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We define an elementary relatively Z/4 graded Lagrangian-Floer
chain complex for restricted immersions of compact 1-manifolds
into the pillowcase, and apply it to the intersection diagram ob-
tained by taking traceless SU(2) character varieties of 2-tangle de-
compositions of knots. Calculations for torus knots are explained
in terms of pictures in the punctured plane. The relation to the
reduced instanton homology of knots is explored.
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1. Introduction

In [21], Kronheimer and Mrowka introduced a powerful invariant of a knot
or link in a 3-manifold L C X called singular instanton knot homology. De-
noted I°(Y, L), their invariant is defined in the context of gauge theory.
Roughly, the theory associates to L a chain group C’u(X , L) generated by
flat SO(3) connections on X \ L which have a prescribed singularity near L.
This group is endowed with a differential that counts anti-self-dual instan-
tons on X x R which limit to given flat connections on the ends. Singular
instanton knot homology has an important computational tool called the
skein exact triangle. This is a long exact sequence relating the homology
groups of links which agree outside of a small 3-ball, where they differ in a
simple way. Iterated application of the exact triangle using a collection of 3-
balls leads to a spectral sequence which converges to I h(X , L). This spectral
sequence, when applied to a collection of 3-balls containing all the crossings
of a diagram for a link in the 3-sphere, has F5 page isomorphic to the well-
known combinatorial knot invariant Khovanov homology [24]. The existence
of this spectral sequence, together with a non-triviality result for I%(S3, L)
coming from its relation to another knot invariant (sutured instanton knot
homology) [22], allowed Kronheimer and Mrowka to prove the striking result
that Khovanov homology detects the unknot. Despite this triumph, I%(X, L)
remains rather mysterious. This is due in large part to the fact that compu-
tations are extremely scarce. Initially, the only route for computation was
through the aforementioned spectral sequence, but, aside from the instances
where it collapses for simple reasons at Khovanov homology, little headway
has been made in this direction (though see [25] 28] for more sophisticated
computations using the spectral sequence).

Motivated by a desire for a more explicit understanding of the singu-
lar instanton chain complexes, we began a project in [I8] which aims to
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make concrete direct calculations of I%(X, L). This is not so easy, and a
serious initial sticking point arises from the fact that the flat connections
which generate C%(X, L) are never isolated. Indeed, aside from the case of
the unknot in S3, the spaces of flat connections studied by the theory are
always positive dimensional varieties. For this reason, one needs to perturb
the Chern-Simons functional that gives rise to I*(X, L) through its Morse
homology. The robust holonomy perturbations used to set up the general
theory destroy the concrete algebraic interpretation of the generating set for
C% X, K) in terms of certain traceless representations of the fundamental
group of X \ L, and the goal of our first paper was to retain such an in-
terpretation by way of explicit local, and in some sense minimal, holonomy
perturbations. The main idea from [I8] was to pick a particular distinguished
3-ball in X which intersects L in a trivial 2-stranded tangle. We then per-
formed an explicit holonomy perturbation to the Chern-Simons functional
in the neighborhood of a curve living in this ball. Using this perturbation
allowed us, in a variety of examples, to perform computations of singular
instanton chain groups for many knots (e.g., many torus knots) which im-
plied that the spectral sequence from Khovanov homology necessarily had
large rank higher differentials. In many of these cases we produced perfect
complexes, i.e., complexes with trivial differential, so that our computation
determined the singular instanton homology despite the fact that the spec-
tral sequence from Khovanov homology was not understood.

The key perspective for the computations of [1§] is that the generators of
the singular instanton chain groups can be interpreted as the intersections of
two immersed 1-manifolds in a 2-dimensional orbifold, the pillowcase, which
arises as the quotient of the torus by the hyperelliptic involution (see Sec-
tion [3| for more details). This perspective results from the observation that
the choice of trivial 2-stranded tangle (D,U) C (X, L) where we perform the
perturbation results in a decomposition of the link

(Xv L) - (X \ D,L \ U) U(S2,{4 points}) (Da U)

We let (Y,T):=(X\D,L\U) denote the complementary tangle. Now
C" (X, L) is generated by certain conjugacy classes of perturbed traceless rep-
resentations p : m (X \ L) — SU(2). Using the above decomposition, they
can be viewed as the intersection of the restrictions

R(Y,T) RL(D,U)

\/

R(S? {4 points}) ~ P
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where R(Y,T) denotes the traceless SU(2) character variety of the comple-
mentary tangle, REF(D, U) denotes the perturbed traceless character variety
of the trivial tangle (suitably summed with the Hopf link to allow for a
non-trivial bundle), and R(S?, {4 points}) is the traceless character variety
of the 4-punctured 2-sphere where the tangles intersect. The latter variety
is isomorphic to the pillowcase, which we denote by P [18|, Proposition 3.1].
In [I8, Theorem 1] we calculated the restriction map Lo : R%(D,U) — P,
showing that for certain perturbation data its image was an immersed circle
with exactly one double point, a “figure eight.” Provided that the image
of the restriction Ly : R(Y,T) — P is an immersed 1-manifold transverse to
this figure eight, there is a bijection between generators for C*(X, L) and
intersections of the images of Ly and Lq:

CH(X,L) = oy 7.)2(x)

z€{Image Lo N Image L.}

This perspective allows for the computation of C*(X, L) for an arbitrary
2-bridge or torus knot and for certain pretzel knots (see [18, Sections 10
and 11] and [15]).

Though it made progress towards our goal of making the singular in-
stanton complexes more computable, the approach of [I8] had two serious
drawbacks. The first is that it was not clear whether, given a link (X, L), a
trivial tangle (D, U) C (X, L) can be found for which L; : R(Y,T) — Pisan
immersed 1-manifold transverse to the image of Ly. The second is that even
when such a tangle can be found, we had no way to compute the instanton
differential on the resulting chain group. The purpose of the present article
is to address this second issue.

A hint towards a possible understanding of the differential is gleaned by
viewing our setup through the lens of an ever growing body of conjectured
or established relationships between gauge theoretic and symplectically de-
fined Floer theories (e.g., [2] [3], [IT], T3], 34] 36l B37] discuss relationships be-
tween Yang-Mills gauge theory and symplectic invariants). These relation-
ships are often described as “Atiyah-Floer Conjectures”, and our description
of C%(X, L) suggests looking for a differential on the instanton complex in
terms of the symplectic geometry of the pillowcase. In fact such a differen-
tial exists, and in the first half of this paper we introduce an elementary
Z,/4 relatively graded Lagrangian-Floer type chain complex for appropri-
ate immersions of compact 1-manifolds (restricted immersed Lagrangians)
into the pillowcase. That is, we define a complex generated by intersec-
tions of the images of immersed 1-manifolds, whose boundary operator is
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defined by counting the analog of holomorphic disks connecting them (in
this low-dimensional setting, it will suffice to count orientation preserving
immersions of disks into the pillowcase connecting intersections of Ly and
Ly). In pursuit of our chain complexes, we draw liberally from the founda-
tional work of Abouzaid [I] on Floer homology for immersed Lagrangians in
Riemann surfaces and de Silva-Robbin-Salamon [31] for combinatorial and
homotopy-theoretic aspects of Lagrangian Floer homology in this setting.
Our work here can be viewed both as generalization and specialization of
the existing literature, and our primary contribution is clarifying invariance
proofs and properties of immersed Lagrangian Floer homology in the Z/4
graded setting, and when some of the Lagrangians are immersed arcs (as
opposed to circles). The main result towards this end is Theorem 4.1} which
can be paraphrased as follows.

Theorem 1. Let (Lg, L1) be a pair of restricted immersed 1-manifolds in
the pillowcase such that at least one of L; consists only of circles. Then
there is a well-defined Floer homology group HF(Lg,L1) whose relatively
Z.]4 graded isomorphism type depends only on the free homotopy type of the
pair (Lo, L1).

The second half of the article applies this construction to the situa-
tion described above, when L : REr(D, U) — P is the restriction map from
the perturbed traceless SU(2) character variety of the trivial tangle and
Ly : R (Y,T) — P is the restriction of the perturbed traceless character va-
riety of a tangle T' in a homology 3-ball Y (e.g., the complementary tangle
to an embedded trivial tangle in a pair (X, L) as above). In favorable cir-
cumstances, such as when (Y, 7) is a certain tangle naturally associated to a
2-bridge or torus knot, the map L; : R;(Y,T) — P is arestricted Lagrangian
without perturbations, so that the chain complex C%(Y, T, 7) := CF(Lg, L)
and its homology H h(Y, T, 7), which we refer to as the pillowcase homol-
ogy of (Y,T), are defined. We then calculate the pillowcase homology for
a number of examples, and show that it agrees with the singular instanton
homology in cases where the latter is known (e.g., 2-bridge knots and many
torus knots). More generally, our computations of pillowcase homology agree
with conjectures for I%(S%, K) in many other cases. We make the following
Atiyah-Floer type conjecture:

Conjecture. Given a knot K in a homology sphere X, there exists a 2-tangle
decomposition (X, K) = (Y, T)U (D,U) with (D,U) a trivial 2-tangle, and
arbitrarily small perturbations m, so that Ly : R (Y,T) — P is a restricted
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immersed 1-manifold for which the resulting pillowcase homology HU(Y, T,m)
is isomorphic to I"(X, K) as a Z/4 relatively graded group.

We should note that the holonomy perturbations 7 that we use to make
the traceless character varieties regular and transverse are compatible with
the perturbations used to make the moduli spaces regular in the construction
of I%(S%, K). We should also note that while we have in some sense dealt
with the second drawback from our first paper, in the sense that we have
constructed a differential, the present results still leave us quite far from
achieving our goal of computing I?(X, K). Indeed, we do not yet know how
to construct the general perturbations necessary to even define the pillowcase
homology (nor do we know how to pick the embedded trivial tangle (D, U)).
Moreover, even in the cases that we can find perturbations which make the
pillowcase homology well-defined, it is not true that any such perturbations
will yield a complex whose homology agrees with I*(X, K).

We hope to remedy these concerns for the case of links in the 3-sphere in
a subsequent article, which will develop a spectral sequence from Khovanov
homology to pillowcase homology. Our approach will be to apply our con-
struction to a particular trivial tangle, and then iterate a skein exact trian-
gle satisfied by pillowcase homology in a similar manner to Kronheimer and
Mrowka’s construction. This will involve picking diagrammatically defined
perturbation curves for the diagram of the complementary tangle (Y, 7).
Provided that we can construct this spectral sequence, it will have the ad-
vantage of providing an algebraic route to proving not only that pillowcase
homology can be defined for arbitrary links in the 3-sphere, but also that
it is an invariant of the isotopy type of the link (in reality, we will prove
the stronger result that the quasi-isomorphism type of a certain twisted
complex built from Lagrangian immersions is a tangle invariant living in an
appropriately defined Fukaya category of the pillowcase). Moreover, it will
provide a mechanism for calculating the higher differentials in the spectral
sequence, since they will be combinatorially computable via the Riemann
mapping theorem for polygons. While much remains to be done to achieve
this goal, we are given hope from the fact that we have already established
the skein exact triangle for pillowcase homology in our work-in-progress.

