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1. Introduction

Khovanov’s celebrated work [11] assigns to a link diagram a chain complex whose 
homology is, up to isomorphism, an invariant of the underlying link type. Jacobsson 
further showed in [9] that a movie for a cobordism in S3× [0, 1] with starting and ending 
diagrams D0 and D1 induces a map on Khovanov homology,

Kh(D0) → Kh(D1),

and that over F = Z/2Z, equivalent movies define the same map (see also [2,12,6]). Thus, 
Khovanov homology is a functor

Kh : Diag → VectF

from the diagrammatic link cobordism category (see Subsection 2.3) to the category of 
vector spaces over F.

This paper studies a similar functoriality in the context of connections between Kho-
vanov homology and Floer theory. These now ubiquitous connections generally take the 
form of a spectral sequence with Khovanov homology at the E2 page, and abutting to 
the relevant Floer homology theory. The first such connection was made by Ozsváth and 
Szabó in [17]. Given a based link L ⊂ S3 with planar diagram D, they constructed a 
spectral sequence

Khr(D) ⇒ ĤF(−Σ(L))

with E2 page the reduced Khovanov homology of D, abutting to the Heegaard Floer 
homology of the branched double cover of S3 along L, with reversed orientation. Similar 
spectral sequences abutting to monopole, framed instanton, and plane Floer homology 
have since been discovered [3,20,7]. Most significantly perhaps, Kronheimer and Mrowka 
constructed in [13] a spectral sequence

Kh(D) ⇒ I�(L)

with E2 page the Khovanov homology of D, abutting to the singular instanton knot 
homology of the mirror of L. This spectral sequence played a key role in their proof [13]
that Khovanov homology detects the unknot.

Each of the above spectral sequences arises from a filtered chain complex associated 
with a planar link diagram and some additional, often analytic, data. However, one can 
generally show that the (Ei, di) page of the resulting spectral sequence does not depend 
on this additional data, up to canonical isomorphism, for i ≥ 2. Indeed, we may think 
of Kronheimer and Mrowka’s construction as assigning to a diagram D for a link L a 
sequence of chain complexes
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KM (D) = {(EKM
i (D), dKM

i (D))}i≥2

with

EKM
2 (D) = Kh(D) and EKM

∞ (D) ∼= I�(L).

Likewise, Ozsváth and Szabó assign to a diagram D for a based link L a sequence

OS(D) = {(EOS
i (D), dOS

i (D))}i≥2

with

EOS
2 (D) = Khr(D) and EOS

∞ (D) ∼= ĤF(−Σ(L)).

Given that the E2 and E∞ pages of these spectral sequences are, up to isomorphism, 
link type invariants, it is natural to ask whether the intermediate pages are too. This 
question was answered in the affirmative for the instanton and Heegaard Floer spectral 
sequences in [13] and [1], respectively. In this paper, we consider the question of invari-
ance more widely—that is, the invariance of all spectral sequences given by what we 
call Khovanov–Floer theories. In fact, we go further: invariance is a consequence of the 
functoriality of all Khovanov–Floer theories.

For now, let us continue the discussion of functoriality in the instanton and Heegaard 
Floer cases. We denote by Link the link cobordism category, whose objects are oriented 
links in S3 := R

3 ∪ {∞}, and whose morphisms are isotopy classes of oriented, collared 
link cobordisms in S3 × [0, 1]. That is, two surfaces represent the same morphism if 
they differ by a smooth isotopy fixing a collar neighborhood of the boundary pointwise. 
Khovanov homology can be made into a functor

Kh : Link → VectF

in a natural way. Meanwhile, Kronheimer and Mrowka showed that a cobordism S from 
L0 to L1 gives rise to a map on singular instanton knot homology,

I�(−S) : I�(L0) → I�(L1),

which is an invariant of the morphism in Link represented by S. That is, singular 
instanton knot homology also defines a functor

I� : Link → VectF.

So, in essence, the E2 and E∞ pages of Kronheimer and Mrowka’s spectral sequence 
behave functorially with respect to link cobordism. It is therefore natural to ask, as 
Kronheimer and Mrowka did in 2010 [13, Section 8.1], whether their entire spectral 
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sequence (after the E1 page) defines a functor from Link to the spectral sequence cate-
gory Spect

F
, of which an object is a sequence {(Ei, di)}i≥i0 of chain complexes over F

satisfying

H∗(Ei, di) = Ei+1,

and a morphism is a sequence of chain maps

{Fi : (Ei, di) → (E′
i, d

′
i)}i≥i0

satisfying Fi+1 = (Fi)∗. We record their question informally as follows.

Question 1.1 (Kronheimer–Mrowka). Is the spectral sequence from Khovanov homology 
to singular instanton knot homology functorial?

One can ask an analogous question about Ozsváth and Szabó’s spectral sequence. 
Reduced Khovanov homology defines a functor

Khr : Link∞ → VectF,

where Link∞ denotes the based link cobordism category (see Subsection 2.3). Given a 
based link cobordism S from L0 to L1, the branched double cover of S3 × [0, 1] along 
S is a smooth, oriented 4-dimensional cobordism Σ(S) from Σ(L0) to Σ(L1), and thus 
induces a map on Heegaard Floer homology,

ĤF(−Σ(S)) : ĤF(−Σ(L0)) → ĤF(−Σ(L1)),

which is an invariant of the morphism in Link∞ represented by S. In other words, the 
Heegaard Floer homology of branched double covers defines a functor

ĤF(Σ(·)) : Link∞ → VectF.

This leads to the question below, posed by Ozsváth and Szabó in 2003 [17, Section 1.1], 
as to whether their spectral sequence defines a functor from Link∞ to Spect

F
.

Question 1.2 (Ozsváth–Szabó). Is the spectral sequence from Khovanov homology to the 
Heegaard Floer homology of the branched double cover functorial?

We answer Questions 1.1 and 1.2 in the affirmative, per the two theorems below. In 
these theorems,

sv : Spect
F
→ VectF

is the forgetful functor which sends {(Ei, di)}i≥i0 to its 2nd page E2.
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Theorem 1.3. There exists a functor

KM : Link → Spect
F

with Kh = sv ◦ KM such that KM (L) ∼= KM (D) for any diagram D for L.

Theorem 1.4. There exists a functor

OS : Link∞ → Spect
F

with Khr = sv ◦ OS such that OS(L) ∼= OS(D) for any diagram D for L.

That is, isotopy classes of link cobordisms induce well-defined maps on the pages 
of these spectral sequences, which agree at E2 with the induced maps on Khovanov 
homology (or its reduced variant). In short, each page is a functorial link invariant.

One notable consequence of these theorems is that link isotopies determine isomor-
phisms of these spectral sequences. In particular, an isotopy φ taking L to L′ determines 
a cylindrical cobordism Sφ ⊂ S3 × [0, 1] from L to L′, and, therefore, a morphism

Ψφ := KM (Sφ) : KM (L) → KM (L′)

(likewise for based isotopies and OS). This new structure furthermore recovers the results 
from [1] and [13] that the isomorphism classes of all pages of these spectral sequences are 
link type invariants: the morphism Ψφ is an isomorphism in Spect

F
since the cobordism 

Sφ is an isomorphism in Link.
Theorems 1.3 and 1.4 follow from a more general framework developed in this paper. 

The key notion is that of a Khovanov–Floer theory, alluded to above. Roughly, this term 
refers to a rule which assigns a filtered chain complex to a link diagram (and possibly 
extra data) such that (1) the E2 page of the resulting spectral sequence is naturally 
isomorphic to the Khovanov homology of the diagram, (2) the filtered complex behaves 
in certain nice ways under planar isotopy, disjoint union, and diagrammatic 1-handle 
addition, and (3) the spectral sequence collapses at E2 for any diagram of the unlink. 
The import of this notion is indicated by our main theorem below, which asserts that the 
spectral sequence associated with a Khovanov–Floer theory is automatically functorial.

Theorem 1.5. The spectral sequence associated with a Khovanov–Floer theory defines a 
functor

F : Link → Spect
F

with Kh = sv ◦ F . In particular, the isomorphism class of each page of the spectral 
sequence is a link type invariant.
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The power of this framework lies in the fact it is often easy to determine whether a 
given construction satisfies the conditions of a Khovanov–Floer theory, whereas proving 
the functoriality (or even invariance) of a construction without the benefit of this notion 
has proven tricky in practice. This principle is elaborated in Remark 3.7. As our primary 
illustration of this principle, we show the following.

Theorem 1.6. Kronheimer–Mrowka’s and Ozsváth–Szabó’s spectral sequences come from 
Khovanov–Floer theories.4

Note that Theorems 1.3 and 1.4 follow immediately from Theorems 1.6 and 1.5.
Although we do not do so in this paper, it is straightforward to prove that Szabó’s 

geometric spectral sequence [21] comes from a Khovanov–Floer theory as well. The same 
goes for the other spectral sequences involving instanton and monopole Floer homology in 
[3,20,7] alluded to above, and Bar-Natan’s spectral sequence [2]. Recall that Bar-Natan’s 
deformation of Khovanov homology produces, for knots, a spectral sequence abutting to 
F ⊕ F, each summand supported in a single quantum grading. The average sF of these 
two gradings is an F-analogue of Rasmussen’s s-invariant, and provides a lower bound 
on smooth slice genus. Our framework offers a simple, alternative way of proving that 
sF is a knot invariant.

Moreover, our results imply that any reasonably well-behaved deformation of the 
Khovanov chain complex gives rise to link and cobordism invariants. To illustrate this, 
we describe some new deformations of the Khovanov complex which can easily be shown 
to define Khovanov–Floer theories and therefore link and cobordism invariants. One of 
these was independently discovered by Juhász and Marengon in [10]. At the moment, we 
do not know whether the resulting invariants are different from Khovanov homology.

Finally, we expect our functoriality results to have applications for computing the 
maps on Floer homology induced by link cobordisms. Indeed, in the singular instanton 
and Heegaard Floer settings, one can show that the morphism of spectral sequences we 
assign to a cobordism is induced by a filtered chain map whose induced map on total 
homology agrees with the cobordism map on Floer homology. In the case of Kronheimer 
and Mrowka’s construction, for example, this means that there is a commutative diagram

H∗(C(D0))

∼=

(fM )∗
H∗(C(D1))

∼=

I�(L0)
I�(−S)

I�(L1).

