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a b s t r a c t 

Anomaly detection in surveillance videos is attracting an increasing amount of attention. Despite the 

competitive performance of recent methods, they lack theoretical performance analysis, particularly due 

to the complex deep neural network architectures used in decision making. Additionally, online decision 

making is an important but mostly neglected factor in this domain. Much of the existing methods that 

claim to be online, depend on batch or offline processing in practice. Motivated by these research gaps, 

we propose an online anomaly detection method in surveillance videos with asymptotic bounds on the 

false alarm rate, which in turn provides a clear procedure for selecting a proper decision threshold that 

satisfies the desired false alarm rate. Our proposed algorithm consists of a multi-objective deep learn- 

ing module along with a statistical anomaly detection module, and its effectiveness is demonstrated on 

several publicly available data sets where we outperform the state-of-the-art algorithms. All codes are 

available at https://github.com/kevaldoshi17/Prediction-based-Video-Anomaly-Detection-. 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

The rapid advancements in the technology of closed-circuit 

television (CCTV) cameras and their underlying infrastructural 

components such as network, storage, and processing hardware 

have led to a sheer number of surveillance cameras implemented 

all over the world, and estimated to go beyond 1 billion globally, 

by the end of the year 2021 [1] . Video surveillance is an essential 

tool used in law enforcement, transportation, environmental moni- 

toring, etc. mainly for improving security and public safety. For ex- 

ample, it has become an inseparable part of crime deterrence and 

investigation, traffic violation detection, and traffic management. 

However, considering the massive amounts of videos generated in 

real-time, manual video analysis by human operator becomes in- 

efficient, expensive, and nearly impossible, which in turn makes a 

great demand for automated and intelligent methods for analyz- 

ing and retrieving important information from videos, in order to 

maximize the benefits of CCTV. 

One of the most important, challenging and time-critical tasks 

in automated video surveillance is the detection of abnormal 

events such as traffic accidents and violations, crimes, and natu- 

ral disasters. Hence, video anomaly detection has become an im- 

portant research problem in the recent years. Anomaly detection 
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in general is a vast, crucial, and challenging research topic, which 

deals with the identification of data instances deviating from nom- 

inal patterns. It has a wide range of applications, e.g., in medical 

health care [2] , cyber-security [3] , hardware security [4] , aviation 

[5] , and spacecraft monitoring [6] . 

Given the important role that video anomaly detection can play 

in ensuring safety, security and sometimes prevention of potential 

catastrophes, one of the main outcomes of a video anomaly de- 

tection system is the real-time decision making capability. Events 

such as traffic accidents, robbery, and fire in remote places require 

immediate counteractions to be taken in a timely manner, which 

can be facilitated by the real-time detection of anomalous events. 

Despite its importance, a very limited body of research has focused 

on online and real-time detection methods. Moreover, some of the 

methods that claim to be online heavily depend on batch process- 

ing of long video segments. For example, Liu et al. [7] performs a 

normalization step which requires the entire video. 

A vast majority of the recent state-of-the-art video anomaly de- 

tection methods depend on complex neural network architectures 

[8] . Although deep neural networks provide superior performance 

on various machine learning and computer vision tasks, such as 

object detection [9] , image classification [10] , playing games [11] , 

image synthesis [12] , etc., where sufficiently large and inclusive 

data sets are available to train on, there is also a significant de- 

bate on their shortcomings in terms of interpretability, analyzabil- 

ity, and reliability of their decisions [13] . For example, Papernot 

and McDaniel [14] , Sitawarin and Wagner [15] propose using a 
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nearest neighbor-based approach together with deep neural net- 

work structures to achieve robustness, interpretability for the de- 

cisions made by the model, and as defense against adversarial at- 

tack. Additionally, to the best of the our knowledge, none of the 

neural network-based video anomaly detection methods has been 

analyzed in terms of performance guarantees. On the other hand, 

statistical and nearest neighbor-based methods remain popular due 

to their appealing characteristics such as being amenable to perfor- 

mance analysis, computational efficiency, and robustness [16,17] . 

Motivated by the aforementioned domain challenges and re- 

search gaps, we propose a hybrid use of neural networks and 

statistical k nearest neighbor ( k NN) decision approach for finding 

anomalies in video in an online fashion. In summary, our contri- 

butions in this paper are as follows: 

• We propose a novel framework composed of deep learning- 

based feature extraction from video frames, and a statistical se- 

quential anomaly detection algorithm. 
• We derive an asymptotic bound on the false alarm rate of our 

detection algorithm, and propose a technique for selecting a 

proper threshold which satisfies the desired false alarm rate. 
• We extensively evaluate our proposed framework on publicly 

available video anomaly detection data sets. 