Outline. We now summarize the results of the article. In Section 2l we recall
and extend work of Abouzaid [I] to construct a Lagrangian-Floer theory for
curves in surfaces, and outline the basic properties of the Maslov index.

In Section [3| we recall the construction of the pillowcase P as a quotient
of R? by Z? x Z/2. This is a 2-sphere with four singular points (corners).
Motivated by the main result of our previous article [18], we fix a family
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{L§?}e g of immersed circles with one double point in a certain regular ho-
motopy class. We define a restricted immersed 1-manifold in P (roughly) to
be an immersion Lq : R — P, where either R is a circle and L; misses the
corners of P, or R is an arc with endpoints mapping to the corners; see Def-
inition Choosing Lo = L transverse to a restricted lagrangian L, we
then define a chain complex (C*(Lg, L1),d) with differential § determined
by immersed bigons in the smooth part of P with boundary lying on Ly
and L, following Floer [I4] and Abouzaid [I]. We show how to endow this
complex with a relative Z/4 grading, a variant of an idea due to Seidel [33].

In Section {4l we prove that the resulting Floer homology HF(Lg, L1)
depends only on the homotopy classes of the restricted immersed curves
Lo, Ly (the result paraphrased as the theorem above). This result, together
with some basic observations described in Section [5} provides a set of tools
to calculate HF' (Lo, L1).

In Section [6], we apply this construction to traceless character varieties
of knots. We first recall that the traceless character variety of the pair
(82, {a,b,c,d}) is the pillowcase P. The main theorem of [I8] shows that if
(X, K) is a knot in a 3-manifold and (52, {a,b,c,d}) C (X, K) is a 2-sphere
which separates (X, K) into a trivial 2-tangle in the 3-ball (D,U) and its
complement (Y,T), then generators of Kronheimer-Mrowka’s reduced in-
stanton knot complex can be identified with the intersection of Ly? and
Ly : R(Y,T) — P. Hence, in favorable circumstances, to such a decompo-
sition and an appropriate holonomy perturbation m we can assign the cor-
responding Floer homology HF(LG?, L1), which we denote by H*(Y, T, ).
This leads us to make the Atiyah-Floer conjecture stated above (see Con-
jectures and for more precise statements).

We show in Sectionthat this conjecture holds for 2-bridge knots (where
all differentials are zero in both complexes). Sections [§| and |§| establish some
general properties of R.(Y,T), such as identifying the two boundary points,
and showing that they are stable under holonomy perturbations and they
map to the corners of the pillowcase. We also examine the effect of applying
holonomy perturbations in a collar neighborhood of the separating 2-sphere;
in particular, this is used to make Ly and L transverse.

In Sections [10| and [11]| we turn to calculations for torus knots, which dis-
play a rich and complicated collection of examples. We find two appropriate
perturbation curves in a useful tangle decomposition for any (p,q) torus
knot, and prove (Theorem that there exist perturbations 7 so that
R,(Y,T) is a compact 1-manifold with two boundary points. We extend the
work of [15], identifying R, (Y,T) and its image in the pillowcase, to give
many calculations of HY(Y, T, ) for tangles associated to torus knots. We
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give examples where different tangle decompositions and perturbations of
a knot yield the same Lagrangian-Floer homology, which agrees with re-
duced instanton homology. We give examples with non-zero differentials.
The reader is encouraged to examine Figures [L9| through [25]|to get a feel for
how calculations are carried out.

The upshot of our calculations is that the conjecture stated above holds
for all the calculations of H%(Y,T) for which the corresponding instanton
homology I?(S%, K) is known, and is consistent with the conjectured equality
of ranks of I%(S®, K) and the Heegaard knot Floer homology of K when the
instanton homology is unknown.

As an important final remark, we should say that while this article is
rather lengthy we believe the results are quite natural and can be relatively
easily understood through examples. Thus for the benefit of the reader we
have included a running example which is illustrated in Figures [6, and
and with details of the resulting calculations in Section Understanding
this example, and its relation to the traceless character variety associated
to a 2-tangle decomposition of the (5,11) torus knot (Section should
make our ideas quickly accessible.

2. Immersed Lagrangian Floer theory on a surface

In 1], Abouzaid constructs a Lagrangian-Floer theory for unobstructed im-
mersed curves in an oriented surface. In this section we recall his contruction,
adapted slightly for our purposes. We also recall and relate various versions
of the Maslov index for curves and n-gons in a surface equipped with a line
field.

2.1. Unobstructed immersed curves

Let S be a compact oriented surface, possibly with boundary, with infinite
fundamental group.

Definition 2.1. An unobstructed immersed arc is an immersion L : [0, 1] —
S which maps the endpoints to distinct points in the boundary of .S, which
is transverse to the boundary at its endpoints, and so that some (and hence
every) lift of L to the universal cover of S is embedded.

An unobstructed immersed circle is an immersion of a circle L : ST — S
so that each lift of the composite R < S* L, S to the universal cover of S
is a properly embedded line. Here e(t) = exp(2mit).

Either one of these is called an unobstructed immersed curve.
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Figure 1: An immersed circle Ly in the 4-punctured 2-sphere.

An immersion of a 1-manifold R to S is said to contain a fishtail if there
is an interval I C R whose endpoints are sent to the same point in .S and
so that the resulting loop is nullhomotopic. Lemma 2.2 of [I] shows that an
immersed circle is unobstructed if and only if it is homotopically essential
and contains no fishtails. Similarly, an immersed arc is unobstructed if and
only if it contains no fishtails.

The reader can easily verify that the immersed circle illustrated in Fig-
ure [1|is essential and contains no fishtails, and hence is unobstructed.

2.2. Intersection points

Let Lo : Ry — S and Ly : Ry — S be unobstructed immersed curves which
intersect transversely.

Definition 2.2. Define an intersection point of Ly and L; to be a pair
p = (ro,r1) € Ry x Ry where Ly(rg) = L1(r1).

By transversality and compactness, there are only finitely many inter-
section points. We will frequently abuse notation and write “LgN Ly” for
the set of intersection points of Ly with Ly, or confuse p = (rg,r1) with its
image Lo(ro) = Li(r1) in S.



730 M. Hedden, C. M. Herald, and P. Kirk

Define C'(Lyg, L1) to be the Fy vector space generated by the intersection
points of Ly and Lq.

2.3. Line fields and the Maslov index

We recall some well known facts about the Maslov index in the 2-dimensional
setting for the convenience of the reader, but also to make our conventions
precise.

First, suppose that o : [0,1] — S is a smooth map. Define the degree of
« to be the sum of the local degrees of a over the preimages of a regular
value €% for any small § > 0 chosen so that a/(0), (1) & {e® | t € (0,1]}:

deg(a)i= 3 deg,(a)

r€a~t(edt)

(deg, () denotes the sign of da at ). Typically a(0) # 1 # a(1) so that we
may take 0 = 0. The integer deg(«) has the property that it is additive under
composition of paths, and invariant under homotopy of « rel endpoints.
Define the degree of a continuous path to be the degree of any smooth
approximation with the same endpoints.

Next, suppose that P — B is a principal circle bundle over a space B
and (o, ¢ are two sections. The section ¢ defines a trivialization P 22, B x S!
sending £ to 1 € S'. Given a path a : [0,1] — B, define the Maslov index of a
with respect to £y and ¢, denoted (€, ¢)q, to be the degree of the composite

0,11 % BL P, Bxs! &Sl
[

For the rest of this section we consider a pair (.5, £), where S is an oriented
Riemannian surface equipped with a line field ¢ (so S is either a torus or
else S is not closed). Formally, ¢ is a section of the projective tangent bundle
P(T,S), which we consider as a principal S* = SO(2)/(Z/2) bundle. Hence
¢ defines a trivialization P(7}S) =, S x S'.

An immersion of a 1-manifold R in S defines a line field along R and
hence a Maslov index for any path in R. More precisely, given an immersion
Lo : R — S, the subspaces dLo(TR) C Tp, ()S of L define a section, which
we denote (y, of the pullback bundle L§(P(7:S)) — R. Taking account of
the pullback of the line field ¢, this yields the composite map

(1) R L*P(T.S) 2% Rx S' 5 5!
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Definition 2.3. Given an immersion Lg: R — S of a l-manifold and a
path «:[0,1] — R, the Maslov index p(Lo,?)q, is defined to be p(lo, ),
the Maslov index of o with respect to £y and £. When clear from context
this will be denoted p(a, ¢) or simply u(«).

As explicit examples (and to explain our conventions), if S = R2, £ is
the horizontal line field, and R is the parabola y = 22, then the path « :
[~1,1] — R given by t ~ (¢,t?) satisfies u(a) = 1. If 3:[0,1] — R is given
by B(t) = (t,t?) and v : [-1,0] — R is given by y(t) = (¢,¢?), then u(8) =1
and p(y) =0.

The basic properties of pu, including its dependence on the choice of
the background line field ¢ on S, are well known and easily understood
using obstruction theory. We summarize the facts we need in the following
Proposition.

Proposition 2.4.

1) If Ly : R — S is an immersion of a I-manifold and o, :[0,1] = R
are continuous paths with a(1) = 5(0), then u(Lo,¥)o and p(Lo,?)s
depend only on the homotopy classes of a and B rel boundary. More-
over, M(L07£)a*ﬁ = M(LOa g)a + ﬂ<L07E),8

2) If R = S" and a(t) = 2™ 0 <t < 1, then u(Lo, £)s s unchanged by a
regular homotopy of Ly. More generally, if R is any 1-manifold and « :
[0,1] = R arbitrary, then u(Lo, {)q is unchanged by a regular homotopy
of Lo : R — S which leaves a(0) and (1) and the tangent spaces of
Ly at these points stationary.

3) If ¢ is any other line field, let z € [S, S = H'(S;Z) = Hom(H,(S),Z)
denote the homotopy class of the difference map (i.e., U'(s) = z(s)€(s)).
Here, we identify S* with RP, so that one rotation corresponds to a
rotation of a line through an angle of w. If o : [0,1] — R is a loop, then

(Lo, €)a = (Lo, £)a + 2(Lo © ).
We next define the triple index 7(¢g, (1, ¢).
Definition 2.5. Suppose that s € S. Given a pair £y, 1 of transverse 1-
dimensional subspaces of TS, let £;,t € [0, 1] be the shortest clockwise path

from £y to £1. Then define the triple index

7(lo, 01, 0) = —p(L, O)jo,1) € {0,1}
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When /g, ¢; and ¢ are pairwise transverse, 7({o, ¢1, /) is equal to 1 if £
passes through ¢ when rotating ¢y negatively (clockwise) to ¢1; otherwise
7(lo, £1,¢) = 0. See Figure

5() gl

T = O T = 1
Figure 2: The triple index 7(4g, {1, ¥).

