Advances in Mathematics 345 (2019) 1162-1205

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

www.elsevier.com /locate/aim

On the functoriality of Khovanov—Floer theories

L))

Check for
Updates

John A. Baldwin *', Matthew Hedden *?, Andrew Lobb “*?3

2 Department of Mathematics, Boston College, United States of America

b Department of Mathematics, Michigan State University, United States of America
¢ Department of Mathematical Sciences, Durham University, United Kingdom of
Great Britain and Northern Ireland

ARTICLE INFO ABSTRACT
Article history: We introduce the notion of a Khovanov—Floer theory. We
Received 6 June 2017 prove that every page (after F7) of the spectral sequence

Received in revised form 7 January
2019

Accepted 10 January 2019
Available online 28 January 2019
Communicated by the Managing

accompanying a Khovanov-Floer theory is a link invariant,
and that an oriented link cobordism induces a map on
each page which is an invariant of the cobordism up to
smooth isotopy rel boundary. We then prove that the spectral

Editors sequences relating Khovanov homology to Heegaard Floer
homology and singular instanton knot homology are induced

Keywords: by Khovanov—Floer theories and are therefore functorial in

Khovanov the manner described above, as had been conjectured for some

Floer time.

Instanton © 2019 Published by Elsevier Inc.

Spectral sequence

* Corresponding author.
E-mail addresses: john.baldwin@bc.edu (J.A. Baldwin), mhedden@math.msu.edu (M. Hedden),

andrew.lobb@durham.ac.uk (A. Lobb).

L JAB was supported by NSF Grants DMS-1104688, DMS-1406383, and NSF CAREER Grant
DMS-1454865.

2 MH was partially supported by NSF CAREER Grant DMS-1150872, and an Alfred P. Sloan Research
Fellowship.

3 AL was partially supported by EPSRC Grants EP/K00591X/1 and EP/M000389/1.

https://doi.org/10.1016/j.aim.2019.01.026
0001-8708/© 2019 Published by Elsevier Inc.


https://doi.org/10.1016/j.aim.2019.01.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:john.baldwin@bc.edu
mailto:mhedden@math.msu.edu
mailto:andrew.lobb@durham.ac.uk
https://doi.org/10.1016/j.aim.2019.01.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2019.01.026&domain=pdf

J.A. Baldwin et al. / Advances in Mathematics 345 (2019) 1162—-1205 1163

1. Introduction

Khovanov’s celebrated work [11] assigns to a link diagram a chain complex whose
homology is, up to isomorphism, an invariant of the underlying link type. Jacobsson
further showed in [9] that a movie for a cobordism in S® x [0, 1] with starting and ending
diagrams Dy and D; induces a map on Khovanov homology,

Kh(Dy) — Kh(D),

and that over F = Z/2Z, equivalent movies define the same map (see also [2,12,6]). Thus,
Khovanov homology is a functor

Kh : Diag — Vecty

from the diagrammatic link cobordism category (see Subsection 2.3) to the category of
vector spaces over F.

This paper studies a similar functoriality in the context of connections between Kho-
vanov homology and Floer theory. These now ubiquitous connections generally take the
form of a spectral sequence with Khovanov homology at the Es page, and abutting to
the relevant Floer homology theory. The first such connection was made by Ozsvath and
Szabé in [17]. Given a based link L C S® with planar diagram D, they constructed a
spectral sequence

Khr(D) = HF(-%(L))

with F5 page the reduced Khovanov homology of D, abutting to the Heegaard Floer
homology of the branched double cover of S along L, with reversed orientation. Similar
spectral sequences abutting to monopole, framed instanton, and plane Floer homology
have since been discovered [3,20,7]. Most significantly perhaps, Kronheimer and Mrowka
constructed in [13] a spectral sequence

Kh(D) = I*(L)

with Fs page the Khovanov homology of D, abutting to the singular instanton knot
homology of the mirror of L. This spectral sequence played a key role in their proof [13]
that Khovanov homology detects the unknot.

Each of the above spectral sequences arises from a filtered chain complex associated
with a planar link diagram and some additional, often analytic, data. However, one can
generally show that the (F;, d;) page of the resulting spectral sequence does not depend
on this additional data, up to canonical isomorphism, for i > 2. Indeed, we may think
of Kronheimer and Mrowka’s construction as assigning to a diagram D for a link L a
sequence of chain complexes



1164 J.A. Baldwin et al. / Advances in Mathematics 345 (2019) 1162-1205

KEM(D) = {(E{™(D),d{™(D))}i>2
with
EXM(D) = Kn(D) and EXM(D) = 1*(L).
Likewise, Ozsvath and Szabé assign to a diagram D for a based link L a sequence
0S(D) = {(E*(D),d{*(D))}i>2
with
E9S(D) = Khr(D) and E2%(D) =~ HF(-%(L)).

Given that the Fy and E., pages of these spectral sequences are, up to isomorphism,
link type invariants, it is natural to ask whether the intermediate pages are too. This
question was answered in the affirmative for the instanton and Heegaard Floer spectral
sequences in [13] and [1], respectively. In this paper, we consider the question of invari-
ance more widely—that is, the invariance of all spectral sequences given by what we
call Khovanov—Floer theories. In fact, we go further: invariance is a consequence of the
functoriality of all Khovanov—Floer theories.

For now, let us continue the discussion of functoriality in the instanton and Heegaard
Floer cases. We denote by Link the link cobordism category, whose objects are oriented
links in S% := R? U {oo}, and whose morphisms are isotopy classes of oriented, collared
link cobordisms in S% x [0,1]. That is, two surfaces represent the same morphism if
they differ by a smooth isotopy fixing a collar neighborhood of the boundary pointwise.
Khovanov homology can be made into a functor

Kh : Link — Vectp

in a natural way. Meanwhile, Kronheimer and Mrowka showed that a cobordism S from
Ly to Ly gives rise to a map on singular instanton knot homology,

I*(=S8) : I*(Ly) — I*(Ly),

which is an invariant of the morphism in Link represented by S. That is, singular
instanton knot homology also defines a functor

I' : Link — Vecty.

So, in essence, the Fy and FE,, pages of Kronheimer and Mrowka’s spectral sequence
behave functorially with respect to link cobordism. It is therefore natural to ask, as
Kronheimer and Mrowka did in 2010 [13, Section 8.1], whether their entire spectral
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sequence (after the E; page) defines a functor from Link to the spectral sequence cate-
gory Specty, of which an object is a sequence {(E;,d;)};>;, of chain complexes over F
satisfying

H,.(E;,d;) = Eiq1,
and a morphism is a sequence of chain maps

{Fi: (Ei,di) = (B, d}) iz

177

satisfying F; 11 = (F;)«. We record their question informally as follows.

Question 1.1 (Kronheimer—Mrowka). Is the spectral sequence from Khovanov homology
to singular instanton knot homology functorial?

One can ask an analogous question about Ozsvath and Szabd’s spectral sequence.
Reduced Khovanov homology defines a functor

Khr : Link,, — Vecty,

where Link,, denotes the based link cobordism category (see Subsection 2.3). Given a
based link cobordism S from Lg to Lj, the branched double cover of S3 x [0,1] along
S is a smooth, oriented 4-dimensional cobordism X(S) from (L) to ¥(L;), and thus
induces a map on Heegaard Floer homology,

HF(—X(S)) : HF(—=X(Lo)) — HF(=%(L1)),

which is an invariant of the morphism in Link., represented by S. In other words, the
Heegaard Floer homology of branched double covers defines a functor

HF(2(+) : Linko, — Vectg.

This leads to the question below, posed by Ozsvath and Szabé in 2003 [17, Section 1.1],
as to whether their spectral sequence defines a functor from Link., to Specty.

Question 1.2 (Ozsvdth—Szabd). Is the spectral sequence from Khovanov homology to the
Heegaard Floer homology of the branched double cover functorial?

We answer Questions 1.1 and 1.2 in the affirmative, per the two theorems below. In
these theorems,

sv : Specty — Vecty

is the forgetful functor which sends {(E;, d;)}i>i, to its 2nd page Es.
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Theorem 1.3. There exists a functor
KM : Link — Specty
with Kh = svo KM such that KM(L) =2 KM (D) for any diagram D for L.
Theorem 1.4. There exists a functor
OS : Link., — Specty
with Khr = svo OS such that OS(L) = OS(D) for any diagram D for L.

That is, isotopy classes of link cobordisms induce well-defined maps on the pages
of these spectral sequences, which agree at Fs with the induced maps on Khovanov
homology (or its reduced variant). In short, each page is a functorial link invariant.

One notable consequence of these theorems is that link isotopies determine isomor-
phisms of these spectral sequences. In particular, an isotopy ¢ taking L to L’ determines
a cylindrical cobordism S, C S? x [0,1] from L to L, and, therefore, a morphism

W4 = KM(S,): KM(L) — KM(L')

(likewise for based isotopies and OS). This new structure furthermore recovers the results
from [1] and [13] that the isomorphism classes of all pages of these spectral sequences are
link type invariants: the morphism W4 is an isomorphism in Specty since the cobordism
S¢ is an isomorphism in Link.

Theorems 1.3 and 1.4 follow from a more general framework developed in this paper.
The key notion is that of a Khovanov—Floer theory, alluded to above. Roughly, this term
refers to a rule which assigns a filtered chain complex to a link diagram (and possibly
extra data) such that (1) the Fy page of the resulting spectral sequence is naturally
isomorphic to the Khovanov homology of the diagram, (2) the filtered complex behaves
in certain nice ways under planar isotopy, disjoint union, and diagrammatic 1-handle
addition, and (3) the spectral sequence collapses at Es for any diagram of the unlink.
The import of this notion is indicated by our main theorem below, which asserts that the
spectral sequence associated with a Khovanov—Floer theory is automatically functorial.

