
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

1

Deep Reinforcement Learning for Adaptive

Network Slicing in 5G for Intelligent Vehicular

Systems and Smart Cities
Almuthanna Nassar, and Yasin Yilmaz, Senior Member, IEEE

Electrical Engineering Department, University of South Florida, Tampa, FL 33620, USA

E-mails: {atnassar@usf.edu; yasiny@usf.edu}

Abstract—Intelligent vehicular systems and smart city appli-
cations are the fastest growing Internet of things (IoT) imple-
mentations at a compound annual growth rate of 30%. In view
of the recent advances in IoT devices and the emerging new
breed of IoT applications driven by artificial intelligence (AI),
fog radio access network (F-RAN) has been recently introduced
for the fifth generation (5G) wireless communications to overcome
the latency limitations of cloud-RAN (C-RAN). We consider the
network slicing problem of allocating the limited resources at
the network edge (fog nodes) to vehicular and smart city users
with heterogeneous latency and computing demands in dynamic
environments. We develop a network slicing model based on a
cluster of fog nodes (FNs) coordinated with an edge controller
(EC) to efficiently utilize the limited resources at the network
edge. For each service request in a cluster, the EC decides which
FN to execute the task, i.e., locally serve the request at the edge,
or to reject the task and refer it to the cloud. We formulate
the problem as infinite-horizon Markov decision process (MDP)
and propose a deep reinforcement learning (DRL) solution to
adaptively learn the optimal slicing policy. The performance of
the proposed DRL-based slicing method is evaluated by com-
paring it with other slicing approaches in dynamic environments
and for different scenarios of design objectives. Comprehensive
simulation results corroborate that the proposed DRL-based EC
quickly learns the optimal policy through interaction with the
environment, which enables adaptive and automated network
slicing for efficient resource allocation in dynamic vehicular and
smart city environments.

Index Terms—Intelligent Vehicular Systems, Network Slicing,
Deep Reinforcement Learning, Edge Computing, Fog RAN.

I. INTRODUCTION

The fifth generation (5G) wireless communication systems

will enable massive Internet of Things (IoT) with deeper

coverage, very high data rates of multi giga-bit-per-second

(Gbps), ultra-low latency, and extremely reliable mobile con-

nectivity [1], [2]. It is anticipated that the IoT devices will

constitute the 50% of the 29.3 billion connected devices

globally by 2023, where Internet of Vehicles (IoV) and smart

city applications are the fastest growing IoT implementations

at annual growth rates of 30% and 26%, respectively [3]. The

emerging new breed of IoT applications which involve video

analytics, augmented reality (AR), virtual reality (VR), and

artificial intelligence (AI) will produce an annual worldwide

data volume of 4.8 zettabyte by 2022, which is more than

180 times the data traffic in 2005 [4]. Equipped with variety

1This work is partially funded by the U.S. National Science Foundation
(NSF) under the grant ECCS-2029875.

of sensors, radars, lidars, ultra-high definition (UHD) video

cameras, GPS, navigation system, and infotainment facilities,

a connected and autonomous vehicle (CAV) will generate 4.0
terabyte of data in a single day, of which 1.0 gigabyte need

to be processed every second [5].

A. Cloud and Fog RAN

Through centralization of network functionalities via virtu-

alization, cloud radio access network (C-RAN) architecture

is proposed to address the big data challenges of massive

IoT. In C-RAN, densely-deployed disseminated remote radio

units (RRUs) are connected through high capacity fronthaul

trunks to a powerful cloud controller (CC) where they share

a vast pooling of storage and baseband units (BBUs) [6]. The

centralized computing, processing, and collaborative radio in

C-RAN improves network security, flexibility, availability, and

spectral efficiency. It also simplifies network operations and

management, enhances capacity, and reduces energy usage

[7]. However, considering the fast growing demands of IoT

deployments, C-RAN lays overwhelming onus on cloud com-

puting and fronthaul links, and dictates unacceptable delay

caused mainly by the large return transmission times, finite-

capacity fronthaul trunks, and flooded cloud processors [8].

The latency limitation in C-RAN makes it challenging to

meet the desired quality-of-service (QoS) requirements, espe-

cially for the delay-sensitive IoV and smart city applications

[9]. Hence, an evolved architecture, fog RAN (F-RAN) is

introduced to extend the inherent operations and services of

cloud to the edge [10]. In F-RAN, the fog nodes (FNs) are

not only restricted to perform the regular radio frequency

(RF) functionalities of RRUs, but they are also equipped

with computing, storage, and processing resources to afford

the low latency demand by delivering network functionalities

directly at the edge and independently from the cloud [11].

However, due to their limited resources compared to the

cloud, FNs are unable to serve all requests from IoV and

smart city applications, and hence they should utilize their

limited resources intelligently to satisfy the QoS requirements

in synergy and complementarity with the cloud [12].

B. Network Slicing for Heterogeneous IoV and Smart City

Demands

IoV and smart city applications demand various computing,

throughput, latency, availability, and reliability requirements

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

2

to satisfy a desired level of QoS. For instance, in-vehicle

audio, news, and video infotainment services are satisfied

by the traditional mobile broadband (MBB) services of high

throughput and capacity with latency greater than 100 ms [13].