Here, C(Di) is the filtered complex associated to a diagram Di for a link Li which gives 
rise to Kronheimer and Mrowka’s spectral sequence, and fM is the filtered chain map 

4 Really, Ozsváth and Szabó’s construction is what we term a reduced Khovanov–Floer theory.
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associated to a movie M for the cobordism S which induces the morphism of spectral 
sequences

KM (S) : KM (L0) → KM (L1)

in Theorem 1.3. The group EKM
∞ (Di) is the associated graded object of the induced 

filtration on H∗(C(Di)) for i = 0, 1, and the map

EKM
∞ (S) : EKM

∞ (D0) → EKM
∞ (D1)

induced by S is simply the associated graded map of (fM)∗. The map EKM
∞ (S) may 

therefore be viewed as an approximation of I�(−S). In particular, if the former is nonzero 
then so is the latter (though the converse need not be true). The analogous statements 
hold in the setting of Ozsváth and Szabó’s spectral sequence.

1.1. Organization

In Section 2, we collect some facts from homological algebra and review Khovanov 
homology and notions of functoriality. In Section 3, we give a precise definition of a 
Khovanov–Floer theory. In Section 4, we prove our main result, Theorem 1.5. In Sec-
tion 5, we show that the spectral sequence constructions of Kronheimer–Mrowka and 
Ozsváth–Szabó arise from Khovanov–Floer theories, and we describe new deformations 
of the Khovanov complex.

1.2. Acknowledgments

We thank Scott Carter and Ciprian Manolescu for helpful conversations and the ref-
erees for helpful suggestions.

2. Background

We will work over F = Z/2Z throughout the entire paper unless otherwise specified.

2.1. Homological algebra

In this subsection, we record some basic results about filtered chain complexes and 
their associated spectral sequences.

The filtered chain complexes considered in this paper are finite-dimensional chain 
complexes over F = Z/2Z which admit a direct sum decomposition of the form

(C =
⊕
i≥i0

Ci, d = d0 + d1 + . . . ), (1)

where:
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• di(Cj) ⊂ Cj+i for each j ≥ i0, and
• Ci = {0} for all i greater than some i1.

We consider elements of Ci to be homogeneous of grading i. This grading should not be 
confused with a (co)homological grading (i.e. a grading raised by one by d) which, while 
generally present, will be suppressed throughout the discussion. The associated filtration

C = F i0 ⊃ F i0+1 ⊃ · · · ⊃ F i1 = {0} (2)

is given by

F i =
⊕
j≥i

Cj .

In fact, every filtered complex over F (or any other field) can be thought of in terms of 
a graded complex in which the differential does not decrease grading, as above. From 
this perspective, a filtered chain map of degree k from (C, d) to (C ′, d′) is a chain map 
f : C → C ′ admitting a splitting

f = fk + fk+1 + fk+2 + . . . (3)

such that f i(Cj) ⊂ (C ′)j+i.
A spectral sequence is a sequence of chain complexes {(Ei, di)}i≥i0 for some i0 ≥ 0

satisfying

Ei+1 = H∗(Ei, di).

A filtered complex (C, d) gives rise to a spectral sequence

{(Ei(C), di(C))}i≥0

of graded vector spaces via the standard exact couple construction; see, e.g. [4, Sec-
tion 14]. Note that each Ei(C) inherits a grading from that of C. As usual, we will write 
Ei(C) = E∞(C) to mean that

Ei(C) = Ei+1(C) = Ei+2(C) = · · · := E∞(C).

A morphism from a spectral sequence {(Ei, di)}i≥i0 to a spectral sequence {(E′
i, d

′
i)}i≥i′0

is a sequence of chain maps

{Fi : (Ei, di) → (E′
i, d

′
i)}i≥max{i0,i′0}

satisfying Fi+1 = (Fi)∗. A filtered chain map as in (3) gives rise to a morphism of spectral 
sequences
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{Fi = Ei(f) : (Ei(C), di(C)) → (Ei(C ′), di(C ′))}i≥0

in a standard way as well. If the filtered map is of degree k, then each map in the 
morphism is homogeneous of degree k with respect to the grading. As mentioned in the 
introduction, spectral sequences and their morphisms form a category which we denote 
by Spect

F
.

The three lemmas below are the main results of this subsection; we will make heavy 
use of them in Sections 3 and 4.

Lemma 2.1. Suppose

f : (C, d) → (C ′, d′)

is a degree 0 filtered chain map such that Ei(f) is an isomorphism. Then Ej(f) is an 
isomorphism for all j ≥ i. Moreover, there exists a degree 0 filtered chain map

g : (C ′, d′) → (C, d)

such that Ej(g) = Ej(f)−1 for all j ≥ i.

Lemma 2.2. Suppose

f, g : (C, d) → (C ′, d′)

are degree k filtered chain maps such that Ei(f) = Ei(g). Then Ej(f) = Ej(g) for all 
j ≥ i.

Lemma 2.3. Suppose Ei(C) = E∞(C). Then there exists a degree 0 filtered chain map

f : (C, d) → (Ei(C), 0)

from (C, d) to the complex consisting of the vector space Ei(C) with trivial differential 
such that the induced map

Ei(f) : Ei(C) → Ei(C)

is the identity map.

The remainder of this section is devoted to proving these lemmas (even though they 
are well-known to experts). We will do so using a procedure called cancellation which 
provides a concrete way of understanding these spectral sequences and the maps between 
them. We first describe this procedure for ordinary (unfiltered) chain complexes, as part 
of the well-known cancellation lemma below (see [18, Lemma 5.1]).
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Lemma 2.4 (Cancellation lemma). Suppose (C, d) is a chain complex over F freely gen-
erated by elements {xi} and let d(xi, xj) be the coefficient of xj in d(xi). If d(xk, xl) = 1, 
then the complex (C ′, d′) with generators {xi|i �= k, l} and differential

d′(xi) = d(xi) + d(xi, xl)d(xk)

is chain homotopy equivalent to (C, d) via the chain homotopy equivalences

π : C → C ′ and ι : C ′ → C

given by

π = P ◦ (id + d ◦ h) and ι = (id + h ◦ d) ◦ I,

where P and I are the natural projection and inclusion maps and h is the linear map 
defined by

h(xl) = xk and h(xi) = 0 for i �= l.

We say that the complex (C ′, d′) is obtained from (C, d) by canceling the component of 
d from xk to xl.

Remark 2.5. The homology H∗(C, d) of the complex in Lemma 2.4 can be understood 
as the vector space obtained by performing cancellation until the resulting differential is 
zero. Technically, the actual vector space resulting from this cancellation depends on the 
order of cancellations, but any such vector space is canonically isomorphic to H∗(C, d)
by the map on homology induced by the sequence of chain homotopy equivalences cor-
responding to the sequence of cancellations.

Suppose now that (C, d) is a filtered chain complex as in (1). One may think of the 
sequence {Ei(C)}i≥0 as the sequence of graded vector spaces obtained by performing 
cancellation in stages, where the ith page records the result of this cancellation after the 
ith stage. Specifically, let:

• (C(0), d(0)) = (C, d), and inductively let
• (C(i), d(i)) be the complex obtained from (C(i−1), d(i−1)) by canceling the components 

of d(i−1) which shift the grading by i − 1.

Then Ei(C) may be thought of as the graded vector space C(i), with grading naturally 
inherited from C. Under this formulation, the spectral sequence differential dk(C) on 
Ek(C) is the sum of the components of d(k) which shift the grading by exactly k, so that 
the recursive condition above may be interpreted as the more familiar
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Ei(C) = H∗(Ei−1(C), di−1(C)),

per Remark 2.5.

Remark 2.6. The tensor product

(C ⊗ C ′, d⊗ id + id ⊗ d′)

of two filtered chain complexes (C, d) and (C ′, d′) inherits a natural filtration associated 
to the natural grading

(C ⊗ C ′)k =
⊕

i+j=k

Ci ⊗ (C ′)j .

It is easy to see that Ei(C ⊗ C ′) = Ei(C) ⊗Ei(C ′).

Suppose that f is a filtered chain map of degree k as in (3). Cancellation provides a 
nice way of understanding the induced maps

Ei(f) : Ei(C) → Ei(C ′)

for each i ≥ 0. Specifically, every time we cancel a component of d or d′, we may adjust the 
components of f as though they were components of a differential (they are components 
of the mapping cone differential). In this way, we obtain an adjusted map

f(i) : (C(i), d(i)) → (C ′
(i), d

′
(i))

for each i ≥ 0. The induced map Ei(f) may then be understood as the sum of the 
components of f(i) which shift the grading by exactly k. Note that if

f : (C, d) → (C ′, d′) and g : (C ′, d′) → (C ′′, d′′)

are filtered chain maps of degrees j and k, respectively, then g ◦ f is naturally a degree 
j + k filtered chain map, and

Ei(g ◦ f) = Ei(g) ◦ Ei(f)

for all i ≥ 0.

Remark 2.7. A degree k filtered chain map f can also be thought of as a degree j map 
for any j ≤ k. On the other hand, the definition of Ei(f) depends on the degree of f . It is 
therefore important that one specifies the degree of f when talking about these induced 
maps.
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Remark 2.8. Given a degree k filtered chain map f from (C, d) to (C ′, d′), it is worth 
pointing out that

E∞(f) : E∞(C) → E∞(C ′)

does not necessarily agree with the induced map

f∗ : H∗(C, d) → H∗(C ′, d′),

via the isomorphisms between the domains and codomains. In fact, it can be the case 
that f∗ is an isomorphism while E∞(f) is the zero map e.g. regard the identity map as 
a degree −1 filtered chain map. What is true, however, is that

f∗ = E∞(f) + higher order terms

where “higher order terms” means terms in the decomposition of the adjusted map 
f(∞) = f∗ according to the grading that shift the grading by more than k.