Theorem 1.5. The spectral sequence associated with a Khovanov—Floer theory defines a
functor

F : Link — Specty

with Kh = sv o F. In particular, the isomorphism class of each page of the spectral
sequence is a link type invariant.
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The power of this framework lies in the fact it is often easy to determine whether a
given construction satisfies the conditions of a Khovanov—Floer theory, whereas proving
the functoriality (or even invariance) of a construction without the benefit of this notion
has proven tricky in practice. This principle is elaborated in Remark 3.7. As our primary
illustration of this principle, we show the following.

Theorem 1.6. Kronheimer—Mrowka’s and Ozsvdth—Szabd’s spectral sequences come from
Khovanov-Floer theories.*

Note that Theorems 1.3 and 1.4 follow immediately from Theorems 1.6 and 1.5.

Although we do not do so in this paper, it is straightforward to prove that Szabd’s
geometric spectral sequence [21] comes from a Khovanov—Floer theory as well. The same
goes for the other spectral sequences involving instanton and monopole Floer homology in
[3,20,7] alluded to above, and Bar-Natan’s spectral sequence [2]. Recall that Bar-Natan’s
deformation of Khovanov homology produces, for knots, a spectral sequence abutting to
F & F, each summand supported in a single quantum grading. The average sp of these
two gradings is an F-analogue of Rasmussen’s s-invariant, and provides a lower bound
on smooth slice genus. Our framework offers a simple, alternative way of proving that
sr is a knot invariant.

Moreover, our results imply that any reasonably well-behaved deformation of the
Khovanov chain complex gives rise to link and cobordism invariants. To illustrate this,
we describe some new deformations of the Khovanov complex which can easily be shown
to define Khovanov—Floer theories and therefore link and cobordism invariants. One of
these was independently discovered by Juhdsz and Marengon in [10]. At the moment, we
do not know whether the resulting invariants are different from Khovanov homology.

Finally, we expect our functoriality results to have applications for computing the
maps on Floer homology induced by link cobordisms. Indeed, in the singular instanton
and Heegaard Floer settings, one can show that the morphism of spectral sequences we
assign to a cobordism is induced by a filtered chain map whose induced map on total
homology agrees with the cobordism map on Floer homology. In the case of Kronheimer
and Mrowka’s construction, for example, this means that there is a commutative diagram

(fa)«

H.(C(Do)) — H.(C(D1))
I*(Lo) ——— I*(Ly).

1*(-S)

Here, C(D;) is the filtered complex associated to a diagram D, for a link L; which gives
rise to Kronheimer and Mrowka’s spectral sequence, and fj; is the filtered chain map

4 Really, Ozsvath and Szabé’s construction is what we term a reduced Khovanov—Floer theory.
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associated to a movie M for the cobordism S which induces the morphism of spectral
sequences

KM(S) : KM(Lo) — KM(L1)

in Theorem 1.3. The group EXM(D;) is the associated graded object of the induced
filtration on H,(C(D;)) for ¢ =0, 1, and the map

EZM(S) : EZM(Do) — EZM(Dy)

induced by S is simply the associated graded map of (far).. The map EXM(S) may
therefore be viewed as an approximation of I*(—S). In particular, if the former is nonzero
then so is the latter (though the converse need not be true). The analogous statements
hold in the setting of Ozsvath and Szabd’s spectral sequence.

1.1. Organization

In Section 2, we collect some facts from homological algebra and review Khovanov
homology and notions of functoriality. In Section 3, we give a precise definition of a
Khovanov—Floer theory. In Section 4, we prove our main result, Theorem 1.5. In Sec-
tion 5, we show that the spectral sequence constructions of Kronheimer—Mrowka and
Ozsvath—Szabé arise from Khovanov—Floer theories, and we describe new deformations
of the Khovanov complex.

1.2. Acknowledgments

We thank Scott Carter and Ciprian Manolescu for helpful conversations and the ref-
erees for helpful suggestions.

2. Background
We will work over F = Z/2Z throughout the entire paper unless otherwise specified.
2.1. Homological algebra

In this subsection, we record some basic results about filtered chain complexes and
their associated spectral sequences.

The filtered chain complexes considered in this paper are finite-dimensional chain
complexes over F = Z /27 which admit a direct sum decomposition of the form

C=c.d=d"+d" +...), (1)

i>ig

where:
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e d'(C7) C CI* for each j > ip, and
o C'"={0} for all i greater than some i.

We consider elements of C? to be homogeneous of grading i. This grading should not be
confused with a (co)homological grading (i.e. a grading raised by one by d) which, while
generally present, will be suppressed throughout the discussion. The associated filtration

C=Fh gt 5...5 70 = {0} (2)
is given by

F' =P

Jj=i

In fact, every filtered complex over F (or any other field) can be thought of in terms of
a graded complex in which the differential does not decrease grading, as above. From
this perspective, a filtered chain map of degree k from (C,d) to (C’,d’) is a chain map
f: C — C’ admitting a splitting

f=fr e g (3)

such that fi(C7) C (C")I+,
A spectral sequence is a sequence of chain complexes {(E;, d;)}i>i, for some ig > 0
satisfying

Eiy1 = H(E;, d;).
A filtered complex (C,d) gives rise to a spectral sequence
{(Ei(C),di(C))}ixo

of graded vector spaces via the standard ezact couple construction; see, e.g. [4, Sec-
tion 14]. Note that each E;(C') inherits a grading from that of C'. As usual, we will write
E;(C) = Ex(C) to mean that

Ei(C) = Ei41(C) = Ei42(C) = -+ 1= Exo(C).

A morphism from a spectral sequence {(E;,d;) }i>i, to a spectral sequence {(E}, d})}i>i,

1)

is a sequence of chain maps
{F: (B, di) — (Ez{vd;)}iZmax{imi{)}

satisfying F; 11 = (F})«. A filtered chain map as in (3) gives rise to a morphism of spectral
sequences
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{F = Bi(f) : (BAO).di(C)) = (Bi(C"),di(C"))}i0

in a standard way as well. If the filtered map is of degree k, then each map in the
morphism is homogeneous of degree k with respect to the grading. As mentioned in the
introduction, spectral sequences and their morphisms form a category which we denote
by Specty.

The three lemmas below are the main results of this subsection; we will make heavy
use of them in Sections 3 and 4.

Lemma 2.1. Suppose
f(Cd) = (C',d)

is a degree 0 filtered chain map such that E;(f) is an isomorphism. Then E;(f) is an
isomorphism for all j > i. Moreover, there exists a degree O filtered chain map

g:(C',d")— (C,d)
such that Ej(g) = E;(f)~" for all j > i.
Lemma 2.2. Suppose
f9:(Cd) = (C".d)

are degree k filtered chain maps such that E;(f) = E;(g). Then E;(f) = E;(g) for all
i

Lemma 2.3. Suppose E;(C) = Ex(C). Then there exists a degree 0 filtered chain map
f:(C.d) — (Ei(C),0)

from (C,d) to the complex consisting of the vector space E;(C) with trivial differential
such that the induced map

Ei(f) : Ei(C) = Ei(C)
is the identity map.

The remainder of this section is devoted to proving these lemmas (even though they
are well-known to experts). We will do so using a procedure called cancellation which
provides a concrete way of understanding these spectral sequences and the maps between
them. We first describe this procedure for ordinary (unfiltered) chain complexes, as part
of the well-known cancellation lemma below (see [18, Lemma 5.1]).
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Lemma 2.4 (Cancellation lemma). Suppose (C,d) is a chain complex over F freely gen-
erated by elements {x;} and let d(x;,x;) be the coefficient of x; in d(x;). If d(xk, x;) =1,
then the complex (C',d') with generators {x;|i # k,l} and differential

d'(z;) = d(z;) + d(z;, z)d(xg)
is chain homotopy equivalent to (C,d) via the chain homotopy equivalences
7:C—=C" and 1:C" = C
given by
m=Po(id+doh) and t=(id+hod)ol,

where P and I are the natural projection and inclusion maps and h is the linear map
defined by

hz)) =z, and h(z;) =0 fori#I.

We say that the complezx (C',d’) is obtained from (C,d) by canceling the component of
d from xy, to x;.

Remark 2.5. The homology H.(C,d) of the complex in Lemma 2.4 can be understood
as the vector space obtained by performing cancellation until the resulting differential is
zero. Technically, the actual vector space resulting from this cancellation depends on the
order of cancellations, but any such vector space is canonically isomorphic to H,(C,d)
by the map on homology induced by the sequence of chain homotopy equivalences cor-
responding to the sequence of cancellations.

Suppose now that (C,d) is a filtered chain complex as in (1). One may think of the
sequence {E;(C)}i>0 as the sequence of graded vector spaces obtained by performing
cancellation in stages, where the ith page records the result of this cancellation after the
ith stage. Specifically, let:

s (C),doy) = (C,d), and inductively let
e (C(),di)) be the complex obtained from (C(;_1), d(;—1)) by canceling the components
of d(;_1) which shift the grading by ¢ — 1.

Then E;(C) may be thought of as the graded vector space C(;), with grading naturally
inherited from C. Under this formulation, the spectral sequence differential dy(C) on
Ey(C) is the sum of the components of d;) which shift the grading by exactly &, so that
the recursive condition above may be interpreted as the more familiar
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Ei(C) = Hi(Ei—1(C),di1(C)),
per Remark 2.5.
Remark 2.6. The tensor product
(CeC doid+ided)

of two filtered chain complexes (C,d) and (C’,d’) inherits a natural filtration associated
to the natural grading

Ccec)y = '
i+j=k

It is easy to see that E;(C ® C') = E;(C) @ E;(C").

