Similar Holocene glaciation histories in tropical South America and Africa
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Tropical glaciers have retreated alongside warming temperatures over the past century, yet
how these trends fit in a long-term geological context is largely unclear. Here we present
reconstructions of Holocene glacier extents relative to today from the Quelccaya Ice Cap, Peru, and
the Rwenzori Mountains, Uganda, based on measurements of in situ '*C and ’Be from recently
exposed bedrock. Ice extent histories are similar at both sites, and suggest that ice was generally
smaller than today during the first half of the Holocene and larger than today for most, if not all, of
the last several millennia. The similar glaciation history in South America and Africa suggests that
large-scale warming followed by cooling of the tropics during the late Holocene primarily drove ice
extent, rather than regional changes in precipitation. Our results also imply that recent tropical ice

retreat is anomalous in a multi-millennial context.

INTRODUCTION

Determining how temperatures evolved over the Holocene is important to provide long-term
context for modern warming, test climate models, and understand how climate around the world is
coupled. Yet in the tropics, Holocene temperature trends are often inconsistent between proxies (Leduc et
al., 2010) and near the noise level of many records. Furthermore, unlike over Pleistocene glacial cycles,
when tropical temperatures were closely linked to the high latitudes through strong feedbacks, Holocene
climate forcing was dominated by regional and seasonal variations in insolation that had marked effects
on tropical hydrology (Seltzer et al., 2000; Shanahan et al., 2015) but less certain imprints on temperature.
Models typically predict modest tropical warming from the mid to late Holocene due to small increases in
greenhouse gases and mean annual insolation, but not all agree (Liu et al., 2018).

Alpine glaciers may serve as especially sensitive monitors of temperature change in the tropics.
For instance, the near-uniform lowering of glacial snowlines during the Last Glacial Maximum provides
some of the most robust evidence for tropical cooling then, and widespread tropical glacier retreat today
points to their sensitivity to recent warming. Unfortunately, tropical glacier behavior across the Holocene

is poorly constrained, and existing records of glacier length tend to be qualitative or discontinuous



(Solomina et al., 2015). Moreover, while tropical glaciation during Pleistocene glacial periods was largely
related to temperature (Hostetler and Clark, 2000), the driver of Holocene glacier fluctuations remains
less clear given the smaller magnitude of temperature variations and the potential for hydroclimatic
controls on tropical glaciers (Molg et al., 2003; Thompson et al., 2005).

We apply the in situ '*C-1°Be chronometer to bedrock (Goehring et al., 2011) at the margin of the
Quelccaya Ice Cap, Peru and a recently deglaciated site in the Rwenzori Mountains of East Africa to
generate a more complete and quantitative Holocene record of tropical glaciation (Fig. 1). The use of
multiple cosmogenic nuclides enables an estimate of the cumulative amount of time, and broadly when,
the glaciers were larger or smaller than today, informing our understanding of what drove their long-term

fluctuations as well as how anomalous current glacier retreat may be in a Holocene context.

STUDY SITES

The Quelccaya Ice Cap in the Peruvian Andes (13.9 °S, 70.9 °W, 5670 m) is the largest tropical
ice cap in the world, covering ~40 km?. It is particularly sensitive to changes in temperature owing to its
relatively low relief and dome shape, which enables a small change in the equilibrium line altitude to
drive a potentially large change in its marginal position (Malone et al., 2015). Monitoring suggests its
outlet glaciers have been retreating in recent decades due to warming (Rabatel et al., 2013). Radiocarbon
dating suggests that the ice retreated to near or within its late Holocene extent by 11.6 ka (Kelly et al.,
2012). Plant material exposed by recent retreat suggests that the ice cap was as small as or smaller than
today from at least 7 ka until 5.2 ka when the plants grew and likely more extensive thereafter, as the
material would have probably decomposed if it had been uncovered previously (Buffen et al., 2009).
Moraine ages indicate that this late Holocene advance culminated at ~0.5 ka, which, when compared with
local ice core records, was likely due to changes in temperature rather than net accumulation (Stroup et
al., 2014). Confirming Quelccaya’s full Holocene history requires additional work because these

constraints are mostly indirect or discontinuous.