The triple index has the following properties: if £y, {1, > are pairwise
transverse, then

(2) T(fl,fg,fo) = 7(60,61,52) and T(El,f(),o =1- 7'(5(),61,62)

Let Ly : Ry = S, k=0,1,2,...,n — 1, be a sequence of pairwise trans-
verse unobstructed immersed curves. Let p; be an intersection point of Ly_1
and Ly for kK =1,...,n. We consider the indices cyclically ordered, so that
L,, = Lo and pg = p,. Figure [3|illustrates the notation.

Figure 3: A 5-gon.
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Definition 2.6. Given an ordered list Lo, L1,..., L,_1 of pairwise trans-
verse unobstructed immersed curves and a sequence of intersection points
DPn = D05 P1y-- -, Pn—1 With p; € L;_1 N L;, define 71 (p1,...,pn) to be the ho-
motopy rel boundary classes of n-tuples of paths (o, ..., vn—1), where 7 is
a path in Ry from (the first coordinate of the) intersection point pg to pg1.

The reader will notice that p, = py is placed last in the notation, in
contrast to the order of the L; (and ~;) where Lg is placed first. This is
motivated by the fact that it is often useful to treat pg = p, differently than
the rest of the pg, for example in the definition of the differential and, more
generally, the A structure on the Fukaya category of S (see Definition m
below). In particular, this ensures that notation to be introduced below for
an n-gon from (p1,...,pp—1) to p, = po is as simple as possible.

Definition 2.7. Define ma(p1,...,pn) to be homotopy classes of pairs
(u, (Y0, - - -, ¥n—1)) Where (Y0,...,¥n-1) € T1(p1,-..,Pn), and u: D* = S is
a continuous map so that the (counterclockwise) boundary of D? is sent to
the loop

((Looro) - # (Lu-107n-1)) -
There is a well defined forgetful map ma(p1,...,pn) = 71(P1,...,Pn) Ob-
tained by sending the equivalence class of (u,(v0,...,vn—1)) to that of
(707 oo 7'771—1)‘

There is a well defined function

0:m(p1y...,pn) = H1(9),
0705 -3 —1) = = [(Lo o 70) * -+ - % (Lp—1 © Yn—1)]

which vanishes on the image of the forgetful map

772(1717 v 7pn) — 7Tl(pb ) 7pn)

We use a “label clockwise, but orient the boundary of a disk counter-
clockwise” convention. This is why the inverse of the loop Lo(7yp) * - - *
Ly,—1(yn—1) appears in Definition and that the negative sign is used in
the definition of 6.

Given an intersection point py of Li_1 and Ly, m2(pg, px) is a group. If
m2(p1, ..., Pn) is non-empty, then ma(pg, pi) acts on ma(p1, ..., p,) by attach-
ing 7 € ma(pk,pr) to ¢ € ma(p1,...,pn) along the vertex pi to form a new
map of the disk 7 ¢ € ma(p1,...,pn).
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In the case of a pair (Lo, L1), it is easy to check that ma(p1, p1) acts freely
and transitively on ma(p1, p2) for any py for which ma(p1, p2) is non-empty.

Definition 2.8. Given an ordered list Lg, L1,...,L,_1 of pairwise trans-
verse unobstructed immersed curves, intersection points py € Li_1 N Ly, and
an n-tuple of paths (7o, ...,Vn—1) representing a class in m1(p1,...,pn), de-
fine

i
L

MaSg(’}/o, .- /Ynfl) =1- (/‘I’(Lk”g)'}’k + T(Lkv Ly, f)pk)
0

=
Il

We describe a few equivalent formulas for Mas,. First notice that letting
ay, denote the reverse of the path ~y,

ag(t) = (1 — 1),
then
(L, €)y, = =p(Ligs O) .-
Next, —7(Lg, Lg—1,£)p, is equal to u(Mg(t),£)[,1), where My(t) is the path

of lines in 7}, S obtained as the shortest clockwise rotation of T, L; to
Ty, Li—1. Hence

n—1
(3) Mas; (70, - -+, Yn—1) = 1 + Z (1L, €) . + (M (), £)j0,1))
k=0

which, by path additivity of the Maslov index, is one greater than the Maslov
index with respect to the line field £ of the continuous loop in the projective
tangent bundle of S:

M:=TL,_1

s % My_1 % TLp_s

Qp_o ¥ Mn—2 koeee ok TLO|ao * MO;
ie.,
Mas¢ (70, - - -, Yn—1) = 14+ (M, £).

As mentioned before, py plays a special role, which motivates taking the
continuous loop obtained by rotating clockwise at pg, k > 0, but rotating
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counterclockwise at pg:
A:=TLy 1o, , * Mp—1%TLy 2o, ,* My_2%---xTLpla, *x No

where Ny(t) is the shortest counterclockwise rotation of 1), Lo to Tp,Lyn—1
in T),,S. Then using ,

(4) Mas@(fmv"' 77n—1) = /’L(A7£)a
justifying the use of the notation Mas,.

Proposition 2.9. Given an ordered set Ly, ..., L,_1 of pairwise transverse
unobstructed immersed curves and intersection points pr of Lr_1 and Ly,
then Mas, defines a function w1(p1,...,pn) — Z. If €' is another line field
and z € HY(S) =[S, S] is the difference class, then

Masg (70, - - - s Yn—-1) — Mase(Y0, - - -y Yn—1) = 2(0(70, - - -, Yn—1))-

In particular, Mas, depends only on the homotopy class of £, and the com-
posite

M <
7T2(p1,...,pn) —>7T1(p1,...,pn) &Z

is independent of the choice of line field £.
Furthermore, Masy has the properties:

1) (Splicing) If q is another intersection point of Lo and Ly, and ~, 7,
Ver Vi are paths so that (1) = g = 5(0), v,(1) = g =;(0), 0 =
Y 0, and yg = v, * Yy, then

MaSg(’)/(], s a’Yn—l) = Masf(’Y(l)lv RATEER a’)/k—lf}/;c)
+ Masé(’Y}?/Yk—i—h ceoy Yn—1, ’)/(/))

2) (Path reversal) Let ag(t) = vx(1 —t). Then
Masg(an—1,n—2,...,00) =2 —n — Masp(Y0, V1, - - - » Yn—1)-
3) (Cyclic invariance) Masg (Y0, Y1, - -+, Yn—1) = Mase(V1, - ., Yn—1,70)-
Proof. The homotopy invariance property of the Maslov index p and Equa-

tion shows that Masy(7o, ..., Yn—1) depends only on the homotopy class
of £ and the class of (vo,...,n—1) in T1(p1,...,Dn).
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If £, /" are two different line fields and z € H'(S) is their difference class,
Proposition [2.4] gives

MaSg/ (707 ce a’ynfl) - MaSE(VO» ce aryn*l) = M(Av 6,) - M(Av 6)
- Z(0<707 s 7777,—1))-

If (v0,...,7vn—1) lies in the image of ma(p1,...,pn) — 71 (P1,-..,Pn), then
0(70,---,Y-1) =0 in H{(S), and hence Masy(vo, ..., Vn—1) is independent
of /.

The three properties are easily checked using path additivity of p(—,¢)
and the identity (g, 1,¢) + 7(¢1, 4o, ¢) = 1. O

2.4. Immersed polygons

Define an n-gon in R? to be a pair (D, (8o, B1,---,0n_1)) where D C R?
is a closed topological disc, and (Bo, 51, .., 0n—1) is a sequence of smooth
embeddings of the unit interval in R? with image in the boundary of D so
that

1) Br(1) = Br41(0) for k =0,...,n (with 8, = bo),

2) the composite path By *---* 8,_1 forms an embedded simple closed
curve in R?, which forms the clockwise boundary of D,

3) the [k meet transversely at their endpoints.

Definition 2.10. Given a pair (S, (Lo, ..., Ly,—1)), where S is an oriented
surface and Ly : Ry — S, k=0,...,n— 1 are pairwise transverse immer-
sions of 1-manifolds into S, define an an immersed n-gon in S for the or-
dered n-tuple (Lo, ..., Ly,—1) through the points (p1,...,,pn) to be a triple
consisting of

1) an n-gon in R2, (D, (Bo, B1,- -+ Bu1)),

2) a representative n-tuple of paths (y0,...,7m—1) for a class in
Wl(plv"'vpn)a

3) an orientation preserving immersion u : D — S satisfying u o 5, = Ly o
Vk-

We use the brief notation u for the triple

((Da (/807 ce 7671—1))7 (")/07' .. a’Yn—l)au D — S)v
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and we call this an immersed n-gon for the ordered n-tuple (Lo, ..., Ly,_1)

from (p1,....pn-1) to po = pn.
Define the Maslov index of an immersed n-gon in S by

Mas(u) = Masg(Y0, - - -, Yn—1)
for any line field ¢. Since an immersed n-gon represents an element of
T2(p1, - - -, Pn), it follows from Proposition [2.9 that Mas(u) is independent of
the choice of line field 2.

Figure [4] indicates the corresponding model examples of 2-gons and 3-
gons in S = R

Ly q

[ =\ % =X

Figure 4: A 2-gon of Maslov index 1 from p to ¢ for the ordered pair
(Lo, L1) and a 3-gon of Maslov index 0 from (p,q) to r for the ordered
triple (Lo, Ll, L2)

Notice that an n-gon in R? is just a special (embedded) case of an im-
mersed n-gon in the surface S = R2. As such, its Maslov index can be easily
computed by taking, for example, any line field of constant slope. For ex-
ample, the 5-gon of Figure [3| has Maslov index —1. One can see this by
taking ¢ to be the vertical line field. Then p(Lg,¢),, =0 for i =0,1,2,3
and (L4, )y, = —2. Also 7(Ly, Ly—1,0)p, equals 1 for k=0,2,3,4 and
7(L1, Lo, £)p, =0, s0 Mas = 1 — (—2 + 4) = —1. This calculation easily gen-
eralizes to yield the following proposition.

Proposition 2.11. Let (D, fBy,...,Bn_1) be an n-gon in R%. Let k(D) €
{0,...,n} denote the number of non-convex corners of D.
Then any immersed n-gon u : D — S satisfies

Mas(u) = 3 —n+ k(D).
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2.5. The differential and A,, maps.