Suppose that f is a filtered chain map of degree k as in (3). Cancellation provides a
nice way of understanding the induced maps

for each 7 > 0. Specifically, every time we cancel a component of d or d’, we may adjust the
components of f as though they were components of a differential (they are components
of the mapping cone differential). In this way, we obtain an adjusted map

fay + (Cliysdiiy) = (Clyy, dyy)

for each ¢ > 0. The induced map E;(f) may then be understood as the sum of the
components of f(;) which shift the grading by exactly k. Note that if

f:(C,d)— (C',d) and g:(C',d)— (C",d")

are filtered chain maps of degrees j and k, respectively, then g o f is naturally a degree
7 + k filtered chain map, and

Ei(go f) = Ei(g) o Ei(f)
for all ¢ > 0.

Remark 2.7. A degree k filtered chain map f can also be thought of as a degree j map
for any j < k. On the other hand, the definition of E;(f) depends on the degree of f. It is
therefore important that one specifies the degree of f when talking about these induced
maps.
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Remark 2.8. Given a degree k filtered chain map f from (C,d) to (C’,d'), it is worth
pointing out that

Eoo(f) 1 Exo(C) = Exo(C)
does not necessarily agree with the induced map
fe: Ho(C,d) — H.(C',d'),

via the isomorphisms between the domains and codomains. In fact, it can be the case
that f. is an isomorphism while F(f) is the zero map e.g. regard the identity map as
a degree —1 filtered chain map. What is true, however, is that

f« = Exo(f) + higher order terms

where “higher order terms” means terms in the decomposition of the adjusted map
f(oo) = [« according to the grading that shift the grading by more than k.

Remark 2.9. Note that for each cancellation performed in computing the spectral se-
quence associated to a filtered complex (C,d), the maps 7 and ¢ of Lemma 2.4 are
degree 0 filtered chain maps. In particular, by taking compositions of these maps, we
obtain degree 0 filtered chain maps

OR (C, d) — (C(i),d(i)) and TOR (C(i),d(i)) — (C, d)
for each i > 0. Tautologically, we have that the induced maps

Ej(r@)) « E5(C) = [E;(Cu)) = E;(O)]
Ej(viy) : [E;(Cwy) = E;(C)] — E;(C)

are the identity maps for all j > 1.

Below, we prove Lemmas 2.1, 2.2, and 2.3 using the above descriptions of spectral
sequences and induced maps in terms of cancellation.

Proof of Lemma 2.1. Suppose f is a map as in the lemma and let
faiy + (Chiy,diiy) = (Cliysdiyy)

be the adjusted map as defined above. The fact that F;(f) is an isomorphism implies
that f(;) is too. Moreover, it is easy to see that its inverse

-1
96) = fy * (Clay» dsy) = (Clay, dgiy)
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is also a filtered chain map of degree 0, and that E;(f(;)) and E;(g(;) are inverses for
all 7 > . Let

g:(C',d)— (C,d)
be the degree 0 filtered chain map given by g = ¢(;) © g;) o 7(;) for maps
(i) (Cl,d/) — (Céi), /(i)) and L(i) - (C(i),d(i)) — (C, d)

as in Remark 2.9. Then E;(f) = E;(fu)) and E;(g9) = E;(g(;)) are inverses for all j > i.
In particular, each E;(f) is an isomorphism. O

Proof of Lemma 2.2. It is clear from the discussion above that if a filtered chain map
induces the zero map on some page then it induces the zero map on all subsequent pages.
Now suppose F;(f) = E;(g) as in the lemma. Then

Ei(f —g) = Ei(f) — Ei(g) =0,
which implies that

E;(f) = Ej(9) = E;(f —g9) =0
for all j > 4, completing the proof. O

Proof of Lemma 2.3. Note that (E;(C),0) = (C(;,d(;) in this case. We may therefore
take f to be the map

f =T - (C, d) — (C(i),d(i)),
per Remark 2.9. O
2.2. Khovanov homology

In this subsection, we review the definitions and some basic properties of Khovanov
homology and its reduced variant.

Suppose D is a diagram in S? := R2U{oo} for an oriented link in $® := R3U{oo}, with
crossings labeled 1,...,n. Let n. and n_ denote the numbers of positive and negative
crossings of D. For each I € {0,1}", let I; denote the jth coordinate of I and let Dy
be the diagram obtained by taking the I;-resolution (as shown in Fig. 1) of the jth
crossing of D, for every j € {1,...,n}. Let V(Dy) be the vector space generated by the
components of Dy. We endow A*V(Dj) with a grading p according to the rules that
1 € A°V(Dy) has grading p(1) = m, where m is equal to the number of components of
Dy, and that wedging with any of the components decreases the p grading by 2.
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K02

Fig. 1. The 0- and 1-resolutions of a crossing.

Given tuples I, J € {0,1}", we write I <j J if J may be obtained from I by changing
exactly k Os to k 1s. For each pair I, I’ with I <; I’, one defines a map

d[,]/ : A*V(D[) — A*V(DI/)’
as described below. The Khovanov chain complex assigned to D is then given by

CKWD)= € AV(Dy),

Ie{0,1}»

with differential

d= P dr.r.

I<i I
This is a bigraded complex, with (co-)homological grading defined by
hz)=L+--+1,—n_,
for © € A*V(Dy), and quantum grading defined by
q(z) =p(z) +h(z) + ny —n_,

for homogeneous = € A*V(Dy). The differential d increases h by one and preserves q.
Thus, if we write CKh"? (D) for the summand of CKh(D) in homological grading ¢ and
quantum grading j, then d restricts to a differential on

CKL™ (D) = @ CKh' (D)
i
for each j. We will write

Kh"I(D) = H;(CKh*? (D), d)

for the (co-)homology of this complex in homological grading i. The Khovanov homology
of D refers to the bigraded vector space

Kh(D) = P Kh'’(D).
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Remark 2.10. We will also treat the case in which D is the empty diagram. In this case,
we let Kh(D) = CKh(D) = A*(0) =F.

It remains to define dy ;. Note that the diagram Dy is obtained from Dy either by
merging two circles into one or by splitting one circle into two. Suppose first that Dy
is obtained by merging the components = and y of D; into one circle. Then there is an
obvious identification

V(Dr)=V(Dr)/(z +y),
and we define the merge map dy ;- to be the induced quotient map

Suppose next that Dj/ is obtained by splitting a component of D; into two circles x
and y. Then the identification

V(Dr) =V (Dr)/(z+y)
induces an identification
AV(Dp) = A (V(Dr)/(z +y)) = (x +y) ANAV(Dr),
and we define the split map dj i to be the composition of the maps
AV (Dy) = N (V(Dp)/(x+y)) = (x+y) NA*V(Dy) < AV (Dy).

That is, the split map may be thought of as given by wedging with z + y.
For diagrams D and D’ which differ by a Reidemeister move, Khovanov defines in [11]
an isomorphism

Kh(D) — Kh(D'),

which we refer to as the standard isomorphism associated to the Reidemeister move. In
this way, the isomorphism class of Khovanov homology provides an invariant of oriented
link type.

Next, we describe how the theory behaves under disjoint union. Consider the link
diagram D LI D’ obtained as a disjoint union of diagrams D and D’. Suppose D has m
crossings and D’ has n crossings. For I € {0,1}™ and I’ € {0,1}", let II’ € {0,1}™*"
denote the tuple formed via concatenation. Note that for every such II’, there is a
canonical isomorphism

V((D [ D/)]I/) — V(D[) () V(D[/),
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which naturally induces an isomorphism
ANV({(DUD) ) — ANV(Dy) @ A*V(Dp).
The direct sum of these isomorphisms define an isomorphism
CKh(D U D) — CKh(D) @ CKh(D'"),
that induces an isomorphism
Kh(D U D) — Kh(D) @ Kh(D'"),

which we refer to as the standard isomorphism associated to disjoint union.

In reduced Khovanov homology, one considers based diagrams. These are planar dia-
grams containing the basepoint co C §? (in particular, all such diagrams are nonempty).
Suppose D is such a based diagram. Consider the chain map

&, : CKh(D) — CKh(D)

given on each V(Dy) by wedging with the component of D; containing co. The image of
this map is a subcomplex of CKh(D). The reduced Khovanov complex of D is defined
to be the associated quotient complex,

CKhr(D) := (CKh(D)/Im(®))[0, —1]. (4)
The reduced Khovanov homology
Khr(D) = H.(CKhr(D))

is then the bigraded vector space obtained as the homology of this quotient complex. In
(4), the bracketed term [0, —1] indicates a shift of the (7,7) bigrading by (0, —1). This
shift is introduced so that the reduced Khovanov homology of the unknot is supported
in bigrading (0, 0).

In reduced Khovanov homology, Reidemeister moves away from oo give rise to isomor-
phisms of Khovanov groups. In particular, the isomorphism class of reduced Khovanov
homology provides an invariant of based, oriented link type.

Reduced Khovanov homology behaves under disjoint union a little bit differently than
Khovanov homology does. In particular, suppose D and D’ are disjoint planar diagrams,
with D containing co. Let U, denote the small crossingless diagram of the unknot
containing co. Then there is a natural and obvious isomorphism

Khr(D U D') = Khr(D) ® Khr(D' U Us).

Remark 2.11. Note that there is a natural isomorphism between Khr(DUU,) and Kh(D)
for planar diagrams D avoiding co.
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2.3. Functoriality

In this subsection, we review some categorical aspects of links, cobordisms, and their
diagrams. We then describe how Khovanov homology defines a functor from various
cobordism categories to Vecty.