The Rwenzori Mountains in Uganda and the Democratic Republic of Congo (0.3 °N, 29.9 °E,
highest elevation 5109 m) feature the most extensive system of glaciers in Africa. Rwenzori glaciers have
also undergone substantial retreat over the past century and less than 1 km? of ice now remains. Similar to
other glaciers in the humid inner tropics, the relatively wet conditions and lower elevations in the
Rwenzori result in melt-dominated glaciers, and modeling suggests they are particularly sensitive to
temperature (Doughty et al., in press). Holocene constraints are sparse, but '°Be dating suggests that ice
retreated to within 0.25 km of its early 20™ century position at ~11 ka and reached a Holocene maximum
a few centuries ago, before modern retreat began ~1870 C.E. (Jackson et al., 2020a; Russell et al., 2009).
The lack of deposits between these earliest and latest Holocene positions suggest that ice may have been
within the Little Ice Age margin throughout the Holocene, but it is unclear how small ice typically was or

how it trended through time (Jackson et al., 2020b).

THE "“C-""BE CHRONOMETER

Concentrations of *C and 'Be, and the ratio between them, in proglacial bedrock are a function of
the history of ice cover and erosion at the site (Goehring et al., 2011). During intervals of reduced ice extent,
these nuclides accumulate proportionally to the duration of exposure. When ice advances over the site,
production effectively ceases and the nuclides decay ('’Be ti2= 1.39 Myr; 'C tio= 5.7 kyr), leading to a
decrease in the "*C/'°Be ratio. Importantly, the cosmogenic signal is sensitive to the timing, as well as the
duration, of exposure. For instance, while exposure during the first versus second half of the Holocene
might yield similar '°Be concentrations, the '*C/!°Be ratio would be lower in the former scenario due to
subsequent decay under late Holocene ice cover. Additionally, glacial erosion reduces the concentrations
of both nuclides. Thus, the Holocene history of ice extent relative to today can be constrained by measuring
4C and '°Be concentrations in recently exposed bedrock samples collected adjacent to the current ice
margin, which presumably have experienced the same exposure history but potentially different magnitudes

of erosion.



METHODS

We measured '“C and '"Be concentrations from several bedrock samples at each site. Five
samples were collected along the western edge of the Quelccaya Ice Cap, only meters (Q-2-03 to Q-4-03)
to tens of meters (Q-80 and Q-81) from the 5 ka plant remains dated by Buffen et al. (2009) (Fig. 1a). All
samples were within meters of the ice margin at the time of sampling (2003 and 2008). Two additional
samples were collected 3 km down valley (Q-74 and Q-75) to better constrain the timing of the last
deglaciation and provide a maximum-limiting age for initial Holocene exposure. In the Rwenzori
Mountains, three samples were collected from a headwall high on Weismann’s Peak (Fig. 1b), which was
deglaciated within the past 80 years based on historical photography. All samples were from smooth
bedrock surfaces with no nearby sediment cover.

Nuclide concentrations are consistent with a number of Holocene glacier histories. To evaluate
which histories are most probable, we modeled 100,000 random simulations of 1°Be and *C concentrations
that result from a wide range of exposure and erosion scenarios. Our model tracks the evolution of nuclides
in a column of bedrock for each sample site, simulating nuclide accumulation during exposure, and nuclide
loss via glacial erosion and decay when ice-covered. All simulations begin at 11 ka, based on evidence
discussed above that ice had not retreated near the sampling sites before this time. Scenarios that yield
bedrock surface nuclide concentrations within uncertainty of measured concentrations of both nuclides in
all samples are considered plausible. We show results using the global nuclide production rate calibration,

but a regional production rate yields similar solutions.