We recall the definitions of the differential and maps p, next. Our goal is to
relate a Lagrangian-Floer theory to singular instanton homology, which is
the homology of a chain complex rather than a cochain complex, and hence
our orientation conventions differ slightly from the similar constructions in
the literature which typically produce cochain complexes.

Definition 2.12. Fix an ordered n-tuple (Lo, L1, ..., L,—1) of distinct un-
obstructed pairwise transverse immersed curves in .S and intersection points
pr of Ly_1 and Ly.

Two immersed n-gons in S through (p1,...,pn), u: D — S,u': D' — S
are called equivalent if there is an orientation preserving diffeomorphism
Y : D — D' so that u = v o).

The set of equivalence classes of immersed n-gons with Maslov index
3 — n for the ordered n-tuple (Ly, ..., Ly—_1) through (pi,...,p,) is denoted
by Mr,...r. .(P1,...,pn), or simply by M(p1,...,p,) when the order of
the L is clear from context.

When n > 3, the list (p1,...,p,) determines the order (Lo, ..., Ly—1).
Cyclically permuting the n-tuple (Lo, ..., L,—1) and the points (pi,...,pn)
preserves immersed bigons and the Maslov index, and hence

MLOale---anfl(pl’ s 7pn) = ML17---7L1L—17L0 (va s 7p7l7p1)'

When n = 2, care must be taken with the ordering since the ordered pair
(po,p1) does not determine the order of Ly, Ly. In particular, My, 1, (p,q) =
Mr, 1,(g,p), but these are different from My, r,(p,q) = My, ,(¢,p).

Given a finite set X, let #X € Fy denote the number of elements of X

mod 2. Recall that C(Lg, L) is defined to be the free Fy vector space on
the intersection points of Lg and Lj.

Definition 2.13. Fix an ordered n-tuple (Lg,...,L,—1) of unobstructed

pairwise transverse curves in S. Suppose n — 1 intersection points p; of

Li_1 and Ly are given for k = 1,...,n — 1, with the property that for every

intersection point g of Lo and L,—1, My, . 1, ,(P1,...,Pn—1,¢q) is finite.
Define

pna(pr o) = Y, (#FMpgn (P1- - Pa1,0))d
q€LoNL;, 1

in C(Lo, Ln_1).
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If M, . ., .(p1,...,pn) is finite for all choices of intersection points
(p1,.--yPn—1) and py, then p,_1 defines a linear map:

pn—1:C(Lo,L1) @ C(L1,L2) ® -+ ® C(Lyp—2,Ln—1) = C(Lg, Lp—1).

Most important for us is the map w1, which we also denote by 0. Ex-
plicitly

(5) 0: C(L07L1) — C(L()aLl)a 8]3 = Z #ML[)aLl (p7 q) q

q€LoNLy

Recall that we call representatives of My, 1, (p,q) 2-gons from p to ¢ for
(Lo, L1), so Op is the linear combination of intersection points ¢ weighted
by the mod 2 count of 2-gons with Maslov index 1 from p to q.

Since they occur frequently, we call a 2-gon with Maslov index 1 a bigon.
Note that a bigon from p to ¢ for the ordered pair (Lo, L) is also a bigon
from ¢ to p for (L1, Lp), but is not a bigon from ¢ to p for (Lo, L1). See the
paragraph following Definition [2.12)

Figure [5| shows the curve L; of Figure[l|and another unobstructed curve
Ly. These intersect in eight points. T'wo intersection points p, ¢ are indicated,
and the image of a bigon from p to ¢ for the pair (Lo, L1) is shaded. The
reader should check that there is precisely one other bigon between Ly and
L1, joining a different pair of intersection points.

Figure 5: A bigon from p to q.
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The following is proved in Abouzaid’s article [I]. In that article, coeffi-
cients are taken in a Novikov ring (over Z) to account for the possibility that
M1, (g, p) is infinite. Since this will not be the case in our applications,
we set the Novikov variable ¢t equal to 1 and reduce the coefficients from Z
to Fg.

Theorem 2.14 (Abouzaid [1]). Let (Lo, L1) be a pair of unobstructed
transverse immersed curves in S, and assume that My, 1, (p,q) is finite for
all intersection points p,q of Ly and Ly. Then 0 : C(Lgy, L1) — C(Lg, L1)
satisfies 0% = 0.

For example, the chain complex C(Lg, L1) for the pair (Lo, L) illus-
trated in Figure [5] (see also Figures [6] and [§)) is generated by the eight inter-
section points of Ly and L;. Two bigons (one of which is shaded in Figure [5))
define a non-trivial differential 0 of rank 2. The resulting homology has rank
four.

More generally, Abouzaid proves in [I] that the pu,, n > 2 satisfy the A,
relations for all n when (Lo, ..., L,_1) are pairwise transverse unobstructed
immersed curves with no triple points.

We will only use the Ay and As relations in the present article and so
we write them out explicitly. (We refer to [I, 4] for the formulas for the A,
relations.) The As relation says

(6) p2(p1 (), y) + pa(z, pa(y)) + pa(p2(z,y)) =0,

and the Aj relation says

(1) ps(pa(x),y, 2) + ps(x, u1(y), 2) + ps(, y, pa(2)))
+ p2(p2(z,y), 2) + p2(x, p2(y, 2)) + p1(ps(e,y,2)) =0

These hold when all the sets of equivalence classes of n-gons of Maslov
index 3 —n, n = 2,3,4 which appear in the formulas defining each term in
Equation @ or are finite.

3. Restricted Lagrangians in the pillowcase

In this section, we will apply the constructions of Section [2]to the pillowcase.
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3.1. The pillowcase

The pillowcase P is the quotient of the torus by the hyperelliptic involution.
It is a topological 2-sphere with four singular points corresponding to the
four fixed points of the involution. For concreteness, define P to be the
quotient of R? by the group of orientation preserving isometries generated
by the maps

(7a 0) = (7 + 27T7 9)7 (7? 9) = (77 0+ 271‘), (’77 0) = (_'% _9)

(this group is a semi-direct product Z? x Z/2). The quotient map is a
branched covering

(8) R? — P.

A fundamental domain for the action is given by the rectangle (v,6) €
[0, 7] x [0,27]. We will frequently specify a point in P by giving its coor-
dinates (7, 6) € R2. We refer to points in (7Z)? as lattice points. The four
singular points of P, which we call the corners, make up the image of the
lattice points. Our theory will take place in the complement of the corners,
so it is convenient to adopt the notation P* = (R?\ (7Z)?) /(Z* x Z/2).
Note that P* inherits an orientation and a symplectic structure from the
standard orientation and symplectic structure dy A df on R? \ (7Z)? via the
branched covering .

The pillowcase P is illustrated in two ways in Figure [6} One should
view the figure on the left as obtained by folding the fundamental domain
[0,7] x [0,2n] for the branched cover (8)), illustrated on the right, along
[0,7] x {7} and making identifications along the edges as indicated. The
front face is the image of [0, 7] x [0, 7] and the back face is the image of
[0, 7] x [, 27], upside down. In Figure[6] we have also indicated the immersed
circle Ly of Figure

3.2. A line field on the pillowcase

To apply the Maslov index constructions described in Section [2], a line field
on P* is needed. We fix a line field ;s in a particular homotopy class, so
that the Z/4 grading we construct below using the Maslov index matches
the Z/4 grading on singular instanton knot homology. The connection to
gauge theory is explained in Section [6]

The line field #;,¢ is somewhat complicated to depict or calculate with,
as it twists along the edges of the pillowcase. Our approach in calculations
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27TJ

0 7T

Figure 6: Two depictions of the pillowcase P. The immersed circle L; of
Figure [1] is indicated on the right.

is to keep track of the mod 4 Maslov index information determined by #ist
by instead using a pair (¢, z), where ¢ is a simple (constant slope) line field
and z € H'(P*;Z/4) keeps track of the extra twisting of £ relative to £,
as described in Proposition 2.4

Any constant slope line field on R? is invariant under the Z* x Z/2 action
and hence its restriction to R?\ (7Z)? descends to a line field on P*. Call
such a line field a constant slope line field on P*. We will make frequent use
of the slope one line field on R?, and hence we give it the label ¢;.

Definition 3.1. Let z € HY(P*;Z/4) = Hom(H,(P*),Z/4) denote the
unique cohomology class which assigns 1 € Z/4 to each small loop circling
a corner counterclockwise.

Immersed circles v : S' — P* satisfy pu(v,¢1) = 2(y) mod 2. They need
not be equal modulo 4, however. For example, if + is the boundary of a
smoothly embedded disk in P*, then u(v,¢1) = £2 and z(y) = 0. For a small
embedded loop encircling one corner of P counterclockwise, u(v,¢1) =1 =
z(7). For the curve L, illustrated in Figure [I] and the right in Figure [6]
(L1, 61) = 0 = 2(Ly). For the curves L5’ depicted in Figure[7} u(L§?, ¢1) =
0 =z(LgY).
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Definition 3.2. Fix a map 7 : P* — S! so that its class 2 € HY(P*;Z) =
[P*, S is a lift of the class 2. Think of S! as acting freely and transitively
on lines in R?. Define the instanton line field by:

(9) ginst(p) = 2(]))[1(1))'

The homotopy class of the line field ¢j,¢; depends on choice of lift Z, as
do Maslov indices computed using fi,s, however,

(10) w(L, lingt) = (L, 01) + 2(L) mod 4.

3.3. Proper arcs in P

Definition 3.3. Define a proper immersion of an interval L : I — P to be
the image under the branched cover @D of a smooth immersion L : I — R2
which takes the two endpoints of the interval to (7Z)* and the interior to
R?\ (7Z)2. We call the slopes of L at the endpoints (which are determined
by L) the limiting slopes of L. Note that a proper immersion cannot spiral
infinitely many times as it limits to a corner.

In order to easily apply the results of [I], it is convenient to work in a
compact surface with boundary. It will suffice for our purposes to simply
remove a small neighborhood of the corners. More precisely, given some
small § > 0, let Ps C P denote the image under the branched cover of
the subspace of R? obtained by removing open ¢ neighborhoods of the lattice
points.

If R is a compact 1-manifold with boundary and L; : R — P is a proper
immersion (as defined above) on each arc, and maps each circle of R into P*,
then for § > 0 small enough so that the ¢ disks miss the circle components,
L1(R) N Ps is a properly immersed compact 1-manifold in the compact sur-
face Ps. In the following, we will typically write P instead of Pgs, with the
understanding that ¢ is chosen small enough to miss circle components and
result in arc components transverse to the boundary.

3.4. Perturbation functions and a family of isotopies of P

Let
X ={f e C®R,R) | f(x +2m) = f(z), f odd}.
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We call this the space of perturbation functions. It is a vector space, and is
preserved by pre-composition by x — x + 7. In particular, f(7) = 0 for all
f € X. The sine function is a member of X.