The category we will be most interested in is the link cobordism category Link. Objects
of Link are oriented links in S® := R3 U {co} and morphisms are isotopy classes of
collared, smoothly embedded link cobordisms in S x [0, 1]. This means that two surfaces
represent the same morphism if they differ by a smooth isotopy fixing a neighborhood
of the boundary pointwise. In order to define a functor from Link, one often starts by
defining a functor from the diagrammatic link cobordism category Diag mentioned in the
introduction. This category can be thought of as a more combinatorial model for Link.
We define this category below and then describe how functors from Diag can be turned
into functors from Link, focusing on the case of Khovanov homology.

Objects of Diag are oriented link diagrams in S? := R? U {cc} and morphisms are
movies up to equivalence. We define these two terms below. A movie is a 1-parameter
family Dy, t € [0,1], where the D; are link diagrams except at finitely many t-values
where the topology of the diagram changes by a local move consisting of a Reidemeister
move or a Morse modification (a diagrammatic handle attachment). Away from these
exceptional t-values, the link diagrams vary by planar isotopy. Movies M; and M5 can be
composed in a natural way Mo M7, assuming that the initial diagram of M, agrees with
the terminal diagram of M;. Then any movie can be described as a finite composition
of elementary movies, where each elementary movie corresponds to either:

¢ a Reidemeister move (of type I, II, or III), or
« an oriented diagrammatic handle attachment (a 0-, 1-, or 2-handle), or
e a planar isotopy of diagrams.

Carter and Saito [5] refer to the first two types of elementary movies as elementary string
interactions (ESIs). We will generally represent an ESI diagrammatically by recording
diagrams just before and just after the corresponding change in topology. Fig. 2 shows
the ESIs corresponding to handle attachments.

Note that a movie M defines an immersed surface ¥y, C S? x [0, 1] with

Dy = S N (S% x {t}).

We refer to these cross sections as the levels of X ;. We will often think of a movie as
its corresponding immersed surface and vice versa. Let

7:8% 5 52

be the map which sends co to co and restricts to the projection
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)08
)

D' > )
Fig. 2. From left to right, oriented diagrammatic 0-, 1-, and 2-handle attachments.

. T3 2
T sz — Rw
on the first two coordinates for points in R3 C S3. Given links Lg,L; C S? with
7(L;) = D;, we can lift X); to a link cobordism S C S? x [0,1] from Ly to L; such
that

(7 x id)(S) = Sy.

As Diag is supposed to serve as a model for Link, we ought to declare two movies from
Dy to D1 to be equivalent if their lifts, for fixed Ly and L1, represent the same morphism
in Link. Carter and Saito discovered how to interpret this equivalence diagrammatically
in [5]. In particular, two movies are equivalent if they can be related by a finite sequence
of the following moves:

o the movie moves of Carter and Saito [5, Figs. 23-37],
o level-preserving isotopies (of their associated immersed surfaces),
« interchange of the levels containing distant ESIs.

We will not describe these moves in detail as we do not need them; we refer to the reader
to [5] for more information.

Khovanov homology, as described in the previous subsection, assigns a vector space
to a link diagram. To extend Khovanov homology to a functor from Diag to Vectg, one
must assign maps to movies such that equivalent movies are assigned the same map. We
describe below how this is done, following Jacobsson [9].

First, one assigns maps to elementary movies. To an elementary movie M from Dy to
D; corresponding to a Reidemeister move, we assign the associated standard isomorphism

Kh(M) : Kh(Do) — Kh(Dy)

mentioned in the previous subsection. Suppose M is the movie corresponding to a planar
isotopy ¢ taking Dg to D;. This isotopy determines a canonical isomorphism
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We assign to M the induced map on homology,
Kh(M) := (Fg)+« : Kh(Do) — Kh(D»).

It remains to assign a map to a movie M from Dy to D; corresponding to an oriented
i-handle attachment, for ¢ = 0,1, 2.

For i = 0, the diagram D, is a disjoint union Dy U U, where U is the crossingless
diagram of the unknot. It follows that

Kh(D1) 2 Kh(Dg) ® Kh(U) = Kh(Dgo) @ A*(F(U)),
and we define
Kh(M) : Kh(Dg) — Kh(Dg) @ A*(F(U))

to be the map which sends z to x ® 1 for all z € Kh(Dy).
Similarly, for ¢ = 2, we can view Dy as a disjoint union D; U U, so that

Kh(Dy) =2 Kh(Dy) @ A*(F(U)).
In this case, we define
Kh(M) : Kh(Dy) @ A*(F(U)) — Kh(Dy)

to be the map which sends ¢ ® 1 to 0 and z ® U to x for all x € Kh(D,).

Finally, for ¢ = 1, each complete resolution (D) is obtained from (Dg); via a merge
or split. The merge and split maps used to define the differential on Khovanov homology
therefore give rise to a map

ANV ((Do)r) = A*V((D1)1).
These maps fit together to define a chain map
CKh(Dy) — CKh(D),
and Kh(M) is the induced map on homology. Put slightly differently, let Dbea diagram
with one more crossing than Dy and D; such that Dy is the O-resolution of D at this
crossing ¢ and D is the 1-resolution (we will think of ¢ as the (n + 1) crossing). Then
the Khovanov complex for D is the mapping cone of the chain map

T : CKh(D;) — CKh(D,),

given by the direct sum
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T= @ drx{o},1x{1}>
Ie{0,1}m

where these
drxqoy,ix{1} : AV ((Do)r) = A"V ((D1)r)

are components of the differential on CKh(D). Then

Kh(M) :=T, : Kh(Dg) — Kh(D7).

Given an arbitrary movie M from Dg to D1, expressed as a composition
M=DMo---o M,
of elementary movies, we then define
Kh(M) : Kh(Dy) — Kh(D»)

to be the composition

Kh(M) = Kh(My) o -+ o Kh(My).

In this way, Khovanov homology assigns maps to movies. The key theorem is the following
result from [9]; see also [2,12].

Theorem 2.12. (Jacobsson [9]) If M and M’ are equivalent movies, then Kh(M) =
Kh(M').

Jacobsson proves this theorem by showing that the maps assigned to movies are
invariant under the moves listed above. As desired, his result implies that Khovanov
homology defines a functor

Kh : Diag — Vecty.

We next consider how to lift this and other functors from Diag to functors from Link.
We shall achieve this by defining functors,

I, : Link — Diag.

To define I1,, we take for every link L C S a choice of smooth isotopy ¢¢ which begins
at L and ends at a link ¢¢ (L) on which the projection map

782552
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restricts to a regular immersion. We will also regard such an isotopy as a morphism

¢7 € Mor(L, ¢ (L)),

represented by the smoothly embedded cylinder obtained from its trace. On objects, we
define II,, by

o (L) := 7 (o7 (L))
Given a morphism S € Mor(Lg, L1), let us consider the associated morphism
Qs%l © S © ((b%o)_l 6 MOI‘(¢%0 (LO)’ ¢%1 (Ll))

According to [5, Theorem 5.2, Remark 5.2.1(2)], there is a representative ¥ of this mor-
phism whose image under the projection

7 xid: S® x [0,1] — S* x [0,1]
is a movie. We define I1,(.5) to be the equivalence class of this movie,
I, (S) := [(7 x id)(2)].

Proposition 2.13. 11, : Link — Diag is a functor.

Proof. Clearly II, is well-defined on objects. To see that it is well-defined on morphisms,
we use the relative version of Carter and Saito’s main result [5, Theorem 7.1], which
states that isotopic surfaces project to equivalent movies. Thus, the movies resulting
from the projections of any two representatives of the morphism ¢¢ oS o ( %0)*1 are

equivalent. 0O

The apparent dependence of the functor II, on the choices of isotopies ¢¢ is undesir-
able. In fact, we have the following.

Proposition 2.14. Suppose that {¢¢} and {gbg} are two collections of isotopies to links
with reqular projections, as above, defining functors

I1,,1Ig : Link — Diag.
Then the functors Il and Ilg are naturally isomorphic.
Proof. The assignment 2 which sends a link L to the morphism

0a(L) := [(m x id)(2)] € Mor(Ila (L), 5(L)),
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where X is a representative of the morphism qb’g o (¢9)~! whose image under 7 X id is a
movie, gives a well-defined natural isomorphism from II, to IIz. Commutativity of the
square

I, (5)
o (Lo) — Ta(L1)

9§(Lo)l 65(L1)

s (Lo) m Mg(Ly)

follows from the work of Carter and Saito; we leave it as an exercise. It is also not hard
to show that 0? is the inverse natural transformation, and that

07005 =67,
for any three collections of isotopies. O
Moreover we have

Proposition 2.15. For any choice of isotopies ¢, the functor 11, : Link — Diag is an
equivalence of categories.

Proof. Since any two such functors are naturally isomorphic, it is enough to verify the
proposition for a good choice of isotopies ¢¢. We take isotopies ¢¢ such that if L is
already regularly immersed under the map 7, then ¢¢ is the identity isotopy. Hence we
have that II, is surjective on objects. Furthermore, II, is bijective on morphism sets
(that is, it is full and faithful), which suffices to establish the equivalence by, e.g. [16,
Theorem 1, TV.4]. Surjectivity on morphisms is easy since movies can easily be lifted to
cobordisms in S3 x [0, 1], whereas injectivity on morphisms is again a consequence of [5,
Theorem 7.1]. O

One can then lift Khovanov homology to a functor from Link by precomposing with
any II,. We shall denote this functor by

Kh,, := Kholl, : Link — Vectg.

