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Abstract—State-of-charge (SOC) estimation plays a founda-
tional role in advanced battery management systems (BMS),
having attracted much attention in the past decade. It is widely
acknowledged that the accuracy of SOC estimation largely
depends on the accuracy of the selected model. In this work,
we contribute a new SOC estimation method based on the
nonlinear double-capacitor (NDC) model, a novel equivalent
circuit model distinctly capable of simulating the charge diffusion
inside an electrode of a battery and capturing the battery’s
nonlinear voltage behavior simultaneously. With improved pre-
dictive accuracy, the NDC model provides a new opportunity for
enabling more accurate SOC estimation. With this meotivation,
this paper exploits the well-known extended Kalman filter (EKF)
to perform SOC estimation based on the NDC model. The EKF is
desirable here as it leads to efficient computation, straightforward
implementation, and good convergence in its application to
the NDC model, which is low-dimensional and governed by
linear dynamics along with nonlinear output. The proposed
SOC estimation method is validated through simulations and
experimental data under various conditions, showing significant
accuracy as well as robustness to different levels of initialization
error and noises.

Index Terms—State-of-charge, nonlinear double-capacitor, bat-
tery management systems, extended Kalman filter.

I. INTRODUCTION

S the world has become increasingly dependent on elec-
tronic devices, from small scale portable electronics
like cell phones and laptops, to larger scale systems such
as electric vehicles and grid energy storage, rechargeable
batteries have become a major focus of many research and
development efforts. Battery energy storage is a technology
crucial for the worldwide shift to renewable energy, as it
will support and complement the existing power grid [1],
[2] to accommodate the influx of electric vehicles, solar
panels, and wind turbines. The successful implementation of
rechargeable battery-based energy storage systems requires a
battery management system (BMS) to monitor and control the
battery operation [3]. Among its various functions, arguably
the most important is the state-of-charge estimation, which
has attracted considerable research in the past years but still
remains an open challenge due to the incessant demand for
better accuracy.
The SOC of a battery is defined as the ratio of available
capacity to the total capacity and is commonly shown as a

percentage value on devices such as cell phones and laptops.
To the everyday user it may seem to be a trivial calculation, but
unfortunately this is not the case and some sort of algorithm
is necessary to infer the SOC from current, voltage, and
temperature measurements. An accurate SOC knowledge is
required in advanced battery management systems, such as
those in electric vehicles, for several purposes. In order to
avoid overcharge and overdischarge of the batteries [4], which
can result in fire or explosion [5], the user must accurately
know the cell charge level. The SOC also acts as a reference
to cell balancing strategies, power calculations, and energy
calculations [6]. Poor charging and discharging strategies can
reduce the lifetime of a battery, therefore knowing the SOC
can help avoid these problems. An overview of various SOC
estimation techniques is discussed below.

SOC estimation methods can be separated into two groups:
traditional model-free methods and recent but increasingly
popular model-based and data-based methods. Traditional
methods do not make use of battery models and rely on mea-
surements or straightforward calculations. One such ubiquitous
method is coulomb counting, where the SOC of a cell is
tracked by the integration of current over time. This method
is highly reliant on an accurate initial current reading and
is subject to drift, making it inadequate for advanced battery
applications [3]. Another traditional technique is voltage trans-
lation, in which an open-circuit-voltage (OCV) measurement
is taken and the SOC is found from an SOC-OCV lookup
table or curve that was determined offline. This method is
cumbersome and impractical due to the rest period needed to
measure OCV [7].

New methods to estimate SOC make use of either advanced
data-driven or physics-based models. Most recently, machine
learning methods such as artificial neural networks [8] and
support vector machines [9] have been proposed for estimating
SOC, where a data-driven predictive model is built by training
the battery data sets, but this must be done offline and takes
time. In the literature, there are two predominant model-based
SOC estimation methods for batteries — electrochemical mod-
els or equivalent circuit models (ECMs). Electrochemical mod-
els characterize the ion transport within the battery, therefore
requiring a set of partial differential equations (PDEs) to be
solved [10], [11], which is too computationally expensive to be



useful in real-time BMS SOC monitoring often implemented
on an embedded processing chip [12]. ECMs, however, offer
a computationally appealing alternative to electrochemical
model-based SOC estimation. ECMs simulate the current-
voltage behavior of a battery by modeling the battery as an
electric circuit with well-known components, such as voltage
sources, resistors, and capacitors. ECMs are much simpler and
more computationally efficient than electrochemical models,
which make ECMs great candidates for use in advanced BMSs
that require real-time estimation of various battery states,
especially SOC [13].

