are different in this
situation than presented in case (ii) due to the fact that the high latitude
emission will arrive from Ry rather than Ry.

3This is a rising flux when —1 < § < 0 which is equivalent to r, < tp.
Therefore 1, is always the peak of the observed light curve.
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Figure 6. Pulse light curves from the same set-up as in Fig. 2, but allowing
for the peak frequency to evolve with R as v;, o R® and given a constant
emissivity between Ry and Ry = 2Ry. The dotted curve corresponds to the
situation with no radial evolution of the peak frequency (8 = 0). The dot—
dashed (solid) curve depicts a pulse with similar properties except for § =
2 (8 = —2), implying that the peak at 1 > #y[Ro] becomes progressively
greater (smaller) than the observed frequency. These correspond to case (ii)
in Section 2.3.3. Finally, the dot-dashed line shows the dependence on the
observed frequency, by illustrating the observed signal for a similar pulse as
in the solid line, observed at half the frequency.

when the K-correction efficiency reduces to

8+1
3§

p M(”) <1 (29)

< ep < _
=& =56-1\n

(i1) v < vg and § > 0. In this case, the observed frequency along
the line of sight always remains below vp. This is similar to the
standard set-up explored in Sections 2.1 and 2.3.2 (with the addition
that the peak frequency is moving further away from the observer
band over time). Since emission from along the line of sight peaks
above the observed band, the received emission is dominated by a
latitude 6; > 0 such that D(6;) = v/v;,. The peak flux is obtained at
a time

Vo
= zO(RO);. (30)
The rise time is again rapid, as it corresponds to the difference in

arrival times from a narrow ring spanning between 6 and 6, defined
by D(6,) = v/(vy — 8v'). Using equation (5) we find

l’(/)[R()] t(/)[R(]] SV’ vy
= — ~ to(Ry)— —. 31
D@y D@y RO b

T

Since the peak of the emission from the line of sight material is
missed by the observer, the K-correction efficiency in this scenario
is even smaller than in case (i). It can be estimated as follows:

o 20+ DIR/R)' —11 (v
¥ G DwlR/RPT — 1\ ) €

& <ex (32)
where we have used the result that f{z,, v)/fito, vo) = (v/vo)? as
derived in Section 2.1.

(iii)) v > vg and § < 0. In this case, the observed band always
remains above v,. The result is that no flux is seen by the observer.

Some examples of light curves corresponding to the different cases
discussed above are given in Fig. 6 for a shell that is emitting a signal
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with an intrinsic spectrum §v’/v), < 1 while it propagates between
R() and Ry = 2R0

2.3.4 Anisotropic emission in the comoving frame

Several physical scenarios for FRB emission may lead to anisotropic
emission in the comoving frame of the outflow. One such case is if
the dissipation is dominated by magnetic reconnection in a high o
flow with an ordered field orientation. Under such conditions, the
plasma flowing out of the reconnection region, and producing the
emission, is moving with a Lorentz factor y* > 2 with respect to the
mean rest frame of the outflow (Lyubarsky 2005) and its radiation
becomes narrowly beamed in the comoving frame. The shape of the
light-curves arising from this configuration were studied in detail by
Beniamini & Granot (2016), and we refer the reader to that paper for
a more in-depth discussion of this possibility.

An attractive feature of this scenario, is that the rise time of the
light curve can be significantly shorter than 7, (by either y ! or
AR/R, depending on the value of both parameters as well as on
how the emissivity evolves with radius; see table 1 and figure 7
of Beniamini & Granot (2016) for a comprehensive coverage of
the parameter space). This scenario shares the advantages of the
narrow range of emitting radii (Section 2.3.2), with regards to the
implications for the cyclotron maser mechanism and the lack of
spectral evolution during a pulse. In addition, it can account for both
symmetric and asymmetric pulses (see Fig. 5). It also allows for a
high latitude emission decline that is steeper than the f, 1~2F
described above. The final notable feature of this scenario, is that
it leads to an earlier peak of the emission at v < vq [but with the
same (v/vg)? suppression as discussed in Section 2.1]. We show this
below, for a specific geometry of the emitters in the comoving frame.