This functor assigns vector spaces to links, but these vector spaces depend on extra data,
the extra data being the set of isotopies {¢¢ }rcgs to links with regular projections. We
would prefer a functor which assigns vector spaces to links themselves, and does not
depend on the choice of isotopies. Our solution rests on the natural isomorphisms we
have described between the functors II,,.

Indeed, using notation from the proof of Proposition 2.14, we obtain isomorphisms

Kh2(L) := Kh(3(L)) : Kho(L) — Khg(L)
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satisfying th o Kh? = KhY and KhS = Id, for all a, 3,~. Thus the collection of vector
spaces { Kho (L)} and isomorphisms { Kh& (L)}, s form a transitive system in the sense
of [8, Chapter 1.6]. We define Kh(L) to be the vector space given as the inverse limit of
this system. A morphism S € Mor(Lg, L) then gives rise to a well-defined map

Kh(S) : Kh(Ly) — Kh(Ly),

so that Kh defines a functor from Link to Vectr which is independent of any choice of
isotopies, as desired.

Remark 2.16. K'h cannot be lifted to a functor associating a vector space to each isotopy
class of link. This is because there exist links with self-isotopies inducing non-identity
automorphisms of Khovanov homology; consider, for an easy example, the isotopy from
the 2-component unlink to itself which swaps the components.

We conclude this section by noting that reduced Khovanov homology defines a similar
functor

Khr : Link,, — Vecty

from the based link cobordism category Link.,. Objects of Link., are oriented links in
53 containing the basepoint co and morphisms are isotopy classes of collared, smoothly
embedded link cobordisms in S* x [0, 1] containing the arc {oo} x [0, 1]. More precisely,
two surfaces represent the same morphism if they differ by a smooth isotopy fixing a
neighborhood of the boundary and this arc pointwise. In order to define the functor Khr
above, one first defines a functor from the based diagrammatic link cobordism category
Diag_ . Objects of this category are equivalence classes of based movies in which each
Dy contains co. Any such movie can be expressed as a composition of elementary movies
corresponding to Reidemeister moves, handle attachments, and planar isotopies, all sup-
ported away from co. Two based movies are considered equivalent if they are related by
obvious based versions of moves from before. To define a functor

Khr : Diag,, — Vecty

one then associates maps to elementary based movies and proceeds as before, noting
that Jacobsson’s work implies that equivalent based movies are assigned the same map.
One then promotes this to a functor from Link., by a straightforward adaptation of the
ideas above.

Remark 2.17. It is clear that a similar procedure works for promoting any functor from
Diag to Specty to a functor from Link to Specty, and similarly for the based categories.
With this in mind, we will be content to work solely in the diagrammatic categories in
the rest of this paper.
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3. Khovanov—Floer theories

In this section, we give a precise definition of a Khovanov—Floer theory (and its reduced
variant) and describe what it means for such a theory to be functorial. The main challenge
lies in setting up the right algebraic framework, as is illustrated by thinking about
Kronheimer and Mrowka’s spectral sequence in singular instanton knot homology. The
difficulty is that their construction does not associate a filtered chain complex to a link
diagram alone, but to a link diagram together with some auxiliary data (e.g. families of
metrics and perturbations), so it is not immediately obvious in what sense the resulting
spectral sequence gives an assignment of objects in Specty to link diagrams. The same is
true in Ozsvath and Szabd’s work (the auxiliary data in this case consists of a Heegaard
multi-diagram and various complex-analytic and symplectic data). Indeed, Kronheimer
and Mrowka’s construction assigns to a diagram D and a choice of data 0 a filtered chain
complex”’

C°(D) = (C°(D),d* (D))
and an isomorphism of vector spaces
¢° : Kh(D) — E5(C°(D)).

Any two choices of auxiliary data 9,0’ result in what one might call quasi-isomorphic
constructions, in that there exists a filtered chain map

f:C*(D) = C¥(D)
such that
Ex(f)=q¢" o(¢®)™"

(which implies that f is a quasi-isomorphism by the results of Subsection 2.1). So, really,
one would like to say that what Kronheimer and Mrowka’s construction assigns to a link
diagram D is a quasi-isomorphism class of pairs (C°(D), ¢°). The algebraic framework
introduced below is meant to make this idea meaningful.

Given a graded vector space V, we define a V-complez to be a pair (C, q), where C' is
a filtered chain complex and

q:V — Ey(C)

is a grading-preserving isomorphism of vector spaces. Suppose (C,q) and (C’,q’) are V-
and W-complexes, and let

T:V-W

5 We will often leave out the differential in the notation for a chain complex.
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be a homogeneous degree k map of graded vector spaces. A morphism from (C,q) to
(C',q") which agrees on Ey with T is a degree k filtered chain map

f:C—=C
such that

Ey(f)=q oToq ™"

Note that if f and g are two such morphisms, then E;(f) = E;(g) for i = 2 and, therefore,
for all ¢ > 2 by Lemma 2.2. A quasi-isomorphism is a morphism from one V-complex to
another which agrees on Fy with the identity map on V.

Remark 3.1. Note that the existence of a quasi-isomorphism from (C, q) to (C’, ¢') implies
the existence of a quasi-isomorphism from (C’, ¢') to (C,¢q) by Lemma 2.1.

For any two quasi-isomorphisms

f9:(Cq) = (C',q),

we have that E;(f) = E;(g) for all © > 2 by the discussion above. Moreover, given
quasi-isomorphisms

f:(Cq) = (C',¢") and g:(C',q¢") = (C",q"),
we have that

Ei(go f) = Ei(g)  Ei(f)

for all ¢ > 2. In other words, the higher pages in the spectral sequences associated to
quasi-isomorphic V-complexes are canonically isomorphic as vector spaces, and, since
the E;(f) are chain maps, these higher pages are also canonically isomorphic as chain
complexes. Put yet another way, for each ¢ > 2, the collection of chain complexes (F;, d;)
associated with representatives of a given quasi-isomorphism class A of V-complexes fits
into a transitive system of chain complexes, from which one can extract an honest chain
complex by taking the inverse limit. In summary, then, a quasi-isomorphism class A of
V-complexes therefore determines a well-defined graded chain complex (F;(A),d;(A))
for each 7 > 2. This is the sense in which, for example, Kronheimer and Mrowka’s
construction provides an assignment of objects in Specty to link diagrams.

Now suppose A is a quasi-isomorphism class of V-complexes and B is a quasi-
isomorphism class of W-complexes, and let

T:V—>W



J.A. Baldwin et al. / Advances in Mathematics 345 (2019) 1162—-1205 1187

be a homogeneous degree k map of vector spaces. We will say that there exists a morphism
from A to B which agrees on Ey with T if there exists a morphism

f:(Cq) = (C',q) (5)

which agrees on Ey with T for some representatives (C,q) of A and (C’,q’) of B. The
morphism in (5) gives rise to a homogeneous degree k map

Ei(A) = Ei(B) (6)

for each 7 > 2. Furthermore, this map is independent of the representative morphism in
(5) in the sense that if (C”,¢"”) and (C", ¢"") are other representatives of A and B and

fl . (C”,q//) - (Cl//7q/”)

is another morphism which agrees on Fy with T, then the diagram

Ei(C”) o El_(C///)

commutes for each ¢ > 2, where the vertical arrows indicate the canonical isomorphisms
between these higher pages. In summary, the existence of a morphism from A to B
which agrees on Fy with T canonically determines a chain map from (E;(A),d;(A)) to
(E;(B),d;(B)) for all i > 2.

The discussion above shows that quasi-isomorphism classes of V-complexes behave
exactly like honest filtered chain complexes with regard to the spectral sequences they
induce. This will enable us to bypass the sort of technical difficulty mentioned at the
beginning of this subsection for the spectral sequences defined by Kronheimer—-Mrowka
and Ozsvath—Szabé.

Finally, note that if (C,q) is a V-complex and (C’,¢’) is a W-complex, then there is
a natural tensor product in the form of a (V ® W)-complex (C @ C',q ® ¢'), in light
of Remark 2.6. This extends in the obvious way to a notion of tensor product between
quasi-isomorphism classes of V- and W-complexes.

Below, we define the term Khovanov—Floer theory. In the definition, we are thinking of
the vector space Kh(D) as being singly-graded by some linear combination of the homo-
logical and quantum gradings. We will omit this linear combination from the notation.
In practice, it will depend on the theory of interest: we will use the homological grading
for the spectral sequence constructions of Kronheimer—Mrowka and Ozvath—Szabé. One
would use the quantum grading for Bar-Natan’s construction [2].
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Definition 3.2. A Khovanov—Floer theory A is a rule which assigns to every link diagram
D a quasi-isomorphism class of Kh(D)-complexes A(D), such that:

(1) if D’ is obtained from D by a planar isotopy, then there exists a morphism
A(D) — A(D")

which agrees on Ey with the induced map from Kh(D) to Kh(D');
(2) if D’ is obtained from D by a diagrammatic 1-handle attachments, then there exists
a morphism

A(D) — A(D")

which agrees on Ey with the induced map from Kh(D) to Kh(D');
(3) for any two diagrams D, D’, there exists a morphism

ADUD") = AD)® A(D)
which agrees on Es with the standard isomorphism
KhDuU D'y — Kh(D)® Kh(D');
(4) for any diagram D of the unlink, Ey(A(D)) = Ex(A(D)).

Remark 3.3. We will need quasi-isomorphisms of the sort in condition (3) going in both
directions. Luckily, Remark 3.1 tells us that this follows from what is written.