The usual terminology in the literature describes perturbation data as
a choice of an embedded solid torus and a conjugation invariant function
on SU(2), which together are used to define a gauge invariant perturbation
of the Chern-Simons functional. In our notation, an element f € X is the
derivative of such a conjugation invariant function on SU(2), restricted to
the maximal torus. The function f determines the effect on the critical set of
Chern-Simons function. More precisely, f determines which flat connections
on the complement of the perturbation solid torus extend to be perturbed
flat on the solid torus, so it is more convenient for us to refer to these
functions in our pertubation data. See Section for more details.

We associate, to each perturbation function g € X', an isotopy of the
pillowcase by:

(11) cg: Px1— P, cy((v,0),5) = (7,0 +s9(7)).

Since c_q4(cq(p, s),8) = p, cg(—, s) is a homeomorphism and hence ¢, is an
isotopy starting at the identity. Notice that ¢, fixes the left and right edges
of the pillowcase.

The formula shows that ¢, lifts to a Hamiltonian isotopy of R? which
is Z x Z/2 invariant and fixes the vertical lines {x = nz}. In particular, we
can think of ¢, as a Hamiltonian isotopy of P*, or of the orbifold P.

3.5. The family Ly? of immersed circles in the pillowcase

In the applications to singular instanton homology in Section[6 we show that
a 2-tangle decomposition of a knot gives rise to two unobstructed immersed
curves Lg,L; in P*, which in turn define a chain complex C(Lgy, L) as
in Section [2| Identification of the immersed circle Ly, which depends on a
parameter € # 0, was accomplished in [I8, Theorem 7.1]. In order to ensure
we can choose Lg transverse to L; we enlarge the family of Ly to include
the isotopies described above.

Let A C P denote the arc of slope one, i.e., the diagonal arc

(12) A={(v,7) | velo,n]}
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Definition 3.4. Fix an ¢ >0 and g € X. Let Ly?: S' — P* denote the
immersion given as the composite of the map

(13) Ly9(t) = (t + esin(t) + §,t —esin(t) + 5 + g(t + esin(t) + §)),
t € [0,2n]

with the branched cover R> — P of Equation , SO

(14) L9 - [0,2n] 255 R2 — P

The image of Ly? in P* for g = 0 and € small is illustrated in Figure m
and also in Figure 5| As € and g approach zero, LY limits to a generically
2-1 map onto A, with two points mapping to corners.

Figure 7: The curve LB’O in P.

Note that L5?(t) = ¢y (L§"(t), 1), so that LG is isotopic to L;". In par-
ticular, the family of immersions Li? for € > 0 small are self-transverse with

one double point. Furthermore, Lg’g is an unobstructed circle in the sense of
Definition 2,11

The following easily proved genericity lemma says that given any unob-
structed immersed curve Li, arbitrarily small €, g can be found so that L,
and Ly are transverse.

Lemma 3.5. Given an unobstructed immersed circle or arc Ly, there exist
€ >0 and 6 > 0 arbitrarily close to zero so that, with g(x) = dsin(z), Ly’
and L1 are transverse.
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3.6. Restricted immersed arcs and circles

To complete the construction of a Z/4 relatively graded chain complex we
refine the notion of an unobstructed curve. Experts will recognize this notion
as a Z/4 variant of Seidel’s notion of a graded Lagrangian ([4, 33]).

Definition 3.6.

A restricted immersed circle in P* is an unobstructed immersed cir-
cle Ly : St — P* which satisfies j(L1(S'), finst) = 0 mod 4, or, equivalently,
w(L1(SY), 41) + 2(L1(SY) =0 mod 4.

A restricted immersed arc in P is a proper immersion on an interval (in
the sense of Deﬁnition Ly : I — P such that Ly (I) N Py is unobstructed
for small § > 0.

A restricted tmmersed curve is either a restricted immersed circle or a
restricted immersed arc.

The curves LY and the curve L; of Figure [1| are restricted immersed
circles. An embedded circle L encircling one corner of P counterclockwise is
unobstructed but not restricted since p(L, ¢1) + z(L) = 2. The image of any
straight line segment in R? joining two lattice points whose interior misses
the lattice is mapped via the branched cover to a restricted immersed
arc.

3.7. A relative Z/4 grading

We revisit the notation and constructions of Section [ in the context of
restricted immersed curves. Recall that for simplicity we write Lj N L; for
the set of intersection points of Lj with L; (see Definition [2.2]).

Definition 3.7. Given an ordered list (Lo, ..., L,_1) of pairwise transverse
restricted immersed curves, define

9T LosLy oLy (Lo M L1) X (Ly M Lg) x -+
X (Ln,Q N Lnfl) X (Ln,1 N Lo) — Z/4
by
gTLQ,Ll,...,Lnfl(p17 AR 7pn) = Ma’s&nst (fy()? AR 777’1—1) mOd 4
for any choice of (yo,...,Yn-1) € T1(P1, .., Dn).
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Proposition 3.8. Given an ordered list (Lo, ..., Ly—1) of pairwise trans-
verse restricted immersed curves,

1) 9710.L1,. L+ (P1,- -, Dn) 15 independent of the choice of (o,...,7m)
and is invariant under simultaneous cyclic permutations of Lo, L1, . . .,

Ln—1 and p1,...,Pp—1,Pn = Po-
2) If q is another intersection point of Lo and Ly, then

9TLoLnyLn 1 (D1s - -3 Pn) = 9TLo Ly, . L, (D1, D2, - - - Pks )
+ gTLo,Lk,Lk+1,...Ln71(q7 pk+1’ AR apnflypn)'

3) 9TLo 1L oriLo(Pn—1,Pn—1,---,D1,Pn)
=2—N—grry.Ly,..L(P1:D2s -, Pn—1,Dn)-

In particular,

Lo, (Ps7) = 97Le, 1. (P, q) + 97101, (¢, 7), 9711, (DsD) =0,

9710.10(4, ) = 97Le,1. (P, ) = —97TL,1. (¢, D),

and if Mrp, r,(p,q) is non-empty, then grr, r,(p,q) = 1.

Proof. The assumption that the Lj are restricted immersed curves implies

that the mod 4 reduction of Masy,  (70,-..,Vn—1) is independent of the

choice of paths 7 and therefore grr, r,,..r. ,(P1,...,pn) is well defined.
The remaining assertions follow from their counterparts in Proposi-

tion 2.0 O

The function grr, 1, : (Lo N L1)? — Z/4 is called the relative Z/4 grad-
ing on C(Lg, L1). Proposition and Equation imply that the differen-
tial (if defined) 0 : C'(Lo, L1) — C(Lo, L1) lowers the relative grading by 1,
ie., (C(Lo,L1),0) is a chain (rather than a cochain) complex.

We thank Matt Hogancamp for formulating the following corollary. Its
proof follows quickly from Proposition 3.8} and we omit it.

Corollary 3.9. Given an ordered list (Lo, ..., L,_1) of pairwise transverse
restricted immersed curves,

n
9T LosLvesLons (P13 P0) = 9T Lo Lol s (@13 ) = D 9L 1 (DR G-
k=1
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Moreover, if there exists a Maslov index ky, immersed n-gon through (p1, .. .,

pn) and a Maslov index kq immersed n-gon through (qu,...,qn), then
n—1
Lo L s (Pr @) = g = kp + Y gre, 1, (ks 8)
k=1

In the next lemma, we provide a practical formula for grr, r, in terms
of the slope 1 line field and the reversed paths ay(t) = v, (1 —¢). We find
this formula to be the simplest to remember, and most of the subsequent
calculations of relative gradings in this paper are obtained using this formula,
without referring back to Maslov index definitions and conventions. The
omitted proof consists applying Equation and Proposition to the
difference class z.

Lemma 3.10. The relative Z/4 grading on C(Lg, L1) is given as follows.

Let p, q be intersection points of Lo with L1, let cg be a path in Ly from
p to q, let ay be a path in Ly from q to p, T(Lo, L1, 1)y and 7(Lo, L1,¢1) the
triple indices with respect to the slope 1 line field ¢1. Then

(15) 9Ly, L, (p7 q) = M(L07£1)ao + M(Llﬂel)al +7—(L0>L17£1)p
— T(Lo, Ll,ﬁl)q + Z(Lo(ao) * Ll(al)).

When the order is clear from context, we write gr(p,q) rather than
97Le.L, (P, q) for the relative Z/4 grading on C(Lg, L1).

3.8. Finiteness of bigons

When (Lo, L) is an transverse pair of restricted immersed curves, we have
constructed a relative Z/4 grading on the vector space C(Lg, L1) spanned
by the intersection points of Ly : Ry — P* and Li : Ry — P. To show that
C(Lo, L) is a chain complex, we must show that M(p,q) = My, 1,(p,q)
is finite for any pair intersection points p,q. To this end we introduce the
notion of an admissible pair.

Definition 3.11. A pair
(L01R0—>P,L11R1 —)P)

of restricted immersed curves in P is called an admissible pair provided:

1) at least one of Ly or L; is a restricted immersed circle,
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2) if g : S — Rpand oy : S' — Ry are loops so that Ly o ag and Ly o oy
are freely homotopic, then both «g and «; are nullhomotopic (this
holds automatically if one of Lg, L is a restricted immersed arc, since
restricted immersed circles are essential),

3) Lo and L; intersect transversely.

If we put a complete hyperbolic metric on P*, then the second assump-
tion is equivalent to the requirement that the unique geodesic representatives
of the homotopy classes of Ly and L are transverse.

Given an admissible pair of restricted curves Lg, L1, to each element of
u € m2(p,q) one can assign a local degree function f,, which is an integer
valued function with domain the set of complementary regions of Lo U L,
i.e., the path components of P*\ (LyU Ly). Its value on a complementary
region is the signed number of preimages of a regular value of any smooth
representative of u.

Lemma 3.12. For each pair (p,q) of intersection points, ma(p,q) is either
empty or contains a unique element.

Proof. Since ma(p,q) is either empty or else ma(p,p) acts transitively on
ma(p, q), it suffices to prove that ma(p,p) contains a unique class, namely
the class of the constant map.

Write p = (po,p1) € Ro x R1. Given (u, (0,71)) € m2(p,p), 70 (resp. 1)
is a loop in Ry (resp. R1) based at pg (resp. p1). If Ry is an arc, then L o,
is homotopic rel endpoints to the constant path, and hence so is yg. If Ry is
a circle, then the second assumption of Definition implies that 79 and
71 are nullhomotopic loops. Either way, the images Lg oy and L; o~ in
P* are homotopic loops based at p.