Consider first the situation in which the emitters are moving purely
in the radial direction. If in addition their distribution is uniform
across the emitting surface of the jet, then the situation is equivalent to
isotropic emission in the comoving frame with a modified value of the
bulk Lorentz factor y and rapid variability will be difficult to achieve
(see Section 2). If alternatively the distribution of such emitters across
the jet surface is patchy, then rapid variability becomes possible, but
at a price of a significantly reduced efficiency (see Section 2.3.1).
Therefore, it is the perpendicular components of the emitters’ motion
that are worth exploring in more detail. For concreteness, we assume
that the emitting plasma is moving with a Lorentz factor y relative
to the bulk outflow in two opposite directions (' = 4£') which
are perpendicular to the radial coordinate, as in Beniamini & Granot
(2016). Rewriting equations 14 and B4 of Beniamini & Granot (2016)
with m = 0 (Lorentz factor constant with radius) and x = 1 (since
we are considering monochromatic emission) we find the following
relation

1/2
E+D7' = 17/2(&/3/&); &= oy, (33)
Vo 1+&
where the £ accounts for the different directions of motion in the
comoving frame. For ' > 1, v < vy equation (33) has two solutions.
Since #/ty = 1 + & this leads to a double-peaked signal (for vy > vy 2,
these correspond to the different Doppler boosting from the material
moving in opposite directions in the bulk frame). Since the emission
from the ‘counter mini-jet’ can only be seen for v < voy ~?2, the
result is that the anisotropic emission leads to less of a delay for
moderate v/v, (but still with a suppression that scales approximately
as v~2). Once v < vy the spectral suppression, time delay and pulse
broadening approach the same scalings found in equation (8) for the
isotropic emission.
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3 EXTRINSIC VARIABILITY

Radio waves from a transient source passing through a medium
with fluctuating density can smear out small-scale intrinsic temporal
fluctuation of the source, and possibly impose fluctuation on a
longer time-scale. We analyse the time-scales for these effects.
We discard redshift factors in all derivations and focus instead on
the physics of fluctuations, in particular the viscous dissipation
and the size of smallest eddies in the inertial sub-range for the
Kolmogoroff spectrum of turbulence, and its impact on FRB light
curves. Appropriate redshift factors can be found in many published
works, e.g. Macquart & Koay (2013) and Xu & Zhang (2016).

The phase change suffered by EM waves of frequency @ passing
through a turbulent eddy of size £, in an ionized medium, is

q*tAdn,

8¢ ~ (k0w /Qw’) ~ —

(34)
where k = w/c, w, is plasma frequency, n. is the electron density
fluctuation associated with eddies of size ¢, and A = 2w/k. We
consider a power-law density fluctuation in the inertial sub-range
between length-scale £,,;, and £,,,x given by

dne(l) = nc(z/gmax)a- (35)

The index o = 1/3 for Kolmogoroff density fluctuations. The largest
eddy size, £y, 1s the scale at which energy is injected to maintain the
turbulence, and the smallest scale £, is determined by dissipation
physics of turbulence. The cumulative phase change for a wave
moving through a turbulent medium of thickness L is

20+1

q*nerL 207
mc2l?

max

AP(L) ~ (L/0)' 8¢ ~ (36)

The strong scattering case, A¢ > 1, is dominated by eddies of size*

2

2 2a+1 20

mc

lr ~< ; > L 37)
g neh

This expression is valid only if €, > £, the minimum size for
eddies in the scattering screen.

3.1 Smallest size eddies

Let us consider that the medium has magnetic field of strength B,
temperature 7, and that the average thermal velocities of electrons
and protons are i, and iip. The Larmor radius for a particle of mass
mis

N BmkgT)?c

4B ; (38)

Ig
where kg is the Boltzmann constant. The smallest eddy is unlikely to
be of size <lp for electrons, which is usually the smallest length
scale for the low-density cosmic plasma that typically has very
large collisional mean free path. Furthermore, eddies should be able
to survive viscous damping. The minimum eddy size, i, in the

4The contribution to the phase change of waves passing through the scattering
screen decreases almost linearly with decreasing eddy size. So, although
eddies smaller than ¢, scatter waves by a larger angle — which scales as
£~ =202 gee equation (44) — because the cumulative phase change due
to the smaller eddies over the entire thickness of the screen is less than one
radian, they contribute little to modulating the flux of radio waves traveling
through the medium. Eddies that scatter the wave the most and change the
wave phase by 2 1 radian are eddies of size £, and they are the most effective
for diffractive scintillation.
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turbulent cascade is determined by equating the viscous dissipation
time to the eddy turnover time. We provide a rough estimate of this
scale.