Cloud computing plays an essential role for such delay-tolerant

applications. Other examples of delay-tolerant applications

include smart parking [14], intelligent waste management

[15], infrastructure (e.g., bridges, railways, etc.) monitoring

[16], air quality management [17], noise monitoring [18],

smart city lighting [19], smart management of city energy

consumption [20], and automation of public buildings such as

schools, museums, and administration offices to automatically

and remotely control lighting and air condition [21].

On the other hand, latency and reliability are more critical

for other IoV and smart city applications. For instance, deploy-

ment scenarios based on enhanced mobile broadband (eMBB)

require latency of 4.0 ms. Enhanced vehicle-to-everything

(eV2X) applications demand 3-10 ms latency with packet loss

rate of 10−5. Ultra-reliable and low-latency communications

(URLLC) seek latency level of 0.5-1.0 ms and 99.999%
reliability [22], [23], e.g., autonomous driving [24]. AI-driven

and video analytics services are considered both latency-

critical and compute-intensive applications [25]. For instance,

real-time video streaming for traffic management in intelligent

transportation system (ITS) [26] requires a frame rate of

100 Hz, which corresponds to a latency of 10 ms between

frames [13]. Future electric vehicles (EVs) and CAVs are

viewed as computers on wheels (COWs) rather than cars

because they are equipped with super computers to execute

extremely intensive computing tasks including video analytics

and AI-driven functionalities. However, with the high power

consumption associated with such intense computing, COWs

capabilities are still bounded in terms of computing power,

storage, and battery life. Hence, computing offloading to fog

and cloud networks is inevitable [27]. Especially in a dynamic

traffic and load profiles of dense IoV and smart city service

requests with heterogeneous latency and computing needs,

partitioning RAN resources virtually, i.e., network slicing [28],

assures service customization.

Network slicing is introduced for the evolving 5G and be-

yond communication technologies as a cost-effective solution

for mobile operators and service providers to satisfy various

user QoS [29]. In network slicing, a heterogeneous network

of various access technologies and QoS demands that share a

common physical infrastructure is logically divided into virtual

network slices to improve network flexibility. Each network

slice acts as an independent end-to-end network and supports

various service requirements and a variety of business cases

and applications. In this work, we consider the network slicing

problem of adaptively allocating the limited edge computing

and processing resources in F-RAN to dynamic IoV and smart

city applications with heterogeneous latency demands and

diverse computing loads.

II. RELATED WORK

There is an increasing number of works in the literature

focusing on network slicing as an emerging network architec-

ture for 5G and future technologies. Issues and challenges of

network slicing as well as the key techniques and solutions

for resource management are considered in [28]. The work in

[30] provides an overview of various use cases and network

requirements of network slicing. Network slicing for resource

allocation in F-RAN is considered in [31]–[33], where network

is logically partitioned into two slices, a high downlink-

transmission-rate slice for MBB applications, and a low-

latency slice to support URLLC services. While [31] focuses

on efficiently allocating radio resources and satisfying various

QoS requirements, [32] investigates a joint radio and caching

resource allocation problem. For massive IoT environment, the

authors in [33] proposed a hierarchical architecture in which a

global resource manager allocates the radio resources to local

resource managers in slices, which assign resources afterwards

to their users. Two-level resource management in C-RAN is

explored in [34], [35]: an upper level for allocating fronthaul

capacity and computing resources of C-RAN among multiple

wireless operators, and a lower level for controlling the

allocation of C-RAN radio resources to individual operators.

Reinforcement learning (RL) is embraced as a powerful tool

to deal with dynamic network slicing for adaptive resource

allocation in F-RAN. In [4], [29], [36], the RL methods of

Q-learning (QL), Monte Carlo, SARSA, expected SARSA,

and dynamic programming are utilized to learn the optimal

resource allocation policy for a single fog node. The work [37]

follows the problem formulation in [4] with an extension to

spectrum sharing between 5G users and incumbent users. As

the complexity of the control problem increases with more fog

nodes, deep RL (DRL), which integrates deep neural networks

(DNN) with RL, is more advantageous to cope with the large

state and action spaces [38].

A. Deep RL for Network Slicing

Applying DRL as a solution for core network slicing is

investigated in [39], [40]. In [39], a particular scenario with

three service types (VoIP, video, URLLC) and hundred users is

considered. Resource reconfiguration of core network slices is

studied in [40] with the aim of minimizing long-term resource

consumption. DRL-based centralized agent for C-RAN slicing

is investigated in [41]–[45]. In [41], Deep Q-network (DQN)

is utilized by a cloud server to optimally manage centralized

caching and radio resources and support two transmission-

mode network slices, hotspot slice which supports high-

transmission-rate users for MBB applications, and vehicle-

to-infrastructure slice for delay-guaranteed transmission. For

better radio resource management, a DRL agent is used as a

slice manager in [43] to schedule users into three slice types,

best effort rate, constant bit rate, and minimum bit rate slices.

In [44], a DRL agent at a centralized controller manages the

allocation of shared radio resources (bandwidth) among multi-

ple base stations and different network slices (VoLTE, eMBB,

and URLLC) to maximize spectrum efficiency and service

level agreements. A general network slicing model is proposed

by [45] in which an owner of a network provides physical

resources to tenants (service providers) to meet the service

demand of their end users. With the aim of maintaining high

quality of service and maximizing the long-term revenue of

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

3

service providers through minimizing the reconfiguration cost,

a centralized DRL agent reconfigures the allocated resources

for two network slices, eMBB and URLLC.

