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ABSTRACT

Anomaly detection in surveillance videos is attracting an increasing amount of attention. Despite the
competitive performance of recent methods, they lack theoretical performance analysis, particularly due
to the complex deep neural network architectures used in decision making. Additionally, online decision
making is an important but mostly neglected factor in this domain. Much of the existing methods that
claim to be online, depend on batch or offline processing in practice. Motivated by these research gaps,
we propose an online anomaly detection method in surveillance videos with asymptotic bounds on the
false alarm rate, which in turn provides a clear procedure for selecting a proper decision threshold that
satisfies the desired false alarm rate. Our proposed algorithm consists of a multi-objective deep learn-
ing module along with a statistical anomaly detection module, and its effectiveness is demonstrated on
several publicly available data sets where we outperform the state-of-the-art algorithms. All codes are
available at https://github.com/kevaldoshi17/Prediction-based-Video-Anomaly-Detection-.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid advancements in the technology of closed-circuit
television (CCTV) cameras and their underlying infrastructural
components such as network, storage, and processing hardware
have led to a sheer number of surveillance cameras implemented
all over the world, and estimated to go beyond 1 billion globally,
by the end of the year 2021 [1]. Video surveillance is an essential
tool used in law enforcement, transportation, environmental moni-
toring, etc. mainly for improving security and public safety. For ex-
ample, it has become an inseparable part of crime deterrence and
investigation, traffic violation detection, and traffic management.
However, considering the massive amounts of videos generated in
real-time, manual video analysis by human operator becomes in-
efficient, expensive, and nearly impossible, which in turn makes a
great demand for automated and intelligent methods for analyz-
ing and retrieving important information from videos, in order to
maximize the benefits of CCTV.

One of the most important, challenging and time-critical tasks
in automated video surveillance is the detection of abnormal
events such as traffic accidents and violations, crimes, and natu-
ral disasters. Hence, video anomaly detection has become an im-
portant research problem in the recent years. Anomaly detection
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in general is a vast, crucial, and challenging research topic, which
deals with the identification of data instances deviating from nom-
inal patterns. It has a wide range of applications, e.g., in medical
health care [2], cyber-security [3], hardware security [4], aviation
[5], and spacecraft monitoring [6].

Given the important role that video anomaly detection can play
in ensuring safety, security and sometimes prevention of potential
catastrophes, one of the main outcomes of a video anomaly de-
tection system is the real-time decision making capability. Events
such as traffic accidents, robbery, and fire in remote places require
immediate counteractions to be taken in a timely manner, which
can be facilitated by the real-time detection of anomalous events.
Despite its importance, a very limited body of research has focused
on online and real-time detection methods. Moreover, some of the
methods that claim to be online heavily depend on batch process-
ing of long video segments. For example, Liu et al. [7] performs a
normalization step which requires the entire video.

A vast majority of the recent state-of-the-art video anomaly de-
tection methods depend on complex neural network architectures
[8]. Although deep neural networks provide superior performance
on various machine learning and computer vision tasks, such as
object detection [9], image classification [10], playing games [11],
image synthesis[12], etc., where sufficiently large and inclusive
data sets are available to train on, there is also a significant de-
bate on their shortcomings in terms of interpretability, analyzabil-
ity, and reliability of their decisions [13]. For example, Papernot
and McDaniel [14], Sitawarin and Wagner [15] propose using a
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nearest neighbor-based approach together with deep neural net-
work structures to achieve robustness, interpretability for the de-
cisions made by the model, and as defense against adversarial at-
tack. Additionally, to the best of the our knowledge, none of the
neural network-based video anomaly detection methods has been
analyzed in terms of performance guarantees. On the other hand,
statistical and nearest neighbor-based methods remain popular due
to their appealing characteristics such as being amenable to perfor-
mance analysis, computational efficiency, and robustness [16,17].