The mean free path of protons at temperature 7 for the Coulomb
scattering is

It ~ k2T /(neq* In A) ~ 2 x 10" T2 /n_ cm, (39)

where In A ~ 20 is the Coulomb logarithm and where unless
otherwise stated we use the convention g, = ¢/10* in cgs units
here and elsewhere in the paper. Let us consider an eddy of size £
and speed u,. Assuming that Iy < /iy, the probability that a proton
in the eddy traveling a distance /g will collide with another proton
is Ig/€¢n¢. The relative velocity of collision between these protons is
Ig|(0u/dx)| ~ ue(lg/C). Therefore, the fraction of a proton’s energy
lost in the collision is ~(/g/¢)>. Since the probability of collision
after traveling g is /g/{yy, the fraction of energy lost in one Larmor
time, I /il is ~l]33 /(€*L¢). The viscous damping time for the eddy
is thus®

Ig Pl - 0l

(40)

o~
vis —

3 2= -
ip Iy lgit,

We define the viscous length scale by equating the viscous time with
eddy turnover time of €/u,, which yields

g .
Lyis T}Z‘/’;, where M, = % 41)
t mf 3

is the Mach number of turbulence at scale ¢,.,c. We made use of
e = g, (£/ Limax)'/? for inertial range eddies in deriving this result.
Substituting for the Larmor radius (equation 38) and particle mean
free path (equation 39), we arrive at

1 3 1 3
anrx 3 2.2 InA 1 £4 i
Oy ~ —m (2REG e RN (108 em) e e (42)
3 knT B2 3 3 3
M(A B M‘4 T44 B—26

The expression for £ is consistent with the result in section 5.2 of
Goldreich & Sridhar (1995). The size of the smallest eddy is given
by

Lnin = maX(ZBv ZVis)~ (43)

3.2 Deflection angles and temporal variability

The angle by which an EM beam passing through the turbulent screen
is deflected is

- 3 .
|VLA¢| Tl Zr( >‘€mm

80 ~ ———— ~ 241 (44)
k AAPUmin) ~ _ A Cmin | 2 0 < ’
7 Lmin Tlmin | lx ” min

where V| is derivative taken in the direction perpendicular to
the wave propagation. The deflection angle is proportional to
ne £2X=V2LY2 /0% when €; < Cyin; while for €; > €yin, 86 o
[nz‘L/eﬁféx]]/(th+l).

SThis time-scale is for dissipation of particle momentum perpendicular to the
local magnetic field. The dissipation time for the longitudinal component of
momentum is different, which leads to eddies that are elongated along the
magnetic field direction. Goldreich & Sridhar (1995) showed that the ratio of
the eddy size in the longitudinal and transverse direction is ~(Linax/0)13. We
are ignoring the elongated shape of eddies on wave propagation by assuming
that magnetic fields are highly tangled in turbulent cascades. This, however,
is not valid as the eddy size approaches the Larmor radius.
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Consider a source at a distance d, from the observer. The distance
between the source and the scattering screen is dy, and the distance
between the lens and the observer is dj,. If a wave packet from the
source is scattered by an angle §6 by the turbulent screen then a
straightforward geometrical calculation shows that it will arrive at
the observer with a delay of

50 2 ods 2 2
s — (80)” diody _ Ri(80) ’ 45)
2¢  dy 2ch
where
Adiodg 1"
r = { C; ﬂ (46)

is the Fresnel scale. Making use of equations (44) and (45), we find

2 4a+6
R2 2—% O A 2ot Ly > Luin
St ~ e 2 o 20+1 g ' . 47
L,Izmn O X 7 < £min

Physically, §¢ is the observed duration of a source which has delta-
function pulse profile. So, the turbulent scattering screen smooths out
intrinsic fluctuations in the light curve on time-scales shorter than 4.

The scattering can also imprint fluctuations on the observed
light curve. One of the time-scales for fluctuations imposed by the
scattering screen is the eddy turnover time,

(Sted ~ max {er ) Zmin} /veda (48)

where v.q is eddy speed. We receive waves from an area of the screen
of radius Rgear ~ (R% /A)86 since rays are deflected by eddies by an
angle §6 given by equation (44)
1
R2 59 RZ E er > Zmin
Rgcar ~ F ~-F % . (49)
T ]

v En < Emin
n

Lmin

Another externally imposed variability time for the observed flux is
the time it takes for the turbulent screen to move a distance ~£,, in
the plane of the sky, i.e. transverse to the observer—source line, so that
the scintillation pattern shifts at the observer location by one fringe
width. To see how this comes about, let us consider moving the screen
by a distance 8/ in the transverse direction while keeping the turbulent
eddies frozen. In this case, the phase shift of the wave passing through
a coherent patch (of size £, ) changes by 8¢ ~ 27r81/R% due to the
change in the path-length travelled by the wave due to the new
location of the patch; ry is the original distance of the coherent patch
from the point in the screen where the observer-source line of sight
intersects. For 6/ ~ ¢, and r, ~ Rya/2 (which is a typical value
for a patch visible by the observer), the phase shift is ~7 when ¢,
> Lmin (equation 49). Thus, roughly half of the patches in the part
of the screen visible to the observer introduce an additional phase
shift of order w due to the transverse displacement of the screen
by ~2¢,. Therefore, the scintillation pattern at the observer plane
shifts by roughly one fringe width. If the relative transverse velocity
between the scattering screen and the observer is v, then this second
time-scale is

max (€, bmin} (50)