The remainder of the paper is organized as: Related Work 

( Section 2 ), Proposed Method ( Section 3 ), Experiments ( Section 4 ), 

and Conclusion ( Section 5 ). 

2. Related work 

Semi-supervised detection of anomalies in videos, also known 

as outlier detection, is a commonly adopted learning technique 

due to the inherent limitations in availability of annotated and 

anomalous instances. This category of learning methods deals with 

learning a notion of normality from nominal training videos, and 

attempts to detect deviations from the learned normality notion. 

Cheng et al. [18] , Ionescu et al. [19] . There are also several super- 

vised detection methods, which train on both nominal and anoma- 

lous videos. The main drawback of such methods is the difficulty in 

finding frame-level labeled, representative, and inclusive anomaly 

instances. To this end, Sultani et al. [8] proposes using a deep mul- 

tiple instance learning (MIL) approach to train on video-level an- 

notated videos, in a weakly supervised manner. Although training 

on anomalous videos would enhance the detection capability on 

similar anomaly events, supervised methods typically suffer from 

unknown and novel anomaly types. 

One of the key components of the video anomaly detection al- 

gorithms is the extraction of meaningful features, which can cap- 

ture the difference between the nominal and anomalous events 

within the video. The selection of feature types has a significant 

impact on the identifiability of types of anomalous events in the 

video sequences. Many early video anomaly detection techniques 

and some recent ones focused on the trajectory features [20] , 

which limits their applicability to the detection of the anomalies 

related to the trajectory patterns, and moving objects. For instance, 

Fu et al. [21] studied detection of abnormal vehicle trajectories 

such as illegal U-turn. Morais et al. [22] extracts human skeleton 

trajectory patterns, and hence is limited to only the detection of 

abnormalities in human behavior. 

Motion and appearance features are another class of widely 

used features in this domain. Saligrama and Chen [23] extracts mo- 

tion direction and magnitudes, to detect spatio-temporal anoma- 

lies. Histogram of optical flow [24,25] , and histogram of oriented 

gradients [26] are some other commonly used hand-crafted fea- 

ture extraction techniques used in the literature. Sparse coding 

based methods [27] are also applied in detection of video anoma- 

lies. They learn a dictionary of normal sparse events, and attempt 

to detect anomalies based on the reconstructability of video from 

the dictionary atoms. Mo et al. [28] uses sparse reconstruction to 

learn joint trajectory representations of multiple objects. 

In contrary to the hand-crafted feature extraction, are the neu- 

ral network based feature learning methods. Xu et al. [29] learns 

the appearance and motion features by deep neural networks. 

Luo et al. [30] utilizes Convolutional Neural Networks (CNN), and 

Convolutional Long Short Term Memory (CLSTM) to learn appear- 

ance and motion features, respectively. Neural network based ap- 

proaches have been recently dominating the literature. For exam- 

ple, Ravanbakhsh et al. [31] trains Generative Adversarial Network 

(GAN) on normal video frames, to generate internal scene repre- 

sentations (appearance and motion), based on a given frame and 

its optical flow, and detects deviation of the GAN output from the 

normal data, by AlexNet [10] . Sabokrou et al. [32] trains a GAN-like 

adversarial network, in which a reconstruction component learns 

to reconstruct the normal test frames, and attempts to train a dis- 

criminator by gradually injecting anomalies to it, while concur- 

rently the discriminator (detector) learns to detect the anomalies 

injected by the reconstructor. In [33,34] , a transfer learning based 

approach is used for continual learning for anomaly detection in 

surveillance videos from a few samples. 

3. Proposed method 

3.1. Motivation 

Anomaly detection in surveillance videos is defined as the iden- 

tification of unusual events which do not conform to the expec- 

tation. We base our study on two important requirements that a 

successful video anomaly detector should satisfy: (i) extract mean- 

ingful features which can be utilized to distinguish nominal and 

anomalous data; and (ii) provide a decision making strategy which 

can be easily tuned to satisfy a given false alarm rate. While ex- 

isting works partially fulfills the first requirement by defining var- 

ious constraints on spatial and temporal video features, they typ- 

ically neglect providing an analytical and amenable decision strat- 

egy. Motivated by this shortcoming, we propose a unified frame- 

work called Multi-Objective Neural Anomaly Detector (MONAD 1 ). 

