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Abstract—State-of-charge (SOC) estimation plays a founda-
tional role in advanced battery management systems (BMS),
having attracted much attention in the past decade. It is widely
acknowledged that the accuracy of SOC estimation largely
depends on the accuracy of the selected model. In this work,
we contribute a new SOC estimation method based on the
nonlinear double-capacitor (NDC) model, a novel equivalent
circuit model distinctly capable of simulating the charge diffusion
inside an electrode of a battery and capturing the battery’s
nonlinear voltage behavior simultaneously. With improved pre-
dictive accuracy, the NDC model provides a new opportunity for
enabling more accurate SOC estimation. With this motivation,
this paper exploits the well-known extended Kalman filter (EKF)
to perform SOC estimation based on the NDC model. The EKF is
desirable here as it leads to efficient computation, straightforward
implementation, and good convergence in its application to
the NDC model, which is low-dimensional and governed by
linear dynamics along with nonlinear output. The proposed
SOC estimation method is validated through simulations and
experimental data under various conditions, showing significant
accuracy as well as robustness to different levels of initialization
error and noises.

Index Terms—State-of-charge, nonlinear double-capacitor, bat-
tery management systems, extended Kalman filter.

I. INTRODUCTION

A
S the world has become increasingly dependent on elec-

tronic devices, from small scale portable electronics

like cell phones and laptops, to larger scale systems such

as electric vehicles and grid energy storage, rechargeable

batteries have become a major focus of many research and

development efforts. Battery energy storage is a technology

crucial for the worldwide shift to renewable energy, as it

will support and complement the existing power grid [1],

[2] to accommodate the influx of electric vehicles, solar

panels, and wind turbines. The successful implementation of

rechargeable battery-based energy storage systems requires a

battery management system (BMS) to monitor and control the

battery operation [3]. Among its various functions, arguably

the most important is the state-of-charge estimation, which

has attracted considerable research in the past years but still

remains an open challenge due to the incessant demand for

better accuracy.

The SOC of a battery is defined as the ratio of available

capacity to the total capacity and is commonly shown as a

percentage value on devices such as cell phones and laptops.

To the everyday user it may seem to be a trivial calculation, but

unfortunately this is not the case and some sort of algorithm

is necessary to infer the SOC from current, voltage, and

temperature measurements. An accurate SOC knowledge is

required in advanced battery management systems, such as

those in electric vehicles, for several purposes. In order to

avoid overcharge and overdischarge of the batteries [4], which

can result in fire or explosion [5], the user must accurately

know the cell charge level. The SOC also acts as a reference

to cell balancing strategies, power calculations, and energy

calculations [6]. Poor charging and discharging strategies can

reduce the lifetime of a battery, therefore knowing the SOC

can help avoid these problems. An overview of various SOC

estimation techniques is discussed below.

SOC estimation methods can be separated into two groups:

traditional model-free methods and recent but increasingly

popular model-based and data-based methods. Traditional

methods do not make use of battery models and rely on mea-

surements or straightforward calculations. One such ubiquitous

method is coulomb counting, where the SOC of a cell is

tracked by the integration of current over time. This method

is highly reliant on an accurate initial current reading and

is subject to drift, making it inadequate for advanced battery

applications [3]. Another traditional technique is voltage trans-

lation, in which an open-circuit-voltage (OCV) measurement

is taken and the SOC is found from an SOC-OCV lookup

table or curve that was determined offline. This method is

cumbersome and impractical due to the rest period needed to

measure OCV [7].