Sty ~
Vos

The fluctuation time-scale for FRB light curves due to propagation
through a turbulent medium, 8¢y, is

max {En s Emin}

/02 2
Ved + Vos
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Light-curve variability due to scintillation requires §t,,, < max (67,
trerp). As we will show below, this is only expected to happen if the
scattering screen is very close to the source.

The phase difference between waves arriving at the observer from
two points on the scattering screen separated by a distance ~Rp is 7,
The phase difference between waves from the centre of the screen and
radius Ry is ~77 (Ryca/Ri)?. Therefore, the flux at two frequencies
separated by év are uncorrelated when

d [7R2 R2 1
Gr)— [Tl >0 o gy S (52)
dv | Rp Ry, 6t

where 4t is given by equation (47). The time-scale for the variation
of spectrum is 8ty,,. Weak scintillation occurs when Ry, < Rp and
strong scintillation when Ry, 2 Rg.

We apply these results to wave propagation through turbulent inter-
galactic medium (IGM), FRB host galaxy, and Milky Way ISM. We
do not know whether the density fluctuations in the IGM and the
host galaxies of FRBs follow the Kolmogoroff scaling. However,
we know that the spectrum in the Galaxy is Kolmogoroff spanning
10 orders of magnitude in length-scale. Therefore, we will take the
density fluctuation index o = 1/3 (the Kolmogoroff value) for all
numerical estimates in the remainder of this section. The results
can be easily recalculated for a different index should observations
provide that information.

3.3 Scattering in inter-galactic medium

The electron density in the local IGM is n, ~ 1077 cm™3. The size
of the largest eddy in the IGM, £,,,y, is highly uncertain by several
orders of magnitude. It might be as large as 10?* cm, which is the scale
for energy deposition into the IGM by AGN jets and outflows from
galaxy clusters or as small as a few 10s pc. If the Mach number of
IGM turbulence on the largest eddy scale were to be order unity, then
Linax cannot be much smaller than 10** cm. Otherwise, the heating
of the IGM due to dissipation of kinetic energy of turbulence would
exceed the bremsstrahlung cooling rate, and the IGM temperature
would rise on a time-scale smaller than the Hubble time. This is
contradicted by the data, which suggests that the IGM is heated by
UV photons and its mean temperature of ~10* K is not increasing
rapidly as the universe ages. The outer scale of turbulence can be
smaller for lower Mach number turbulence as the constraint on £«
from turbulent heating of IGM scales as M;.

The thickness of the IGM scattering screen is of the order of the
distance between the source and us, i.e. L ~ dy, ~ 10° pc. Therefore,
the size of the smallest eddy for strong scattering, A¢ ~ 1, at 1 GHz
is estimated from equation (37) to be £, ~ 10" cm if we take £, ~
10%* cm and £, ~ 10" cm for £y, ~ 10?! cm.

The Fresnel scale for IGM scatterings is Rp ~ 3 X 10" cm at
1 GHz. This is marginally smaller than ¢, even in the extreme case
of €max ~ 10%* cm. Thus, the IGM scattering lies between the weak
and strong scintillation regimes. The scattering would be in the weak
regime if the smallest eddies do not get down to the scale of ¢,,. We
estimate the smallest scale for the turbulent cascade in the IGM.