Motivated by the aforementioned domain challenges and re-
search gaps, we propose a hybrid use of neural networks and
statistical k nearest neighbor (kNN) decision approach for finding
anomalies in video in an online fashion. In summary, our contri-
butions in this paper are as follows:

e« We propose a novel framework composed of deep learning-
based feature extraction from video frames, and a statistical se-
quential anomaly detection algorithm.

o We derive an asymptotic bound on the false alarm rate of our
detection algorithm, and propose a technique for selecting a
proper threshold which satisfies the desired false alarm rate.

o We extensively evaluate our proposed framework on publicly
available video anomaly detection data sets.

The remainder of the paper is organized as: Related Work
(Section 2), Proposed Method (Section 3), Experiments (Section 4),
and Conclusion (Section 5).

2. Related work

Semi-supervised detection of anomalies in videos, also known
as outlier detection, is a commonly adopted learning technique
due to the inherent limitations in availability of annotated and
anomalous instances. This category of learning methods deals with
learning a notion of normality from nominal training videos, and
attempts to detect deviations from the learned normality notion.
Cheng et al. [18], lonescu et al. [19]. There are also several super-
vised detection methods, which train on both nominal and anoma-
lous videos. The main drawback of such methods is the difficulty in
finding frame-level labeled, representative, and inclusive anomaly
instances. To this end, Sultani et al. [8] proposes using a deep mul-
tiple instance learning (MIL) approach to train on video-level an-
notated videos, in a weakly supervised manner. Although training
on anomalous videos would enhance the detection capability on
similar anomaly events, supervised methods typically suffer from
unknown and novel anomaly types.

One of the key components of the video anomaly detection al-
gorithms is the extraction of meaningful features, which can cap-
ture the difference between the nominal and anomalous events
within the video. The selection of feature types has a significant
impact on the identifiability of types of anomalous events in the
video sequences. Many early video anomaly detection techniques
and some recent ones focused on the trajectory features [20],
which limits their applicability to the detection of the anomalies
related to the trajectory patterns, and moving objects. For instance,
Fu et al. [21] studied detection of abnormal vehicle trajectories
such as illegal U-turn. Morais et al. [22] extracts human skeleton
trajectory patterns, and hence is limited to only the detection of
abnormalities in human behavior.

Motion and appearance features are another class of widely
used features in this domain. Saligrama and Chen [23] extracts mo-
tion direction and magnitudes, to detect spatio-temporal anoma-
lies. Histogram of optical flow [24,25], and histogram of oriented
gradients [26] are some other commonly used hand-crafted fea-
ture extraction techniques used in the literature. Sparse coding
based methods [27] are also applied in detection of video anoma-
lies. They learn a dictionary of normal sparse events, and attempt
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to detect anomalies based on the reconstructability of video from
the dictionary atoms. Mo et al. [28] uses sparse reconstruction to
learn joint trajectory representations of multiple objects.

In contrary to the hand-crafted feature extraction, are the neu-
ral network based feature learning methods. Xu et al. [29] learns
the appearance and motion features by deep neural networks.
Luo et al. [30] utilizes Convolutional Neural Networks (CNN), and
Convolutional Long Short Term Memory (CLSTM) to learn appear-
ance and motion features, respectively. Neural network based ap-
proaches have been recently dominating the literature. For exam-
ple, Ravanbakhsh et al. [31] trains Generative Adversarial Network
(GAN) on normal video frames, to generate internal scene repre-
sentations (appearance and motion), based on a given frame and
its optical flow, and detects deviation of the GAN output from the
normal data, by AlexNet [10]. Sabokrou et al. [32] trains a GAN-like
adversarial network, in which a reconstruction component learns
to reconstruct the normal test frames, and attempts to train a dis-
criminator by gradually injecting anomalies to it, while concur-
rently the discriminator (detector) learns to detect the anomalies
injected by the reconstructor. In [33,34], a transfer learning based
approach is used for continual learning for anomaly detection in
surveillance videos from a few samples.