Remark 2.9. Note that for each cancellation performed in computing the spectral se-
quence associated to a filtered complex (C, d), the maps π and ι of Lemma 2.4 are 
degree 0 filtered chain maps. In particular, by taking compositions of these maps, we 
obtain degree 0 filtered chain maps

π(i) : (C, d) → (C(i), d(i)) and ι(i) : (C(i), d(i)) → (C, d)

for each i ≥ 0. Tautologically, we have that the induced maps

Ej(π(i)) : Ej(C) → [Ej(C(i)) = Ej(C)]

Ej(ι(i)) : [Ej(C(i)) = Ej(C)] → Ej(C)

are the identity maps for all j ≥ i.

Below, we prove Lemmas 2.1, 2.2, and 2.3 using the above descriptions of spectral 
sequences and induced maps in terms of cancellation.

Proof of Lemma 2.1. Suppose f is a map as in the lemma and let

f(i) : (C(i), d(i)) → (C ′
(i), d

′
(i))

be the adjusted map as defined above. The fact that Ei(f) is an isomorphism implies 
that f(i) is too. Moreover, it is easy to see that its inverse

g(i) = f−1 : (C ′
(i), d

′
(i)) → (C(i), d(i))
(i)
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is also a filtered chain map of degree 0, and that Ej(f(i)) and Ej(g(i)) are inverses for 
all j ≥ i. Let

g : (C ′, d′) → (C, d)

be the degree 0 filtered chain map given by g = ι(i) ◦ g(i) ◦ π(i) for maps

π(i) : (C ′, d′) → (C ′
(i), d

′
(i)) and ι(i) : (C(i), d(i)) → (C, d)

as in Remark 2.9. Then Ej(f) = Ej(f(i)) and Ej(g) = Ej(g(i)) are inverses for all j ≥ i. 
In particular, each Ej(f) is an isomorphism. �
Proof of Lemma 2.2. It is clear from the discussion above that if a filtered chain map 
induces the zero map on some page then it induces the zero map on all subsequent pages. 
Now suppose Ei(f) = Ei(g) as in the lemma. Then

Ei(f − g) = Ei(f) −Ei(g) = 0,

which implies that

Ej(f) − Ej(g) = Ej(f − g) = 0

for all j ≥ i, completing the proof. �
Proof of Lemma 2.3. Note that (Ei(C), 0) = (C(i), d(i)) in this case. We may therefore 
take f to be the map

f = π(i) : (C, d) → (C(i), d(i)),

per Remark 2.9. �
2.2. Khovanov homology

In this subsection, we review the definitions and some basic properties of Khovanov 
homology and its reduced variant.

Suppose D is a diagram in S2 := R
2∪{∞} for an oriented link in S3 := R

3∪{∞}, with 
crossings labeled 1, . . . , n. Let n+ and n− denote the numbers of positive and negative 
crossings of D. For each I ∈ {0, 1}n, let Ij denote the jth coordinate of I and let DI

be the diagram obtained by taking the Ij-resolution (as shown in Fig. 1) of the jth 
crossing of D, for every j ∈ {1, . . . , n}. Let V (DI) be the vector space generated by the 
components of DI . We endow Λ∗V (DI) with a grading p according to the rules that 
1 ∈ Λ0V (DI) has grading p(1) = m, where m is equal to the number of components of 
DI , and that wedging with any of the components decreases the p grading by 2.



J.A. Baldwin et al. / Advances in Mathematics 345 (2019) 1162–1205 1175
Fig. 1. The 0- and 1-resolutions of a crossing.

Given tuples I, J ∈ {0, 1}n, we write I <k J if J may be obtained from I by changing 
exactly k 0s to k 1s. For each pair I, I ′ with I <1 I ′, one defines a map

dI,I′ : Λ∗V (DI) → Λ∗V (DI′),

as described below. The Khovanov chain complex assigned to D is then given by

CKh(D) =
⊕

I∈{0,1}n

Λ∗V (DI),

with differential

d =
⊕
I<1I′

dI,I′ .

This is a bigraded complex, with (co-)homological grading defined by

h(x) = I1 + · · · + In − n−,

for x ∈ Λ∗V (DI), and quantum grading defined by

q(x) = p(x) + h(x) + n+ − n−,

for homogeneous x ∈ Λ∗V (DI). The differential d increases h by one and preserves q. 
Thus, if we write CKhi,j(D) for the summand of CKh(D) in homological grading i and 
quantum grading j, then d restricts to a differential on

CKh∗,j(D) =
⊕
i

CKhi,j(D)

for each j. We will write

Khi,j(D) = Hi(CKh∗,j(D), d)

for the (co-)homology of this complex in homological grading i. The Khovanov homology 
of D refers to the bigraded vector space

Kh(D) =
⊕
i,j

Khi,j(D).
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Remark 2.10. We will also treat the case in which D is the empty diagram. In this case, 
we let Kh(D) = CKh(D) = Λ∗(0) = F.

It remains to define dI,I′ . Note that the diagram DI′ is obtained from DI either by 
merging two circles into one or by splitting one circle into two. Suppose first that DI′

is obtained by merging the components x and y of DI into one circle. Then there is an 
obvious identification

V (DI′) ∼= V (DI)/(x + y),

and we define the merge map dI,I′ to be the induced quotient map

Λ∗V (DI) → Λ∗(V (DI)/(x + y)) ∼= Λ∗V (DI′).

Suppose next that DI′ is obtained by splitting a component of DI into two circles x
and y. Then the identification

V (DI) ∼= V (DI′)/(x + y)

induces an identification

Λ∗V (DI) ∼= Λ∗(V (DI′)/(x + y)) ∼= (x + y) ∧ Λ∗V (DI′),

and we define the split map dI,I′ to be the composition of the maps

Λ∗V (DI)
∼=−→ Λ∗(V (DI′)/(x + y))

∼=−→ (x + y) ∧ Λ∗V (DI′) ⊂−→ Λ∗V (DI′).

That is, the split map may be thought of as given by wedging with x + y.
For diagrams D and D′ which differ by a Reidemeister move, Khovanov defines in [11]

an isomorphism

Kh(D) → Kh(D′),

which we refer to as the standard isomorphism associated to the Reidemeister move. In 
this way, the isomorphism class of Khovanov homology provides an invariant of oriented 
link type.

Next, we describe how the theory behaves under disjoint union. Consider the link 
diagram D �D′ obtained as a disjoint union of diagrams D and D′. Suppose D has m
crossings and D′ has n crossings. For I ∈ {0, 1}m and I ′ ∈ {0, 1}n, let II ′ ∈ {0, 1}m+n

denote the tuple formed via concatenation. Note that for every such II ′, there is a 
canonical isomorphism

V ((D �D′)II′) → V (DI) ⊕ V (DI′),
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which naturally induces an isomorphism

Λ∗V ((D �D′)II′) → Λ∗V (DI) ⊗ Λ∗V (DI′).

The direct sum of these isomorphisms define an isomorphism

CKh(D �D) → CKh(D) ⊗ CKh(D′),

that induces an isomorphism

Kh(D �D) → Kh(D) ⊗ Kh(D′),

which we refer to as the standard isomorphism associated to disjoint union.
In reduced Khovanov homology, one considers based diagrams. These are planar dia-

grams containing the basepoint ∞ ⊂ S2 (in particular, all such diagrams are nonempty). 
Suppose D is such a based diagram. Consider the chain map

Φ∞ : CKh(D) → CKh(D)

given on each V (DI) by wedging with the component of DI containing ∞. The image of 
this map is a subcomplex of CKh(D). The reduced Khovanov complex of D is defined 
to be the associated quotient complex,

CKhr(D) := (CKh(D)/Im(Φ∞))[0,−1]. (4)

The reduced Khovanov homology

Khr(D) = H∗(CKhr(D))

is then the bigraded vector space obtained as the homology of this quotient complex. In 
(4), the bracketed term [0, −1] indicates a shift of the (i, j) bigrading by (0, −1). This 
shift is introduced so that the reduced Khovanov homology of the unknot is supported 
in bigrading (0, 0).

In reduced Khovanov homology, Reidemeister moves away from ∞ give rise to isomor-
phisms of Khovanov groups. In particular, the isomorphism class of reduced Khovanov 
homology provides an invariant of based, oriented link type.

Reduced Khovanov homology behaves under disjoint union a little bit differently than 
Khovanov homology does. In particular, suppose D and D′ are disjoint planar diagrams, 
with D containing ∞. Let U∞ denote the small crossingless diagram of the unknot 
containing ∞. Then there is a natural and obvious isomorphism

Khr(D �D′) → Khr(D) ⊗ Khr(D′ � U∞).

Remark 2.11. Note that there is a natural isomorphism between Khr(D�U∞) and Kh(D)
for planar diagrams D avoiding ∞.
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2.3. Functoriality

In this subsection, we review some categorical aspects of links, cobordisms, and their 
diagrams. We then describe how Khovanov homology defines a functor from various 
cobordism categories to VectF.

The category we will be most interested in is the link cobordism category Link. Objects 
of Link are oriented links in S3 := R

3 ∪ {∞} and morphisms are isotopy classes of 
collared, smoothly embedded link cobordisms in S3× [0, 1]. This means that two surfaces 
represent the same morphism if they differ by a smooth isotopy fixing a neighborhood 
of the boundary pointwise. In order to define a functor from Link, one often starts by 
defining a functor from the diagrammatic link cobordism category Diag mentioned in the 
introduction. This category can be thought of as a more combinatorial model for Link. 
We define this category below and then describe how functors from Diag can be turned 
into functors from Link, focusing on the case of Khovanov homology.

Objects of Diag are oriented link diagrams in S2 := R
2 ∪ {∞} and morphisms are 

movies up to equivalence. We define these two terms below. A movie is a 1-parameter 
family Dt, t ∈ [0, 1], where the Dt are link diagrams except at finitely many t-values 
where the topology of the diagram changes by a local move consisting of a Reidemeister 
move or a Morse modification (a diagrammatic handle attachment). Away from these 
exceptional t-values, the link diagrams vary by planar isotopy. Movies M1 and M2 can be 
composed in a natural way M2◦M1, assuming that the initial diagram of M2 agrees with 
the terminal diagram of M1. Then any movie can be described as a finite composition 
of elementary movies, where each elementary movie corresponds to either:

• a Reidemeister move (of type I, II, or III), or
• an oriented diagrammatic handle attachment (a 0-, 1-, or 2-handle), or
• a planar isotopy of diagrams.