Like monads provide a unified functional model for programming, 

our proposed MONAD unifies deep learning-based feature extrac- 

tion and analytical anomaly detection by incorporating two mod- 

ules, as shown in Fig. 1 . The first module consists of a Genera- 

tive Adversarial Network (GAN) based future frame predictor and 

a lightweight object detector (YOLOv3) to extract meaningful fea- 

tures. The second module consists of a nonparametric statistical 

algorithm which uses the extracted features for online anomaly 

detection. To the best of our knowledge, this is the first work to 

present theoretical performance analysis for a deep learning-based 

video anomaly detection method. Our MONAD framework is de- 

scribed in detail in the following sections. 

3.2. Feature selection 

Most existing works focus on a certain aspect of the video 

such as optical flow, gradient loss or intensity loss. This in turn 

restrains the existing algorithms to a certain form of anomalous 

event which is manifested in the considered video aspect. How- 

ever, in general, the type of anomaly is broad and unknown while 

training the algorithm. For example, an anomalous event can be 

justified on the basis of appearance (a person carrying a gun), mo- 

tion (two people fighting) or location (a person walking on the 

1 Monad is a philosophical term for infinitesimal unit, and also a functional pro- 

gramming term for minimal structure. 
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Fig. 1. Proposed MONAD framework. At each time t, neural network-based feature extraction module provides motion (MSE), location (center coordinates and area of 

bounding box), and appearance (class probabilities) features to the statistical anomaly detection module, which automatically sets its decision threshold to satisfy a false 

alarm constraint and makes online decisions. 

roadway). To account for all such cases, we create a feature vec- 

tor F i t for each object i in frame X t at time t, where F i t is given 

by [ w 1 F motion , w 2 F location , w 3 F appearance ] . The weights w 1 , w 2 , w 3 are 

used to adjust the relative importance of each feature category. 

3.3. Frame prediction 

A heuristic approach for detecting anomalies in videos is by 

predicting the future video frame ̂ X t using previous video frames 

{ X 1 , X 2 , . . . , X t−1 } , and then comparing it to X t through mean 

squared error (MSE). Instead of deciding directly on MSE, we 

use MSE of video frame prediction to obtain motion features 

( Section 3.5 ). GANs are known to be successful in generating re- 

alistic images and videos. However, regular GANs might face the 

vanishing gradient problem during learning as they hypothesize 

the discriminator as a classifier with the sigmoid cross entropy 

loss function. To overcome this problem, we use a modified ver- 

sion of GAN called Least Square GAN (LS-GAN) [35] . The GAN ar- 

chitecture comprises of a generator network G and a discrimina- 

tor network D, where the function of G is to generate frames that 

would be difficult-to-classify by D . Ideally, once G is well trained, 

D cannot predict better than chance. Similar to [7] , we employ a 

U-Net [36] based network for G and a patch discriminator for D . 

For training the generator G, we follow [7] , and combine the 

constraints on intensity, gradient difference, optical flow, and ad- 

versarial training to get the following objective function 

ll L G = γint L int ( ̂  X , X ) + γgd L gd ( ̂
 X , X ) 

+ γof L of ( ̂
 X , X ) + γadv L adv ( ̂

 X , X ) (1) 

where γint , γgd , γof , γadv ≥ 0 ar e the corr esponding weights for the 

losses. 

Intensity loss is the l 1 or l 2 distance between the predicted 

frame ̂ X and the actual frame X, which is used to maintain sim- 

ilarity between pixels in the RGB space, and given by 

L int ( ̂  X , X ) = 

∥∥̂ X − X 
∥∥2 

. (2) 

Gradient difference loss is used to sharpen the image predic- 

tion and is given by 

L gd ( ̂
 X , X ) = 

∑ 

i, j 

∥∥| ̂  X i, j − ̂ X i −1 , j | −
∣∣X i, j − X i −1 , j 

∣∣∥∥
1 

+ 

∥∥| ̂  X i, j − ̂ X i, j−1 | −
∣∣X i, j − X i, j−1 

∣∣∥∥
1 

(3) 

where (i, j) denotes the spatial index of a video frame. 

Optical flow loss is used to improve the coherence of motion 

in the predicted frame, and is given by 

L of ( ̂
 X t+1 , X t+1 , X t ) = 

∥∥ f ( ̂  X t+1 , X t ) − f (X t+1 , X t ) 
∥∥
1 

(4) 

where f is a pretrained CNN-based function called Flownet, and is 

used to estimate the optical flow. 