New methods to estimate SOC make use of either advanced

data-driven or physics-based models. Most recently, machine

learning methods such as artificial neural networks [8] and

support vector machines [9] have been proposed for estimating

SOC, where a data-driven predictive model is built by training

the battery data sets, but this must be done offline and takes

time. In the literature, there are two predominant model-based

SOC estimation methods for batteries – electrochemical mod-

els or equivalent circuit models (ECMs). Electrochemical mod-

els characterize the ion transport within the battery, therefore

requiring a set of partial differential equations (PDEs) to be

solved [10], [11], which is too computationally expensive to be
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useful in real-time BMS SOC monitoring often implemented

on an embedded processing chip [12]. ECMs, however, offer

a computationally appealing alternative to electrochemical

model-based SOC estimation. ECMs simulate the current-

voltage behavior of a battery by modeling the battery as an

electric circuit with well-known components, such as voltage

sources, resistors, and capacitors. ECMs are much simpler and

more computationally efficient than electrochemical models,

which make ECMs great candidates for use in advanced BMSs

that require real-time estimation of various battery states,

especially SOC [13].

Within the model-based SOC estimation field, there exist

nonlinear observers and stochastic estimators. Among the

nonlinear SOC observers are Luenberger observers, sliding-

mode observers and robust nonlinear observers [10], which

view the battery model as a deterministic system. On the other

hand, stochastic estimators possess the ability to suppress the

noise that naturally occurs within and affects a dynamic system

[7]. The Kalman filter, a recursive and probabilistic technique,

is the most notable of this type, which has been used to

address a broad range of stochastic estimation problems [14].

The extended Kalman filter (EKF) is a nonlinear extension of

the standard Kalman filter for nonlinear systems and has be-

come an increasingly important approach for SOC estimation,

mainly due to its amenability to design. Another advantage of

the EKF is its competitiveness in terms of computational cost

and convergence when applied to models with low order—

even though it has cubic computational complexity, the actual

computation will still be low for low-dimensional models such

as most ECMs for batteries [15].

To meet the growing need for accurate SOC knowledge,

this paper exploits a novel battery model, i.e., the nonlinear

double-capacitor (NDC) model, and the EKF to develop a new

SOC estimation approach. As shown in Fig. 1, the NDC model

was recently proposed in [16] and shows better predictive

accuracy than other popular ECMs, primarily ascribed to

its capability of simultaneously simulating the diffusion of

charge within an electrode and capturing the nonlinear voltage

behavior. This implies a new opportunity for enabling more

precise SOC estimation using this model. Here, the EKF

is an appealing choice to perform the estimation for two

reasons. First, the NDC model has only three states, thus

allowing for efficient computation involved in executing the

EKF. Second, the nonlinearity of the NDC model lies only

in the measurement process, which makes the linearization

easier while simplifying the implementation of the EKF. This

proposed approach is then evaluated extensively via simulation

and experiments.

This paper is organized as follows. Section II is an overview

of the NDC model as formulated in [16]. Section III describes

the EKF estimation approach used in this work. Section IV

provides an extensive validation of the proposed SOC esti-

mation method, including simulation results and experimental

results. Section V concludes the paper and includes a brief

discussion of future work directions.

Fig. 1: The nonlinear double-capacitor model.

II. NONLINEAR DOUBLE-CAPACITOR MODEL

In this section, the NDC model is introduced and an

overview of the motivation for its development and the math-

ematical equations characterizing its behavior are presented.

The NDC model, an extension of the double-capacitor

model [17], [18], was developed to enhance the competence

of ECMs in better capturing a battery’s electric behavior.

This model makes use of two parallel resistor-capacitor (RC)

circuits to characterize the charge diffusion within an electrode

of a battery. Each R-C branch represents a region of the

electrode. Specifically, the Rb-Cb circuit represents the bulk

portion of the electrode, and the Rs-Cs circuit represents the

surface region of the electrode which is in contact with the

electrolyte. In Fig. 1, Vs is the voltage across Cs, and Vb

(not shown) is the voltage across Cb. Vb and Vs are set to

be between 0 and 1 V. Based on such an analogy, this circuit

structure can offer an emulation of the charge diffusion process

inside an electrode, which is the most important part of a

battery’s dynamics. In addition, a battery’s voltage behavior is

nonlinear, mainly due to the nonlinear SOC-OCV relationship.

The NDC model thus includes a nonlinear mapping of Vs,

i.e., U = h(Vs). It is further complemented with the internal

resistor R0 and R1-C1 circuit.