Carter and Saito [5] refer to the first two types of elementary movies as elementary string 
interactions (ESIs). We will generally represent an ESI diagrammatically by recording 
diagrams just before and just after the corresponding change in topology. Fig. 2 shows 
the ESIs corresponding to handle attachments.

Note that a movie M defines an immersed surface ΣM ⊂ S2 × [0, 1] with

Dt = ΣM ∩ (S2 × {t}).

We refer to these cross sections as the levels of ΣM . We will often think of a movie as
its corresponding immersed surface and vice versa. Let

π : S3 → S2

be the map which sends ∞ to ∞ and restricts to the projection
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Fig. 2. From left to right, oriented diagrammatic 0-, 1-, and 2-handle attachments.

π : R3
xyz → R

2
xy

on the first two coordinates for points in R3 ⊂ S3. Given links L0, L1 ⊂ S3 with 
π(Li) = Di, we can lift ΣM to a link cobordism S ⊂ S3 × [0, 1] from L0 to L1 such 
that

(π × id)(S) = ΣM .

As Diag is supposed to serve as a model for Link, we ought to declare two movies from 
D0 to D1 to be equivalent if their lifts, for fixed L0 and L1, represent the same morphism 
in Link. Carter and Saito discovered how to interpret this equivalence diagrammatically 
in [5]. In particular, two movies are equivalent if they can be related by a finite sequence 
of the following moves:

• the movie moves of Carter and Saito [5, Figs. 23–37],
• level-preserving isotopies (of their associated immersed surfaces),
• interchange of the levels containing distant ESIs.

We will not describe these moves in detail as we do not need them; we refer to the reader 
to [5] for more information.

Khovanov homology, as described in the previous subsection, assigns a vector space 
to a link diagram. To extend Khovanov homology to a functor from Diag to VectF, one 
must assign maps to movies such that equivalent movies are assigned the same map. We 
describe below how this is done, following Jacobsson [9].

First, one assigns maps to elementary movies. To an elementary movie M from D0 to 
D1 corresponding to a Reidemeister move, we assign the associated standard isomorphism

Kh(M) : Kh(D0) → Kh(D1)

mentioned in the previous subsection. Suppose M is the movie corresponding to a planar 
isotopy φ taking D0 to D1. This isotopy determines a canonical isomorphism

Fφ : CKh(D0) → CKh(D1).
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We assign to M the induced map on homology,

Kh(M) := (Fφ)∗ : Kh(D0) → Kh(D1).

It remains to assign a map to a movie M from D0 to D1 corresponding to an oriented 
i-handle attachment, for i = 0, 1, 2.

For i = 0, the diagram D1 is a disjoint union D0 � U , where U is the crossingless 
diagram of the unknot. It follows that

Kh(D1) ∼= Kh(D0) ⊗ Kh(U) = Kh(D0) ⊗ Λ∗(F〈U〉),

and we define

Kh(M) : Kh(D0) → Kh(D0) ⊗ Λ∗(F〈U〉)

to be the map which sends x to x ⊗ 1 for all x ∈ Kh(D0).
Similarly, for i = 2, we can view D0 as a disjoint union D1 � U , so that

Kh(D0) ∼= Kh(D1) ⊗ Λ∗(F〈U〉).

In this case, we define

Kh(M) : Kh(D1) ⊗ Λ∗(F〈U〉) → Kh(D0)

to be the map which sends x ⊗ 1 to 0 and x ⊗ U to x for all x ∈ Kh(D1).
Finally, for i = 1, each complete resolution (D1)I is obtained from (D0)I via a merge 

or split. The merge and split maps used to define the differential on Khovanov homology 
therefore give rise to a map

Λ∗V ((D0)I) → Λ∗V ((D1)I).

These maps fit together to define a chain map

CKh(D0) → CKh(D1),

and Kh(M) is the induced map on homology. Put slightly differently, let D̃ be a diagram 
with one more crossing than D0 and D1 such that D0 is the 0-resolution of D̃ at this 
crossing c and D1 is the 1-resolution (we will think of c as the (n + 1)st crossing). Then 
the Khovanov complex for D̃ is the mapping cone of the chain map

T : CKh(D1) → CKh(D1),

given by the direct sum
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T =
⊕

I∈{0,1}n

dI×{0},I×{1},

where these

dI×{0},I×{1} : Λ∗V ((D0)I) → Λ∗V ((D1)I)

are components of the differential on CKh(D̃). Then

Kh(M) := T∗ : Kh(D0) → Kh(D1).

Given an arbitrary movie M from D0 to D1, expressed as a composition

M = M1 ◦ · · · ◦Mk

of elementary movies, we then define

Kh(M) : Kh(D0) → Kh(D1)

to be the composition

Kh(M) = Kh(Mk) ◦ · · · ◦ Kh(M1).

In this way, Khovanov homology assigns maps to movies. The key theorem is the following 
result from [9]; see also [2,12].

Theorem 2.12. (Jacobsson [9]) If M and M ′ are equivalent movies, then Kh(M) =
Kh(M ′).

Jacobsson proves this theorem by showing that the maps assigned to movies are 
invariant under the moves listed above. As desired, his result implies that Khovanov 
homology defines a functor

Kh : Diag → VectF.

We next consider how to lift this and other functors from Diag to functors from Link. 
We shall achieve this by defining functors,

Πα : Link → Diag.

To define Πα, we take for every link L ⊂ S3 a choice of smooth isotopy φα
L which begins 

at L and ends at a link φα
L(L) on which the projection map

π : S3 → S2
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restricts to a regular immersion. We will also regard such an isotopy as a morphism

φα
L ∈ Mor(L, φα

L(L)),

represented by the smoothly embedded cylinder obtained from its trace. On objects, we 
define Πα by

Πα(L) := π(φα
L(L)).

Given a morphism S ∈ Mor(L0, L1), let us consider the associated morphism

φα
L1

◦ S ◦ (φα
L0

)−1 ∈ Mor(φα
L0

(L0), φα
L1

(L1)).

According to [5, Theorem 5.2, Remark 5.2.1(2)], there is a representative Σ of this mor-
phism whose image under the projection

π × id : S3 × [0, 1] → S2 × [0, 1]

is a movie. We define Πα(S) to be the equivalence class of this movie,

Πα(S) := [(π × id)(Σ)].

Proposition 2.13. Πα : Link → Diag is a functor.

Proof. Clearly Πα is well-defined on objects. To see that it is well-defined on morphisms, 
we use the relative version of Carter and Saito’s main result [5, Theorem 7.1], which 
states that isotopic surfaces project to equivalent movies. Thus, the movies resulting 
from the projections of any two representatives of the morphism φα

L1
◦ S ◦ (φα

L0
)−1 are 

equivalent. �
The apparent dependence of the functor Πα on the choices of isotopies φα

L is undesir-
able. In fact, we have the following.

Proposition 2.14. Suppose that {φα
L} and {φβ

L} are two collections of isotopies to links 
with regular projections, as above, defining functors

Πα,Πβ : Link → Diag.

Then the functors Πα and Πβ are naturally isomorphic.

Proof. The assignment θβα which sends a link L to the morphism

θβα(L) := [(π × id)(Σ)] ∈ Mor(Πα(L),Πβ(L)),
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where Σ is a representative of the morphism φβ
L ◦ (φα

L)−1 whose image under π× id is a 
movie, gives a well-defined natural isomorphism from Πα to Πβ . Commutativity of the 
square

Πα(L0)
Πα(S)

θβ
α(L0)

Πα(L1)

θβ
α(L1)

Πβ(L0)
Πβ(S)

Πβ(L1)

follows from the work of Carter and Saito; we leave it as an exercise. It is also not hard 
to show that θαβ is the inverse natural transformation, and that

θγβ ◦ θβα = θγα

for any three collections of isotopies. �
Moreover we have

Proposition 2.15. For any choice of isotopies φα
L, the functor Πα : Link → Diag is an 

equivalence of categories.

Proof. Since any two such functors are naturally isomorphic, it is enough to verify the 
proposition for a good choice of isotopies φα

L. We take isotopies φα
L such that if L is 

already regularly immersed under the map π, then φα
L is the identity isotopy. Hence we 

have that Πα is surjective on objects. Furthermore, Πα is bijective on morphism sets 
(that is, it is full and faithful), which suffices to establish the equivalence by, e.g. [16, 
Theorem 1, IV.4]. Surjectivity on morphisms is easy since movies can easily be lifted to 
cobordisms in S3 × [0, 1], whereas injectivity on morphisms is again a consequence of [5, 
Theorem 7.1]. �

One can then lift Khovanov homology to a functor from Link by precomposing with 
any Πα. We shall denote this functor by

Khα := Kh ◦ Πα : Link → VectF.

This functor assigns vector spaces to links, but these vector spaces depend on extra data, 
the extra data being the set of isotopies {φα

L}L⊂S3 to links with regular projections. We 
would prefer a functor which assigns vector spaces to links themselves, and does not 
depend on the choice of isotopies. Our solution rests on the natural isomorphisms we 
have described between the functors Πα.

Indeed, using notation from the proof of Proposition 2.14, we obtain isomorphisms

Khβ
α(L) := Kh(θβα(L)) : Khα(L) → Khβ(L)
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satisfying Khγ
β ◦Khβ

α = Khγ
α and Khα

α = Id, for all α, β, γ. Thus the collection of vector 
spaces {Khα(L)}α and isomorphisms {Khβ

α(L)}α,β form a transitive system in the sense 
of [8, Chapter 1.6]. We define Kh(L) to be the vector space given as the inverse limit of 
this system. A morphism S ∈ Mor(L0, L1) then gives rise to a well-defined map

Kh(S) : Kh(L0) → Kh(L1),

so that Kh defines a functor from Link to VectF which is independent of any choice of 
isotopies, as desired.