Adversarial generator loss is minimized to confuse D as much 

as possible such that it cannot discriminate the generated predic- 

tions, and is given by 

L adv ( ̂
 X ) = 

∑ 

i, j 

1 

2 
L MSE (D ( ̂  X i, j ) , 1) (5) 

where D ( ̂  X i, j ) = 1 denotes “real” decision by D for patch (i, j) , 

D ( ̂  X i, j ) = 0 denotes “fake” decision, and L MSE is the mean squared 

error function. 

3.4. Object detection 

We propose to detect objects using a real-time object detection 

system such as You Only Look Once (YOLO) [37] to obtain loca- 

tion and appearance features ( Section 3.5 ). The advantage of YOLO 

is that it is capable of processing higher frames per second on a 

GPU while providing the same or even better accuracy as com- 

pared to the other state-of-the-art models such as SSD and ResNet. 

Speed is a critical factor for online anomaly detection, so we cur- 

rently prefer YOLOv3 in our implementations. For each detected 

object in image X t , we get a bounding box (location) along with 

the class probabilities (appearance). As shown in Fig. 2 , we mon- 

itor the center of the bounding boxes to track paths different ob- 

jects might take in the training videos. Instead of simply using the 

entire bounding box, we monitor the center of the box and its area 

to obtain location features. This not only reduces the complexity, 

but also effectively avoids false positives in case the bounding box 

is not tight. In a testing video, objects diverging from the nomi- 

nal paths and class probabilities will help us detect anomalies, as 

explained in Section 3.6 . 

3.5. Feature vector 

Finally, for each object i detected in a frame, we construct a 

feature vector as: 

F i t = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 1 MSE(X t , ̂  X t ) 
w 2 Center x 
w 2 Center y 
w 2 Area 
w 3 p(C 1 ) 
w 3 p(C 2 ) 

. . . 
w 3 p(C n ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (6) 
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Fig. 2. Example video frames from the UCSD Ped2 dataset showing the extraction of bounding box center (location) feature in nominal training data (top row) and test data 

(bottom row). Columns from left to right correspond to the first, 30th, 150th, and the last frame in all training videos (top row), and in a test video (bottom row). In the 

test video, the unusual path of golf cart, shown with red dots, together with the class probability and high prediction error (MSE) due to unusual speed of cart statistically 

contribute to the anomaly decision. Best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

where MSE(X t , ̂  X t ) is the prediction error from the GAN-based 

frame predictor ( Section 3.3 ); C ent er x , C ent er y , Area denote the co- 

ordinates of the center of the bounding box and the area of the 

bounding box ( Section 3.4 ); and p(C 1 ) , . . . , p(C n ) are the class 

probabilities for the detected object ( Section 3.4 ). Hence, at any 

given time t, with n denoting the number of possible classes, the 

dimensionality of F i t is given by m = n + 4 . 

3.6. Anomaly detection 

Our goal here is to detect anomalies in streaming videos with 

minimal detection delays while satisfying a desired false alarm 

rate. We can safely hypothesize that any anomalous event would 

persist for an unknown period of time. This makes the problem 

suitable for a sequential anomaly detection framework [38] . How- 

ever, since we have no prior knowledge about the anomalous event 

that might occur in a video, parametric algorithms which require 

probabilistic model and data for both nominal and anomaly cannot 

be used directly. Next, we explain the training and testing of our 

proposed nonparametric sequential anomaly detection algorithm. 

Training First, given a set of N training videos 

V � { v i : i = 1 , 2 , . . . , N} consisting of P frames in total, we leverage 

the deep learning module of our proposed detector to extract 

M feature vectors F M = { F i } for M detected objects in total such 

that M ≥ P . We assume that the training data does not include 

any anomalies. These M vectors correspond to M points in the 

nominal data space, distributed according to an unknown complex 

probability distribution. Following a data-driven approach we 

would like to learn a nonparametric description of the nominal 

data distribution. Due to its attractive traits, such as analyzability, 

interpretability, and computational efficiency [16,17] , we use k 

nearest neighbor ( k NN) distance, which captures the local interac- 

tions between nominal data points, to figure out a nominal data 

pattern. Given the informativeness of extracted motion, location, 

and appearance features, anomalous instances are expected to lie 

further away from the nominal manifold defined by F M . Conse- 

quently, the k NN distance of anomalous instances with respect 

to the nominal data points in F M will be statistically higher as 

compared to the nominal data points. The training procedure of 

our detector is given as follows: 

1. Randomly partition the nominal dataset F M into two sets F M 1 

and F M 2 such that M = M 1 + M 2 . 