Single base station slicing model is considered in [42],

[46]–[49]. C-RAN with single base station is investigated in

[42], where Generative-adversarial-network distributed DQN

(GAN-DDQN) is examined for dynamic bandwidth slicing

among network slices, each of which supports users of a

particular service type. The dependency of radio resource

allocation and the number of slices supported by a single BS is

studied by [46], in which distributed DRL is utilized to achieve

optimal and flexible radio resource allocation regardless of

the number of slices. The work in [47] follows [39] where a

single base station provides three service types (video,VoLTE,

URLLC) and decides the bandwidth to allocate for each user

request. In a vehicular network, [48] employs a DRL agent

at a single base station to allocate radio resources for users

that belong to four slices, cellular high-definition television

slice, cellular ultra-low latency slice, and two device-to-device

slices, one from each cellular slice. In [49], a DRL agent at a

single base station is exploited to allocate uplink bandwidth to

mobile users from various slices with the aim of maximizing

uplink throughput and minimizing energy cost. [50] utilizes

DQN to dynamically select the best slicing configuration

in WiFi networks. DRL slicing in a hierarchical network

architecture for dynamic resource reservation is studied in

[51], in which the infrastructure provider assigns unutilized

resources to network slices maintaining a minimum resource

requirement and demand in each slice, where DRL then

is employed to efficiently manage reserved resources and

maximize QoS.

B. Research Gaps and Proposed Improvements

Despite the growing literature, still there exists a significant

research gap: adaptively satisfying the QoS requirements of

the URLLC applications while efficiently utilizing the local

resources in F-RAN. Motivated by this problem, we provide a

novel network slicing technique for sequentially allocating the

FNs’ limited computing and processing resources at the net-

work edge to various vehicular and smart city applications with

heterogeneous latency needs. The proposed technique ensures

the efficient utilization of the edge resources in dynamic traffic

profiles and task loads. Specifically, this paper contributes to

resolving the following limitations of the existing works.

• Firstly, an uncoordinated DRL-based network slicing and

a single fog node slicing model as in [4], [29], [37], [46]–

[49] are not an ideal network slicing approach for 5G

and future technologies. Especially in dynamic environ-

ments, coordination among fog nodes is needed for more

efficient utilization of edge resources while satisfying

the QoS needs of users. In this paper, we present a

coordinated network slicing model based on multiple fog

nodes cooperating through an edge controller.

• Secondly, a centralized DRL-based cloud controller for an

entire network to manage resource allocation among vari-

ous network slices as in [34], [35], [40]–[45] will have la-

tency limitations, especially for URLLC-based IoV, V2X,

and smart city applications, such as autonomous driving.

Whereas, distributed and independent edge controllers

(ECs), which are fog nodes that serve as cluster heads,

as proposed in this paper can avoid large transmission

delays and satisfy the desired level of QoS at FNs by

making local real-time decisions for the received service

requests in a cluster.

• Thirdly, a fixed DRL-based network slicing approach as

in [31]–[33] with dedicated fog access point resources

for the URLLC slice and dedicated remote radio heads

for the MBB slice can cause inefficient utilization of

edge resources, especially in a dynamic environment. The

nature of many smart city and IoV applications (e.g., au-

tonomous vehicles) requires continuous edge capabilities

everywhere in the service area, hence radio, caching and

computing resources need to be available at the edge.

In practice, the population of delay-sensitive and high-

data-rate services dynamically varies over time, and as

a result a fixed URLLC or MBB slice will be under-

utilized during light demand for low-latency or high-

speed services, respectively. A more flexible network

slicing method as proposed in this paper would smartly

adapt to the environment. We provide an infinite-horizon

Markov decision process (MDP) formulation and a DRL

algorithm to adaptively learn the optimal network slicing

policy by closely interacting with the IoV and smart city

environment.

• Lastly, a hard DRL-based network slicing and hierarchi-

cal slicing architecture as in [33], [39], [40], [45], [51]

require frequent physical shifting of resources, and hence

cannot address dynamic environments with changing

demands in a cost-efficient manner. With hard slicing,

it will be costly and impractical for cellular operators

and service providers to keep adding and transferring

further infrastructural assets, i.e., capital expenditure

which includes transceivers (TRX) and other radio re-

sources, computing and signal processing resources such

as, BBUs, CPUs and GPUs, as well as caching resources

and storage data centers. Such major network changes

could be considered as part of network expansion plans

over time. In this work, we propose a cost-efficient,

soft (i.e., virtual) network slicing method in F-RAN.

We present extensive simulation results to examine the

performance and adaptivity of the proposed DRL-based

network slicing method in diverse intelligent vehicular

systems and smart city environments and different per-

formance objectives.

The remainder of the paper is organized as follows. Section

III introduces the network slicing model. The proposed MDP

formulation for the network slicing problem is provided in

Section IV. Optimal policies and the proposed DRL algorithm

are discussed in Section V. Simulation results are presented in

Section VI, and the paper is concluded in Section VII. A list

of notations used throughout the paper is provided in Table I.