3. Proposed method
3.1. Motivation

Anomaly detection in surveillance videos is defined as the iden-
tification of unusual events which do not conform to the expec-
tation. We base our study on two important requirements that a
successful video anomaly detector should satisfy: (i) extract mean-
ingful features which can be utilized to distinguish nominal and
anomalous data; and (ii) provide a decision making strategy which
can be easily tuned to satisfy a given false alarm rate. While ex-
isting works partially fulfills the first requirement by defining var-
ious constraints on spatial and temporal video features, they typ-
ically neglect providing an analytical and amenable decision strat-
egy. Motivated by this shortcoming, we propose a unified frame-
work called Multi-Objective Neural Anomaly Detector (MONAD").
Like monads provide a unified functional model for programming,
our proposed MONAD unifies deep learning-based feature extrac-
tion and analytical anomaly detection by incorporating two mod-
ules, as shown in Fig. 1. The first module consists of a Genera-
tive Adversarial Network (GAN) based future frame predictor and
a lightweight object detector (YOLOv3) to extract meaningful fea-
tures. The second module consists of a nonparametric statistical
algorithm which uses the extracted features for online anomaly
detection. To the best of our knowledge, this is the first work to
present theoretical performance analysis for a deep learning-based
video anomaly detection method. Our MONAD framework is de-
scribed in detail in the following sections.

3.2. Feature selection

Most existing works focus on a certain aspect of the video
such as optical flow, gradient loss or intensity loss. This in turn
restrains the existing algorithms to a certain form of anomalous
event which is manifested in the considered video aspect. How-
ever, in general, the type of anomaly is broad and unknown while
training the algorithm. For example, an anomalous event can be
justified on the basis of appearance (a person carrying a gun), mo-
tion (two people fighting) or location (a person walking on the

1 Monad is a philosophical term for infinitesimal unit, and also a functional pro-
gramming term for minimal structure.
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Fig. 1. Proposed MONAD framework. At each time t, neural network-based feature extraction module provides motion (MSE), location (center coordinates and area of
bounding box), and appearance (class probabilities) features to the statistical anomaly detection module, which automatically sets its decision threshold to satisfy a false

alarm constraint and makes online decisions.

roadway). To account for all such cases, we create a feature vec-
tor F! for each object i in frame X; at time ¢, where F! is given
by [W1Enotion: W2Fiocation» W3Fappearance]. The weights wy, wo, w3 are
used to adjust the relative importance of each feature category.

3.3. Frame prediction

A heuristic approach for detecting anomalies in videos is by
predicting the future video frame X using previous video frames
{X1,X3,....X;_1}, and then comparing it to X; through mean
squared error (MSE). Instead of deciding directly on MSE, we
use MSE of video frame prediction to obtain motion features
(Section 3.5). GANs are known to be successful in generating re-
alistic images and videos. However, regular GANs might face the
vanishing gradient problem during learning as they hypothesize
the discriminator as a classifier with the sigmoid cross entropy
loss function. To overcome this problem, we use a modified ver-
sion of GAN called Least Square GAN (LS-GAN) [35]. The GAN ar-
chitecture comprises of a generator network G and a discrimina-
tor network D, where the function of G is to generate frames that
would be difficult-to-classify by D. Ideally, once G is well trained,
D cannot predict better than chance. Similar to [7], we employ a
U-Net [36] based network for G and a patch discriminator for D.

For training the generator G, we follow [7], and combine the
constraints on intensity, gradient difference, optical flow, and ad-
versarial training to get the following objective function

UL = VineLine (X, X) + VeaLga (X, X)

+VofLof(X,X)+Vadeaclv(X:X) (1)
where Yin, Veds Vof» Yadv = 0 are the corresponding weights for the
losses.

Intensity loss is the [; or I, distance between the predicted
frame X and the actual frame X, which is used to maintain sim-
ilarity between pixels in the RGB space, and given by

LR X) = R = x|*. (2)

Gradient difference loss is used to sharpen the image predic-
tion and is given by

Lgd()?ax) =y || X — X1l — |Xi,j _Xi—l,j| ||1

ij

+ 1Ky = Xijoal = X = Xijoa | 3)
where (i, j) denotes the spatial index of a video frame.