Remark 2.16. Kh cannot be lifted to a functor associating a vector space to each isotopy 
class of link. This is because there exist links with self-isotopies inducing non-identity 
automorphisms of Khovanov homology; consider, for an easy example, the isotopy from 
the 2-component unlink to itself which swaps the components.

We conclude this section by noting that reduced Khovanov homology defines a similar 
functor

Khr : Link∞ → VectF

from the based link cobordism category Link∞. Objects of Link∞ are oriented links in 
S3 containing the basepoint ∞ and morphisms are isotopy classes of collared, smoothly 
embedded link cobordisms in S3 × [0, 1] containing the arc {∞} × [0, 1]. More precisely, 
two surfaces represent the same morphism if they differ by a smooth isotopy fixing a 
neighborhood of the boundary and this arc pointwise. In order to define the functor Khr
above, one first defines a functor from the based diagrammatic link cobordism category
Diag∞. Objects of this category are equivalence classes of based movies in which each 
Dt contains ∞. Any such movie can be expressed as a composition of elementary movies 
corresponding to Reidemeister moves, handle attachments, and planar isotopies, all sup-
ported away from ∞. Two based movies are considered equivalent if they are related by 
obvious based versions of moves from before. To define a functor

Khr : Diag∞ → VectF

one then associates maps to elementary based movies and proceeds as before, noting 
that Jacobsson’s work implies that equivalent based movies are assigned the same map. 
One then promotes this to a functor from Link∞ by a straightforward adaptation of the 
ideas above.

Remark 2.17. It is clear that a similar procedure works for promoting any functor from 
Diag to Spect

F
to a functor from Link to Spect

F
, and similarly for the based categories. 

With this in mind, we will be content to work solely in the diagrammatic categories in 
the rest of this paper.
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3. Khovanov–Floer theories

In this section, we give a precise definition of a Khovanov–Floer theory (and its reduced 
variant) and describe what it means for such a theory to be functorial. The main challenge 
lies in setting up the right algebraic framework, as is illustrated by thinking about 
Kronheimer and Mrowka’s spectral sequence in singular instanton knot homology. The 
difficulty is that their construction does not associate a filtered chain complex to a link 
diagram alone, but to a link diagram together with some auxiliary data (e.g. families of 
metrics and perturbations), so it is not immediately obvious in what sense the resulting 
spectral sequence gives an assignment of objects in Spect

F
to link diagrams. The same is 

true in Ozsváth and Szabó’s work (the auxiliary data in this case consists of a Heegaard 
multi-diagram and various complex-analytic and symplectic data). Indeed, Kronheimer 
and Mrowka’s construction assigns to a diagram D and a choice of data d a filtered chain 
complex5

Cd(D) = (Cd(D), dd(D))

and an isomorphism of vector spaces

qd : Kh(D) → E2(Cd(D)).

Any two choices of auxiliary data d, d′ result in what one might call quasi-isomorphic
constructions, in that there exists a filtered chain map

f : Cd(D) → Cd
′
(D)

such that

E2(f) = qd
′ ◦ (qd)−1

(which implies that f is a quasi-isomorphism by the results of Subsection 2.1). So, really, 
one would like to say that what Kronheimer and Mrowka’s construction assigns to a link 
diagram D is a quasi-isomorphism class of pairs (Cd(D), qd). The algebraic framework 
introduced below is meant to make this idea meaningful.

Given a graded vector space V , we define a V -complex to be a pair (C, q), where C is 
a filtered chain complex and

q : V → E2(C)

is a grading-preserving isomorphism of vector spaces. Suppose (C, q) and (C ′, q′) are V -
and W -complexes, and let

T : V → W

5 We will often leave out the differential in the notation for a chain complex.
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be a homogeneous degree k map of graded vector spaces. A morphism from (C, q) to 
(C ′, q′) which agrees on E2 with T is a degree k filtered chain map

f : C → C ′

such that

E2(f) = q′ ◦ T ◦ q−1.

Note that if f and g are two such morphisms, then Ei(f) = Ei(g) for i = 2 and, therefore, 
for all i ≥ 2 by Lemma 2.2. A quasi-isomorphism is a morphism from one V -complex to 
another which agrees on E2 with the identity map on V .

Remark 3.1. Note that the existence of a quasi-isomorphism from (C, q) to (C ′, q′) implies 
the existence of a quasi-isomorphism from (C ′, q′) to (C, q) by Lemma 2.1.

For any two quasi-isomorphisms

f, g : (C, q) → (C ′, q′),

we have that Ei(f) = Ei(g) for all i ≥ 2 by the discussion above. Moreover, given 
quasi-isomorphisms

f : (C, q) → (C ′, q′) and g : (C ′, q′) → (C ′′, q′′),

we have that

Ei(g ◦ f) = Ei(g) ◦ Ei(f)

for all i ≥ 2. In other words, the higher pages in the spectral sequences associated to 
quasi-isomorphic V -complexes are canonically isomorphic as vector spaces, and, since 
the Ei(f) are chain maps, these higher pages are also canonically isomorphic as chain 
complexes. Put yet another way, for each i ≥ 2, the collection of chain complexes (Ei, di)
associated with representatives of a given quasi-isomorphism class A of V -complexes fits 
into a transitive system of chain complexes, from which one can extract an honest chain 
complex by taking the inverse limit. In summary, then, a quasi-isomorphism class A of 
V -complexes therefore determines a well-defined graded chain complex (Ei(A), di(A))
for each i ≥ 2. This is the sense in which, for example, Kronheimer and Mrowka’s 
construction provides an assignment of objects in Spect

F
to link diagrams.

Now suppose A is a quasi-isomorphism class of V -complexes and B is a quasi-
isomorphism class of W -complexes, and let

T : V → W
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be a homogeneous degree k map of vector spaces. We will say that there exists a morphism 
from A to B which agrees on E2 with T if there exists a morphism

f : (C, q) → (C ′, q′) (5)

which agrees on E2 with T for some representatives (C, q) of A and (C ′, q′) of B. The 
morphism in (5) gives rise to a homogeneous degree k map

Ei(A) → Ei(B) (6)

for each i ≥ 2. Furthermore, this map is independent of the representative morphism in 
(5) in the sense that if (C ′′, q′′) and (C ′′′, q′′′) are other representatives of A and B and

f ′ : (C ′′, q′′) → (C ′′′, q′′′)

is another morphism which agrees on E2 with T , then the diagram

Ei(C)
Ei(f)

Ei(C ′)

Ei(C ′′)
Ei(f ′)

Ei(C ′′′)

commutes for each i ≥ 2, where the vertical arrows indicate the canonical isomorphisms 
between these higher pages. In summary, the existence of a morphism from A to B
which agrees on E2 with T canonically determines a chain map from (Ei(A), di(A)) to 
(Ei(B), di(B)) for all i ≥ 2.

The discussion above shows that quasi-isomorphism classes of V -complexes behave 
exactly like honest filtered chain complexes with regard to the spectral sequences they 
induce. This will enable us to bypass the sort of technical difficulty mentioned at the 
beginning of this subsection for the spectral sequences defined by Kronheimer–Mrowka 
and Ozsváth–Szabó.

Finally, note that if (C, q) is a V -complex and (C ′, q′) is a W -complex, then there is 
a natural tensor product in the form of a (V ⊗ W )-complex (C ⊗ C ′, q ⊗ q′), in light 
of Remark 2.6. This extends in the obvious way to a notion of tensor product between 
quasi-isomorphism classes of V - and W -complexes.

Below, we define the term Khovanov–Floer theory. In the definition, we are thinking of 
the vector space Kh(D) as being singly-graded by some linear combination of the homo-
logical and quantum gradings. We will omit this linear combination from the notation. 
In practice, it will depend on the theory of interest: we will use the homological grading 
for the spectral sequence constructions of Kronheimer–Mrowka and Ozváth–Szabó. One 
would use the quantum grading for Bar-Natan’s construction [2].
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Definition 3.2. A Khovanov–Floer theory A is a rule which assigns to every link diagram 
D a quasi-isomorphism class of Kh(D)-complexes A(D), such that:

(1) if D′ is obtained from D by a planar isotopy, then there exists a morphism

A(D) → A(D′)

which agrees on E2 with the induced map from Kh(D) to Kh(D′);
(2) if D′ is obtained from D by a diagrammatic 1-handle attachments, then there exists 

a morphism

A(D) → A(D′)

which agrees on E2 with the induced map from Kh(D) to Kh(D′);
(3) for any two diagrams D, D′, there exists a morphism

A(D �D′) → A(D) ⊗A(D′)

which agrees on E2 with the standard isomorphism

Kh(D �D′) → Kh(D) ⊗ Kh(D′);

(4) for any diagram D of the unlink, E2(A(D)) = E∞(A(D)).

Remark 3.3. We will need quasi-isomorphisms of the sort in condition (3) going in both 
directions. Luckily, Remark 3.1 tells us that this follows from what is written.

A reduced Khovanov–Floer theory is defined almost exactly as above, except that 
all link diagrams are now based; planar isotopies and 1-handle attachments fix and 
avoid the basepoint ∞, respectively; we replace all occurrences of Kh with Khr ; and we 
replace condition (3) with the condition that for disjoint diagrams D and D′, where D
contains ∞, there exists a morphism

A(D �D′) → A(D) ⊗A(D′ � U∞)

which agrees on E2 with the standard isomorphism

Khr(D �D′) → Khr(D) ⊗ Khr(D′ � U∞)

described at the end of Subsection 2.2.

Remark 3.4. Note that if A is a reduced Khovanov–Floer theory, then the assignment

D �→ A(D � U∞)
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(we can assume D avoids ∞ after small perturbation) naturally defines a Khovanov–
Floer theory, via the relationship between reduced and unreduced Khovanov homology 
mentioned in Remark 2.11.