RESULTS

Measured “C and '"Be ratios and apparent ages for the recently deglaciated Quelccaya and
Rwenzori samples are strikingly similar, suggesting similar glacier histories at both sites. The highest
concentration °Be samples at both locations register at least 5 kyr of exposure, while '*C/!°Be ratios imply
several kyr of later burial (Fig. 2). The Quelccaya samples exhibit a range of concentrations, suggesting

that some have been more deeply eroded than others, while the Rwenzori samples all have similarly high



nuclide concentrations, consistent with minimal erosion. The nearly linear relationship between *C and
'Be concentrations implies concordant burial histories of all samples at each site. The one exception is
sample Q-81 from Quelccaya, which has a substantially higher '’Be concentration and lower *C/!°Be ratio,
implying >20 kyr of total history; this sample is therefore contaminated by pre-Holocene inheritance and
excluded. The two down valley samples at Quelccaya have ''Be ages of 10.9 + 0.2 and 11.0 + 0.2 ka,
confirming our assumption that initial exposure of the ice marginal samples did not occur until after the
start of the Holocene.

Monte Carlo simulations suggest that only a small subset of exposure scenarios (~2%) can
explain the measured nuclide concentrations at both sites; all are characterized by exposure in the early
Holocene and burial in the late Holocene (Fig. 3g,h). Inferred erosion rates for the Rwenzori samples are
on the order of tens of meters per Myr but reach up to one to two orders of magnitude higher for some of
the Quelccaya samples, with the most deeply eroded sample likely glacially plucked given the magnitude

of erosion.

DISCUSSION

The pattern of early Holocene exposure followed by mid to late Holocene burial recorded by our
cosmogenic nuclide data at the Quelccaya Ice Cap and in the Rwenzori Mountains fits with other records
of glacier extent from these regions. Moraine ages and clastic sediment fluxes to Andean glacial lakes
suggest ice retreated from early Holocene positions by ~10 ka and grew after the mid Holocene reaching
maximum extents in the late Holocene (Rodbell et al., 2008; Stansell et al., 2015, 2017), while the ~5 ka
age of plant remains adjacent to our sample sites at Quelccaya implies continuous ice cover since the
plants were overrun (Buffen et al., 2009). Likewise, low dust concentrations in a Kilimanjaro ice core
suggest fairly continuous ice accumulation for the past ~4 kyr, and clastic sediment fluxes and
radiocarbon dating of moraines suggest glacier renucleation and/or readvance on Mount Kenya in the mid

Holocene (Karlén et al., 1999; Gabrielli et al., 2014).



The similar Holocene glacier histories we find in tropical South America and Africa suggest that
they were driven by a common factor, most likely large-scale changes in temperature. Indeed,
temperature variations at high altitudes are relatively homogeneous across the tropics due to the weak
Coriolis force at low latitudes. Furthermore, proxy records suggest different precipitation histories in
these regions. Precipitation increased in the southern tropical Andes during the late Holocene as the
Intertropical Convergence Zone migrated southward and the South American Summer Monsoon
strengthened (Kanner et al., 2013; Seltzer et al., 2000) (Fig. 3e), whereas much of east Africa became
drier when the African Humid Period ended (Shanahan et al., 2015), including near the Rwenzori (Ivory
and Russell, 2018) (Fig. 3f). We therefore interpret the glacier histories as records of Holocene
temperature across the tropics, with conditions generally warmer than today in the early Holocene and
colder than today since ~5 ka. We note that our results may not apply to glaciers elsewhere in the tropics,
however, particularly those in precipitation-limited regions where ice loss is dominated by sublimation
rather than melt (Rupper and Roe, 2008; Sagredo et al., 2014).