The dynamics of the NDC model, in state-space form, is

shown as follows.




V̇b(t)

V̇s(t)

V̇1(t)



 = A





Vb(t)
Vs(t)
V1(t)



+BI(t) (1a)

V (t) = h(Vs(t))− V1(t) +R0I(t) (1b)

where

A =







−1
Cb(Rb+Rs)

1
Cb(Rb+Rs)

0
1

Cs(Rb+Rs)
−1

Cs(Rb+Rs)
0

0 0 −1
R1C1






, B =







Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)

−1
C1







In the nonlinear measurement equation, the h(Vs) term can be

parameterized as a fifth-order polynomial and is written as

h(Vs) = α0 + α1Vs + α2V
2
s + α3V

3
s + α4V

4
s + α5V

5
s

Here, SOC is dependent on the states as follows:

SOC =
Qa

Qt

=
CbVb + CsVs

Cb + Cs

× 100%
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where Qa is the available capacity and Qt is the total capacity.

This relation suggests that SOC estimation is a state estimation

problem. Furthermore, the internal resistance R0 is dependent

on SOC and is described by

R0 = γ1 + γ2e
−γ3SOC + γ4e

−γ5(1−SOC)

With its unique circuit structure, the NDC model can more

accurately predict the OCV and the charge diffusion in the

electrodes, making it advantageous for SOC estimation.

III. STATE-OF-CHARGE ESTIMATION USING EKF

A. Problem Formulation

We focus on the problem of estimating the SOC of recharge-

able battery cells in real-time based on the NDC model using

current and voltage measurements. To accomplish this goal,

we begin from the continuous-time model (1). The discrete

state-space model takes the form

xk+1 = Fxk +Guk + wk

yk = h̄(xk, uk) + vk

where F = eAT , G = (
∫ T

0
eAτdτ)B, xk is the state at

time k, uk is the input current at time k, yk is the volt-

age measurement at time k, and h̄(xk, uk) is the nonlinear

transformation describing the terminal voltage measurement

as a function of the state and input at time k. Here, {wk} is

added to represent the process noise and assumed to be a white

Gaussian noise sequence with the distribution wk ∼ N (0, Q),
and {vk} is added to capture the measurement noise which

is also considered a white Gaussian noise sequence with

vk ∼ N (0, R).
Now, we have a model ready to track the three state

variables, Vb, Vs, and V1, at each time instant from which

SOC can be inferred directly. The low dimensionality and

nonlinearity of this model invites the use of the EKF. It is

straightforward to apply the EKF to a system of only three

dimensions, and because the primary difficulty in solving

this problem lies in the nonlinear measurement equation, the

linearization done by the EKF is an efficient choice and allows

us to overcome this obstacle.

B. EKF Algorithm Implementation

In this section, the implementation of the EKF will be

presented. The EKF is performed in three steps: initialization,

state prediction (time update), and state update (measurement

update). The state prediction and state update steps are com-

puted recursively at each time instant. Before this recursion

takes place, we must carefully consider the initialization

step. Not only are we considering the initial values of the

state estimate statistics, but we must also select appropriate

noise covariance matrices. The selection of these covariance

matrices, Q and R, is crucial to the estimation performance

and convergence of the EKF, and an incorrect choice may

result in the SOC estimate diverging greatly from the truth.

We select Q based on our confidence in the model, and we

select R based on the measurement uncertainty.

TABLE I: NDC model parameters.

Cb Cs Rb Rs R1 C1

10037 973 0.019 0 0.02 3250
[F ] [F ] [Ω] [Ω] [Ω] [F ]

TABLE II: Simulation test design.