Optical flow loss is used to improve the coherence of motion
in the predicted frame, and is given by

LopXest. Xea1. X = || fKipr. X0) = FKer. X0 |, (4)

where f is a pretrained CNN-based function called Flownet, and is
used to estimate the optical flow.

Adversarial generator loss is minimized to confuse D as much
as possible such that it cannot discriminate the generated predic-
tions, and is given by

~ 1 ~
Logy(X) = Z jLMSE(D(Xi,j)7 1) (5)
iLj
where D()’(\,-, j) =1 denotes “real” decision by D for patch (i, j),

D()?,ij) = 0 denotes “fake” decision, and Lygg is the mean squared
error function.

3.4. Object detection

We propose to detect objects using a real-time object detection
system such as You Only Look Once (YOLO) [37] to obtain loca-
tion and appearance features (Section 3.5). The advantage of YOLO
is that it is capable of processing higher frames per second on a
GPU while providing the same or even better accuracy as com-
pared to the other state-of-the-art models such as SSD and ResNet.
Speed is a critical factor for online anomaly detection, so we cur-
rently prefer YOLOv3 in our implementations. For each detected
object in image X;, we get a bounding box (location) along with
the class probabilities (appearance). As shown in Fig. 2, we mon-
itor the center of the bounding boxes to track paths different ob-
jects might take in the training videos. Instead of simply using the
entire bounding box, we monitor the center of the box and its area
to obtain location features. This not only reduces the complexity,
but also effectively avoids false positives in case the bounding box
is not tight. In a testing video, objects diverging from the nomi-
nal paths and class probabilities will help us detect anomalies, as
explained in Section 3.6.

3.5. Feature vector

Finally, for each object i detected in a frame, we construct a
feature vector as:
—W]MSE(X[,XI')—
wyCentery
wyCentery

wyArea
w3p(Cy)
ws3p(Gz)

C

L wip @)
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Fig. 2. Example video frames from the UCSD Ped2 dataset showing the extraction of bounding box center (location) feature in nominal training data (top row) and test data
(bottom row). Columns from left to right correspond to the first, 30th, 150th, and the last frame in all training videos (top row), and in a test video (bottom row). In the
test video, the unusual path of golf cart, shown with red dots, together with the class probability and high prediction error (MSE) due to unusual speed of cart statistically
contribute to the anomaly decision. Best viewed in color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

where MSE(Xt,)?t) is the prediction error from the GAN-based
frame predictor (Section 3.3); Centery, Centery, Area denote the co-
ordinates of the center of the bounding box and the area of the
bounding box (Section 3.4); and p(Cy),..., p(G,) are the class
probabilities for the detected object (Section 3.4). Hence, at any
given time t, with n denoting the number of possible classes, the
dimensionality of F[i is given by m=n+4.

3.6. Anomaly detection

Our goal here is to detect anomalies in streaming videos with
minimal detection delays while satisfying a desired false alarm
rate. We can safely hypothesize that any anomalous event would
persist for an unknown period of time. This makes the problem
suitable for a sequential anomaly detection framework [38]. How-
ever, since we have no prior knowledge about the anomalous event
that might occur in a video, parametric algorithms which require
probabilistic model and data for both nominal and anomaly cannot
be used directly. Next, we explain the training and testing of our
proposed nonparametric sequential anomaly detection algorithm.