An immediate consequence of these definitions is that a Khovanov–Floer theory A
assigns a canonical morphism of spectral sequences

{(Ei(A(D)), di(A(D)) → (Ei(A(D′), Ei(A(D′))}i≥2

to a movie corresponding to a planar isotopy or diagrammatic 1-handle attachment. Of 
course, we wish to show, in proving Theorem 1.5, that a Khovanov–Floer theory assigns 
a morphism of spectral sequences to any movie, such that equivalent movies are assigned 
the same morphism. This leads to the definition below.

Definition 3.5. A Khovanov–Floer theory A is functorial if, given a movie from D to D′, 
there exists a morphism

A(D) → A(D′)

which agrees on E2 with the induced map from Kh(D) to Kh(D′).

Thus, a functorial Khovanov–Floer theory assigns a canonical morphism of spectral 
sequences

{(Ei(A(D)), di(A(D)) → (Ei(A(D′), Ei(A(D′))}i≥2

to any movie, which agrees on E2 with the corresponding movie map on Khovanov 
homology. It follows that equivalent movies are assigned the same morphism since they 
are assigned the same map in Khovanov homology. In other words, the spectral sequence 
associated with a functorial Khovanov–Floer theory defines a functor from Diag to 
Spect

F
and, therefore, by Subsection 2.3, a functor

F : Link → Spect
F

satisfying sv◦F = Kh. (In particular, the higher pages of the spectral sequence associated 
with a functorial Khovanov–Floer theory are link type invariants.) Thus, in order to prove 
Theorem 1.5, it suffices to prove the following theorem, which we do in the next section.

Theorem 3.6. Every Khovanov–Floer theory is functorial.

Remark 3.7. The rather simple conditions in the definition of a Khovanov–Floer theory 
may be thought of as a sort of weak functoriality. In practice, it is often relatively easy 
to verify that a theory satisfies these conditions (we will provide two such verifications 
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in Section 5). In contrast, functoriality has not been verified for any of spectral sequence 
constructions that we know of. Reidemeister invariance has been established in a number 
of cases (including for the spectral sequences we consider in this paper), but the argu-
ments are generally adapted to the particular theory under consideration. Our approach 
is more universal. In particular, Theorem 3.6 may be interpreted as saying that weak 
functoriality implies functoriality.

There is an obvious analogue of Definition 3.5 for reduced Khovanov–Floer theories, 
involving based movies and reduced Khovanov homology. The corresponding analogue 
of Theorem 3.6, that every reduced Khovanov–Floer theory is functorial, also holds by 
essentially the same proof.

4. Khovanov–Floer theories are functorial

This section is dedicated to proving Theorem 3.6 (and, therefore, Theorem 1.5).
Suppose A is a Khovanov–Floer theory. We will prove below that A is functorial. 

We first show that A assigns a canonical morphism of spectral sequences to the movie 
corresponding to any diagrammatic handle attachment (as opposed to only 1-handle 
attachments). This follows immediately from the proposition below.

Proposition 4.1. If D′ is obtained from D by a diagrammatic handle attachment, then 
there exists a morphism

A(D) → A(D′)

which agrees on E2 with the induced map from Kh(D) to Kh(D′).

Proof of Proposition 4.1. The 1-handle case is part of the definition of a Khovanov–Floer 
theory. Suppose D′ is obtained from D by a 0-handle attachment. Then D′ = D � U . 
Thus, by condition (3) in Definition 3.2, there exists a morphism

A(D) ⊗A(U) → A(D′) (7)

which agrees on E2 with the standard isomorphism

g2 : Kh(D) ⊗ Kh(U) → Kh(D′).

Condition (4) in Definition 3.2 says that

E∞(A(U)) = E2(A(U)) ∼= Kh(U).

It is then an easy consequence of Lemma 2.3 that the quasi-isomorphism class A(U)
contains the trivial Kh(U)-complex (Kh(U), id). It follows that there exists a morphism
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A(D) → A(D) ⊗A(U) (8)

which agrees on E2 with the isomorphism

g1 : Kh(D) → Kh(D) ⊗ Kh(U)

which sends x to x ⊗ 1. Indeed, if (C, q) is a representative of A(D), then (C ⊗ Kh(U),
q ⊗ id) is a representative of A(D) ⊗A(U) and the morphism

(C, q) → (C ⊗ Kh(U), q ⊗ id)

which sends x to x ⊗ 1 is a representative of the desired morphism in (8). Let f1 and f2
be representatives of the morphisms in (8) and (7), respectively. Then the composition 
f2 ◦ f1 from a representative of A(D) to a representative of A(D′) is a morphism which 
agrees on E2 with the composition

g2 ◦ g1 : Kh(D) → Kh(D′),

and this latter composition is precisely the map on Khovanov homology associated to 
the 0-handle attachment. The 2-handle case is virtually identical. �

Next, we show that A assigns a canonical morphism of spectral sequences to the movie 
corresponding to a Reidemeister move. This follows immediately from the proposition 
below.

Proposition 4.2. If D′ is obtained from D by a Reidemeister move, then there exists a 
morphism

A(D) → A(D′)

which agrees on E2 with the standard isomorphism from Kh(D) to Kh(D′).

Before proving Proposition 4.2, let us first assume this proposition is true and prove 
Theorem 3.6.

Proof of Theorem 3.6. Suppose M is a movie from D to D′. Express this movie as a 
composition

M = Mk ◦ · · · ◦M1,

where each Mi is an elementary movie from a diagram Di to a diagram Di+1. Let fi
be a morphism from a representative of A(Di) to a representative of A(Di+1) which 
agrees on E2 with the corresponding map on Khovanov homology. For the elementary 
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movies corresponding to planar isotopies, such maps exist by Definition 3.2. For those 
corresponding to diagrammatic handle attachments or Reidemeister moves, such maps 
exist by Propositions 4.1 and 4.2. The composition

fk ◦ · · · ◦ f1

is therefore a morphism from a representative of A(D = D1) to a representative of 
A(D′ = Dk+1) which agrees on E2 with the map on Khovanov homology induced by 
this movie. This proves that A is functorial. �

It therefore only remains to prove Proposition 4.2. We break this verification into three 
lemmas—one for each type of Reidemeister move. The idea common to the proofs of all 
three lemmas is, as mentioned in the introduction, to arrange via movie moves that the 
Reidemeister move takes place amongst unknotted components. This idea was used by 
the third author in [15] in showing that a generic perturbation of Khovanov–Rozansky 
homology gives rise to a lower-bound on the slice genus.

Lemma 4.3. Suppose D′ is obtained from D by a Reidemeister I move. Then there exists 
a morphism

A(D) → A(D′)

which agrees on E2 with the standard isomorphism from Kh(D) to Kh(D′).

Proof. Consider the link diagrams shown in Fig. 3. The arrows in this figure are meant 
to indicate the fact that the movie represented by the sequence of diagrams

D = D1, D2, D3, D4 = D′,

as indicated by the thin arrows, is equivalent to the movie consisting of the single Reide-
meister I move from D to D′, as indicated by the thick arrow. These two movies therefore 
induce the same map from Kh(D) to Kh(D′).

Thus, to prove Lemma 4.3, it suffices to prove that there exist morphisms

A(D1) → A(D2) (9)

A(D2) → A(D3) (10)

A(D3) → A(D4) (11)

which agree on E2 with the corresponding maps on Khovanov homology. The top and 
bottom arrows in Fig. 3 correspond to 0- and 1-handle attachments; therefore, the mor-
phisms in (9) and (11) exist by Proposition 4.1. It remains to show that the morphism 
in (10) exists.
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Fig. 3. The diagrams D = D1, . . . , D4 = D′. The movie indicated by the thin arrows is equivalent to the 
movie corresponding to the Reidemeister I move, indicated by the thick arrow.

Let U0 and U1 be the 0- and 1-crossing diagrams of the unknot in D2 and D3, so that 
D2 = D1 � U0 and D3 = D1 � U1. Thus, by condition (3) in Definition 3.2, there exist 
morphisms

A(D2) → A(D1) ⊗A(U0) (12)

A(D1) ⊗A(U1) → A(D3) (13)

which agree on E2 with the standard isomorphisms

g1 : Kh(D2) → Kh(D1) ⊗ Kh(U0)

g3 : Kh(D1) ⊗ Kh(U1) → Kh(D3).

Condition (4) in Definition 3.2 says that

E∞(A(Ui)) = E2(A(Ui)) ∼= Kh(Ui)

for i = 0, 1, which implies, just as in the proof of Proposition 4.1, that the quasi-
isomorphism class A(Ui) contains the trivial Kh(Ui)-complex (Kh(Ui), id) for i = 0, 1. 
It follows immediately that there exists a morphism

A(U0) → A(U1) (14)

which agrees on E2 with the standard isomorphism

g2 : Kh(U0) → Kh(U1)

associated to the Reidemeister I move relating these two diagrams of the unknot. Let 
f1, f2, and f3 be representatives of the morphisms in (12), (14), and (13), respectively. 
Then the composition
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Fig. 4. The diagrams D = D1, . . . , D4 = D′. The movie indicated by the thin arrows is equivalent to the 
movie corresponding to the Reidemeister II move, indicated by the thick arrow.

f3 ◦ (id⊗ f2) ◦ f1

from a representative of A(D2) to a representative of A(D3) is a morphism which agrees 
on E2 with the composition

g3 ◦ (id⊗ g2) ◦ g1 : Kh(D2) → Kh(D3),

and this latter composition is equal to the isomorphism from Kh(D2) to Kh(D3) associ-
ated to the Reidemeister I move. It follows that the morphism in (10) exists. �
Lemma 4.4. Suppose D′ is obtained from D by a Reidemeister II move. Then there exists 
a morphism

A(D) → A(D′)

which agrees on E2 with the standard isomorphism from Kh(D) to Kh(D′).

Proof. Consider the link diagrams shown in Fig. 4. The arrow from D = D1 to D2
represents two 0-handle attachments; the arrow from D2 to D3 represents a Reidemeister 
II move; and the arrow from D3 to D4 = D′ represents two 1-handle attachments. 
The movie represented by these thin arrows is equivalent to the movie from D to D′

corresponding to the single Reidemeister II move indicated by the thick arrow. These 
two movies therefore induce the same map from Kh(D) to Kh(D′).