III. NETWORK SLICING MODEL

We consider the F-RAN network slicing model for IoV

and smart city shown in Fig. 1. The two logical network

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

5

EC. The cluster size k is a network design parameter which

represents the number of coordinated FNs in an edge cluster.

An FN in each cluster is appointed as EC to manage and

coordinate edge resources at FNs in the cluster. The EC is

nominated by the network designer mainly based on its central

geo location among the FNs in the cluster, like f1 and f3 in Fig.

1. Note that unlike the cloud controller, the edge controller

is close to the end users as it is basically one of the FNs

in a cluster. Also, the cluster size k is constrained by the

neighboring FNs that cover a limited service area such as a

downtown, industrial area, university campus, etc.

All FNs in an edge cluster are connected together and with

the EC through super-speedy reliable optical links. The EC

monitors all individual FN internal states, including resource

availability and received service requests, and decides for each

service request received by an FN in the cluster. For each re-

ceived request, the EC chooses one of the three options: serve

at the receiving FN (primary FN), serve at a neighboring FN,

or serve at the cloud. Each FN in the cluster has a predefined

list Ni of neighboring FNs, which can help serving a received

service request. For instance, C = {f1, f2, . . . ,
?

fi, . . . , fk} is an

edge cluster of size k, where
?

fi denotes the EC which can be

any FN in the cluster C. The network designer needs to define

a neighboring list Ni ⊆ {C−fi} for each FN in the cluster. An

FN can hand-over service tasks only to its neighbors. Dealing

with IoV and smart city service requests, we call the FN which

receives a request the primary FN f̂ , and call the FN which

actually serves the request utilizing its resources the serving

FN f̄ . Depending on the EC decision, the primary FN or one

of its neighbors can be the serving FN, or there can be no

serving FN (for the decision to serve at the cloud).

An IoV or smart city application attempts to access the

network by sending a service request to the primary FN,

which is usually the closest FN to the user. The primary

FN checks the utility u ∈ U = {1, 2, . . . , umax}, i.e., the

priority level of executing the service task at the edge, analyzes

the task load by figuring the required amount of resources

c ∈ C = {1, 2, . . . , cmax} and holding time of resources

h ∈ H = {1, 2, . . . , hmax}, and sends the EC the task input

(ut, ct, ht) at time t. Since the service requests are handled

sequentially, the changing number of vehicles and smart city

applications does not cause any problem in decision making.

We consider the resource capacity of the ith FN fi ∈ C is

limited to Ni resource blocks. Hence, the maximum number

of resource blocks to be allocated for a task is constrained by

the FN resource capacity, i.e., c ≤ cmax ≤ Ni. We partition

the time into very small time steps t = 1, 2, ..., and assume

a high-rate sequential arrival of IoV and smart city service

requests, one task at a time step. ECs should be intelligent to

learn how to decide (which FN to serve or reject) for each

service request, i.e., how to sequentially allocate limited edge

resources, to achieve the objective of efficiently utilizing the

edge resources while maximizing the grade-of-service (GoS)

defined as the proportion of served high-utility requests to the

total number of high-utility requests received.

A straightforward approach to deal with this network slicing

problem is to filter the received service requests by comparing

their utility values with a predefined threshold. For instance,

consider ten different utilities u ∈ {1, 2, 3, ..., 10} for all

received tasks in terms of the latency requirement, where

u = 10 represents the highest-priority and lowest-latency task

such as the emergency requests from the driver distraction

alerting system, and u = 1 is for the lowest-priority task with

highest level of latency such as a service task from smart waste

management system. Then, a straightforward non-adaptive

solution for network slicing is to dedicate the edge resources

to high-utility tasks, such as u ≥ uh, and refer to the cloud

the tasks with u < uh, where the threshold uh is a predefined

network design parameter. However, such a policy is strictly

sub-optimum since the EC will execute any task which satisfies

the threshold regardless of how demanding the task load is. For

instance, while FNs are busy with serving a few high-utility

requests of high load, i.e., low-latency tasks which require

large amount of resources c and long holding times h, many

high-utility requests with low load demand may be missed. In

addition, this straightforward policy increases the burden on

the cloud unnecessarily, especially when the environment is

dominated by low-utility tasks with u < uh. A better network

slicing policy would consider the current resource utilization

and expected reward of each possible action while deciding,

and also adapt to changing utility and load distributions in the

environment. To this end, we next propose a Markov Decision

Process (MDP) formulation for the considered network slicing

problem.

IV. MDP FORMULATION AT EC

MDP formulation enables the EC to consider expected

rewards of all possible actions in its network slicing decision.

Since closed form expressions typically do not exist for the ex-

pected reward of each possible action at each system state in a

real-world problem, reinforcement learning (RL) is commonly

used to empirically learn the optimum policy for the MDP

formulation. The RL agent (the EC in our problem) learns to

maximize the expected reward by trial and error. That means

the RL agent sometimes exploits the best known actions, and

sometimes, especially in the beginning of learning, explores

other actions to statistically strengthen its knowledge of best

actions at different system states. Once, the RL agents learns

an optimum policy (i.e., the RL algorithm converges) through

managing this exploitation-exploration trade-off, the learned

policy can be exploited as long as the environment (i.e., the

probability distribution of system state) remains the same. In

dynamic IoV and smart city environments, an RL agent can

adapt its decision policy to the changing distributions.