2. Then for each point F i in F M 1 , we compute the k NN distance d i 
with respect to the points in set F M 2 . 

3. For a significance level α, e.g., 0.05, the (1 − α) th percentile d α
of k NN distances { d 1 , . . . , d M 1 

} is used as a baseline statistic for 

computing the anomaly evidence of test instances. 

4. The maximum value of k NN distances { d 1 , . . . , d M 1 
} is used as 

an upper bound ( φ) for δt , given by Eq. (7) , which is then used 

for selecting a threshold h, as explained in Section 3.7 . 

Testing During the testing phase, for each object i detected at 

time t, the deep learning module constructs the feature vector F i t 
and computes the k NN (Euclidean) distance d i t with respect to the 

training instances in F M 2 . The proposed sequential anomaly detec- 

tion system then computes the instantaneous frame-level anomaly 

evidence δt : 

δt = ( max 
i 

{ d i t } ) 
m − d m 

α , (7) 

where m is the dimensionality of feature vector F i t . Finally, follow- 

ing a CUSUM-like procedure [38] we update the running decision 

statistic s t as 

s t = max { s t−1 + δt , 0 } , s 0 = 0 . (8) 

For nominal data, δt typically gets negative values, hence the deci- 
sion statistic s t hovers around zero; whereas for anomalous data δt 
is expected to take positive values, and successive positive values 

of δt will make s t grow. We decide that a video frame is anomalous 

if the decision statistic s t exceeds the threshold h . After s t exceeds 

h, we perform some fine tuning to better label video frames as 

nominal or anomalous. Specifically, we find the frame s t started to 

grow, i.e., the last time s t = 0 before detection, say τstart . Then, we 

also determine the frame s t stops increasing and keeps decreas- 

ing for n, e.g., 5, consecutive frames, say τend . Finally, we label the 

frames between τstart and τend as anomalous, and continue testing 

for new anomalies with frame τend + 1 by resetting s τend = 0 . 

3.7. Threshold selection 

If the test statistic crosses the threshold when there is no 

anomaly, this event is called a false alarm. Existing works consider 

the decision threshold as a design parameter, and do not provide 

any analytical procedure for choosing its value. For an anomaly de- 

tection algorithm to be implemented in a practical setting, a clear 

procedure is necessary for selecting the decision threshold such 

that it satisfies a desired false alarm rate. The reliability of an algo- 

rithm in terms of false alarm rate is crucial for minimizing human 

involvement. To provide such a performance guarantee for the false 

alarm rate, we derive an asymptotic upper bound on the average 

false alarm rate of the proposed algorithm. 

Theorem 1. The false alarm rate of the proposed algorithm is asymp- 

totically (as M 2 → ∞ ) upper bounded by 

F AR ≤ e −ω 0 h , (9) 

4 
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where h is the decision threshold, and ω 0 > 0 is given by 

ω 0 = v m − θ −
1 

φ
W 

(
−φθe −φθ

)
, (10) 

θ = 
v m 

e v m d 
m 
α

. 

In (10) , W(·) is the Lambert-W function, v m = 
πm/ 2 


(m/ 2+1) 
is the con- 

stant for the m -dimensional Lebesgue measure (i.e., v m d 
m 
α is the m - 

dimensional volume of the hyperball with radius d α), and φ is the 

upper bound for δt . 

Proof. See Appendix. �

Although the expression for ω 0 looks complicated, all the terms 

in (10) can be easily computed. Particularly, v m is directly given by 

the dimensionality m, d α comes from the training phase, φ is also 

found in training, and finally there is a built-in Lambert-W func- 

tion in popular programming languages such as Python and Mat- 

lab. Hence, given the training data, ω 0 can be easily computed, and 

based on Theorem 1 , the threshold h can be chosen to asymptoti- 

cally achieve the desired false alarm period as follows 

h = 
− log (F AR ) 

ω 0 
. (11) 

4. Experiments 

4.1. Datasets 

We evaluate our proposed method on three publicly available 

video anomaly data sets, namely the CUHK avenue dataset [39] , 

the UCSD pedestrian dataset [40] , and the ShanghaiTech [41] cam- 

pus dataset. Each data set presents its own set of challenges and 

unique characteristics such as types of anomaly, video quality, 

background location, etc. Hence, we treat each dataset indepen- 

dently and present individual results for each of them. Here, we 

briefly introduce each dataset that are used in our experiments. 