By the homotopy extension property, (u, (70,71)) may be homotoped in
ma(p, p) so that v and 7, are constant. But then u sends the entire boundary
of the bigon to p, and hence represents a class in mo(P*) = 0. Thus we may
further homotop u rel boundary to the constant map and so ma(p,p) = 0, as
desired. O

Corollary 3.13. Given an admissible pair (Lo, L1), each set M(p,q) is
either empty or contains one equivalence class of bigons.

Proof. Fix intersection points p and ¢, and suppose that M(p,q) is non-
empty. Choose two immersed bigons u,u’ from p to ¢. Lemma implies
that ma(p, q) contains a unique element, so their local degree functions are
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equal. Moreover, since u (and u’) are immersed by an orientation preserving
immersion, f, = f,s takes only non-negative values.

Standard arguments now show that v and u’ can be reconstructed from
the data of their local degrees up to reparameterization, so that u and u’ are
equivalent. For example, see [31, Theorem 6.8], whose proof applies verbatim
to our setting by passing to a compact simply connected submanifold of the
universal cover of P*. O

Remark 3.14. That M(p, q) is finite (which is all we require for the asser-
tions in the present article) when Ly and L; are self-transverse immersions
can be shown even more easily, as follows. Label the closure of the comple-
mentary regions of P*\ ( image(Lg)U image(L1)) by Ai,..., A,. Notice
that the boundary of each A; is a union of arcs «; ; meeting at convex dou-
ble points. The set of all such arcs, {; ;}, can be partitioned into pairs which
map to the same arc in P*, and hence each pair comes with an identification
so that the surface obtained by identifying these two arcs immerses into P*.

If w e ma(p,q) has all local degrees f,(A;) non-negative, take f,(A;)
copies of A;, i =1,...,m, and label the corresponding edges as o j.x, k =
1,..., fu(A;). There are finitely many ways of pairing all the arcs {o ;. }
and gluing them to get a surface which immerses each copy of A; to its cor-
responding complementary region. Any immersed bigon from p to ¢ must be
equivalent to one of these resulting glued surfaces, hence there are finitely
many bigons.

From Theorem Proposition [3.8] and Corollary we conclude the
following.

Theorem 3.15. If (Lo, L1) is an admissible pair, then (C(Lg, L1),0) is a
relatively 7./4 graded chain complex with Fy coefficients.

Definition 3.16. Call the Z/4 graded homology of (C(Lg,L1),0) the
Lagrangian-Floer homology of (Lo, L1) and denote it by HF(Lg, L1).

3.9. Example: Calculation of HF (Lo, L1) for Lo = LS’O and L,
the restricted immersed circle of Figure

The pair (Lo, L1) is admissible. In Figure [8| the eight intersection points of
the Lagrangian L of Figure [I{ with LB’O are labeled p, q,7, s, t,u,v,w. There
is a bigon from p to ¢ and hence gr(p, g) = 1. Similarly, there is a bigon from
w to v and hence gr(w,v) = 1.
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We compute gr(q,s) = 1 in detail next. Let a be the path in L starting
at ¢, heading down and to the left, around the lower left corner, then back
up to s. Let ay be the short arc on L form s back to g. Then p(Lo, £1)q, = 1
(there is one tangency at the upper right part of the figure, near (0,27)),
(L1, 41)a, = 0 since the arc a; is everywhere transverse to the slope 1 line
field ¢1. Next, 7(Lo, L1, 1) equals 0 at ¢ and 1 at s, and z(Lo() * L1(aq1)) =
1 since the loop Lo(ap) * L1(a1) goes once around the lower left corner
counterclockwise. Using Equation we conclude:

gr(¢,s) =14+0+0—-14+1=1.

An identical argument gives gr(t,p) = 1, gr(v,r) =1, and gr(u,w) = 1.

One more calculation is required to complete the calculation of the rel-
ative grading, for example gr(t,r). Take a to be the path in Ly from ¢ to r
which heads down and to the left, around the bottom left corner clockwise,
then back up to t. Take 1 the path in Ly from r back to ¢ which starts by
heading to the right, then down and continuing along L, until it returns to ¢.
Then /J(Lo,fl)ao == 1, H(legl)al == 1, T(Lo,Ll,fl)t == 0, T(Lo,Ll,fl)r = 1,
and z(Lo(ap) * L1(aq)) = 0. Thus

gr(t,r)=1+1+0—-1+0=1.

From these calculations and additivity of the relative grading, we con-
clude that gr(p,7) =0, gr(p,q) =gr(p,u) =1, gr(p,s)=gr(p,w) =2,
gr(p,t) = gr(p,v) = 3. Hence C(Lg, L1) has rank 2 in each grading. There
are only two Maslov index 1 bigons, and hence the differential is given by
Jp = q and Jv = w, and so the homology has rank 1 in each grading.

We introduce a bit of notation that will simplify our descriptions of the
Z/4 gradings. The notation (ng,ni,n2,n3) with n; non-negative integers
denotes the Z/4 graded vector space (over Fo) whose dimension on grading
1 is m;. Thus, for this example,

C(L(),Ll) = (2,2,2,2) and HF(Lo,Ll) = (1, 1, 1, 1)

4. Homotopy invariance

We show that the relatively Z/4 graded group HF (Lo, L) depends only
on the homotopy classes of Ly and L; (rel boundary) in P*. Our argument
follows the approach taken in [I, Proposition 4.1] and presumably will be
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NN\

s

Figure 8: The eight intersection points of Ly and L; generating C(Lg, L1).

somewhat familiar to experts. It is worth noting that we make no require-
ment that the curves be related by a Hamiltonian isotopy.

Theorem 4.1. Let (Lo,L1) and (Lj, L)) be two admissible pairs which
satisfy:
1) the admissible circles Lo, L{, are freely homotopic.

2) If Ly, LY are immersed restricted circles they are freely homotopic. If
L1, LY are immersed restricted arcs, they are homotopic rel endpoints.
Assume also that near their endpoints, L1 and LY intersect only at
their endpoint.

3) Lo, L1, L, LY are pairwise transverse and have no triple points.

Then
HF(Ly, L) = HF(L' , L/l)

as relatively Z/4 graded Fy vector spaces.
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Proof. In order to avoid the proliferation of sub and superscripts, we make
the following notational changes. Set

A=Ly, B:=L, C:=1L,, D:=1L].
And we must show that
HF(A,B)=HF(C,D).

Consider A and C as immersions of the unit circle 4, C' : S* — P*. Also,
consider B and D as immersions of the real line R to P*, with the under-
standing that if Ry is a circle, then B and D are 27 periodic and, if R is an
arc, then we identify the interior of R (which maps by B, D to P*) with R.
In brief, B and D are immersions of R to P* which are periodic if R, is a
circle and proper if R; is an arc. The second condition in the hypotheses im-
plies that outside some compact set in R, B and D are disjoint embeddings,
but with the same limit points at +oo.

Let £ = A(1). The immersion A induces a homomorphism on fundamen-
tal groups. Consider the infinite cyclic subgroup

Z =Tmage Ay : m1(S,1) — m(P*, x)

and let
f:(3,2) = (P, z)

denote the (non-regular) cover corresponding to Z. Thus A : S L P lifts
to A: St = %, with A(1) = 2. R

Since A : S* — 3 generates 71(%,2) = Z = Z, the preimage of A in the
universal cover P* = R? is connected, in fact the image of an immersion
A:R — R2 Since A = Ly is unobstructed, A is an embedding, from which
it follows that A :AS1 — X is an embedding. (In the following, we use the
notation A, B,C, D for lifts of A, B,C to X, and A, B,C, D for lifts to the
universal cover R2.)

It can be easily shown, for example using elementary hyperbolic geom-
etry, that ¥ is diffeomorphic to the cylinder S' x R. Fix such a diffeomor-
phism and the corresponding cover

(S' xR, z) = (P*, ).

Let F:S'x[0,1] — P* be a homotopy from A to C. Let ﬁA: St x
[0,1] — S x R be the unique lift of F satisfying F'(1,0) = 2. Let C(2) =
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F( 1). Then Cisa lift of C' to S x R, and, as with 4, C is an embedding.
In particular, since A and C are homotopic embedded curves in S! x R, A
and C are isotopic.

The following three lemmas will complete the proof of Theorem [£.1]

Lemma 4.2. [If A and C meet transversely in precisely two points, then
HF(A,B)= HF(C,B) and HF(A,D) = HF (C, D) as relatively Z/4 graded

Fy wvector spaces.

Lemma 4.3. There exists a sequence Ao, Ax, ..., Ay of homotopic restricted
immersed circles so that Ag = A, A, = C, and Ay intersects Agiq trans-
versely in two points.

Lemma 4.4. HF(A,B)= HF(A,D) as relatively 7Z/4 graded Fy vector
spaces.

Proof of Lemma@ Up to diffeomorphism of the cylinder S x R, the curves
A and C’ are illustrated in Figure @ Also illustrated is a third curve A’ which
meets A transversely in two points. We assume that A’ is very (C1) close
to A so that the preimage of B is also transverse to A" and induces a
bijection between the intersection points. Three pairs of intersection points
a,be AnB, f,c € ANC,and b,d € AN A are illustrated. Define A’ to be
the image of A" under the covering map S I'x R — P* and let a,b,..., f
denote the images of a, b,... , f in P*.

We now summarize some facts about the maps po and pg, defined in
Definition that will be used to complete Lemma

Lemma 4.5. Consider b as a generator of C(A,C), e as a generator of
C(A,A") and f as a generator of C(C,A"). Then:

1) For anyx € CN B andy € AN B, the set My c p(b,z,y) is finite.

2) For anyx € AN B andy € C N B, the set Mc.a g(f,z,y) is finite.
3) For anyx € ANB andy € AN B, the set Ma a p(e,z,y) is finite.
)

4) For any v € AN B and y € AN B, the set Mac a5, f,z,y) is fi-
nite.

Hence the maps p2(b,—) : C(C, B)—C(A, B), u2(f,—): C(A",B)—=C(C, B),

ua(e,—) : C(A',B) = C(A, B) and us(b, f,—) : C(A', B) = C(A, B) are well
defined.
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N
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~

Figure 9: The curves A, A’, and C in S! x R.

Proof. For the first statement, first note that to each class ¢ € ma(b, x,y)
one can assign an integer local degree to each complementary region of
AUC U B, i.e., to each path component of P*\ (AU C U B) (see the proof
of Corollary .

The homotopy group ma(b,b) corresponding to the pair A,C acts on
ma(b, z,y) corresponding to the ordered triple (A, C, B) by attaching a bigon
from b to b to the vertex of a triangle with vertices b, x,y at b. We show this
action is transitive. From Figure [J] one sees that there exists 71 € ma(b, b)
whose two boundary loops represent generators of m;(A) and m1(C). Let 7,
denote the nth power of 7.