Test Initialization Process Noise Measurement
# Error Level Noise Level

1 5% 10−5I3 0.052

2 5% 10−5I3 2.5× 10−6

3 5% 10−8I3 0.052

4 5% 10−8I3 2.5× 10−6

5 20% 10−5I3 0.052

6 20% 10−5I3 2.5× 10−6

7 20% 10−8I3 0.052

8 20% 10−8I3 2.5× 10−6

We begin by initializing the state estimate mean and state

estimate covariance:

x̂0 = E[x0]

P x
0 = E[(x0 − x̂0)(x0 − x̂0)

T ]

The state estimate is represented as a random vector

whose probability distribution is described by xk|Yk−1 ∼
N (x̂k|k−1, P

x
k|k−1), where Yk−1 is the set of measurements

up to time k − 1, x̂k|k−1 is the estimate of xk given Yk−1,

and P x
k|k−1 is the covariance of the state estimate at time k

given Yk−1. These statistics, i.e., the mean and covariance of

the distribution, are then propagated through the time update

and measurement update steps as shown below.

State Prediction (Time Update)

x̂k|k−1 = Fx̂k−1|k−1 +Guk−1

P x
k|k−1 = FP x

k−1|k−1F
T +Q

When the new measurement yk is made available, the filter can

update its knowledge of the state xk at time k by xk|Yk ∼
N (x̂k|k, P

x
k|k).

State Update (Measurement Update)

x̂k|k = x̂k|k−1 + P x
k|k−1H̄

T
k (H̄kP

x
k|k−1H̄

T
k +R)−1

× [yk − h̄(x̂k|k−1)]

P x
k|k = P x

k|k−1 − P x
k|k−1H̄

T
k (H̄kP

x
k|k−1H̄

T
k +R)−1H̄kP

x
k|k−1

In the above equations, H̄k is the Jacobian matrix, defined as

H̄k =
∂h̄

∂x

∣

∣

∣

∣

x̂k|k−1

=







(−γ2γ3e
−γ3SÔC + γ4γ5e

−γ5(1−SÔC))I(k)Cb

Qt

∂h(V̂s)
∂x

+ (−γ2γ3e
−γ3SÔC + γ4γ5e

−γ5(1−SÔC))I(k)Cs

Qt

−1







T

3



TABLE III: SOC estimation error: Simulation.

Test # 1 2 3 4 5 6 7 8

Error (%) 3.6 7.6 0.35 0.16 4.9 7.8 0.47 0.29
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Fig. 2: SOC estimation for simulation #4 in Table II: Low

initialization error with low process noise and low

measurement noise.

where

SÔC =
CbV̂b + CsV̂s

Cb + Cs

∂h(V̂s)

∂x
= α1 + 2α2V̂s + 3α3V̂

2
s + 4α4V̂

3
s + 5α5V̂

4
s

The EKF provides an ideal choice for SOC estimation based

on the NDC model. First, whichever filter we use will be im-

plemented in an embedded system with limited computational

resources. The EKF is a good choice for this application to the

NDC model, as the model is three-dimensional and the EKF is

competitive in computational complexity and convergence for

low-dimensional systems [15]. Another reason for choosing

the EKF is the ease of tuning relative to other filters. For

example, in the unscented Kalman Filter (UKF) one must

select appropriate values for α, β, and γ parameters as well

as the process noise covariance matrix Q and measurement

noise covariance matrix R, whereas with the EKF we only

have to tune the Q and R matrices. The measurement noise

can be found from the root-mean-squared (RMS) noise val-

ues specified by the measurement device, so we are mostly

concerned with the selection of Q, which characterizes our

confidence in the process model and does not represent any

real physical process. Applying the EKF may be tedious

for some models due to the computation of the Jacobian

matrices. However, for the NDC model only the measurement

equation is nonlinear and the computation of the Jacobian is

straightforward. Lastly, the EKF has been extensively used

for various SOC estimation applications in the literature [19]–

[23], proving its effectiveness. Other estimation methods may

be used for this application, which will be a part of future

exploration.
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Fig. 3: SOC estimation for simulation #8 in Table II: High

initialization error with low process noise and low

measurement noise.

Fig. 4: PEC SBT4050 battery cycler test bench set-up.

IV. METHOD VALIDATION

In this section, we present simulation and experimental

results to validate the proposed SOC estimation method. Using

simulations, we will assess the robustness of the method

against SOC initialization error and noises at different levels.

Then, we will further appraise the method using experimental

data.