UCSD The UCSD pedestrian data set is composed of two parts, 

namely Ped1 and Ped2. Following the work of [19,42] , we exclude 

Ped1 from our experiments due to its significantly lower resolu- 

tion of 158 × 238 and a lack of consistency in the reported re- 

sults as some recent works reported their performance only on 

a subset of the entire data set. Hence, we present our results on 

the UCSD Ped2 dataset which consists of 16 training and 12 test 

videos, each with a resolution of 240 × 360 . All the anomalous 

events are caused due to vehicles such as bicycles, skateboarders 

and wheelchairs crossing pedestrian areas. 

Avenue The CUHK avenue dataset consists of 16 training and 21 

test videos with a frame resolution of 360 × 640 . The anomalous 

behavior is represented by people throwing objects, loitering and 

running. 

ShanghaiTech The ShanghaiTech Campus dataset is one of the 

largest and most challenging datasets available for anomaly detec- 

tion in videos. It consists of 330 training and 107 test videos from 

13 different scenes, which sets it apart from the other available 

datasets. The resolution for each video frame is 480 × 856 . 

4.2. Comparison with existing methods 

We compare our proposed algorithm in Table 1 with state-of- 

the-art deep learning-based methods, as well as methods based 

on hand-crafted features: MPPCA [43] , MPPC + SFA [40] , Del et al. 

[44] , Conv-AE [45] , ConvLSTM-AE [30] , Growing Gas [46] , Stacked 

RNN [41] , Deep Generic [42] , GANs [47] , Liu et al. [7] . A popular 

metric used for comparison in anomaly detection literature is the 

Area under the Receiver Operating Characteristic (AuROC) curve. 

Higher AuROC values indicate better performance for an anomaly 

Table 1 

AuROC result comparison on three datasets. 

Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech 

MPPCA [43] – 69.3 –

MPPC + SFA [40] – 61.3 –

Del et al. [44] 78.3 – –

Conv-AE [45] 80.0 85.0 60.9 

ConvLSTM-AE [30] 77.0 88.1 –

Growing Gas [46] – 93.5 –

Stacked RNN [41] 81.7 92.2 68.0 

Deep Generic [42] – 92.2 –

GANs [31] – 88.4 –

Liu et al. [7] 85.1 95.4 72.8 

Ours 86.4 97.2 70.9 

Fig. 3. The advantage of sequential anomaly detection over single-shot detection in 

terms of controlling false alarms. 

detection system. For performance evaluation, following the exist- 

ing works [7,19,48] , we consider frame level AuROC. 

4.3. Implementation details 

In the prediction pipeline, the U-NET based generator and the 

patch discriminator are implemented in Tensorflow. Each frame is 

resized to 256 × 256 and normalized to [1,1]. The window size t

is set to 4. Similar to [7] , we use the Adam optimizer for train- 

ing and set the learning rate to 0.0 0 01 and 0.0 0 0 01 for the gen- 

erator and discriminator, respectively. The object detector used is 

YOLOv3 which is based on the Darknet architecture and is pre- 

trained on the MS-COCO dataset. During training, we extract the 

bounds which have a confidence level greater than 0.6, and for 

testing we consider confidence levels greater than or equal to 

0.4. The weights w 1 , w 2 and w 3 are set to 1, 0.4 and 0.9 respec- 

tively. The sequential anomaly detection algorithm is implemented 

in Python. 

4.4. Impact of sequential anomaly detection 

To demonstrate the importance of sequential anomaly detection 

in videos, we implement a nonsequential version of our algorithm 

by applying a threshold to the instantaneous anomaly evidence δt , 
given in (7) , which is similar to the approach employed by many 

recent works [7,8,19] . As Fig. 3 shows, instantaneous anomaly ev- 

idence is more prone to false alarms than the sequential MONAD 

5 



K. Doshi and Y. Yilmaz Pattern Recognition 114 (2021) 107865 

Fig. 4. The ROC curves of the proposed MONAD algorithm and the online version of Liu et al. [7] for a practical range of false alarm rate in the UCSD Ped 2 (left) and 

ShanghaiTech (right) data sets. 

Fig. 5. Actual false alarm periods vs. derived lower bounds for the UCSD Ped.2 (top left), ShanghaiTech (top right), and Avenue (bottom) data sets. 

statistic since it only considers the noisy evidence available at the 

current time to decide. Whereas, the proposed sequential statistic 

handles noisy evidence by integrating recent evidence over time. 

4.5. Results 

We compare our results to a wide range of methods in Table 1 . 