The smallest eddy size is the larger of the viscous dissipation
length scale (equation 42) and the Larmor radius (equation 38)
as long as the mean free path is much larger than the Larmor
radius. The measurement of IGM magnetic field is highly uncertain.
Faraday rotation measurements of radio sources place an upper
limit of 10~ G on IGM field with correlation length >1 Mpc. TeV
photons from Blazars and GRBs interacting with the cosmic infrared
background produce electron—positron pairs, and these pairs inverse-
Compton scatter CMB photons to produce a secondary beam of GeV
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photons. The observed duration and angular width of the GeV pulse
depends on the IGM magnetic field. Observations of TeV photons
from Blazars and the follow-up non-detection (upper limits) of the
subsequent GeV shower provide a lower limit on the IGM field
of ~107°G (with a large uncertainty) if the coherence length of
the field, /g, is larger than 1 Mpc (e.g. Neronov & Vovk 2010;
Tavecchio et al. 2010); the limit on the field strength scales as ln‘u}éz
for Inae < 1 Mpc. The expected field strength is ~107"2G — again
with a large uncertainty — if the IGM field were the frozen-in field
in galactic outflows and AGN jets.® Thus, the proton Larmor radius,
for IGM at temperature 10* K, is between ~10'* and 10'7 cm. The
viscous length-scale (equation 42), on the other hand, is ~10'3 cm
(10'7 cm) if the IGM magnetic field is 10712 G (10~ G). Thus, the
size of the smallest eddy is expected to be between ~10'* and 10'7 cm
depending on the IGM field. The smallest eddy is smaller than ¢, at
the low end of this estimate, but otherwise the scattering angle for
radio waves in the IGM is <A/{,.

This suggests that the deflection angle for 1 GHz waves in
the IGM is no larger than ~3 x 107'¥rad (equation 44), and
the corresponding temporal broadening of a pulse is 8z < 107!'s
(equation 47). Moreover, the coherence bandwidth §v/v ~ 1. The
light-curve variability due to IGM scatterings is on a time-scale (for
a =1/3)

14
108 S .15
Sty A Uax.7
1010 S “min, 17 Kn < zmin,

Umax,7

‘en > Emins

(53)

where vp,x = max (ves, Veq). The estimated time-scale is much too
long to be important for the ms duration FRBs.

The line of sight to cosmological FRBs at a distance of a Gpc
or more passes through several Lyman alpha clouds. The electron
density in these clouds is larger than the mean IGM density by a
factor ~10, and thus radio waves are deflected when passing through
these clouds by an angle that is a factor ~nl2 L3/ /¢2/> ~ 10 larger
than IGM scatterings; this is assuming that the smallest scale for
fluctuations in these clouds is <¢, ~ 3 x 103 cm, and £ ~
10?pc, L ~ 10°pc. GHz radio pulses are broadened while passing
though these clouds by about 1 ns.

The probability that our line of sight to an FRB at a distance of a
few Gpc passes through the outer halo of a galaxy or an intra-cluster
medium is high. The electron density and the width of the medium
are of order 10~ cm™ and 1 Mpc respectively in this case. Taking
the largest scale for turbulence in this medium to be ~0.1 Mpc, we
find the deflection angle and pulse broadening to be ~10~'? rad and
1072 us.

The bottom line is that the FRB pulses are broadened the least
(<1072 ns) while passing though the turbulent IGM plasma and
the most (a few ns) by the intra-cluster medium (the probability
for encountering which at 1 Gpc is a few per cent). The coherence
bandwidth due to scatterings for all the cases considered in this
sub-section is §v/v ~ 1.

3.4 Scattering in the Milky Way and FRB host galaxy ISM

An excellent approximation for the Fresnel scale for a scattering
screen in the Milky Way Galaxy or the FRB host galaxy is (equa-

©We took the magnetic field strength to be 1072 11G in the outflow on a scale
of 1 kpc. The transverse component of the frozen-in field falls off as r~! as
the flow expands and at a distance of 10 Mpc the field is of order 10~1?G.
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tion 46)

Rp ~ (xd)'* = (3 x 10" em) vy *d /2. (54)

where vy is the wave frequency in GHz, d is the distance between the
scattering screen and the FRB source or the screen and the observer
whichever is smaller, and dyp is d in units of 1 kpc. The size of
the smallest eddies for strong scattering (¢, ), the diffraction scale,
is obtained from equation (37) for Kolmogoroff density fluctuations
(. =1/3)

2
-8 4 emax 5
lr ~ (2% 10%cm)ne S L™ 55 ( )

2
5L
Ipe’

-¢ ¢ Zmax
~ (4 x 10°cm) DM *vg ( ) (55)

L
where DMy = n.L is the contribution to the dispersion measure
(DM) from electrons in the scattering screen (measured in pc cm ™).
The diffraction scale is larger than the smallest eddy size ~10% cm
for 1 ©G magnetic field and 10* K temperature of the medium
(equations 43). Thus, the scattering is in the strong regime and we
can consider the special case of scintillation where £y, < 5.