Within the model-based SOC estimation field, there exist
nonlinear observers and stochastic estimators. Among the
nonlinear SOC observers are Luenberger observers, sliding-
mode observers and robust nonlinear observers [10], which
view the battery model as a deterministic system. On the other
hand, stochastic estimators possess the ability to suppress the
noise that naturally occurs within and affects a dynamic system
[7]. The Kalman filter, a recursive and probabilistic technique,
is the most notable of this type, which has been used to
address a broad range of stochastic estimation problems [14].
The extended Kalman filter (EKF) is a nonlinear extension of
the standard Kalman filter for nonlinear systems and has be-
come an increasingly important approach for SOC estimation,
mainly due to its amenability to design. Another advantage of
the EKF is its competitiveness in terms of computational cost
and convergence when applied to models with low order—
even though it has cubic computational complexity, the actual
computation will still be low for low-dimensional models such
as most ECMs for batteries [15].

To meet the growing need for accurate SOC knowledge,
this paper exploits a novel battery model, i.e., the nonlinear
double-capacitor (NDC) model, and the EKF to develop a new
SOC estimation approach. As shown in Fig. 1, the NDC model
was recently proposed in [16] and shows better predictive
accuracy than other popular ECMs, primarily ascribed to
its capability of simultaneously simulating the diffusion of
charge within an electrode and capturing the nonlinear voltage
behavior. This implies a new opportunity for enabling more
precise SOC estimation using this model. Here, the EKF
is an appealing choice to perform the estimation for two
reasons. First, the NDC model has only three states, thus
allowing for efficient computation involved in executing the
EKF. Second, the nonlinearity of the NDC model lies only
in the measurement process, which makes the linearization
easier while simplifying the implementation of the EKF. This
proposed approach is then evaluated extensively via simulation
and experiments.

This paper is organized as follows. Section II is an overview
of the NDC model as formulated in [16]. Section III describes
the EKF estimation approach used in this work. Section IV
provides an extensive validation of the proposed SOC esti-
mation method, including simulation results and experimental
results. Section V concludes the paper and includes a brief
discussion of future work directions.
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Fig. 1: The nonlinear double-capacitor model.

II. NONLINEAR DOUBLE-CAPACITOR MODEL

In this section, the NDC model is introduced and an
overview of the motivation for its development and the math-
ematical equations characterizing its behavior are presented.

The NDC model, an extension of the double-capacitor
model [17], [18], was developed to enhance the competence
of ECMs in better capturing a battery’s electric behavior.
This model makes use of two parallel resistor-capacitor (RC)
circuits to characterize the charge diffusion within an electrode
of a battery. Each R-C branch represents a region of the
electrode. Specifically, the R;-Cj, circuit represents the bulk
portion of the electrode, and the R¢-C circuit represents the
surface region of the electrode which is in contact with the
electrolyte. In Fig. 1, Vi is the voltage across Cy, and V}
(not shown) is the voltage across Cp. V;, and V; are set to
be between 0 and 1 V. Based on such an analogy, this circuit
structure can offer an emulation of the charge diffusion process
inside an electrode, which is the most important part of a
battery’s dynamics. In addition, a battery’s voltage behavior is
nonlinear, mainly due to the nonlinear SOC-OCYV relationship.
The NDC model thus includes a nonlinear mapping of Vi,
ie., U = h(V;). It is further complemented with the internal
resistor Ry and R{-C; circuit.

The dynamics of the NDC model, in state-space form, is
shown as follows.

Vi (t) Vi (t)
Vi(t)| = A |Vi(t)| +BI(?) (1a)
Vi(t) Vi(t)
V(t) = h(Vi(t)) — Vi(t) + RoI(t) (1b)
where
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In the nonlinear measurement equation, the 7 (V;) term can be

parameterized as a fifth-order polynomial and is written as
h(Vs) =00+ al‘/s + aQVf + 043‘/:93 + a4v:94 + a5v:95

Here, SOC is dependent on the states as follows:

Qa Cb% + CSVS

SOC = = =
Cy+ Cs

= x 100%
Q1



where (), is the available capacity and (), is the total capacity.
This relation suggests that SOC estimation is a state estimation
problem. Furthermore, the internal resistance Ry is dependent
on SOC and is described by

Ry = 71 + 7267 1350C 4 7 15(1=800)

With its unique circuit structure, the NDC model can more
accurately predict the OCV and the charge diffusion in the
electrodes, making it advantageous for SOC estimation.