Recently, Ionescu et al. [19] showed significant gains over the rest 

of the methods. However, their methodology of computing the Au- 

ROC gives them an unfair advantage as they calculate the AuROC 

for each video in a dataset, and then average them as the AuROC 

of the dataset, as opposed to the other works which concatenate 

all the videos first and then determine the AuROC as the dataset’s 

score. 

As shown in Table 1 we are able to outperform the existing re- 

sults in the avenue and UCSD dataset, and achieve competitive per- 

formance in the ShanghaiTech dataset. We should note here that 

our reported result in the ShanghaiTech dataset is based on on- 

line decision making without seeing future video frames. A com- 

mon technique used by several recent works [7,19] is to normalize 

the computed statistic for each test video independently, includ- 

ing the ShanghaiTech dataset. However, this methodology cannot 

be implemented in an online (real-time) system as it requires prior 

knowledge about the minimum and maximum values the statistic 

might take. 

Hence, we also compare our online method with the online 

version of state-of-the-art method [7] . In that version, the mini- 

mum and maximum values of decision statistic is obtained from 

the training data and used for all videos in the test data to nor- 

malize the decision statistic, instead of the minimum and maxi- 

mum values in each test video separately. AuROC value, which is 

the most common performance metric in the literature, consid- 

ers the entire range (0,1) of false alarm rates. However, in practice, 

false alarm rate must satisfy an acceptable level (e.g., up to 10%). 

In Fig. 4 , on the UCSD and ShanghaiTech data sets, we compare our 

algorithm with the online version of [7] within a practical range of 

6 



K. Doshi and Y. Yilmaz Pattern Recognition 114 (2021) 107865 

false alarm in terms of the ROC curve (true positive rate vs. false 

positive rate). As clearly seen in the figures, the proposed MONAD 

algorithm achieves much higher true alarm rates than [7] in both 

datasets while satisfying practical false alarm rates. 

Finally, in Fig. 5 , we analyze the bound for false alarm rate 

derived in Theorem 1 . For the clarity of visualization, the figure 

shows the logarithm of false alarm period, which is the inverse of 

the false alarm rate. In this case, the upper bound on false alarm 

rate becomes a lower bound on the false alarm period. The exper- 

imental results corroborate the theoretical bound and the proce- 

dure presented in Section 3.7 for obtaining the decision threshold 

h . 

4.6. Computational complexity 

In this section we analyze the computational complexity of the 

sequential anomaly detection module, as well as the average run- 

ning time of the deep learning module. 

Sequential anomaly detection The training phase of the pro- 

posed anomaly detection algorithm requires computation of k NN 

distances for each point in F M 1 to each point in F M 2 . Therefore, 

the time complexity of training phase is given by O(M 1 M 2 m ) . The 

space complexity of the training phase is O(M 2 m ) since M 2 data 

instances need to be saved for the testing phase. In the testing 

phase, since we compute the k NN distances of a single point to 

all data points in F M 2 , the time complexity is O(M 2 m ) . 

Deep learning module The average running time for the GAN- 

based video frame prediction is 22 frames per second. The YOLO 

object detector requires about 12 ms to process a single image. 

This translates to about 83.33 frames per second. The running time 

can be further improved by using a faster object detector such as 

YOLOv3-Tiny or a better GPU system. All tests are performed on 

NVIDIA GeForce RTX 2070 with 8 GB RAM and Intel i7-8700k CPU. 

5. Conclusion 

For video anomaly detection, we presented an online algorithm, 

called MONAD, which consists of a deep learning-based feature ex- 

traction module and a statistical decision making module. The first 

module is a novel feature extraction technique that combines GAN- 

based frame prediction and a lightweight object detector. The sec- 

ond module is a sequential anomaly detector, which enables per- 

formance analysis. The asymptotic false alarm rate of MONAD is 

analyzed, and a practical procedure is provided for selecting its 

detection threshold to satisfy a desired false alarm rate. Through 

real data experiments, MONAD is shown to outperform the state- 

of-the-art methods, and yield false alarm rates consistent with the 

derived asymptotic bounds. For future work, we plan to focus on 

the importance of timely detection in video [49] by proposing a 

new metric based on the average delay and precision. 
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Appendix A. Proof of theorem 1 

In [38] [page 177], for CUSUM-like algorithms with independent 

increments, such as MONAD with independent δt , a lower bound 

on the average false alarm period is given as follows 

E ∞ [ T ] ≥ e ω 0 h , 

where h is the detection threshold, and ω 0 ≥ 0 is the solution to 

E[ e ω 0 δt ] = 1 . 