The ISM of Milky Way consists of multiple phases and the electron
density in these phases varies by several orders of magnitude. The
electron density of the ISM of FRB host galaxy and in the near
vicinity of the object is largely unknown. Given this uncertainty, it
is better to parametrize the pulse smearing by scintillation in terms
of parameters as closely related to observables as we possibly can.
One such parameter is the dispersion measure (DM). Although we
measure only the total DM for FRBs, and not contributions from the
ionized nebula surrounding the source, host galaxy ISM, and various
other components separately, we can at least place an upper bound on
the contributions from these components. We can rewrite the equation
for pulse broadening (equation 47) in terms of the dispersion measure
in the scattering screen, DM, as follows:

4 qzkpc T A2 d1%T L =
8t~DM§"“( ) [ ] { ] , (56)

e 2 272cd | L] | lma

where pc = 3.1 x 10" cm is one parsec in cm, L is the width
of the scattering screen which for most situations is expected to
be of order d, and DMy is measured in the units of pc cm . The
factor L/¢, s likely to have a large uncertainty as we do not know
the scale for energy injection in the turbulent screen. The above

expression for §7 should be divided by (1 + z) %4 when the scattering
is in the FRB host galaxy at redshift z. For the special case of
Kolmogoroff turbulence, o = 1/3, we can write (56) in the following
more convenient form for observational use
DM** (d

2
8t~ 8 x 107 Bs) vyt (1 4 2) 4 ——— (7) {
( ’ dige \ L

L

0.8
emax:| . (57
We see that §¢ has a strong dependence on DMj, an almost linear
dependence on L/¢,,, and it scales inversely with d (distance of the
screen from the source or the observer, whichever is smaller). For a
scattering screen in the FRB host galaxy at redshift 1, at a distance
of 1 kpc from the source, which has L/;,,x ~ 10° and DM, ~ 102,
we find that 67 ~ 1 us at 1 GHz. A plasma screen at a distance of
0.1 pc from the source, that has DMy ~ 10 pc cm ™3 and L/, ~
102, gives 8¢ ~ 7 us. We show in Fig. 7 a contour plot of 8¢ as a
function of DMy and L/€,. that provides a quick estimate of the
parameters that can account for the measured temporal broadening
of FRB light curves. The coherence band width of the spectrum is
~1/ét. The coherence bandwidth (§v), given by equation (52), for
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Figure 7. Pulse broadening (§7) at 1 GHz due to a scattering screen at a
distance d = 1 kpc from the FRB source is shown in this figure as a function
of the electron column density associated with the screen (DMy) and L/€yax
which is the ratio of the width of the screen along the line of sight to the
observer and the size of the largest turbulent eddies. The labels on the contours
are logjo(d¢) in seconds. For a screen at a redshift z these numbers should be
divided by (1 + z)**, and for a scattering screen at a distance d (expressed
in parsec) from the FRB, 87 shown in the graph changes by a factor 10%/d.
Results for a scattering screen in our Galaxy are the same as in this figure
when we take the distance d to be between the screen and us.

different screen parameters is shown in Fig. 8; a coherence bandwidth
> MHz at v = 1 GHz generally requires a scattering screen that is
relatively close to the source (or the observer) so that the DM, <«
DM. The variability time due to scintillation is

Styar ~ 100 € 0v70 7 8. (58)

m

This is much larger than the FRB burst duration unless the screen is
extremely close to the source (or observer), causing /, to decrease
(see equation 55). For example, in order for the variability to be of
the order of ~1 ms (while keeping DM fixed at DM, ~ 1 pc cm™3)
one requires d ~ L ~ 10'3 cm. Note however that the linear theory
of scattering and pulse broadening breaks down within a distance
of 10"L’ ) cm of the FRB source where the wave non-linearity
parameter is > 1; Ly 40 is FRB luminosity at 1 GHz in units of 10%°
erg s~'. Some of the non-linear effects can be handled using the work
of Lu & Phinney (2020).

4 SUMMARY AND DISCUSSION

The variability of FRB light curves and any break in the spectrum
contain information regarding the radiation mechanism, which has
not been made use of thus far. This work describes what we can hope
to learn from light-curve variability and spectral features about FRB
physics.

We have considered the scenario where the FRB emission is
produced at some distance R from the magnetar by a relativistic
outflow that is moving towards the observer with Lorentz factor y >
1. The duration of the outflow in the magnetar rest frame is fje;. As
long as tje is much larger than 7y = R/(2cy?), the observed duration
of the FRB, fgg, is dictated by frrp ~ fje and the FRB light curve
reflects the temporal structure of the outflow. In this case, the light
curve can turn on and off quickly compared with the duration of the
pulse, and the time-scale for temporal fluctuations of the light curve

MNRAS 498, 651-664 (2020)
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Figure 8. Coherence bandwidth (Hz) at 1 GHz due to a scattering screen close to the source. Results are shown as a function of the screen’s contribution to the
dispersion measure (DM;), the screen’s distance from the source (dyj) and the ratio of the screen thickness and the largest eddy size (L/Ijm,x). The black lines are
curves of constant coherence bandwidth, and the number associated with each line is Logjo of the coherence bandwidth in Hz.