Training First, given a set of N training videos
VE&{v;:i=1,2,...,N} consisting of P frames in total, we leverage
the deep learning module of our proposed detector to extract
M feature vectors FM = {Fi} for M detected objects in total such
that M > P. We assume that the training data does not include
any anomalies. These M vectors correspond to M points in the
nominal data space, distributed according to an unknown complex
probability distribution. Following a data-driven approach we
would like to learn a nonparametric description of the nominal
data distribution. Due to its attractive traits, such as analyzability,
interpretability, and computational efficiency [16,17], we use k
nearest neighbor (kNN) distance, which captures the local interac-
tions between nominal data points, to figure out a nominal data
pattern. Given the informativeness of extracted motion, location,
and appearance features, anomalous instances are expected to lie
further away from the nominal manifold defined by FM. Conse-
quently, the kNN distance of anomalous instances with respect
to the nominal data points in F™ will be statistically higher as
compared to the nominal data points. The training procedure of
our detector is given as follows:

1. Randomly partition the nominal dataset 7™ into two sets FM
and ™2 such that M = My + M,.

2. Then for each point F, in 7M1, we compute the kNN distance d;
with respect to the points in set 7™z,

3. For a significance level «, e.g., 0.05, the (1 — «)th percentile d
of kNN distances {dy. ..., dy,} is used as a baseline statistic for
computing the anomaly evidence of test instances.

4. The maximum value of kNN distances {dy,...,dy,} is used as
an upper bound (¢) for §;, given by Eq. (7), which is then used
for selecting a threshold h, as explained in Section 3.7.

Testing During the testing phase, for each object i detected at
time t, the deep learning module constructs the feature vector Ft"
and computes the kNN (Euclidean) distance di with respect to the
training instances in FM2, The proposed sequential anomaly detec-
tion system then computes the instantaneous frame-level anomaly
evidence §;:

8 = (max{d;)™ — df, (7

where m is the dimensionality of feature vector Ft". Finally, follow-
ing a CUSUM-like procedure [38] we update the running decision
statistic s; as

S¢ = max{s;_1 + &, 0},s0 = 0. (8)

For nominal data, &; typically gets negative values, hence the deci-
sion statistic s; hovers around zero; whereas for anomalous data §;
is expected to take positive values, and successive positive values
of §; will make s; grow. We decide that a video frame is anomalous
if the decision statistic s; exceeds the threshold h. After s; exceeds
h, we perform some fine tuning to better label video frames as
nominal or anomalous. Specifically, we find the frame s; started to
grow, i.e., the last time s; = 0 before detection, say Tsqr:. Then, we
also determine the frame s; stops increasing and keeps decreas-
ing for n, e.g., 5, consecutive frames, say t,,4. Finally, we label the
frames between Tyq and t,,4 as anomalous, and continue testing
for new anomalies with frame 7,4 + 1 by resetting s, , = 0.

3.7. Threshold selection

If the test statistic crosses the threshold when there is no
anomaly, this event is called a false alarm. Existing works consider
the decision threshold as a design parameter, and do not provide
any analytical procedure for choosing its value. For an anomaly de-
tection algorithm to be implemented in a practical setting, a clear
procedure is necessary for selecting the decision threshold such
that it satisfies a desired false alarm rate. The reliability of an algo-
rithm in terms of false alarm rate is crucial for minimizing human
involvement. To provide such a performance guarantee for the false
alarm rate, we derive an asymptotic upper bound on the average
false alarm rate of the proposed algorithm.

Theorem 1. The false alarm rate of the proposed algorithm is asymp-
totically (as My — oo) upper bounded by

FAR < e~®oh, (9)
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where h is the decision threshold, and wq > 0 is given by

1
wo =Vm—0 — aV\/(—<z>9erﬂ>9), (10)
— Vm
- eUde1 )
In (10), W(-) is the Lambert-W function, vy = % is the con-

stant for the m-dimensional Lebesgue measure (i.e., vy d7 is the m-
dimensional volume of the hyperball with radius dy), and ¢ is the
upper bound for &.

Proof. See Appendix. O

Although the expression for wg looks complicated, all the terms
in (10) can be easily computed. Particularly, vy, is directly given by
the dimensionality m, d, comes from the training phase, ¢ is also
found in training, and finally there is a built-in Lambert-W func-
tion in popular programming languages such as Python and Mat-
lab. Hence, given the training data, g can be easily computed, and
based on Theorem 1, the threshold h can be chosen to asymptoti-
cally achieve the desired false alarm period as follows

_ —log(FAR)
=

h (11)

4. Experiments
4.1. Datasets

We evaluate our proposed method on three publicly available
video anomaly data sets, namely the CUHK avenue dataset [39],
the UCSD pedestrian dataset [40], and the ShanghaiTech [41] cam-
pus dataset. Each data set presents its own set of challenges and
unique characteristics such as types of anomaly, video quality,
background location, etc. Hence, we treat each dataset indepen-
dently and present individual results for each of them. Here, we
briefly introduce each dataset that are used in our experiments.