A reduced Khovanov—Floer theory is defined almost exactly as above, except that
all link diagrams are now based; planar isotopies and 1-handle attachments fix and
avoid the basepoint oo, respectively; we replace all occurrences of Kh with Khr; and we
replace condition (3) with the condition that for disjoint diagrams D and D’, where D
contains oo, there exists a morphism

ADUD") — AD)® A(D' L U)
which agrees on Fy with the standard isomorphism
Khr(DUD'") — Khr(D) ® Khr(D' U Uy)
described at the end of Subsection 2.2.
Remark 3.4. Note that if A is a reduced Khovanov—Floer theory, then the assignment

D— ADUU)
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(we can assume D avoids oo after small perturbation) naturally defines a Khovanov—
Floer theory, via the relationship between reduced and unreduced Khovanov homology
mentioned in Remark 2.11.

An immediate consequence of these definitions is that a Khovanov—Floer theory A
assigns a canonical morphism of spectral sequences

{(Ei(A(D)), di(A(D)) = (Ei(A(D"), Ei(A(D")) }iz2

to a movie corresponding to a planar isotopy or diagrammatic 1-handle attachment. Of
course, we wish to show, in proving Theorem 1.5, that a Khovanov—Floer theory assigns
a morphism of spectral sequences to any movie, such that equivalent movies are assigned
the same morphism. This leads to the definition below.

Definition 3.5. A Khovanov—Floer theory A is functorial if, given a movie from D to D’,
there exists a morphism

A(D) — A(D")
which agrees on Fy with the induced map from Kh(D) to Kh(D').

Thus, a functorial Khovanov—Floer theory assigns a canonical morphism of spectral
sequences

{(Ei(A(D)), di(A(D)) = (Ei(A(D"), Ei(A(D")) }iz2

to any movie, which agrees on F, with the corresponding movie map on Khovanov
homology. It follows that equivalent movies are assigned the same morphism since they
are assigned the same map in Khovanov homology. In other words, the spectral sequence
associated with a functorial Khovanov—Floer theory defines a functor from Diag to
Specty and, therefore, by Subsection 2.3, a functor

F : Link — Specty

satisfying svoF' = Kh. (In particular, the higher pages of the spectral sequence associated
with a functorial Khovanov—Floer theory are link type invariants.) Thus, in order to prove
Theorem 1.5, it suffices to prove the following theorem, which we do in the next section.

Theorem 3.6. Fvery Khovanov—Floer theory is functorial.
Remark 3.7. The rather simple conditions in the definition of a Khovanov—Floer theory

may be thought of as a sort of weak functoriality. In practice, it is often relatively easy
to verify that a theory satisfies these conditions (we will provide two such verifications
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in Section 5). In contrast, functoriality has not been verified for any of spectral sequence
constructions that we know of. Reidemeister invariance has been established in a number
of cases (including for the spectral sequences we consider in this paper), but the argu-
ments are generally adapted to the particular theory under consideration. Our approach
is more universal. In particular, Theorem 3.6 may be interpreted as saying that weak
functoriality implies functoriality.

There is an obvious analogue of Definition 3.5 for reduced Khovanov—Floer theories,
involving based movies and reduced Khovanov homology. The corresponding analogue
of Theorem 3.6, that every reduced Khovanov—Floer theory is functorial, also holds by
essentially the same proof.

4. Khovanov-Floer theories are functorial

This section is dedicated to proving Theorem 3.6 (and, therefore, Theorem 1.5).

Suppose A is a Khovanov—Floer theory. We will prove below that A is functorial.
We first show that A assigns a canonical morphism of spectral sequences to the movie
corresponding to any diagrammatic handle attachment (as opposed to only 1-handle
attachments). This follows immediately from the proposition below.

Proposition 4.1. If D’ is obtained from D by a diagrammatic handle attachment, then
there exists a morphism

A(D) = A(D")
which agrees on Eq with the induced map from Kh(D) to Kh(D').

Proof of Proposition 4.1. The 1-handle case is part of the definition of a Khovanov—Floer
theory. Suppose D’ is obtained from D by a 0-handle attachment. Then D’ = D LU U.
Thus, by condition (3) in Definition 3.2, there exists a morphism

A(D) ® A(U) — A(D') (7)
which agrees on Ey with the standard isomorphism
g2 : Kh(D) @ Kh(U) — Kh(D").
Condition (4) in Definition 3.2 says that
E(AU)) = E2(A(U)) = Kh(U).

It is then an easy consequence of Lemma 2.3 that the quasi-isomorphism class A(U)
contains the trivial Kh(U)-complex (Kh(U),id). It follows that there exists a morphism
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A(D) - A(D) ® A(U) (8)
which agrees on Fy with the isomorphism
g1 : Kh(D) — Kh(D) ® Kh(U)

which sends z to  ® 1. Indeed, if (C,q) is a representative of A(D), then (C' ® Kh(U),
¢ ®1d) is a representative of A(D) ® A(U) and the morphism

(C,q) = (C® Kh(U),q®id)

which sends z to x ® 1 is a representative of the desired morphism in (8). Let f; and fo
be representatives of the morphisms in (8) and (7), respectively. Then the composition
f2 0 f1 from a representative of A(D) to a representative of A(D’) is a morphism which
agrees on Fs with the composition

g20g1: Kh(D) — Kh(D"),

and this latter composition is precisely the map on Khovanov homology associated to
the 0-handle attachment. The 2-handle case is virtually identical. O

Next, we show that A assigns a canonical morphism of spectral sequences to the movie
corresponding to a Reidemeister move. This follows immediately from the proposition
below.

Proposition 4.2. If D’ is obtained from D by a Reidemeister move, then there exists a
morphism

A(D) — A(D")
which agrees on Ey with the standard isomorphism from Kh(D) to Kh(D’).

Before proving Proposition 4.2, let us first assume this proposition is true and prove
Theorem 3.6.

Proof of Theorem 3.6. Suppose M is a movie from D to D’. Express this movie as a
composition

M:Mko"'OMl,

where each M; is an elementary movie from a diagram D; to a diagram D;;;. Let f;
be a morphism from a representative of A(D;) to a representative of A(D;11) which
agrees on Fy with the corresponding map on Khovanov homology. For the elementary
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movies corresponding to planar isotopies, such maps exist by Definition 3.2. For those
corresponding to diagrammatic handle attachments or Reidemeister moves, such maps
exist by Propositions 4.1 and 4.2. The composition

fro---ofi

is therefore a morphism from a representative of A(D = D;) to a representative of
A(D’ = Dj1) which agrees on F5 with the map on Khovanov homology induced by
this movie. This proves that A is functorial. O

It therefore only remains to prove Proposition 4.2. We break this verification into three
lemmas—one for each type of Reidemeister move. The idea common to the proofs of all
three lemmas is, as mentioned in the introduction, to arrange via movie moves that the
Reidemeister move takes place amongst unknotted components. This idea was used by
the third author in [15] in showing that a generic perturbation of Khovanov—Rozansky
homology gives rise to a lower-bound on the slice genus.

Lemma 4.3. Suppose D' is obtained from D by a Reidemeister I move. Then there exists
a morphism

A(D) — A(D")
which agrees on Eq with the standard isomorphism from Kh(D) to Kh(D’).

Proof. Consider the link diagrams shown in Fig. 3. The arrows in this figure are meant
to indicate the fact that the movie represented by the sequence of diagrams

D= D17D27D3aD4 = D/7

as indicated by the thin arrows, is equivalent to the movie consisting of the single Reide-
meister I move from D to D’, as indicated by the thick arrow. These two movies therefore
induce the same map from Kh(D) to Kh(D’).

Thus, to prove Lemma 4.3, it suffices to prove that there exist morphisms

A(Dy) — A(D>) 9)
A(Dz2) — A(D3) (10)
A(D3) — A(Dy) (11)

which agree on Fs with the corresponding maps on Khovanov homology. The top and
bottom arrows in Fig. 3 correspond to 0- and 1-handle attachments; therefore, the mor-
phisms in (9) and (11) exist by Proposition 4.1. It remains to show that the morphism
in (10) exists.
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D =D, Do
| o
|

S Noa

Fig. 3. The diagrams D = Dy,..., D4 = D’. The movie indicated by the thin arrows is equivalent to the
movie corresponding to the Reidemeister I move, indicated by the thick arrow.

Let Uy and U; be the 0- and 1-crossing diagrams of the unknot in Dy and D3, so that
Dy = Dy UUp and D3 = Dy U U;. Thus, by condition (3) in Definition 3.2, there exist
morphisms

A(Ds2) = A(D:1) ® A(Uy) (12)

which agree on E5 with the standard isomorphisms

Condition (4) in Definition 3.2 says that
Ex(A(U;)) = E2(A(U;)) = Kn(U;)

for ¢ = 0,1, which implies, just as in the proof of Proposition 4.1, that the quasi-
isomorphism class A(U;) contains the trivial Kh(U;)-complex (Kh(U;),id) for i = 0, 1.
It follows immediately that there exists a morphism

A(Uo) = A(lh) (14)
which agrees on Eo with the standard isomorphism

g2 : Kh(Up) — Kh(Uy)

associated to the Reidemeister I move relating these two diagrams of the unknot. Let

f1, f2, and f3 be representatives of the morphisms in (12), (14), and (13), respectively.
Then the composition
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D =D, D
~{Joo

|
o

D = D4 D3

Fig. 4. The diagrams D = D;,..., D4 = D’. The movie indicated by the thin arrows is equivalent to the
movie corresponding to the Reidemeister II move, indicated by the thick arrow.

fso(id® f2) 0 fr

from a representative of A(D3) to a representative of A(Ds3) is a morphism which agrees
on Ey with the composition

gs o (id ®g2)og: Kh(Dg) — Kh(Dg),

and this latter composition is equal to the isomorphism from Kh(Ds) to Kh(Ds3) associ-
ated to the Reidemeister I move. It follows that the morphism in (10) exists. O

Lemma 4.4. Suppose D’ is obtained from D by a Reidemeister II move. Then there exists
a morphism

A(D) — A(D")
which agrees on Eq with the standard isomorphism from Kh(D) to Kh(D’).