Thus, to prove Lemma 4.4, it suffices to prove that there exist morphisms

A(D1) → A(D2) (15)

A(D2) → A(D3) (16)

A(D3) → A(D4) (17)
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Fig. 5. The diagrams D = D1, . . . , D6 = D′. The movie indicated by the thin arrows is equivalent to the 
movie corresponding to the Reidemeister III move, indicated by the thick arrow.

which agree on E2 with the corresponding maps on Khovanov homology. Since the top 
and bottom arrows in Fig. 4 correspond to handle attachments, the morphisms in (15)
and (17) exist by Proposition 4.1. It remains to show that the morphism in (16) ex-
ists. But this is proven exactly as we proved that the morphism in (10) exists in the 
Reidemeister I case, using conditions (3) and (4) of Definition 3.2. �
Lemma 4.5. Suppose D′ is obtained from D by a Reidemeister III move. Then there 
exists a morphism

A(D) → A(D′)

which agrees on E2 with the standard isomorphism from Kh(D) to Kh(D′).

Proof. Consider the link diagrams shown in Fig. 5. The arrow from D = D1 to D2
represents three 0-handle attachments; the arrow from D2 to D3 represents a sequence 
consisting of three Reidemeister II moves; the arrow from D3 to D4 represents a Reide-
meister III move; the arrow from D4 to D5 represents three 1-handle attachments; and 
the arrow from D5 to D6 = D′ represents a sequence of three Reidemeister II moves. 
The movie represented by these thin arrows is equivalent to the movie from D to D′

corresponding to the single Reidemeister III move indicated by the thick arrow. These 
two movies therefore induce the same map from Kh(D) to Kh(D′).

Thus, to prove Lemma 4.4, it suffices to prove that there exist morphisms

A(D1) → A(D2) (18)

A(D2) → A(D3) (19)

A(D3) → A(D4) (20)

A(D4) → A(D5) (21)

A(D5) → A(D6) (22)
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which agree on E2 with the corresponding maps on Khovanov homology. Since the top left 
and bottom right arrows in Fig. 5 correspond to handle attachments, the morphisms in 
(18) and (21) exist by Proposition 4.1. The top right and bottom left arrows correspond 
to sequences of Reidemeister II moves, so the morphisms in (19) and (22) exist by 
Lemma 4.4. It remains to show that the morphism in (20) exists. Again, this is proven 
exactly as we proved that the morphism in (10) exists in the Reidemeister I case. �

As mentioned in the previous section, the proof that reduced Khovanov–Floer theories 
are functorial proceeds in a virtually identical manner.

5. Examples of Khovanov–Floer theories

We verify below that the spectral sequence constructions of Kronheimer–Mrowka 
and Ozsváth–Szabó define Khovanov–Floer theories, proving Theorem 1.6. We will as-
sume the reader is fairly familiar with these spectral sequences. We then describe some 
new deformations of the Khovanov complex which can be shown rather easily to give 
Khovanov–Floer theories (though we do not do so here).

5.1. Kronheimer–Mrowka’s spectral sequence

Suppose D ⊂ S2 := R
2 ∪ {∞} is a diagram for an oriented link L ⊂ S3 := R

3 ∪ {∞}, 
with crossings labeled 1, . . . , n. For each I ∈ {0, 1}n, let LI ⊂ S3 be a link whose 
projection to R2 is equal to DI , and which agrees with L outside of n disjoint balls 
containing the “crossings” of L. For every pair I <1 I ′ of immediate successors, there is 
a standard 1-handle cobordism

SI,I′ ⊂ S3 × [0, 1]

from LI to LI′ which is trivial outside the product of one of these balls with the interval. 
For any pair I <k J of tuples differing in k coordinates, choose a sequence I = I0 <1
I1 <1 · · · <1 Ik = I ′ of immediate successors. Then the composition

SI,J = SIk−1,Ik ◦ · · · ◦ SI0,I1

defines a cobordism

SI,J ⊂ S3 × [0, 1]

from LI to LJ which is independent of the sequence above, up to isotopy fixing a collary 
neighborhood of the boundary pointwise.

Given some auxiliary data d (including a host of metric and perturbation data) Kron-
heimer and Mrowka construct [13] a chain complex (Cd(D), dd(D)), where
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Cd(D) =
⊕

I∈{0,1}n

C�(LI)

and the differential dd(D) is a sum of maps

dI,J : C�(LI) → C�(LJ )

over all pairs I ≤ J in {0, 1}n. Here, C�(LI) refers to the unreduced singular instanton 
Floer chain group of LI over F. The map dI,I is the instanton Floer differential on C�(LI), 
defined, very roughly speaking, by counting certain instantons on S3×R with singularities 
along LI ×R. More generally, dI,J is defined by counting points in parametrized moduli 
spaces of instantons on S3×R with singularities along SI,J , over a family of metrics and 
perturbations. We are abusing notation here, of course, as the vector spaces C�(LI) and 
maps dI,J depend on d.

Kronheimer and Mrowka prove in [13] that the homology of this complex computes 
the unreduced singular instanton Floer homology of L, as below.

Theorem 5.1 (Kronheimer–Mrowka). H∗(Cd(D), dd(D)) ∼= I�(L).

Note that the complex (Cd(D), ∂d(D)) is a filtered complex with respect to the fil-
tration coming from the homological grading defined by

h(x) = I1 + · · · + In − n−

for x ∈ C�(LI). Since dI,I is the instanton Floer differential, the E1 page of the associated 
spectral sequence is given by

E1(Cd(D)) =
⊕

I∈{0,1}n

I�(LI).

Moreover, the spectral sequence differential d1(Cd(D)) is the sum of the induced maps

(dI,I′)∗ : I�(LI) → I�(LI′)

over all pairs I <1 I ′.
In [13, Section 8], Kronheimer and Mrowka establish isomorphisms

Λ∗V (DI) ∼= I�(LI)

which extend to an isomorphism of chain complexes

(CKh(D), d) → (E1(Cd(D)), d1(Cd(D)))

that gives rise to an isomorphism
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qd : Kh(D) → E2(Cd(D)).

Moreover, they show that for any two sets of data d and d′, there exists a filtered chain 
map

f : Cd(D) → Cd
′
(D)

such that

E2(f) = qd
′ ◦ (qd)−1.

This is essentially the content of [13, Proposition 8.11] and the discussion immediately 
following it. In other words, Kronheimer and Mrowka’s construction assigns to every 
link diagram D a quasi-isomorphism class of Kh(D)-complexes, with respect to the 
homological grading on Kh(D). In fact, we claim the following.

Proposition 5.2. Kronheimer–Mrowka’s construction is a Khovanov–Floer theory.

Proof. Let A(D) denote the quasi-isomorphism class of Kh(D)-complexes assigned to D
in Kronheimer and Mrowka’s construction. To prove the proposition, we simply check 
that A satisfies conditions (1)-(4) of Definition 3.2.

For condition (1), a planar isotopy φ taking D to D′ determines a canonical filtered 
(in fact, grading-preserving) chain isomorphism

ψφ : Cd(D) → Cd
′
(D′),

where d is the data pulled back from d′ via φ. Furthermore, it is clear that E1(ψφ) agrees 
with the standard map

Fφ : CKh(D) → CKh(D′)

associated to this isotopy in Khovanov homology, with respect to the natural identifi-
cations of the various chain complexes. It follows that ψφ represents a morphism from 
A(D) to A(D′) which agrees on E2 with the map induced on Khovanov homology, as 
desired.

For condition (2), suppose D′ is obtained from D via a diagrammatic 1-handle at-
tachment. Then there is a diagram D̃ with one more crossing than D and D′, such that 
D is the 0-resolution of D̃ at this new crossing c and D′ is the 1-resolution. For some 
choice of data d̃, we can realize the complex C d̃(D̃) as the mapping cone of a degree 0 
filtered chain map

T : Cd(D) → Cd
′
(D′),

where d and d′ are appropriate restrictions of d̃. This map T is given by the direct sum
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T =
⊕

I≤J∈{0,1}n

dI×{0},J×{1},

of components of the differential dd̃(D̃). (We are thinking of c as the (n + 1)st crossing 
of D̃.) Then

E1(T ) : E1(Cd(D)) → E1(Cd
′
(D′))

is given by the direct sum of the maps

(dI×{0},I×{1})∗ : I�(LI) → I�(L′
I)

over all I ∈ {0, 1}n. It follows from [13, Proposition 8.11] that these maps agree with 
the maps

Λ∗V (DI) → Λ∗V (D′
I)

associated to the 1-handle addition, via the natural identifications

Λ∗V (DI) ∼= I�(LI)

Λ∗V (D′
I) ∼= I�(L′

I)

described above. It follows that E1(T ) agrees with the chain map

CKh(D) → CKh(D′)

associated to the 1-handle attachment, and, hence, that T represents a morphism from 
A(D) to A(D′) which agrees on E2 with the map induced on Khovanov homology, as 
desired.

For condition (3), it suffices to show that for some choices of data d, d′, d′′, there is a 
degree 0 filtered chain map

Cd
′′
(D �D′) → Cd(D) ⊗ Cd

′
(D′) (23)

which agrees on E2 with the standard isomorphism

Kh(D �D′) → Kh(D) ⊗ Kh(D′).

This fact is stated, using slightly different wording, by Kronheimer and Mrowka in [14, 
Proof of Proposition 4.3], where they note that the cube complexes for I� and Kh satisfy 
tensor product rules for split diagrams which agree to leading order.

For condition (4), suppose D is a diagram of the unlink. Then its Khovanov homology 
is supported in homological degree 0. Hence, the spectral sequence collapses at the E2
page. In particular, E2(A(D)) = E∞(A(D)), as desired. �
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Fig. 6. The arc aj near the jth crossing, shown as a dashed segment.

5.2. Ozsváth–Szabó’s spectral sequence

Suppose D, L, and the LI are exactly as in the previous subsection, except that they 
are based at ∞. Let aj be an arc in a local neighborhood of the jth crossing of D as 
shown in Fig. 6, and let bj be a lift of aj to an arc in S3 with endpoints on L. The arc 
bj lifts to a closed curve βj ⊂ −Σ(L), where Σ(L) is the double branched cover of S3

branched along L. There is a natural framing on the link

L = β1 ∪ · · · ∪ βn ⊂ −Σ(L)

such that −Σ(LI) is obtained by performing Ij-surgery on βj for each j = 1, . . . , n, for 
all I ∈ {0, 1}n.