(~ty) can be very rapid.” Similarly, the spectrum can have sharp
structures when R < 10" cm.

However, when the radio emission is produced outside the magne-
tar magnetosphere such that zgrp ~ 1y, then the rise time of the light
curve, its decline, temporal fluctuations, and the spectral features are
all highly constrained by the geometry of the shock front and special
relativity. Much of the paper, and the discussion here, addresses what
FRB data can tell us about the viability of this class of models. A
special case of this general scenario we have considered is maser
emission in the shock driven by the relativistic outflow into the
circumstellar medium of the magnetar.

For FRB emission produced outside the magnetosphere, the
natural time-scale for the rise of the light curve is #, (defined above),
which is also of order the duration of a pulse in the FRB light curve.
Thus, we expect the ratio of the rise time and the pulse duration to be
of order unity; the expected ratio of the light-curve variability time

7If the intrinsic variability time is found to be a few us or smaller then
that would be a good indication that FRB radiation is produced in the close
vicinity of a compact object, well inside the magnetosphere, as suggested by
the model of Kumar et al. (2017) which is further developed in Kumar &
Bosnjak (2020).

MNRAS 498, 651-664 (2020)

and the pulse duration is also of order unity in this case. One way
to get these ratios to be much less than one is by concentrating the
maser emission process to a small patch of the shocked plasma of
comoving size {R/y with { < 1, i.e. the emission is produced in an
area of size much smaller than the shock front surface visible to the
observer. However, in this case the efficiency of radio production is
reduced by a factor ~¢2 — ¢ (Section 2.3.1) above and beyond the
efficiency of the maser process. Alternative ways to get a rapid rise
time compared to the pulse duration involve producing the emission
in a very narrow range of radii or when the spectrum is very narrow
in the comoving frame, and it rapidly sweeps through the observed
band. These scenarios too lead to a significantly reduced efficiency.
Perhaps the most promising way to obtain rapid fluctuations of the
light curve is by arranging the emission to be highly anisotropic in
the comoving frame of the source (see Section 2.3.4); the FRB pulse
shape in this case should be double peaked, or horn shaped, as shown
in Fig. 5.

The fastest rate for the decline of light curves is set by the emission
from outside the relativistic beaming angle, or parts of the outflow at
angles lager than y ~! wrt to the observer line of sight, that arrives at
the observer. Thus, the fastest possible decline of the light curve at
a fixed frequency is f, oc t~>~# (Kumar & Panaitescu 2000); where
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B is the spectral index defined as f, o vP, and £, is the specific
flux. In Section 2.1, we extended this result to spectra that may be
intrinsically narrow (in frequency and/or time), and for observations
done at different frequencies. One of the key results we found is that
if the observed specific flux at vy, #; is f; then the flux at a lower
frequency v,, and at a later time, f, = #;v,/v,, should not be smaller
than f|(v2/v1)2 for the class of models where frrg ~ fo. In other
words, the fall-off of spectrum at low frequencies that is faster than
v? is inconsistent with the expectation of radiation being produced
at R > 10'cm. These results regarding the temporal fluctuations
of the light curves and spectra are purely geometric in origin and
follow from special relativity, and are largely independent of the
details of the radiation mechanism® as long as the process involves
a relativistic outflow of angular size larger than y~' outside the
magnetosphere.® One notable caveat is that radiation produced at 0
> 1/y re-encounters the emitting shell before reaching the observer.
The frequency of the photon at this second encounter with the shell
is smaller in the local comoving frame. The high-latitude radiation
therefore may be suppressed at this second encounter if its comoving
frame frequency is smaller than the local plasma frequency. However,
it is important to note that this can only suppress the high-latitude
signature if the intrinsic spectrum is both narrow and centred close
to the local plasma frequency. Even in this scenario, the radiation is
still visible from photons emitted at least up to an angle of 1/yy and
so the observed spectral and temporal widths of the signal will be at
least of order unity.

Of course, scintillation effects should be removed from the data
before checking for the steepness of the spectrum according to the
argument above. Radio scintillation in the FRB host galaxy, IGM,
and our Galaxy can smooth out the intrinsic variability of FRB light
curves and introduce features in their spectra. In Section 3, we
estimated the inner scale of turbulence due to viscous damping, and
provide a formula for scintillation time as a function of electron
column density of the scattering screen, its distance from the source
(or observer), and the outer scale of the turbulence, to help determine
intrinsic FRB properties.