III. STATE-OF-CHARGE ESTIMATION USING EKF
A. Problem Formulation

We focus on the problem of estimating the SOC of recharge-
able battery cells in real-time based on the NDC model using
current and voltage measurements. To accomplish this goal,
we begin from the continuous-time model (1). The discrete
state-space model takes the form

Tpy1 = Fop + Guy, + wy,
Yk = h(zg, ug) + vk

where F' = 4T G = (fOT eATdT)B, wy is the state at
time k, uj is the input current at time k, yj is the volt-
age measurement at time k, and h(wy,uy) is the nonlinear
transformation describing the terminal voltage measurement
as a function of the state and input at time k. Here, {wy} is
added to represent the process noise and assumed to be a white
Gaussian noise sequence with the distribution wy ~ N (0, Q),
and {vj} is added to capture the measurement noise which
is also considered a white Gaussian noise sequence with
Vg ~ N (0, R)

Now, we have a model ready to track the three state
variables, V3, Vs, and Vi, at each time instant from which
SOC can be inferred directly. The low dimensionality and
nonlinearity of this model invites the use of the EKF. It is
straightforward to apply the EKF to a system of only three
dimensions, and because the primary difficulty in solving
this problem lies in the nonlinear measurement equation, the
linearization done by the EKF is an efficient choice and allows
us to overcome this obstacle.

B. EKF Algorithm Implementation

In this section, the implementation of the EKF will be
presented. The EKF is performed in three steps: initialization,
state prediction (time update), and state update (measurement
update). The state prediction and state update steps are com-
puted recursively at each time instant. Before this recursion
takes place, we must carefully consider the initialization
step. Not only are we considering the initial values of the
state estimate statistics, but we must also select appropriate
noise covariance matrices. The selection of these covariance
matrices, () and R, is crucial to the estimation performance
and convergence of the EKF, and an incorrect choice may
result in the SOC estimate diverging greatly from the truth.
We select () based on our confidence in the model, and we
select R based on the measurement uncertainty.

TABLE I: NDC model parameters.

Cb C s Rb Rs Rl CVl

10037 973 0019 0 002 3250
(Fl [Fl @ @ [ [F]

TABLE II: Simulation test design.

Test Initialization  Process Noise = Measurement
# Error Level Noise Level
1 5% 107513 0.052
2 5% 10=°13 2.5 x 106
3 5% 10~ 813 0.052
4 5% 10~ 813 2.5 x 1076
5 20% 10~ 513 0.052
6 20% 107513 2.5 x 1076
7 20% 10~ 813 0.052
8 20% 10~ 813 2.5 x 1076

We begin by initializing the state estimate mean and state
estimate covariance:

.fo = E[Io]
Py = E[(zo — &0)(x0 — £0)"]

The state estimate is represented as a random vector
whose probability distribution is described by zp|Yi_1 ~
N(£k|k,1,PI§“k71), where Y, 1 is the set of measurements
up to time k — 1, Zpp_1 is the estimate of x) given Yy 1,
and PZ;C\ #_1 18 the covariance of the state estimate at time k
given Y _1. These statistics, i.e., the mean and covariance of
the distribution, are then propagated through the time update
and measurement update steps as shown below.

State Prediction (Time Update)

Tpp—1 = Fop_qp—1 + Gug—1
P11 = FPlfq\kﬂFT +Q

When the new measurement ;. is made available, the filter can
update its knowledge of the state z;, at time k by x4|Y) ~
N(ij]ﬂk’a P]f“g)

State Update (Measurement Update)
Tjk = Thjp—1 + Pf|kf1Hg(ﬁkP§|kf1ﬁg +R)"!
X [y — M @pjp—1)]
Py = Py — P Hif (He Py HP + R) ™ Hy Pl

In the above equations, H,, is the Jacobian matrix, defined as

- 0Oh
Hk = 67 =
x Th|k—1
- - T
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TABLE III: SOC estimation error: Simulation.

Test # 2 3 4 5 6 7 8

Error (%) 3.6 76 035 016 49 78 047 029
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Fig. 2: SOC estimation for simulation #4 in Table II: Low
initialization error with low process noise and low
measurement noise.

where
A Cb% + 05‘75
SOC= ————=
Cy+Cy
On(V, ~ - . -
({9(x ) — on 4 205V, + 305V2 + 40P + 505V

The EKF provides an ideal choice for SOC estimation based
on the NDC model. First, whichever filter we use will be im-
plemented in an embedded system with limited computational
resources. The EKF is a good choice for this application to the
NDC model, as the model is three-dimensional and the EKF is
competitive in computational complexity and convergence for
low-dimensional systems [15]. Another reason for choosing
the EKF is the ease of tuning relative to other filters. For
example, in the unscented Kalman Filter (UKF) one must
select appropriate values for «, (3, and ~ parameters as well
as the process noise covariance matrix () and measurement
noise covariance matrix R, whereas with the EKF we only
have to tune the () and R matrices. The measurement noise
can be found from the root-mean-squared (RMS) noise val-
ues specified by the measurement device, so we are mostly
concerned with the selection of (), which characterizes our
confidence in the process model and does not represent any
real physical process. Applying the EKF may be tedious
for some models due to the computation of the Jacobian
matrices. However, for the NDC model only the measurement
equation is nonlinear and the computation of the Jacobian is
straightforward. Lastly, the EKF has been extensively used
for various SOC estimation applications in the literature [19]—
[23], proving its effectiveness. Other estimation methods may
be used for this application, which will be a part of future
exploration.
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Fig. 3: SOC estimation for simulation #8 in Table II: High
initialization error with low process noise and low
measurement noise.