Suppose that ¢1, ¢y € ma(b, z,y). Denote the image of ¢ in (b, z,y)
by (ak, Yk, Bk), k= 1,2, where «y is a path in A from y to b, vy, is a path
in C from b to x and B is a path in B from z to y.

The loop 71 * v5 L'in C based at b represents some multiple of the gen-
erator of m1(C). Hence, by replacing ¢ by 7, - ¢ for the appropriate n, one
may assume that 1 * 5 ! is nullhomotopic. Using the homotopy extension
property we may arrange that v; = ~s.

The triangles ¢; and ¢2 then glue together along v, and 2 to provide
a free homotopy of the loop B * 62_1 in B to the loop ag * a;l in B. Since
A, B form an admissible pair (Definition it follows that aq * ay L and
B1 * By 1 are nullhomotopic, so that a1, as (resp. (1, B2) are homotopic rel
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endpoints. We may therefore replace ¢o by another map in the same homo-
topy class so that a; = a9 and 51 = f2. Gluing ¢ to ¢2 along the boundary
arcs oy, B and 7 yields a class in mo(P*) = 0. Hence ¢1 = ¢2. We have
shown that mo(b, b) acts transitively on ma(b, z,y).

A class 7 € ma(b,b) determines local degrees for each complementary
region of AU C, and hence also for each complementary region of AU C U
B. Lifting to the cylinder, one sees that my(b,b) = ma(b,b) = Z, with n € Z
corresponding to the class 7, € my(b, b), whose local degrees in S* x R\ (AU
C) are n and —n in the two bounded regions of S* x R\ (AU C), and 0 in
both unbounded regions. Let W; and W3 denote the two bounded regions
in $' xR\ (AU C), and Wy and Wy denote the two unbounded regions,
indexed so that moving clockwise around b they are ordered Wy, Wy, W3, Wy
and so that the local degrees of 7, are n, 0, —n, 0. (see Figure with n = ny
and ng = 0.)

If U C P* is a small evenly covered disc neighborhood of b, only finitely
many of the components of the preimage of U in S' x R meet W; and
W3. Suppose that K7 such components meet W7 and Ky meet Wj3. Let
K = K; — Ks. Then in P*, the local degrees of 7, about b are, in clockwise
order, n + Kn, Kn,—n + Kn, Kn.

Fix ¢ € ma(y,x,b) and let dy,dsa,ds,ds denote local degrees of ¢ in the
four quadrants around b. The local degrees of 7, - ¢ are just the sum of the
local degrees of 7,, and ¢. Thus the local degrees of 7, - ¢ around b are, in
clockwise order, dy +n + Kn,ds + Kn,ds — n+ Kn,dy + Kn.

On the other hand, if 7, - ¢ is represented by a Maslov index 0 immersed
3-gon, then all its corners are convex (Proposition and so the local
degrees near b must take the form r + 1,r,r,r moving clockwise around b,
for some non-negative integer r. In particular,

|di —d3 +2n| = |(d1 + n+ Kn) — (d3 —n+ Kn)| <1,

and so at most two of the classes 7, - ¢ support Maslov index 0 immersed
3-gons. Each such class determines a finite number of immersed 3-gons, by
the same argument given in Remark Thus M(b, z,y) is finite.

The proofs of the second and third assertions are the same, and we leave
them to the reader.

The last assertion has a similar proof, so we outline it, highlighting
the differences. The ordered 4-tuple (A,C,A’, B) gives rise to the sets
M(b, f,x,y) and ma(b, f,z,y). Since A, C, A" are homotopic and A, B form
an admissible pair, a similar argument to that used in the triangle case
shows that any two classes ¢1, ¢2 € ma(b, f,x,y) are related by the action
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of ma(b,b) x ma(f, f): one first lets ma(b,b) act on ¢; to make the boundary
paths of ¢1 and ¢2 along A agree, then let mao(f, f) act to make the bound-
ary paths along C' agree. Gluing the two rectangles along these edges yields
a twice punctured sphere, giving a free homotopy from a loop in A’ to a
loop in B, and since (A’, B) forms an admissible pair, these loops are both
nullhomotopic. The argument then proceeds as in the 3-gon case to conclude
that there exists 7,, € m2(b,b) and p,, € ma(f, f) so that 7, - pn, - 1 = ¢2.

Fix ¢ € ma(b, f,z,y) and assume its local multipicities in the four quad-
rants clockwise around b are (dj,da,ds,ds). In the four quadrants near b,
the multiplicities of 7,,, € m1(b,b) are, in clockwise order, n;,0,—n1,0 and
the multiplicities of p,, € ma(f, f) are ng, n9,0,0. Figure [10] illustrates the
contributions of 7,, and p,, to the local multiplicities near b.

ny +ng | N2 C

0 —Nni

A/

Figure 10: The local multiplicities of p,, and 7,, around b.

As in the triangle case, the local multiplicities of 7, - pp, - @ near b are, in
clockwise order, di + ny +ns + K,do + K,d3 — ni; + no + K,dy + K, where
K is a function of ny and ns which takes into account how many of the
preimages of b in S! x R lie in the complementary regions on which 7,
and p,, are supported. But to represent an orientation preserving immersed
4-gon of Maslov index —1, all corners are convex (Proposition , and
hence these numbers must be a cyclic permutation of (r + 1,7, r,r) for some
non-negative integer r. This implies that

]dl—d3+2n1]§1 and ]d1+n1+n2—d4] <1,
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which is only possible for at most four choices of ni,ns. Thus only finitely
many classes in mo(b, f, z,y) support immersed Maslov index —1 rectangles,
and as in Remark this implies that M (b, f, z,y) is finite. O

Continuing the proof of Lemma . Consider b as a generator of C(A,(C).
Any bigon from b to another intersection point of A with C' has a unique
lift to the cover S!' x R, and hence must be a bigon from b to a. From
Figure [0] one sees that there are precisely 2 such bigons up to equivalence,
and hence 0b=2a =0 (we are using Fy coefficients). Thus b is a cycle.
Similar arguments show that e € C(A, A’) and f € C(C, A’) are also cycles.

The map puo satisfies the Ao relation, which, applied to b and an arbitrary
x € C(C, B) (writing 0 instead of p;) says:

0 = pa(0b, z) + ua(b, dx) + Oua(b, x).

Since 9b = 0, this implies that p2(b, —) : C(C, B) — C(A, B) is a chain map.
The cycle f € C(C,A") determines a chain map us(f,—): C(4’,B) —
C(C,B). The product pa(b, f) € C(A, A") equals e, since immersed trian-
gles lift to the cover, and there is precisely one oriented immersed Maslov
index zero triangle for the ordered triple (A,C, A’) from (b, f) to & for an
intersection point & of A and A\’, namely the embedded triangle with z = é.

Similarly, the cycle e = pa(b, f) determines a chain map

/112(6’ 7) : C(AlvB) - C(Aa B)
The Aj relation gives, for an arbitrary generator x of C'(A’, B):

0= MS(ab) fs l‘) + /J’3(b7 af7$) + /1’3(b7 e ax)
+ ,Ug(/,tz(b, f)vw) + MZ(ba ,UJ2(fa 1’)) + a:ufi(ba fvx)
= H(0x) + pa(e, z) + pa(b, —) o pa(f,x) + 0H (x)

where H : C(A',B) — C(A, B) is defined by H(x) = us(b, f,x). In other
words, H is a chain homotopy from the composite

N2(b77)

o, B) 7, oo, B) C(A, B)

to
usz(e,—) : C(A', B) — C(A, B).

Now ps(e, —) is a chain isomorphism: this is an immediate consequence
of the fact that A and A’ are C* close, so that each intersection point p’ of
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A’ with B corresponds to precisely one intersection point p of A with B,
the correspondence induced by a unique Maslov index 0 immersed triangle
associated to the ordered triple (A, A’, B) From (e, p) to p. This proves that
the map ua(b,—): C(C,B) — C(A, B) induces a surjection HF(C,B) —
HF (A, B), for any B.

The fact that ua(b, —) induces an injection HF(C, B) — HF (A, B) for
any B is proved by a very similar argument as surjection, using the immersed
curves illustrated in Figure In this case, C’ is a curve C! close to C, and
one shows that z € C(C’, A) is a cycle, us(z,b) =w € C(C’",C), and the
composite of chain maps

o, B) "7 ca, B) 27, o(c', B)

is chain homotopic to the chain isomorphism us(w, —) : C(C, B) — C(C’, B).
This proves pa(b, —) induces an injection HF(C, B) — HF (A, B) for any B.

QD Q>ﬂ

<

o)

Figure 11: The curves ;1\, 6, and C’ in S x R.

Finally we show that the relative Z/4 grading is preserved. Suppose
that 1,29 € C(C,B) and pa(b,z1) = >, miy; and pa(b, x2) = Zj njz; in
C(A, B), with m;,n; non-zero. Hence there exist Maslov index zero im-
mersed 3-gons for the ordered triple (A, C, B) from (b, z1) to y; and from
(b, z2) to z;j.
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Then Corollary [3.9] gives

gra,B(Yi, zj) = gre(x1,22) + gra,c(b,b) = grp.c(x1, z2).

This says that the chain map ua(b,—) : C(C, B) — C(A, B) preserves the
relative Z/4 grading, and hence also the induced map on homology. The same
argument shows the chain maps po(f, —) and pa(e, —) preserve the relative
grading. Thus, pa2(b, —) induces an isomorphism HF (A, B) - HF (A, C) of
relatively Z/4 graded vector spaces. O

Proof of Lemma . If A and C intersect non-trivially (hellceA in an even
number of points), then the existence of the sequence Ag = A, Ay,..., 4, =
C with _the stated property is an immediate consequence of Lemma 4.2 of
[1. If A and C are disjoint, then one can take a parallel copy of A and
perform a Reidemeister 2 move that introduces a pair of intersection points
with 4 and a pair with B. a

Proof of Lemma [{.4 If B and D are homotopic restricted immersed cir-
cles, then the proof follows exactly along the same lines as the proof of
Lemmas and reversing the roles (and order) of A,C and B, D.

If B and D are homotopic restricted immersed arcs, then a different
proof is needed. It is convenient to put a complete hyperbolic metric on P*
and to let H — P* denote the universal cover. Let B : R — H be a lift of
B. Since D is homotopic rel endpoints to B, there is a lift D : R — H of
D with the same limit points at the circle at infinity. The assumption that
the limiting slopes at the endspoints are distinct and that B and D are
transverse imply that the closures of B and D in the closed disk H intersect
in finitely many points.

If B and D are disjoint, then their closures bound a bigon in H with ver-
tices on the circle at infinity. If B and D intersect in one point, then clearly
there are a pair of bigons with boundary in their closures, each including
one point on the boundary of H. Finally, if BN D consists of more than one
point, then the result of D.B.A Epstein [12, Lemma 3.2] (see also [6, Lemma
A.10]) shows that one can find an embedded bigon in H for B and D.