A specific example of an application of the results presented in
this work is the case of the Galactic FRB 200428 (Section 2). The
spectrum for the second pulse of this burst was cut-off abruptly below
~550 MHz. The first radio pulse of FRB 200428, which preceded
the second pulse by 30ms, was detected only between 400 and
550 MHz by CHIME. Scintillation can cause the spectrum to change
in 30 ms with a coherence bandwidth of ~10> MHz at v ~ 1 GHz
provided that the scattering screen is within a few parsecs of the
source (see Fig. 9); the required transverse velocity of the screen wrt
to the source—observer line of sight is <1072 ¢ when the screen is at
a distance <1073 pc from the source'® (Fig. 9) and the size of the

8The main assumption in this calculation is that the emitting region is optically
thin to the observed radiation. The most relevant optical depth to consider is
due to induced Compton scattering. By construction, radiation that reaches
the observer must be at least moderately optically thin to this process for
the majority of photons, which are produced within y~' from the line of
sight. For photons produced at higher latitudes and traveling towards the
observer, the induced Compton optical depth is expected to only be lower,
due to a reduction in the occupation number of photons produced outside
of the relativistic beaming cone. Therefore, Induced Compton cannot easily
suppress high latitude photons.

9A faster decline of the flux, either in time or frequency, can arise provided
that the angular size of the outflow is <y ~!.

10Plasma with fluctuating electron density at a distance ~1073 pc from the
magnetar is certainly plausible. This view is supported by observations that
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Figure 9. Shown here is the transverse velocity of the scattering screen, or
the speed of turbulence on the diffraction scale, as a function of the distance
of the scattering screen from the FRB source in order that the scintillation
time is 8tyar = 30ms and the coherence bandwidth for scintillation (6v —
equation 52) is 70 or 140 MHz; the velocity is independent of the parameter
L/Cmax- We see that a modest speed, v/c < 10_2, can give 8ty = 30 ms and
5v ~ 10> MHz when the screen is at a distance ~10~* pc from the source.
Also shown is the electron density in the scattering screen for two different
values of L/¢nax (the right-hand side of the y-axis is the density scale), and
the contribution of the screen to the DM of the FRB source (where DM =
DM,/pccm™3).

source is < 10° cm such as when the radiation is produced inside the
NS magnetosphere (Lu et al. 2020). However, the fact that the first
pulse was not detected between 1281 and 1468 MHz (Bochenek et al.
2020), and most likely the spectrum was cut-off above 550 MHz,
suggests an intrinsically narrow spectrum for this pulse. The low-
frequency cut-off of the spectrum of the second pulse is also likely to
be intrinsic to the source and not due to scintillation; it would require
a high degree of fine tuning of scintillation parameters to produce
the sharp high- and low-frequency cut-offs for the first and second
pulses and the flux to be unobservably small over several hundred
MHz at least. The presence of an intrinsic cut-off of the spectrum,
for the second pulse in particular, would rule out the FRB model
in which radio emission is produced outside the NS light cylinder,
independent of other difficulties specific to the shock model pointed
out by Lu et al. (2020).

Another FRB observation that is marginally in conflict with the
basic expectations of radiation being produced at R > 10'° cm comes
from FRB 121102. Three bursts from this FRB were detected by
VLA at 2.5-3.5 GHz but not by Arecibo at 1.15-1.73 GHz, despite
Arecibo being more sensitive than VLA by a factor ~5 (Law et al.
2017). Given that the Arecibo band is a factor ~2 lower than the
VLA, the expected flux from a relativistic outflow in the Arecibo
band should have been at most ~4 times less than the VLA flux if
the angular size of the outflow is larger than y .

A number of current FRB observatories such as CHIME, ASKAP,
and DSA, have micro-second or better time resolution and it should

FRB producing neutron stars, such as SGR 193542154 in our galaxy, have
many outbursts on time-scales of minutes to days and probably have unsteady
wind as well. The outflow/wind at a distance of 10=3 pc from the NS becomes
cold due to adiabatic expansion and density fluctuations are not likely to be
wiped out.

MNRAS 498, 651-664 (2020)
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be possible to determine fluctuations in radio light curves down
to those time-scales for bright bursts. The power density spectrum
of FRB light curves in the frequency range of a few KHz to tens
of MHz would provide important information regarding the FRB
mechanism. Similarly, sharp features in the spectra, which are not
due to scintillation, are good diagnostic tools of the FRB radiation
mechanism.
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