East African lake biomarker records as well as a tropics-wide sea surface temperature stack show
cooling trends over the past 5 kyr, consistent with tropical glacier expansion around that time (Ivory and
Russell, 2018; Marcott et al., 2013) (Fig. 3¢,d). Both datasets have similar average early and late
Holocene temperatures, however, which is more difficult to reconcile with the early Holocene exposure
and late Holocene burial suggested by our data. We suggest that the glaciers may provide more sensitive
records of temperature change than these other proxies, and contend that the early Holocene was in fact
warmer than the late Holocene in these regions. Indeed, geochemical paleotemperature proxies typically
carry uncertainties >1°C (Russell et al., 2018; Tierney et al., 2019; Tierney and Tingley, 2018), whereas
modeling suggests that 0.9°C and ~2.5°C of warming would be sufficient to remove all ice from the
Rwenzori and Quelccaya (Doughty et al., in press; Yarleque et al., 2018). It is also possible that Holocene
temperature changes were amplified at higher elevations nearer the glaciers, as has been found for the
Last Glacial Maximum (Loomis et al., 2017), but not detectable at the lower elevations of the lake and

marine records.



It is unclear what drove the early Holocene warmth and mid to late Holocene tropical cooling that
we infer was responsible for increasing ice cover at both sites during the past ~5 kyr. While there were
large variations in seasonal insolation over the Holocene, mean annual insolation — which tropical glaciers
may be more sensitive to since they ablate all year long — increased slightly in the tropics (Fig. 3a).
Greenhouse gas forcing also rose modestly during the mid to late Holocene (Fig. 3b), suggesting that it
too was not the main driver. Notably, Quelccaya and the Rwenzori are located at 0° and 14 °S latitude, but
the trends in their ice extents parallel those of many Northern Hemisphere glaciers, which were typically
smaller during the early Holocene and expanded during the late Holocene in response to declining boreal
summer insolation (Solomina et al., 2015). This similarity might suggest that tropical glaciers responded
to feedbacks related to boreal summer temperature.

Our paired '°Be-'*C measurements on recently exposed proglacial bedrock in South America and
Africa provide the first time-integrated constraints on tropical glacier extents relative to today spanning
the Holocene. This bedrock approach complements the moraine and lake sediment record of Holocene
glaciation, and together these archives offer the potential of developing continuous records of ice extent.
Our data suggest that modern tropical glacier retreat has reversed a late Holocene trend toward expanded
ice cover, and current glacier extents are probably anomalous in the context of the last several millennia.
Moreover, our results imply that these glaciers responded sensitively to temperature over the Holocene,

pointing to their continued retreat with additional warming in the future.
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FIGURE CAPTIONS

Figure 1. Locations of bedrock samples (light grey circles) from (a) Quelccaya Ice Cap, Peru, and (b)
Rwenzori Mountains, Uganda. Green triangles show recently emerged ~5 ka plant remains (Buffen et al.,
2009).

Figure 2. '*C and !°Be concentrations with 16 measurement uncertainties in recently exposed bedrock
from the Quelccaya Ice Cap (red) and Rwenzori Mountains (blue). Concentrations normalized by surface
production rate, such that '’Be concentrations are equivalent to surface exposure durations in years. Solid
black line represents the evolution of surface concentrations under continuous exposure. Dashed lines are
hypothetical burial isochrons and neglect erosion.

Figure 3. Inferred glacier histories compared to paleoclimate records. (a) Mean annual insolation at the
equator. (b) Radiative forcing from CO,+CH4+N,O (Marcott et al., 2013). (¢) Tropical sea surface
temperature stack (Marcott et al., 2013). (d) Equatorial East Africa average temperature change from
organic geochemical reconstructions (Ivory and Russell, 2018). (e) South American §'*0 records from
Huagapo Cave (light purple), Diamante Cave (medium purple), El Condor Cave (blue-purple), and Lake
Junin (dark purple) (Cheng et al., 2013; Kanner et al., 2013; Seltzer et al., 2000). (f) African leaf wax 6D
from the Gulf of Aden (light blue), Lake Challa (medium blue), and Lake Tanganyika (dark blue)
(Tierney and deMenocal, 2013). (g, h) Modeled exposure histories for (g) Quelccaya and (h) Rwenzori

samples showing the proportion of Monte Carlo simulations with exposure during each time step.
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