As illustrated in Fig. 2, for each service request in an edge

cluster at time t from an IoV or smart city application with

utility ut, the primary FN computes the number of resource

blocks ct and the holding time ht which are required to serve

the task locally at the edge. Then, the primary FN shares

(ut, ct, ht) with the EC , which keeps track of the available

resources at all FNs in the cluster. If neither the primary

FN nor its neighbors has ct available resource blocks for a

duration of ht, the EC inevitably rejects serving the task at

the edge and refers it to the cloud. Note that in the proposed

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

7

where bit denotes the number of resource blocks in use

at FN i at time t. Note that bi(t+1), li(t+1) and in turn

the next state st+1 are independent of the past values

given the current state st, satisfying the Markov property

P (st+1|s0, s1, s2, ..., st, at) = P (st+1|st, at).
• Action: The EC decides, as shown in Fig. 2, for

each service request by taking an action at ∈ A =
{1, 2, . . . , k, k + 1}, where at = i ∈ {1, 2, . . . , k} means

serve the requested task at the ith FN in the cluster,

fi ∈ C = {f1, f2, . . . , fk}, whereas at = k + 1 means

to reject the job and refer it to the cloud. Note that for a

request received by fi, the feasible action set is a subset

of A consisting of fi, its neighbors Ni, and the cloud.

Fig. 2 illustrates the decision of the EC for a sample

service request received by f2 at time t in an edge cluster

with k = 4 FNs. Note that in this example the action

at = 4 is not feasible as f4 /∈ N2, and the EC took the

action at=1, which means serve the task by f1. Hence,

f1 started executing the task at t while another two tasks

(striped yellow and green) are in progress. At t+1, two

resource blocks are released as the job in clear-green is

completed. Note that resource utilization of f1 decreased

from 100% at t, i.e., internal busy state with b1t=5, to

60% at t+1.

• Reward: In general, a proper rewarding system is crucial

for an RL agent to learn the optimum policy of actions

that maximizes the KPIs. The RL agent at the EC collects

an immediate reward rt ∈ Ra(s, s′) for taking action a
at time t from state s which ends in the successor state

s′ in the next time step t + 1. We define the immediate

reward

rt = r(at,ut) ± rLt
(7)

using two components. The first term r(at,ut) ∈
{rsh, rsl, rrh, rrl, rbh, rbl} corresponds to the reward por-

tion for taking an action a ∈ {1, 2, . . . , k, k+ 1} when a

request of specific u is received, and the second term

rLt
= cmax × hmax + 1− Lt, (8)

considers the reward portion for handling the new job

load Lt = ct × ht of a requested task. For instance,

serving low-load task such as L = 3 is awarded

more than serving a task with L = 18. Similarly,

rejecting a low-load task such as L = 3 should be

more penalized, i.e., negatively rewarded especially when

u ≥ uh, than rejecting a task with the same utility

and higher load such as L = 18. The two reward

parts are added when at = serve, and subtracted if

at = reject. We define six different reward-component

r(a,u) ∈ {rsh, rsl, rrh, rrl, rbh, rbl}, where rsh is the

reward for serving a high-utility request, rsl is the reward

for serving a low-utility request, rrh is the reward for

rejecting a high-utility request, rrl is the reward for

rejecting a low-utility request, rbh is the reward for

rejecting a high-utility request due to being busy, and

rbl is the reward for rejecting a low-utility request due

to being busy. Note that having a separate reward for

rejecting due to a busy state makes it easier for the

RL agent to differentiate between similar states for the

reject action. A request is determined as high-utility

or low-utility based on the threshold uh, which is a

design parameter that depends on the level of latency

requirement in an IoV and smart city environment.

V. OPTIMAL POLICIES AND DQN

The state value function V (s) represents the long-term value

of being in a state s. That is, starting from state s how much

value on average the EC will collect in the future, i.e., the

expected total discounted rewards from that state onward.

Similarly, the action-value function Q(s, a) tells how valuable

it is to take a particular action a from the state s. It represents

the expected total reward which the EC may get after taking

the particular action a from the state s onward. The state-

value and the action-value functions are given by the Bellman

expectation equations [52],

V (s) = E[Gt|s] = E[rt + γV (s′)|s], (9)

Q(s, a) = E[Gt|s, a] = E[rt + γQ(s′, a′)|s, a], (10)

where the state value V (s) and the action value Q(s, a) are

recursively presented in terms of the immediate reward rt
and the discounted value of the successor state V (s′) and the

successor state-action Q(s′, a′), respectively. a′ denotes the

action at the next state s′.
Starting at the initial state s0, the EC objective can be

achieved by maximizing the expected total return V (s0) =
E[G0|s0] over a particular time period T . To achieve this

goal, the EC should learn an optimal decision policy to take

proper actions. However, considering the large dimension of

sate space (see (6)) and the intractable number of state-action

combinations, it is infeasible for RL tabular methods to keep

track of all state-action pairs and continuously update the

corresponding V (s) and Q(s, a) for all combinations in order

to learn the optimal policy. Approximate DRL methods such

as DQN is a more efficient alternative for the high-dimensional

EC MDP to quickly learn an optimal decision policy to take

proper actions, which we discuss next.