UCSD The UCSD pedestrian data set is composed of two parts,
namely Ped1 and Ped2. Following the work of [19,42], we exclude
Ped1 from our experiments due to its significantly lower resolu-
tion of 158 x 238 and a lack of consistency in the reported re-
sults as some recent works reported their performance only on
a subset of the entire data set. Hence, we present our results on
the UCSD Ped2 dataset which consists of 16 training and 12 test
videos, each with a resolution of 240 x 360. All the anomalous
events are caused due to vehicles such as bicycles, skateboarders
and wheelchairs crossing pedestrian areas.

Avenue The CUHK avenue dataset consists of 16 training and 21
test videos with a frame resolution of 360 x 640. The anomalous
behavior is represented by people throwing objects, loitering and
running.

ShanghaiTech The ShanghaiTech Campus dataset is one of the
largest and most challenging datasets available for anomaly detec-
tion in videos. It consists of 330 training and 107 test videos from
13 different scenes, which sets it apart from the other available
datasets. The resolution for each video frame is 480 x 856.

4.2. Comparison with existing methods

We compare our proposed algorithm in Table 1 with state-of-
the-art deep learning-based methods, as well as methods based
on hand-crafted features: MPPCA [43], MPPC + SFA [40], Del et al.
[44], Conv-AE [45], ConvLSTM-AE [30], Growing Gas [46], Stacked
RNN [41], Deep Generic [42], GANs [47], Liu et al. [7]. A popular
metric used for comparison in anomaly detection literature is the
Area under the Receiver Operating Characteristic (AuROC) curve.
Higher AuROC values indicate better performance for an anomaly

Pattern Recognition 114 (2021) 107865

Table 1
AuROC result comparison on three datasets.
Methodology CUHK Avenue  UCSD Ped 2 ShanghaiTech
MPPCA [43] - 69.3 -
MPPC + SFA [40] - 61.3 -
Del et al. [44] 78.3 - -
Conv-AE [45] 80.0 85.0 60.9
ConvLSTM-AE [30] 77.0 88.1 -
Growing Gas [46] - 93.5 -
Stacked RNN [41] 81.7 92.2 68.0
Deep Generic [42] - 92.2 -
GANs [31] - 88.4 -
Liu et al. [7] 85.1 95.4 72.8
Ours 86.4 97.2 70.9
3.5
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Fig. 3. The advantage of sequential anomaly detection over single-shot detection in
terms of controlling false alarms.

detection system. For performance evaluation, following the exist-
ing works [7,19,48], we consider frame level AuROC.

4.3. Implementation details

In the prediction pipeline, the U-NET based generator and the
patch discriminator are implemented in Tensorflow. Each frame is
resized to 256 x 256 and normalized to [1,1]. The window size t
is set to 4. Similar to [7], we use the Adam optimizer for train-
ing and set the learning rate to 0.0001 and 0.00001 for the gen-
erator and discriminator, respectively. The object detector used is
YOLOv3 which is based on the Darknet architecture and is pre-
trained on the MS-COCO dataset. During training, we extract the
bounds which have a confidence level greater than 0.6, and for
testing we consider confidence levels greater than or equal to
0.4. The weights wq,w, and ws are set to 1, 0.4 and 0.9 respec-
tively. The sequential anomaly detection algorithm is implemented
in Python.