A. Numerical Simulation

The NDC model was simulated using the parameters shown

in Table I, which were identified for a Panasonic NCR18650B

lithium-ion battery cell in [16]. The fifth-order polynomial h(·)
takes the form as follows:

h(Vs) =3.2 + 2.59 · Vs − 9.003 · V 2
s + 18.87 · V 3

s

− 17.82 · V 4
s + 6.325 · V 5

s

The internal resistance, as a function of SOC, is described by

R0 = 0.0531 + 0.1077e−3.807·SOC + 0.0533e−7.613(1−SOC)

Now that we have a parameterized NDC model, we can

proceed to validate the estimation method. To evaluate the ro-

bustness of the method against varying initialization errors and

noise levels, we designed and performed numerous simulations

based on combinations of three factors: the initialization
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TABLE IV: Experiment test design.

Test # 1 2 3 4

Initialization Error (%) 5 20 50 75

TABLE V: SOC estimation error: Experimental data.

Test # 1 2 3 4

Error (%) 1.38 1.42 1.48 1.56

error, Q, and R, to control for each robustness metric. Each

factor can assume one of two modes. Here, we let the SOC

initialization error take the values 5% or 20%, Q = 10−8I3
or Q = 10−5I3 (where I3 denotes the identity matrix of

dimension 3), and R = 2.5 × 10−6 or R = 0.052. Table II

outlines the eight cases considered in the simulation setting.

For this method to be applicable in general practice, it needs

to be robust to SOC initialization error because the BMS may

not always know the initial SOC of the cell in question, and

it needs to be able to adequately track the SOC in the case of

large process and measurement noise levels.

Based on the simulation results, we find that the proposed

method has considerable robustness to different levels of

initialization errors and noise levels. This robustness will

make the method advantageous in real-world applications. The

EKF is able to accurately track the SOC of the battery and

converge quickly, even under large noise and initialization

error conditions, with an average SOC estimation error of 3.1%

across all simulations, with a maximum error of 7.8%. The

results of the simulations are summarized in Table III, and

two cases are plotted in Figs. 2 and 3 showing accurate and

convergent SOC tracking under different initialization errors.

B. Experimental Validation

The battery cycling experiments presented in this paper

were conducted on a PEC SBT4050 battery tester, shown in

Fig. 4. The battery tester is capable of up to 40 V and 50

A charging/discharging and can be programmed for specific

test regimes. The server is where specific testing regimes

can be formulated offline and the data were collected using

LifeTest software. Experiments were performed on a Pana-

sonic NCR18650B lithium-ion battery cell, with a nominal

voltage of 3.7 V and a capacity of 3.4 Ah.

For the experimental validation, we analyze the estimation

accuracy under different initialization errors. Experimental

data, shown in Fig. 5, were used to verify the proposed

SOC estimation algorithm. These experiments were conducted

under variable currents normalized from Urban Dynamometer

Drive Schedule (UDDS) profile [24] and scaled to a dis-

charging range of 0–3 A. Similar to the simulation testing

design, the experimental test cases can be seen in Table IV. In

the experimental setting, SOC obtained by coulomb counting

is used as a reference for comparison, which is used as a

benchmark to evaluate the estimation by the EKF [25]. Using

the experimental data, the EKF was able to track the SOC of

the battery very well, with an average SOC error of around

1.46%, as reported in Table V. Fig. 6 shows accurate and

convergent SOC tracking under high initialization error.

V. CONCLUSIONS AND FUTURE WORK

SOC estimation is a fundamental problem in BMS applica-

tions. In this work, we explored SOC estimation using the

NDC model, a novel ECM for rechargeable batteries, and

developed an estimation algorithm based on an EKF. The

proposed method showed excellent SOC estimation accuracy

and convergence under various noise levels and initialization

error conditions in simulations as well as with experimental

data. Our future work will extend the results to SOC estimation

with temperature awareness by way of a more sophisticated

version of the NDC model.
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Fig. 5: (a) UDDS-based current profile; (b) measured terminal voltage.
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