Given some auxiliary data d (including a pointed Heegaard multi-diagram subordinate
to the framed link L and a host of complex-analytic data), Ozsváth and Szabó construct 
[17] a chain complex (Cd(D), dd(D)), where

Cd(D) =
⊕

I∈{0,1}n

ĈF(−Σ(LI))

and the differential dd(D) is a sum of maps

dI,J : ĈF(−Σ(LI)) → ĈF(−Σ(LJ ))

over all pairs I ≤ J in {0, 1}n. Here, ĈF(−Σ(LI)) refers to the Heegaard Floer chain 
group of −Σ(LI). The map dI,I is the usual Heegaard Floer differential on ĈF(−Σ(LI)), 
defined by counting pseudo-holomorphic disks in the symmetric product of a Riemann 
surface. More generally, dI,J is defined by counting pseudo-holomorphic polygons. Again, 
we are abusing notation here, as the vector spaces ĈF(−Σ(LI)) and maps dI,J depend 
on d.

Ozsváth and Szabó prove in [17] that the homology of this complex computes the 
Heegaard Floer homology of −Σ(L); that is:

Theorem 5.3 (Ozsváth–Szabó). H∗(Cd(D), dd(D)) ∼= ĤF(−Σ(L)).

As in the previous subsection, this complex (Cd(D), ∂d(D)) is filtered with respect 
to the obvious homological grading. Since dI,I is the Heegaard Floer differential, the E1
page of the associated spectral sequence is given by
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E1(Cd(D)) =
⊕

I∈{0,1}n

ĤF(−Σ(LI)).

Moreover, the spectral sequence differential d1(Cd(D)) is the sum of the induced maps

(dI,I′)∗ : ĤF(−Σ(LI)) → ĤF(−Σ(LI′))

over all pairs I <1 I ′.
Below, we argue that Ozsváth and Szabó’s construction assigns to D a quasi-

isomorphism class of Khr(D)-complexes.
In general, the Heegaard Floer homology of a 3-manifold Y admits an action by 

Λ∗H1(Y ). For each I ∈ {0, 1}n, the Floer homology ĤF(−Σ(LI)) is a free module over

Λ∗H1(−Σ(LI))

of rank one, generated by the unique element in the top Maslov grading. In particular, 
there is a canonical identification

ĤF(−Σ(LI)) ∼= Λ∗H1(−Σ(LI)). (24)

Suppose x is the component of DI containing the basepoint ∞. Given any other com-
ponent y, let ηx,y be an arc with endpoints on LI which projects to an arc from x to y. 
The map

V (DI)/(x) → H1(−Σ(LI))

which sends a component y to the homology class of the lift of ηx,y to the branched 
double cover clearly gives rise to an isomorphism

Λ∗(V (DI)/(x)) → ĤF(−Σ(LI))

via the identification in (24). Moreover, Ozsváth and Szabó show that the direct sum of 
these isomorphisms gives rise to an isomorphism of chain complexes

(CKhr(D), d) → (E1(Cd(D)), d1(Cd(D))).

This isomorphism then gives rise to an isomorphism

qd : Khr(D) → E2(Cd(D)).

It follows from the work in [1,19] and naturality properties of the Λ∗H1-action that for 
any two sets of data d and d′, there exists a filtered chain map

f : Cd(D) → Cd
′
(D)
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such that

E2(f) = qd
′ ◦ (qd)−1.

This shows that Ozsváth and Szabó’s construction assigns to every based link diagram D
a quasi-isomorphism class of Khr(D)-complexes, with respect to the homological grading 
on Khr(D). In fact, we claim the following.

Proposition 5.4. Ozsváth–Szabó’s construction is a reduced Khovanov–Floer theory.

Proof. Let A(D) denote the quasi-isomorphism class of Khr(D)-complexes assigned to 
D in Ozsváth and Szabó’s construction. We verify below that A satisfies the reduced 
analogues of conditions (1)-(4) of Definition 3.2.

For condition (1), a planar isotopy φ taking D to D′ determines a canonical filtered 
(in fact, grading-preserving) chain isomorphism

ψφ : Cd(D) → Cd
′
(D′),

where d is the data pulled back from d′ via φ, just as in the instanton case. Furthermore, 
it is clear that E1(ψφ) agrees with the standard map

Fφ : CKhr(D) → CKhr(D′)

associated to this isotopy in reduced Khovanov homology, with respect to the natural 
identifications of the various chain complexes. It follows that ψφ represents a morphism 
from A(D) to A(D′) which agrees on E2 with the map induced on reduced Khovanov 
homology, as desired.

For condition (2), Suppose D′ is obtained from D via a 1-handle attachment. Let D̃
be a diagram with one more crossing than D and D′, such that D is the 0-resolution of 
D̃ at this crossing and D′ is the 1-resolution, as in the proof of Proposition 5.2. Following 
that proof, we can realize the complex C d̃(D̃) as the mapping cone of a degree 0 filtered 
chain map

T : Cd(D) → Cd
′
(D′),

for some choice of data d̃ and the appropriate restrictions d and d′. As before, T is given 
by the direct sum

T =
⊕

I≤J∈{0,1}n

dI×{0},J×{1},

of components of the differential dd̃(D̃), and

E1(T ) : E1(Cd(D)) → E1(Cd
′
(D′))
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is the direct sum of the maps

(dI×{0},I×{1})∗ : ĤF(−Σ(LI)) → ĤF(−Σ(L′
I))

over all I ∈ {0, 1}n. It is easy to see that these maps agree with the maps

Λ∗(V (DI)/(x)) → Λ∗(V (D′
I)/(x′))

associated to the 1-handle attachment, via the natural identifications

Λ∗(V (DI)/(x)) ∼= ĤF(−Σ(LI))

Λ∗(V (D′
I)/(x′)) ∼= ĤF(−Σ(L′

I)),

where x and x′ are the components of DI and D′
I containing the basepoint ∞. It follows 

that E1(T ) agrees with the chain map

CKhr(D) → CKhr(D′)

associated to the 1-handle attachment, and, hence, that T represents a morphism from 
A(D) to A(D′) which agrees on E2 with the map induced on reduced Khovanov homol-
ogy, as desired.

For condition (3), it suffices as in the instanton Floer case to show that for some sets 
of data d, d′, d′′, there is a degree 0 filtered chain map

Cd
′′
(D �D′) → Cd(D) ⊗ Cd

′
(D′ � U∞)

which agrees on E2 with the standard isomorphism

Khr(D �D′) → Khr(D) ⊗ Khr(D′ � U∞),

where D and D’ are disjoint diagrams with D containing ∞, as at the end of Subsec-
tion 2.2. But, given the Heegaard multi-diagrams encoded by d and d′, one can simply 
take an appropriate connected sum to produce a multi-diagram giving rise to a complex 
Cd

′′(D �D′) which is isomorphic to the tensor product

Cd(D) ⊗ Cd
′
(D′ � U∞)

by an isomorphism which agrees on E2 with the map on reduced Khovanov homology 
(see [1, Lemma 3.4]).

For condition (4), suppose D is a diagram of the unlink. Then its reduced Khovanov 
homology is supported in homological degree 0. Hence, the spectral sequence collapses 
at the E2 page. In particular, E2(A(D)) = E∞(A(D)), as desired. �
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5.3. New deformations of the Khovanov complex

We describe here a family of new deformations of the Khovanov chain complex. Sup-
pose that I, J ∈ {0, 1}n such that I <k J , and choose a sequence of immediate successors

I = I0 <1 I1 <1 I2 <1 · · · <1 Ik = J.

For a planar diagram D with crossings 1, . . . , n, this sequence defines a map

dI,J = dIk−1,Ik ◦ · · · ◦ dI0,I1 : Λ∗V (DI) → Λ∗V (DJ).

Note that this map does not depend on the choice of sequence since 2-dimensional faces 
in the Khovanov cube commute.

Now we define the endomorphism

dk =
⊕
I<kJ

dI,J : CKh(D) → CKh(D)

for each k ≥ 1. Note that each dk preserves the quantum grading and shifts the homo-
logical grading by k, and that d1 is the Khovanov differential. Finally, for any sequence 
a = (a1, a2, a3, a4, . . .) where ai ∈ F for all i ≥ 1 and a1 = 1 we define the endomorphism

da =
⊕
k≥1

akdk : CKh(D) → CKh(D).

We now check that d2
a = 0. In this check we use the observation that dJ,K ◦dI,J = dI,K

and the fact that if k ≥ 2 is an even integer then 

(
k

k/2

)
is also even. For convenience, 

if k is odd we set 
(

k

k/2

)
= ak/2 = 0. We have

d2
a =

⊕
i,j≥1

ajdj ◦ aidi =
⊕
i,j≥1

(ajai)dj ◦ di

=
⊕

I<iJ<jK

i,j≥1

(ajai)dJ,K ◦ dI,J =
⊕

I<iJ<jK

i,j≥1

(ajai)dI,K

=
⊕
I<kK

k≥2,k−1≥j≥1

(ajak−j)
(
k

j

)
dI,K

=
⊕
I<kK

(
2
(
k

j

)
(ajak−j) +

(
k

k/2

)
(ak/2ak/2)

)
dI,K = 0.
k≥2,k/2>j≥1
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It is straightforward to verify, even moreso than in the previous subsections, that 
this construction defines a Khovanov–Floer theory with a homological filtration and a 
quantum grading for each choice of a. The associated spectral sequence therefore defines 
link and cobordism invariants.

Remark 5.5. We do not know at present whether the associated spectral sequence always 
collapses at E2.

Remark 5.6. The deformation above in the case a = (1, 1, 1, . . .) was studied indepen-
dently by Juhász and Marengon. In [10, Section 6], they also show that the isomorphism 
class of the resulting spectral sequence is a link type invariant.
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