4.4. Impact of sequential anomaly detection

To demonstrate the importance of sequential anomaly detection
in videos, we implement a nonsequential version of our algorithm
by applying a threshold to the instantaneous anomaly evidence §;,
given in (7), which is similar to the approach employed by many
recent works [7,8,19]. As Fig. 3 shows, instantaneous anomaly ev-
idence is more prone to false alarms than the sequential MONAD
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statistic since it only considers the noisy evidence available at the
current time to decide. Whereas, the proposed sequential statistic
handles noisy evidence by integrating recent evidence over time.

4.5. Results

We compare our results to a wide range of methods in Table 1.
Recently, Ionescu et al. [19] showed significant gains over the rest
of the methods. However, their methodology of computing the Au-
ROC gives them an unfair advantage as they calculate the AuROC
for each video in a dataset, and then average them as the AuROC
of the dataset, as opposed to the other works which concatenate
all the videos first and then determine the AuROC as the dataset’s
score.

As shown in Table 1 we are able to outperform the existing re-
sults in the avenue and UCSD dataset, and achieve competitive per-
formance in the ShanghaiTech dataset. We should note here that
our reported result in the ShanghaiTech dataset is based on on-

line decision making without seeing future video frames. A com-
mon technique used by several recent works [7,19] is to normalize
the computed statistic for each test video independently, includ-
ing the ShanghaiTech dataset. However, this methodology cannot
be implemented in an online (real-time) system as it requires prior
knowledge about the minimum and maximum values the statistic
might take.

Hence, we also compare our online method with the online
version of state-of-the-art method [7]. In that version, the mini-
mum and maximum values of decision statistic is obtained from
the training data and used for all videos in the test data to nor-
malize the decision statistic, instead of the minimum and maxi-
mum values in each test video separately. AuROC value, which is
the most common performance metric in the literature, consid-
ers the entire range (0,1) of false alarm rates. However, in practice,
false alarm rate must satisfy an acceptable level (e.g., up to 10%).
In Fig. 4, on the UCSD and ShanghaiTech data sets, we compare our
algorithm with the online version of [7] within a practical range of
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false alarm in terms of the ROC curve (true positive rate vs. false
positive rate). As clearly seen in the figures, the proposed MONAD
algorithm achieves much higher true alarm rates than [7] in both
datasets while satisfying practical false alarm rates.

Finally, in Fig. 5, we analyze the bound for false alarm rate
derived in Theorem 1. For the clarity of visualization, the figure
shows the logarithm of false alarm period, which is the inverse of
the false alarm rate. In this case, the upper bound on false alarm
rate becomes a lower bound on the false alarm period. The exper-
imental results corroborate the theoretical bound and the proce-
dure presented in Section 3.7 for obtaining the decision threshold
h.

4.6. Computational complexity

In this section we analyze the computational complexity of the
sequential anomaly detection module, as well as the average run-
ning time of the deep learning module.

Sequential anomaly detection The training phase of the pro-
posed anomaly detection algorithm requires computation of kNN
distances for each point in FM1 to each point in FM2. Therefore,
the time complexity of training phase is given by O(M;M,m). The
space complexity of the training phase is O(M,m) since M, data
instances need to be saved for the testing phase. In the testing
phase, since we compute the kNN distances of a single point to
all data points in M2, the time complexity is O(Mym).

Deep learning module The average running time for the GAN-
based video frame prediction is 22 frames per second. The YOLO
object detector requires about 12 ms to process a single image.
This translates to about 83.33 frames per second. The running time
can be further improved by using a faster object detector such as
YOLOv3-Tiny or a better GPU system. All tests are performed on
NVIDIA GeForce RTX 2070 with 8 GB RAM and Intel i7-8700k CPU.