Proof. Consider the link diagrams shown in Fig. 4. The arrow from D = D; to Dy
represents two 0-handle attachments; the arrow from Dy to D3 represents a Reidemeister
II move; and the arrow from D3 to D4 = D’ represents two l-handle attachments.
The movie represented by these thin arrows is equivalent to the movie from D to D’
corresponding to the single Reidemeister II move indicated by the thick arrow. These
two movies therefore induce the same map from Kh(D) to Kh(D').

Thus, to prove Lemma 4.4, it suffices to prove that there exist morphisms
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Fig. 5. The diagrams D = Dy,...,Dg = D’. The movie indicated by the thin arrows is equivalent to the
movie corresponding to the Reidemeister III move, indicated by the thick arrow.

which agree on Es with the corresponding maps on Khovanov homology. Since the top
and bottom arrows in Fig. 4 correspond to handle attachments, the morphisms in (15)
and (17) exist by Proposition 4.1. It remains to show that the morphism in (16) ex-
ists. But this is proven exactly as we proved that the morphism in (10) exists in the
Reidemeister I case, using conditions (3) and (4) of Definition 3.2. O

Lemma 4.5. Suppose D' is obtained from D by a Reidemeister III move. Then there
exists a morphism

A(D) — A(D")
which agrees on Ey with the standard isomorphism from Kh(D) to Kh(D').

Proof. Consider the link diagrams shown in Fig. 5. The arrow from D = D; to Dy
represents three 0-handle attachments; the arrow from Dy to Ds represents a sequence
consisting of three Reidemeister II moves; the arrow from D3 to D, represents a Reide-
meister III move; the arrow from D4 to Ds represents three 1-handle attachments; and
the arrow from Dy to Dg = D’ represents a sequence of three Reidemeister II moves.
The movie represented by these thin arrows is equivalent to the movie from D to D’
corresponding to the single Reidemeister III move indicated by the thick arrow. These
two movies therefore induce the same map from Kh(D) to Kh(D').
Thus, to prove Lemma 4.4, it suffices to prove that there exist morphisms

A(D1) — A(D>) (18)
A(D2) = A(Ds) (19)
A(Ds) = A(Dy) (20)
A(Dy) — A(Ds) (21)
A(Ds) — A(Dg) (22)
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which agree on E5 with the corresponding maps on Khovanov homology. Since the top left
and bottom right arrows in Fig. 5 correspond to handle attachments, the morphisms in
(18) and (21) exist by Proposition 4.1. The top right and bottom left arrows correspond
to sequences of Reidemeister II moves, so the morphisms in (19) and (22) exist by
Lemma 4.4. It remains to show that the morphism in (20) exists. Again, this is proven
exactly as we proved that the morphism in (10) exists in the Reidemeister I case. O

As mentioned in the previous section, the proof that reduced Khovanov—Floer theories
are functorial proceeds in a virtually identical manner.

5. Examples of Khovanov—Floer theories

We verify below that the spectral sequence constructions of Kronheimer—Mrowka
and Ozsvath—Szabé define Khovanov—Floer theories, proving Theorem 1.6. We will as-
sume the reader is fairly familiar with these spectral sequences. We then describe some
new deformations of the Khovanov complex which can be shown rather easily to give
Khovanov—Floer theories (though we do not do so here).

5.1. Kronheimer—Mrowka’s spectral sequence

Suppose D C S? := R? U {0} is a diagram for an oriented link L C S3 := R? U {o0},
with crossings labeled 1,...,n. For each I € {0,1}", let L; C S® be a link whose
projection to R? is equal to Dj, and which agrees with L outside of n disjoint balls
containing the “crossings” of L. For every pair I <; I’ of immediate successors, there is
a standard 1-handle cobordism

Sr.r C 53 x [0,1]

from L; to L which is trivial outside the product of one of these balls with the interval.
For any pair I <j J of tuples differing in k coordinates, choose a sequence I = I <3
I; <1 --+ <1 I, = I’ of immediate successors. Then the composition

Sry=8n_.1,0°8n
defines a cobordism
Sr;CS®x10,1]
from Lj to L; which is independent of the sequence above, up to isotopy fixing a collary
neighborhood of the boundary pointwise.

Given some auxiliary data 0 (including a host of metric and perturbation data) Kron-
heimer and Mrowka construct [13] a chain complex (C°(D),d°(D)), where
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D)= P Iy
Ie{0,1}»
and the differential d°(D) is a sum of maps
dr,y: CHL;) = C*(Ly)

over all pairs I < J in {0,1}". Here, C*(L;) refers to the unreduced singular instanton
Floer chain group of L; over F. The map d 1,1 is the instanton Floer differential on ct (Lp),
defined, very roughly speaking, by counting certain instantons on S x R with singularities
along L; x R. More generally, d;_; is defined by counting points in parametrized moduli
spaces of instantons on S* x R with singularities along Sy ;, over a family of metrics and
perturbations. We are abusing notation here, of course, as the vector spaces C¥*(L;) and
maps dy ; depend on 0.

Kronheimer and Mrowka prove in [13] that the homology of this complex computes
the unreduced singular instanton Floer homology of L, as below.

Theorem 5.1 (Kronheimer—Mrowka). H,.(C?(D),d®(D)) = I*(L).

Note that the complex (C°(D),0°(D)) is a filtered complex with respect to the fil-
tration coming from the homological grading defined by

h(z) =L +---+1, —n_

for x € Cﬂ(fl). Since dj 1 is the instanton Floer differential, the E; page of the associated
spectral sequence is given by

B(CD) = @ Iy

Ie{0,1}n
Moreover, the spectral sequence differential di(C°(D)) is the sum of the induced maps
(d]’[/)* : Iﬁ(Z]) — Iﬁ(fp)

over all pairs I < I'.
In [13, Section 8], Kronheimer and Mrowka establish isomorphisms

AV (Dy) = Iu(fl)
which extend to an isomorphism of chain complexes
(CKM(D),d) — (E1(C°(D)),d1(C°(D)))

that gives rise to an isomorphism
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¢ : Kh(D) — BE5(C*(D)).

Moreover, they show that for any two sets of data 0 and 9/, there exists a filtered chain
map

f:C*D) — C¥(D)
such that
Ex(f)=q" o ()7

This is essentially the content of [13, Proposition 8.11] and the discussion immediately
following it. In other words, Kronheimer and Mrowka’s construction assigns to every
link diagram D a quasi-isomorphism class of Kh(D)-complexes, with respect to the
homological grading on Kh(D). In fact, we claim the following.

Proposition 5.2. Kronheimer—Mrowka’s construction is a Khovanov—Floer theory.

Proof. Let A(D) denote the quasi-isomorphism class of Kh(D)-complexes assigned to D
in Kronheimer and Mrowka’s construction. To prove the proposition, we simply check
that A satisfies conditions (1)-(4) of Definition 3.2.

For condition (1), a planar isotopy ¢ taking D to D’ determines a canonical filtered
(in fact, grading-preserving) chain isomorphism

Yy : CO(D) — C(D'),

where 9 is the data pulled back from 9’ via ¢. Furthermore, it is clear that E1(v,) agrees
with the standard map

Fy: CKh(D) — CKh(D')

associated to this isotopy in Khovanov homology, with respect to the natural identifi-
cations of the various chain complexes. It follows that 1), represents a morphism from
A(D) to A(D’) which agrees on Ey with the map induced on Khovanov homology, as
desired.

For condition (2), suppose D’ is obtained from D via a diagrammatic 1-handle at-
tachment. Then there is a diagram D with one more crossing than D and D’, such that
D is the O-resolution of D at this new crossing ¢ and D’ is the l-resolution. For some
choice of data 0, we can realize the complex c? (D) as the mapping cone of a degree 0
filtered chain map

T :C°(D) — C* (D),

where 9 and 0’ are appropriate restrictions of 9. This map 7T is given by the direct sum



J.A. Baldwin et al. / Advances in Mathematics 345 (2019) 1162—-1205 1199

T = @ drx{oy,7x{1}>
I<Je{0,1}n

of components of the differential d®(D). (We are thinking of ¢ as the (n 4 1) crossing
of D.) Then

Ey(T) : Ey(C°(D)) = Ey(C%(D')
is given by the direct sum of the maps
(drxqorxqy)s : P(Er) = 14Ty

over all I € {0,1}". It follows from [13, Proposition 8.11] that these maps agree with
the maps

ANV (D) — A*V (DY)
associated to the 1-handle addition, via the natural identifications
A*V(D]) & [ﬁ(f[)
-/

1)

described above. It follows that F;(T) agrees with the chain map

A*V(D}) = 1%L

CKh(D) — CKh(D')

associated to the 1-handle attachment, and, hence, that T represents a morphism from
A(D) to A(D’) which agrees on F5 with the map induced on Khovanov homology, as
desired.

For condition (3), it suffices to show that for some choices of data 0, ?’, 9", there is a
degree 0 filtered chain map

' (DUD') — C*(D)® C*(D') (23)
which agrees on Fy with the standard isomorphism
KnDUD') — Kh(D)® Kh(D').

This fact is stated, using slightly different wording, by Kronheimer and Mrowka in [14,
Proof of Proposition 4.3, where they note that the cube complexes for I* and Kh satisfy
tensor product rules for split diagrams which agree to leading order.