Fig. 4: PEC SBT4050 battery cycler test bench set-up.

IV. METHOD VALIDATION

In this section, we present simulation and experimental
results to validate the proposed SOC estimation method. Using
simulations, we will assess the robustness of the method
against SOC initialization error and noises at different levels.
Then, we will further appraise the method using experimental
data.

A. Numerical Simulation

The NDC model was simulated using the parameters shown
in Table I, which were identified for a Panasonic NCR18650B
lithium-ion battery cell in [16]. The fifth-order polynomial h(-)
takes the form as follows:

h(Vy) =3.242.59 - V, — 9.003 - V2 + 18.87 - V3
—17.82- V! 4+6.325- V)

The internal resistance, as a function of SOC, is described by
Ro = 0.0531 + 0.1077¢~3807S0C 4 0 0533¢~7-613(1-50C)

Now that we have a parameterized NDC model, we can
proceed to validate the estimation method. To evaluate the ro-
bustness of the method against varying initialization errors and
noise levels, we designed and performed numerous simulations
based on combinations of three factors: the initialization



TABLE IV: Experiment test design.

Test # 1 2 3 4
Initialization Error (%) 5 20 50 75

TABLE V: SOC estimation error: Experimental data.

Test # 1 2 3 4
Error (%) 138 142 148 1.56

error, (), and R, to control for each robustness metric. Each
factor can assume one of two modes. Here, we let the SOC
initialization error take the values 5% or 20%, Q = 10813
or Q = 107°I3 (where I3 denotes the identity matrix of
dimension 3), and R = 2.5 x 1076 or R = 0.052. Table II
outlines the eight cases considered in the simulation setting.
For this method to be applicable in general practice, it needs
to be robust to SOC initialization error because the BMS may
not always know the initial SOC of the cell in question, and
it needs to be able to adequately track the SOC in the case of
large process and measurement noise levels.

Based on the simulation results, we find that the proposed
method has considerable robustness to different levels of
initialization errors and noise levels. This robustness will
make the method advantageous in real-world applications. The
EKF is able to accurately track the SOC of the battery and
converge quickly, even under large noise and initialization
error conditions, with an average SOC estimation error of 3.1%
across all simulations, with a maximum error of 7.8%. The
results of the simulations are summarized in Table III, and
two cases are plotted in Figs. 2 and 3 showing accurate and
convergent SOC tracking under different initialization errors.

B. Experimental Validation

The battery cycling experiments presented in this paper
were conducted on a PEC SBT4050 battery tester, shown in
Fig. 4. The battery tester is capable of up to 40 V and 50
A charging/discharging and can be programmed for specific
test regimes. The server is where specific testing regimes
can be formulated offline and the data were collected using
LifeTest software. Experiments were performed on a Pana-
sonic NCR18650B lithium-ion battery cell, with a nominal
voltage of 3.7 V and a capacity of 3.4 Ah.

For the experimental validation, we analyze the estimation
accuracy under different initialization errors. Experimental
data, shown in Fig. 5, were used to verify the proposed
SOC estimation algorithm. These experiments were conducted
under variable currents normalized from Urban Dynamometer
Drive Schedule (UDDS) profile [24] and scaled to a dis-
charging range of 0-3 A. Similar to the simulation testing
design, the experimental test cases can be seen in Table IV. In
the experimental setting, SOC obtained by coulomb counting
is used as a reference for comparison, which is used as a
benchmark to evaluate the estimation by the EKF [25]. Using
the experimental data, the EKF was able to track the SOC of

the battery very well, with an average SOC error of around
1.46%, as reported in Table V. Fig. 6 shows accurate and
convergent SOC tracking under high initialization error.

V. CONCLUSIONS AND FUTURE WORK

SOC estimation is a fundamental problem in BMS applica-
tions. In this work, we explored SOC estimation using the
NDC model, a novel ECM for rechargeable batteries, and
developed an estimation algorithm based on an EKF. The
proposed method showed excellent SOC estimation accuracy
and convergence under various noise levels and initialization
error conditions in simulations as well as with experimental
data. Our future work will extend the results to SOC estimation
with temperature awareness by way of a more sophisticated
version of the NDC model.
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