A policy π is a way of selecting actions. It can be

viewed as a mapping from states to actions as it describes

the set of probabilities for all possible actions to select

from a given state, i.e., π = {P (a|s)}. A policy helps

in estimating the value functions in (9) and (10). π1 is

said to be better than another policy π2 if the state value

function following π1 is greater than that following π2 for

all states, i.e., π1 > π2 if Vπ1
(s) > Vπ2

(s), ∀s ∈ S . A policy

π is said to be optimal if it maximizes the value of all

states, i.e., π∗ = argmax
π

Vπ(s), ∀s ∈ S . Hence, to solve the

considered MDP problem, the DRL agent needs to find the

optimal policy through finding the optimal state-value function

V ∗(s) = max
π

Vπ(s), which is similar to finding the optimal

action-value function Q∗(s, a) = max
π

Qπ(s, a) for all state-

action pairs. From (9) and (10), we can write the Bellman

optimality equations for V ∗(s) and Q∗(s, a) as,

V ∗(s) = max
a∈A

Q∗(s, a) = max
a∈A

E[rt + γV ∗(s′)|s, a], (11)

Q∗(s, a) = E[rt + γmax
a′∈A

Q∗(s′, a′)|s, a]. (12)

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

11

and noise monitoring, smart waste management and energy

consumption management, smart parking assistance, in-vehicle

audio and video infotainment, driver authentication service,

structural health monitoring, safe share rides, smart amber

alerting system and AI-driven and video-analytics tracking

services, driver distraction alerting system and autonomous

driving. Then, we changed the utility distribution to obtain

the other environments.

B. Simulation Parameters

The simulation parameters used in this section are summa-

rized in Table III. We consider an edge cluster of size k = 7,

where each FN has a computing and processing resource

capacity of seven resource blocks, i.e., N = 7. The central

FN f5 acts as the EC, and the neighboring relationships are

shown in Fig. 4. In a particular IoV and smart city environment

E , the threshold that defines “high utility” is set to uh = 8,

i.e., u ∈ {8, 9, 10} is a high-utility application with higher

priority for edge service. To make the resource allocation of

the network slicing problem more challenging, we consider

a request arrival rate of at least five times the task execution

rate, i.e., holding times increment by five times the arrival

interval. The probabilities of c ∈ C = {1, 2, 3, 4} are 0.1,

0.2, 0.3, and 0.4, respectively, whereas the probabilities of

h ∈ H = {5, 10, 15, 20, 25, 30} are 0.05, 0.1, 0.1, 0.15, 0.2,

and 0.4, respectively.

We consider a fully connected DNN structure for DQN

with an input layer of 18 neurons, 2 hidden layers of 64

and 24 neurons, respectively, and an 8-neuron output layer.

Linear activation function is used at the output layer and ReLU

activation is considered for the other layers. The Huber loss

function and the RMSprop optimizer are considered with 0.01
learning rate, 10−4 learning decay, and momentum of 0.9. The

ε-greedy policy is adopted in DNN training where ε starts

at 1.0 for 10% of the time in training and then decays at

a rate of 0.9995 to a minimum value of 10−3 to guarantee

enough exploration over time. As it depends on the nature of

the problem, there is no rule of thumb to tune DNNs. However,

the key factors and main DNN hypeparameters to optimize for

quick convergence include the loss function, the optimizer,

the interval τ to update target weights, the update rate ρ, the

exploration rate ε, the learning rate α, the discount factor γ,

the randomness of the samples and the batch size n, replay

memory size D, and a proper rewarding system to expedite

the learning. The values of all hyperparameters in this section

are chosen based on extensive experiments.

We examine the KPIs explained in Sec. IV-A, GoS, resource

utilization, cloud avoidance, as well as the overall performance

(see (4)-(3)) considering the three scenarios shown in Table

IV with the weights ωg = 1 − ωu = 0.7, ωg = ωu = 0.5,

and ωg = 1 − ωu = 0.3. Each scenario in Table IV

represents a new problem, hence the rewarding systems R1,

R2, and R3 are chosen to facilitate learning the optimal

policy in each scenario. The two reward components, r(a,u) ∈
{rsh, rrh, rbh, rsl, rrl, rbl} and rL for each rewarding system

are provided in Table IV. Note that unlike R2 and R3, R1

encourages rejecting low-utility requests with higher loads

to accommodate the performance requirement of scenario 1,

which puts higher weight on GoS with ωg = 0.7. On the other

hand, R3 promotes serving regardless of the request utility and

the task load as the performance in scenario 3 is in favor of

achieving higher resource utilization with ωu = 0.7.

C. Simulation Results

We train the DRL agent at the EC in various environments

and under different performance scenarios provided in Tables

II and IV, respectively. By interaction with the environment

as illustrated in Fig. 3, the EC learns the optimal policy

using the DQN method given in Algorithm 1. Considering

the environment E3 and the performance scenario 1, Fig. 5

shows an example for the learning curve of the proposed

DQN-based EC in terms of the overall performance and KPIs

which quickly converge to the optimal scores. Starting with

exploration through taking random actions for 30k time steps,

the EC initially performs improperly and provides a relatively

low GoS (i.e., many high-utility requests are missed) while

utilizing the resources mainly for low-utility requests. How-

ever, as the algorithm learns the optimum actions from reward

feedback, the exploration rate decays and the performance

starts to improve. As a result, the EC quickly aligns with the

objectives of scenario 1 putting more emphasis on GoS by

prioritizing high-utility users for edge service.