For condition (4), suppose D is a diagram of the unlink. Then its Khovanov homology
is supported in homological degree 0. Hence, the spectral sequence collapses at the Fo
page. In particular, Fs(A(D)) = Ex(A(D)), as desired. O
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Fig. 6. The arc a; near the jth crossing, shown as a dashed segment.

5.2. Ozsvdth—Szabd’s spectral sequence

Suppose D, L, and the Lj are exactly as in the previous subsection, except that they
are based at co. Let a; be an arc in a local neighborhood of the jth crossing of D as
shown in Fig. 6, and let b; be a lift of a; to an arc in S® with endpoints on L. The arc
b; lifts to a closed curve §; C —X(L), where $(L) is the double branched cover of S3
branched along L. There is a natural framing on the link

L=3U-UB, C—X(L)

such that —X(L;) is obtained by performing I;-surgery on f; for each j =1,...,n, for
all T € {0,1}".

Given some auxiliary data d (including a pointed Heegaard multi-diagram subordinate
to the framed link L and a host of complex-analytic data), Ozsvath and Szabé construct
[17] a chain complex (C°(D),d°(D)), where

(D)= P CF(-%(L))

1€{0,1}7
and the differential d°(D) is a sum of maps
dr.;: CF(=%(Ly)) — CF(=%(Ly))

over all pairs I < J in {0,1}". Here, ﬁ(fE(LI)) refers to the Heegaard Floer chain
group of —X(Ly). The map dy s is the usual Heegaard Floer differential on E'F(—E(Ll)),
defined by counting pseudo-holomorphic disks in the symmetric product of a Riemann
surface. More generally, d;, s is defined by counting pseudo-holomorphic polygons. Again,
we are abusing notation here, as the vector spaces E'F(—Z(LI)) and maps dr ; depend
on 0.

Ozsvath and Szabd prove in [17] that the homology of this complex computes the
Heegaard Floer homology of —3(L); that is:

Theorem 5.3 (Ozsvith-Szabé). H,(C®(D),d*(D)) = HF(—%(L)).

As in the previous subsection, this complex (C°(D),d°(D)) is filtered with respect
to the obvious homological grading. Since dy,; is the Heegaard Floer differential, the F;
page of the associated spectral sequence is given by
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E((C°(D)) = P HF(-S(Lp)).
Ie{0,1}m
Moreover, the spectral sequence differential dy (C°(D)) is the sum of the induced maps
(dr.1)s : HF(=X(L;)) — HF(—%(Lp))

over all pairs I <; I'.

Below, we argue that Ozsvath and Szabd’s construction assigns to D a quasi-
isomorphism class of Khr(D)-complexes.

In general, the Heegaard Floer homology of a 3-manifold ¥ admits an action by
A*Hy(Y). For each I € {0,1}", the Floer homology ﬁ(—E(L;)) is a free module over

A"Hy(=X(L1))

of rank one, generated by the unique element in the top Maslov grading. In particular,
there is a canonical identification

HF(~%(Ly)) 2 A" Hy (-%(Ly)). (24)

Suppose z is the component of D containing the basepoint co. Given any other com-
ponent ¥, let 1, , be an arc with endpoints on L; which projects to an arc from z to y.
The map

V(Dr)/(x) = Hi(=%(L1))

which sends a component y to the homology class of the lift of 7., to the branched
double cover clearly gives rise to an isomorphism

A*(V(Dy)/(x)) — HF(~2(Ly))

via the identification in (24). Moreover, Ozsvath and Szab6 show that the direct sum of
these isomorphisms gives rise to an isomorphism of chain complexes

(CKhr(D),d) — (E1(C°(D)), di(C°(D))).
This isomorphism then gives rise to an isomorphism
q° : Khr(D) — Eo(C°(D)).

It follows from the work in [1,19] and naturality properties of the A*H;-action that for
any two sets of data 0 and ?’, there exists a filtered chain map

f:C°(D)— C¥(D)
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such that

This shows that Ozsvath and Szabd’s construction assigns to every based link diagram D
a quasi-isomorphism class of Khr(D)-complexes, with respect to the homological grading
on Khr(D). In fact, we claim the following.

Proposition 5.4. Ozsvdth—Szabé’s construction is a reduced Khovanov—Floer theory.

Proof. Let A(D) denote the quasi-isomorphism class of Khr(D)-complexes assigned to
D in Ozsvath and Szabd’s construction. We verify below that A satisfies the reduced
analogues of conditions (1)-(4) of Definition 3.2.

For condition (1), a planar isotopy ¢ taking D to D’ determines a canonical filtered
(in fact, grading-preserving) chain isomorphism

by : C°(D) — C*(D),

where 0 is the data pulled back from 9’ via ¢, just as in the instanton case. Furthermore,
it is clear that E(14) agrees with the standard map

Fy : CKhr(D) — CKhr(D')

associated to this isotopy in reduced Khovanov homology, with respect to the natural
identifications of the various chain complexes. It follows that 14 represents a morphism
from A(D) to A(D’) which agrees on Es with the map induced on reduced Khovanov
homology, as desired.

For condition (2), Suppose D’ is obtained from D via a 1-handle attachment. Let D
be a diagram with one more crossing than D and D’, such that D is the O-resolution of
D at this crossing and D’ is the 1-resolution, as in the proof of Proposition 5.2. Following
that proof, we can realize the complex c? (D) as the mapping cone of a degree 0 filtered
chain map

T :C°(D) — C* (D),

for some choice of data d and the appropriate restrictions d and ?’. As before, T is given
by the direct sum

T= @ dlx{o},Jx{1}7
I1<Jje{0,1}m

of components of the differential d°(D), and

EL(T) : E;(C°(D)) — EL(C* (D))
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is the direct sum of the maps
(drxgoy.rxqny)s : HF(=3(Lr)) = HF(=(L}))
over all I € {0,1}™. It is easy to see that these maps agree with the maps
A*(V(Dp)/(x)) = A*(V(Dy)/ ("))
associated to the 1-handle attachment, via the natural identifications
A V(D) /() = HF(~3(Lr))
A*(V(D))/(«) = HF (~2(L)),

where x and 2’ are the components of Dy and D’ containing the basepoint co. It follows
that E;(T) agrees with the chain map

CKhr(D) — CKhr(D')

associated to the 1-handle attachment, and, hence, that T represents a morphism from
A(D) to A(D') which agrees on Ey with the map induced on reduced Khovanov homol-
ogy, as desired.

For condition (3), it suffices as in the instanton Floer case to show that for some sets
of data 0, 0, 0, there is a degree 0 filtered chain map

' (DUD') - C°(D)® C* (D' UUs)
which agrees on Fy with the standard isomorphism
Khr(D U D" — Khr(D) ® Khr(D' U Uy,),

where D and D’ are disjoint diagrams with D containing oo, as at the end of Subsec-
tion 2.2. But, given the Heegaard multi-diagrams encoded by 0 and ?’, one can simply
take an appropriate connected sum to produce a multi-diagram giving rise to a complex
C?"(D U D’) which is isomorphic to the tensor product

C°(D)® C* (D' UU)

by an isomorphism which agrees on Es with the map on reduced Khovanov homology
(see [1, Lemma 3.4]).

For condition (4), suppose D is a diagram of the unlink. Then its reduced Khovanov
homology is supported in homological degree 0. Hence, the spectral sequence collapses
at the Ey page. In particular, E5(A(D)) = Eo(A(D)), as desired. O
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5.8. New deformations of the Khovanov complex

We describe here a family of new deformations of the Khovanov chain complex. Sup-
pose that I, J € {0, 1}" such that I <j, J, and choose a sequence of immediate successors

I=hi<ihi<ibbh<qy---<qIp=J
For a planar diagram D with crossings 1,...,n, this sequence defines a map
d]7J = d[k_l’]k 0--+0 dfo,h : A*V(DI) — A*V(DJ)

Note that this map does not depend on the choice of sequence since 2-dimensional faces
in the Khovanov cube commute.
Now we define the endomorphism

dy = P dr.; : CKh(D) — CKh(D)
I<pJ

for each k > 1. Note that each dj preserves the quantum grading and shifts the homo-
logical grading by k, and that d; is the Khovanov differential. Finally, for any sequence
a = (a1, az2,as,aq4,...) where a; € F for all i > 1 and a; = 1 we define the endomorphism

da = @D axdy : CKR(D) — CK(D).
k>1

We now check that d; = 0. In this check we use the observation that dj xodr,; = dr Kk

and the fact that if k¥ > 2 is an even integer then ( ) is also even. For convenience,

k
k/2

if k£ is odd we set (lj?) = ap/2 = 0. We have

dz = @ a;d; o a;d; = @ (aja;)d; o d;

3,521 3,521
= GD (aja;)dyx odry = @ (aja;)dr Kk
I<;J<;K I<;J<;K
i,j>1 3,j>1
k
= B (gyary ( | dik
I<pK ‘7

k
E>2,k—1>5>1

D (2 (f) (ajar—;) + (k%) (ak/Qak/2)> dr i = 0.

k>2,k/2>5>1
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It is straightforward to verify, even moreso than in the previous subsections, that
this construction defines a Khovanov—Floer theory with a homological filtration and a
quantum grading for each choice of a. The associated spectral sequence therefore defines
link and cobordism invariants.

Remark 5.5. We do not know at present whether the associated spectral sequence always
collapses at Fs.

Remark 5.6. The deformation above in the case a = (1,1,1,...) was studied indepen-
dently by Juhdsz and Marengon. In [10, Section 6], they also show that the isomorphism
class of the resulting spectral sequence is a link type invariant.
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