5. Conclusion

For video anomaly detection, we presented an online algorithm,
called MONAD, which consists of a deep learning-based feature ex-
traction module and a statistical decision making module. The first
module is a novel feature extraction technique that combines GAN-
based frame prediction and a lightweight object detector. The sec-
ond module is a sequential anomaly detector, which enables per-
formance analysis. The asymptotic false alarm rate of MONAD is
analyzed, and a practical procedure is provided for selecting its
detection threshold to satisfy a desired false alarm rate. Through
real data experiments, MONAD is shown to outperform the state-
of-the-art methods, and yield false alarm rates consistent with the
derived asymptotic bounds. For future work, we plan to focus on
the importance of timely detection in video [49] by proposing a
new metric based on the average delay and precision.
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Appendix A. Proof of theorem 1

In [38][page 177], for CUSUM-like algorithms with independent
increments, such as MONAD with independent §;, a lower bound
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on the average false alarm period is given as follows
Es[T] = e®h,

where h is the detection threshold, and wg > 0 is the solution to
E[e®0d] = 1.

To analyze the false alarm period, we need to consider the
nominal case. In that case, since there is no anomalous object at
each time t, the selection of object with maximum kNN distance
in §; = (max;{di})™ — d' does not necessarily depend on the pre-
vious selections due to lack of an anomaly which could correlate
the selections. Hence, in the nominal case, it is safe to assume that
8¢ is independent over time.

We firstly derive the asymptotic distribution of the frame-level
anomaly evidence §; in the absence of anomalies. Its cumulative
distribution function is given by

P(8 =) = P((max{di})" < dZ +).

It is sufficient to find the probability distribution of (max{di})™,
1

the mth power of the maximum kNN distance among objects de-
tected at time t. As discussed above, choosing the object with max-
imum distance in the absence of anomaly yields independent m-
dimensional instances {F} over time, which form a Poisson point
process. The nearest neighbor (k = 1) distribution for a Poisson
point process is given by

P(max{dl} <r) =1—exp(—A(b(F.1)))

where A(b(F,r)) is the arrival intensity (i.e., Poisson rate mea-
sure) in the m-dimensional hypersphere b(F, r) centered at F with
radius r [50]. Asymptotically, for a large number of training in-
stances as M, — oo, under the null (nominal) hypothesis, the near-
est neighbor distance maxi{d}'} of F takes small values, defining an
infinitesimal hyperball with homogeneous intensity A =1 around
E. Since for a homogeneous Poisson process the intensity is writ-
ten as A(b(F, 1)) = A|b(E, )| [50], where |b(F, )| = %r -
vmt™ is the Lebesgue measure (i.e., m-dimensional volume) of the
hyperball b(F, r), we rewrite the nearest neighbor distribution as

P(max{d} <r) =1 exp (—vnr™).
1
_ Tm/2 . . .
where Um = Fonar 1S the constant for the m-dimensional
Lebesgue measure.

Now, applying a change of variables we can write the probabil-
ity density of (max;{d}})™ and & as

0
f(lnaxi{d{})'" W) = @[1 — exp (_Umy)L
= Um exp(—vny),
f5.¥) = Umexp(—vpdy) exp(—vmy)

Using the probability density derived in (A.1), E[e®0%] =1 can
be written as

(A1)

¢
1= / e®Y e Vnd g=Umy dy,
—dm

Umdy ¢
€ :/ e(wrvm)ydy
Um —dn '
e(@o—vm)y ¢
wWo — Um am

(@o—Um)P _ p(wo—vm)(~dy)

e e o

- , (A2)
wo — Uy

where —d7 and ¢ are the lower and upper bounds for & =
(max;{di})™ — d. The upper bound ¢ is obtained from the train-
ing set.
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As M, — oo, since the mth power of (1 —«)th percentile of
nearest neighbor distances in training set goes to zero, i.e., d} — 0,
we have

Umdly
e@o-vmg _ €

- 1.
Um (a)O m)+

We next rearrange the terms to obtain the form of e =
dm
ap(x +6) where x = wy — Vm, ap = ev"'m“ , and 6 = Y The so-

[Z Umd
lution for x is given by the Lambert-W function [51] as x = -0 —
%W(—q&e—‘w/ao), hence

o= — 0 — %W(—¢Ge“/’0).

Finally, since the false alarm rate (i.e., frequency) is the inverse
of false alarm period E.[T], we have

FAR < e,
where h is the detection threshold, and wq is given above.
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