Next, we compare DQN-EC given in Algorithm 1 with

SAU-EC, SHU-EC, and QL with no EC (QL-NEC) under the

three scenarios given in Table IV. Figs. 6-8 show that the

DRL-based EC adapts to each scenario and outperforms the

other algorithms in all IoV and smart city environments. For

scenario 1 in Fig. 6, SHU-EC has a comparable performance

to DQN-EC because SHU algorithm promotes serving high-

utility requests all the time, which matches with the focus on

GoS in scenario 1 design objective with ωg = 0.7. However,

in poor IoV and smart city environments with less high-

utility population such as E1 the performance gap increases.

This gap shrinks as environment becomes richer and SHU-EC

achieves a performance as high as the DQN-EC score in E4
and E5. The performance of SAU-EC slightly increases while

moving from E1 to E3 and becomes stable afterwards even

for the richer environments E4 and E5 since SAU-EC does

not prioritize high-utility tasks. Unlike the other algorithms,

QL-NEC shows a declining trend since the network slicing

problem becomes more challenging with uncoordinated FNs

while moving towards richer environments in this scenario.

Fig. 7 represents scenario 2 with equal weights for GoS and

resource utilization, where SAU-EC is the second performing

algorithm following DQN-EC. With less importance for GoS,

the performance of SHU-EC is as low as the QL-NEC in E1
and although it grows while moving to richer environments,

it does not reach a comparable level until E4 and E5. The

uncoordinated FNs with QL-NEC is more steady in scenario

2. Fig. 8 shows the performances in scenario 3 in which

more emphasis is put on resource utilization than GoS with

ωu = 0.7. It is observed that SHU-EC fails to achieve a

comparable level of performance compared to DQN-EC while

SAU-EC does.

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3091674, IEEE Internet of

Things Journal

14

[16] P. Barsocchi, P. Cassara, F. Mavilia, and D. Pellegrini, “Sensing a
city’s state of health: Structural monitoring system by internet-of-things
wireless sensing devices,” IEEE Consumer Electronics Magazine, vol. 7,
no. 2, pp. 22–31, 2018.

[17] Z. Hu, Z. Bai, K. Bian, T. Wang, and L. Song, “Real-time fine-grained
air quality sensing networks in smart city: Design, implementation, and
optimization,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7526–
7542, 2019.

[18] L. Ruge, B. Altakrouri, and A. Schrader, “Soundofthecity - continu-
ous noise monitoring for a healthy city,” in 2013 IEEE International

Conference on Pervasive Computing and Communications Workshops

(PERCOM Workshops), 2013, pp. 670–675.

[19] P. T. Daely, H. T. Reda, G. B. Satrya, J. W. Kim, and S. Y. Shin,
“Design of smart led streetlight system for smart city with web-based
management system,” IEEE Sensors Journal, vol. 17, no. 18, pp. 6100–
6110, 2017.

[20] M. Teliceanu, G. C. Lazaroiu, and V. Dumbrava, “Consumption profile
optimization in smart city vision,” in 2017 10th International Symposium

on Advanced Topics in Electrical Engineering (ATEE), 2017, pp. 876–
881.

[21] F. Heimgaertner, S. Hettich, O. Kohlbacher, and M. Menth, “Scaling
home automation to public buildings: A distributed multiuser setup for
openhab 2,” in 2017 Global Internet of Things Summit (GIoTS), 2017,
pp. 1–6.

[22] 3GPP, “Study on scenarios and requirements for next generation access
technologies (release 14), v14.2.0,” Mar., 2017, pp. 23-25. 3GPP, Sophia
Antipolis, France, Rep. TR 38.913. Accessed: Jun. 5, 2021. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2996.

[23] G. J. Sutton, J. Zeng, R. P. Liu, W. Ni, D. N. Nguyen, B. A.
Jayawickrama, X. Huang, M. Abolhasan, Z. Zhang, E. Dutkiewicz et al.,
“Enabling technologies for ultra-reliable and low latency communica-
tions: from phy and mac layer perspectives,” IEEE Communications

Surveys & Tutorials, vol. 21, no. 3, pp. 2488–2524, 2019.

[24] J. Wang, J. Liu, and N. Kato, “Networking and communications in au-
tonomous driving: A survey,” IEEE Communications Surveys Tutorials,
vol. 21, no. 2, pp. 1243–1274, 2019.

[25] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al., “Latency critical
iot applications in 5g: Perspective on the design of radio interface and
network architecture,” IEEE Communications Magazine, vol. 55, no. 2,
pp. 70–78, 2017.

[26] R. H. Goudar and H. N. Megha, “Next generation intelligent traffic
management system and analysis for smart cities,” in 2017 International

Conference On Smart Technologies For Smart Nation (SmartTechCon),
2017, pp. 999–1003.

[27] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1584–1607,
2019.

[28] H. Xiang, W. Zhou, M. Daneshmand, and M. Peng, “Network slicing
in fog radio access networks: Issues and challenges,” IEEE Communi-

cations Magazine, vol. 55, no. 12, pp. 110–116, 2017.

[29] A. Nassar and Y. Yilmaz, “Dynamic network slicing for fog radio access
networks,” in 2019 IEEE Global Conference on Signal and Information

Processing (GlobalSIP), 2019, pp. 1–5.