To analyze the false alarm period, we need to consider the 

nominal case. In that case, since there is no anomalous object at 

each time t, the selection of object with maximum k NN distance 

in δt = ( max i { d 
i 
t } ) 

m − d m 
α does not necessarily depend on the pre- 

vious selections due to lack of an anomaly which could correlate 

the selections. Hence, in the nominal case, it is safe to assume that 

δt is independent over time. 

We firstly derive the asymptotic distribution of the frame-level 

anomaly evidence δt in the absence of anomalies. Its cumulative 

distribution function is given by 

P (δt ≤ y ) = P (( max 
i 

{ d i t } ) 
m ≤ d m 

α + y ) . 

It is sufficient to find the probability distribution of ( max 
i 

{ d i t } ) 
m , 

the m th power of the maximum k NN distance among objects de- 

tected at time t . As discussed above, choosing the object with max- 

imum distance in the absence of anomaly yields independent m - 

dimensional instances { F t } over time, which form a Poisson point 

process. The nearest neighbor ( k = 1 ) distribution for a Poisson 

point process is given by 

P ( max 
i 

{ d i t } ≤ r) = 1 − exp (−�(b(F t , r))) 

where �(b(F t , r)) is the arrival intensity (i.e., Poisson rate mea- 

sure) in the m -dimensional hypersphere b(F t , r) centered at F t with 

radius r [50] . Asymptotically, for a large number of training in- 

stances as M 2 → ∞ , under the null (nominal) hypothesis, the near- 

est neighbor distance max i { d 
i 
t } of F t takes small values, defining an 

infinitesimal hyperball with homogeneous intensity λ = 1 around 

F t . Since for a homogeneous Poisson process the intensity is writ- 

ten as �(b(F t , r)) = λ| b(F t , r) | [50] , where | b(F t , r ) | = 
πm/ 2 


(m/ 2+1) 
r m = 

v m r 
m is the Lebesgue measure (i.e., m -dimensional volume) of the 

hyperball b(F t , r) , we rewrite the nearest neighbor distribution as 

P ( max 
i 

{ d i t } ≤ r) = 1 − exp ( −v m r 
m ) , 

where v m = 
πm/ 2 


(m/ 2+1) 
is the constant for the m -dimensional 

Lebesgue measure. 

Now, applying a change of variables we can write the probabil- 

ity density of ( max i { d 
i 
t } ) 

m and δt as 

f ( max i { d 
i 
t } ) 

m (y ) = 
∂ 

∂y 
[ 1 − exp ( −v m y ) ] , 

= v m exp (−v m y ) , 

f δt (y ) = v m exp (−v m d 
m 
α ) exp (−v m y ) (A.1) 

Using the probability density derived in (A.1) , E[ e ω 0 δt ] = 1 can 

be written as 

1 = 

∫ φ

−d m α

e ω 0 y v m e 
−v m d m α e −v m y dy, 

e v m d 
m 
α

v m 
= 

∫ φ

−d m α

e (ω 0 −v m ) y dy, 

= 
e (ω 0 −v m ) y 

ω 0 − v m 

∣∣∣∣
φ

−d m α

, 

= 
e (ω 0 −v m ) φ − e (ω 0 −v m )(−d m α ) 

ω 0 − v m 
, (A.2) 

where −d m 
α and φ are the lower and upper bounds for δt = 

( max i { d 
i 
t } ) 

m − d m 
α . The upper bound φ is obtained from the train- 

ing set. 
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As M 2 → ∞ , since the m th power of (1 − α) th percentile of 

nearest neighbor distances in training set goes to zero, i.e., d m 
α → 0 , 

we have 

e (ω 0 −v m ) φ = 
e v m d 

m 
α

v m 
(ω 0 − v m ) + 1 . 

We next rearrange the terms to obtain the form of e φx = 

a 0 (x + θ ) where x = ω 0 − v m , a 0 = 
e v m d 

m 
α

v m 
, and θ = 

v m 

e v m d 
m 
α
. The so- 

lution for x is given by the Lambert-W function [51] as x = −θ −
1 
φ
W(−φe −φθ /a 0 ) , hence 

ω 0 = v m − θ −
1 

φ
W 

(
−φθe −φθ

)
. 

Finally, since the false alarm rate (i.e., frequency) is the inverse 

of false alarm period E ∞ [ T ] , we have 

F AR ≤ e −ω 0 h , 

where h is the detection threshold, and ω 0 is given above. 
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