[30] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[31] T. Dang and M. Peng, “Delay-aware radio resource allocation opti-
mization for network slicing in fog radio access networks,” in 2018

IEEE International Conference on Communications Workshops (ICC

Workshops), 2018, pp. 1–6.

[32] L. Tang, X. Zhang, H. Xiang, Y. Sun, and M. Peng, “Joint resource
allocation and caching placement for network slicing in fog radio
access networks,” in 2017 IEEE 18th International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC). IEEE,
2017, pp. 1–6.

[33] Y. Sun, M. Peng, S. Mao, and S. Yan, “Hierarchical radio resource
allocation for network slicing in fog radio access networks,” IEEE

Transactions on Vehicular Technology, 2019.

[34] V. N. Ha and L. B. Le, “End-to-end network slicing in virtualized ofdma-
based cloud radio access networks,” IEEE Access, vol. 5, pp. 18 675–
18 691, 2017.

[35] Y. L. Lee, J. Loo, T. C. Chuah, and L. Wang, “Dynamic network
slicing for multitenant heterogeneous cloud radio access networks,”

IEEE Transactions on Wireless Communications, vol. 17, no. 4, pp.
2146–2161, 2018.

[36] A. Nassar and Y. Yilmaz, “Resource allocation in fog ran for heteroge-
neous iot environments based on reinforcement learning,” in ICC 2019 -

2019 IEEE International Conference on Communications (ICC), 2019,
pp. 1–6.

[37] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement learning for
dynamic resource optimization in 5g radio access network slicing,” in
2020 IEEE 25th International Workshop on Computer Aided Modeling

and Design of Communication Links and Networks (CAMAD), 2020, pp.
1–6.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[39] R. Li, Z. Zhao, Q. Sun, C. I, C. Yang, X. Chen, M. Zhao, and H. Zhang,
“Deep reinforcement learning for resource management in network
slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[40] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Net-
work slice reconfiguration by exploiting deep reinforcement learning
with large action space,” IEEE Transactions on Network and Service

Management, vol. 17, no. 4, pp. 2197–2211, 2020.
[41] H. Xiang, S. Yan, and M. Peng, “A realization of fog-ran slicing via

deep reinforcement learning,” IEEE Transactions on Wireless Commu-

nications, vol. 19, no. 4, pp. 2515–2527, 2020.
[42] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “Gan-powered

deep distributional reinforcement learning for resource management in
network slicing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 2, pp. 334–349, 2020.

[43] B. Khodapanah, A. Awada, I. Viering, A. N. Barreto, M. Simsek,
and G. Fettweis, “Slice management in radio access network via
deep reinforcement learning,” in 2020 IEEE 91st Vehicular Technology

Conference (VTC2020-Spring). IEEE, 2020, pp. 1–6.
[44] R. Li, C. Wang, Z. Zhao, R. Guo, and H. Zhang, “The lstm-based

advantage actor-critic learning for resource management in network
slicing with user mobility,” IEEE Communications Letters, vol. 24, no. 9,
pp. 2005–2009, 2020.

[45] W. Guan, H. Zhang, and C. V. Leung, “Slice reconfiguration based
on demand prediction with dueling deep reinforcement learning,” in
GLOBECOM 2020-2020 IEEE Global Communications Conference.
IEEE, 2020, pp. 1–6.

[46] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and H. Mineno,
“Flexible resource block allocation to multiple slices for radio access
network slicing using deep reinforcement learning,” IEEE Access, vol. 8,
pp. 68 183–68 198, 2020.

[47] Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learning
based approach for network slicing,” in 2020 IEEE 28th International

Conference on Network Protocols (ICNP). IEEE, 2020, pp. 1–6.
[48] G. Sun, G. O. Boateng, D. Ayepah-Mensah, G. Liu, and J. Wei,

“Autonomous resource slicing for virtualized vehicular networks with
d2d communications based on deep reinforcement learning,” IEEE

Systems Journal, vol. 14, no. 4, pp. 4694–4705, 2020.
[49] Y. Xu, Z. Zhao, P. Cheng, Z. Chen, M. Ding, B. Vucetic, and Y. Li,

“Constrained reinforcement learning for resource allocation in network
slicing,” IEEE Communications Letters, 2021.

[50] S. de Bast, R. Torrea-Duran, A. Chiumento, S. Pollin, and H. Gacanin,
“Deep reinforcement learning for dynamic network slicing in ieee 802.11
networks,” in IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 2019, pp. 264–269.
[51] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and

W. Jiang, “Dynamic reservation and deep reinforcement learning based
autonomous resource slicing for virtualized radio access networks,”
IEEE Access, vol. 7, pp. 45 758–45 772, 2019.

[52] R. Sutton, and A. BartoMack, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[53] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of deep
q-learning,” in Learning for Dynamics and Control. PMLR, 2020, pp.
486–489.

[54] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds
global minima of deep neural networks,” in International Conference

on Machine Learning. PMLR, 2019, pp. 1675–1685.
[55] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent

provably optimizes over-parameterized neural networks,” arXiv preprint

arXiv:1810.02054, 2018.

Authorized licensed use limited to: University of South Florida. Downloaded on July 05,2021 at 08:27:59 UTC from IEEE Xplore. Restrictions apply.