_ In each of these three cases, one can find a sequence of embedded arcs
B = By, Bi,...,B., =D in H so that By intersects By, transversely in
one interior point and in their endpoints. The argument is illustrated in
Figure (12| The figure on the left corresponds to the first case, when BN D =
(). The figure on the right corresponds to the third case, where an interior
bigon between Band D is used to construct an arc By which intersects Bo =
B in one interior point and D in two fewer points, providing the required
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induction step. If B and D started out with an odd number of intersection
points in their interior, one eventually reaches B, which meets D in one point
in their interior, and if they started out with an even number of intersection
points in their interior, one reaches B whose interior misses D in which
case one can add one more step as in the first case.

g B (o) Zi
R AvAL

D By

Figure 12: Configurations of E, El and D in H.

 Thus, proving HF (A, B) = HF (A, D) reduces to the case when the lifts
B and D intersect transversely in one interior point, as illustrated in Fig-
ure [13| (after perhaps exchanging the notation for B and D).

We choose an arc D’ close to and isotopic rel endpoints to D as in
Figure Not shown is the restricted immersed circle A but we assume
that there are no triple points of A, B, D. This ensures that A misses a
neighborhood of x containing u and w. We also assume that the bigons near
the ends involving e, g, f, and z are small enough that that A misses them.
We use these facts, the fact that immersed n-gons lift to the universal cover,
and the A, relations to finish the proof of Lemma [4.4]

The counterpart to Lemma [4.5]is much simpler in the case of arcs. Con-
sider the ordered triple (A, D,B). lf pe AND,qe DNB,and r € AN B,
and then mo(p,q,r) is either empty or contains a single class. If fact, if
(ug, (i, i, Bi)) € ma(p,q,7), i = 1,2, then since B and D are arcs we may
use the homotopy extension property to assume 51 = B2 and 1 = ~2. Then
gluing u; to ug along a; and B; shows that ajog !is nullhomotopic, so that we
may assume further than v, = 7. Since mo(P*) = 0, it follows that u; = g
in ma(p,q,r), As before, this implies that M(p,q,r) is finite, and hence

9:C(A,D) x C(D,B) — C(A, B) is defined. The same argument applies
to the triple (A, D, D) to show that us : C(A, D) x C(D,D") — C(A, D)
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Figure 13: B, D, D’ in H.

is defined, and to the 4-tuple (A4, D, B,D’) to show that ug: C(A,D) x
C(D,B) x C(B,D'") — C(A,D’) is defined.

Using the same notation for points in the universal cover and their im-
ages in P*, we see that 0z = 0 in C'(D, B), hence the Aj relation shows that
pa(—,z): C(A,D) — C(A, B) is a chain map.

Observe that d(y + z) = 2w = 0in C(B, D’). Also, e + f = ua(x,y + 2)
in C(D,D’). Furthermore, d(e + f) = 2u = 0. Hence

ps(—,e+ f): C(A,D) — C(A, D)

is a chain map. In fact , ua(—, e + f) is a chain isomorphism, since D is close
to D’ and A misses neighborhoods of +o00, so there is a unique intersection
point w’ of A with D’ for each intersection point w of A with D. If w lies
between e and u, then ps(w, e) = w’ and pa(w, f) = 0, and if w lies between
x and f, then pa(w, f) = w" and pa(w,e) = 0.

Substituting these calculations into the As relation

0= pu3(Ow,z,y+ 2) + us(w, 0z, y + z) + ps(w, z,0(y + 2))
+ p2(p2(w, ),y + 2) + p2(w, po(x,y + 2)) + Ouz(w, z,y + 2)
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and defining H : C(A, D) — C(A,D') by H(w) = us(w,z,y + z) yields
0= Ho(w) + po(p2(w, ),y + 2) + po(w,e + f) + 0H (w).

So that the chain isomorphism us(—, e+ f): C(A, D) — C(A, D’) is chain
homotopic to the composite C(A, D) a2, C(A,B) Halmyte), C(A, D).
Hence the chain map ps(—,z) : C(A,D) — C(A, B) is injective for all re-
stricted immersed circles A so that (A, B) and (A, D) are admissible.

The reader can safely be left the task of showing that

pa(—,x) : C(A,D) — C(A, B)

is injective for all restricted immersed circles A, by producing an embedded
B’ close to B and constructing a right inverse to us(—, ). This is done by
analogy with the symmetry between Figures [0 and The fact that the
relative Z/4 gradings is preserved is proved as before.

This completes the proof of Lemma [4.4] and hence also the proof of
Theorem K11 O

Corollary 4.6. HF(LyY, Ly) is independent of € > 0, the function g and
the homotopy class of L.

5. Calculus

In this section, we make four technical but useful observations which stream-
line the calculation of HF(Lg,L;) when Lo = LY. These calculations
demonstrate the ease of working with the slope 1 line field ¢; and Equa-

tion .

5.1. gr(zq,z_) =1

We show gr(x4,x_) =1 when x is a transverse intersection of L; with the
diagonal arc, and xy,x_ the two corresponding intersection points with
Lo = Ly? for € > 0 and g small, as indicated in Figure We take g to be
the path in Lg starting at £ which heads down and to the left, around the
bottom left corner, and back up to z_. The path «; from x_ back to x4 is
the short path which contains the diagonal intersection point x.
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In this case,

,LL(O[O,El) = 17 /,L(O[l,gl) = 07 T(LO,Ll,El)x+ = 07
7(Lo, L1,01)z_ =1, and z(apxaq)=1

yielding gr(x4,x_) = 1.

Figure 14: The intersection points 4 and x_ of Lo with L;.

5.2. gr(p+,9+)

Suppose that L intersects the diagonal arc A transversely and that Ly =
Lg? for € > 0 and g small. Suppose p, ¢ are intersection points between L
and A. Let py,qs be the corresponding intersection points with the part
of Lg in the front of P which has slope slightly less than 1, as indicated in
Figure

Then the arc ag along Lo from py to gy can be chosen to lie entirely
on the front face of the pillowcase, and has slope slightly than 1, hence
(g, £1) = 0. Moreover, since the slope of /1 equals 1, Ly is transverse to
A, and € and g are small, the triple index terms 7 at py and ¢y are both
zero. This leaves only the terms p(aq, ¢1) and z(apaq) in the formula for the
grading. Therefore, in this situation

(16) gr(p+,qs) = plar, b1) + z(ao * az).

A similar calculation applies to the other pair p_,q_.
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5.3. Distinguished point on a restricted immersed arc

If R is an arc, LoN L; may (and in our applications will) contain a dis-
tinguished point which may be used to promote the relative grading to an
absolute grading. To understand the meaning of the following lemma, the
reader should locate the distinguished point ¢ in the examples illustrated

below in Figures 22] and [23]

Lemma 5.1. Suppose that L1 : R — P is a restricted immersed arc and
one of the endpoints (which we denote by r ), maps to the corner (0,0) of
P with limiting slope bounded away from 1. Then for all small €, there is
a unique continuously varying intersection point v$ of Ly and Ly satisfying
lime o7y =7ry.

Proof. This follows simply from the requirement that limiting slope bounded
away from 1. O

If L, satisfies the hypothesis of Lemma then, given the additional
data of a choice of ¢ € Z/4, one can endow HF(Lg, L1) with the absolute
Z/4 grading which places r¢ in grading o.

In our applications below, L1 will be associated to a knot K in a homol-
ogy 3-sphere. In this setting the hypotheses of Lemma hold and we take
o to be the signature of the knot K.

5.4. Vertically monotonic circles

A special class of restricted immersed circles, which we call vertically mono-
tonic, arise in many of our examples and have particularly simple Lagrangian-
Floer homology.

Definition 5.2. Suppose that L1 : R — P is a restricted immersed circle,
with domain parameterized by [0, 27|, and let Ly = (y(¢),0(t)) : [0, 27] — R?
denote its lift to the branched cover ().

e Call Ly : R — P* wertically monotonic if il misses the vertical line
segments v = km, k € Z, and if its tangent slope satisfies \%fq] > 1.
Thus L1 winds around the pillowcase without intersecting the left or
right edges, and is everywhere transverse to the line field ¢; (as well
as the slope —1 line field).
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e Define the vertical degree of L1 to be the absolute value of the difference
of the vertical coordinates of Li(27) and L;(0). Thus

1
d=—|0(0) —0(27)|.
5-10(0) — 6(2m)
Notice that the vertical degree is a homotopy invariant. In particular,
it is well defined for any circle homotopic to a vertically monotonic
circle.

Proposition 5.3. Suppose that L1 : R — P* is a vertically monotonic re-
stricted immersed circle. Then the vertical degree d of L1 is even. Moreover,
for € small enough, all differentials are zero and HF (L, L1) has rank % in
each of the 4 grading degrees.

Proof. Since L1 : R — P~* is vertically monotonic, it is transverse to the line
field ¢; and hence pu(L1(R),¢1) = 0. Moreover, LyY is transverse to L for
all small enough €, g. Fix a transverse Ly = LY with ¢, g small.

Since L : [0, 27] — R? misses the vertical line segments y = km, z(L;(R))
is equal to twice the vertical degree d of L. Since z(L1(R)) = —u(L1(R))
mod 4, 2d = 0 mod 4 so that d is even.

Let p, g be intersection points of Ly and L; and suppose that there were
a bigon (u, o, ) from p to g. The bigon misses the corners of P and hence
lifts to a bigon (@, &g, @1) in R? with one edge along the preimage of Li and
one along the preimage of L.

For € > 0 sufficiently small, the connected components of the preimage
in R? of Lg are very close to lines of slope 1 through (0, k7), and hence dq is
nearly a straight segment of slope 1. On the other hand, since the tangent
lines to L; have slope bounded away from 1, the lift &;, which starts at
ap(1), cannot terminate at &o(0), contradicting the fact that &g and &
bound a bigon. Hence, for sufficiently small €, there are no bigons, so that
all differentials are zero. The circle Lq(R) winds monotonically around P,
intersecting the diagonal arc A in d points, and hence intersecting Lg in 2d
points, so that HF'(Lg, L1) has rank 2d.

It remains to calculate the relative gradings. Since L; is transverse to
¢1, Equation [16] shows that this reduces to calculating z. One vertical wind
around P encircles two corner points and therefore changes z by 2 mod 4.
Hence the generators come in g pairs, and, as explained in Section and
indicated in Figure alternate between contributing in (relative) gradings
0,1 and 2, 3. This completes the argument. O
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Proposition [5.3] can be strengthened by combining it with Corollary
as follows.

Theorem 5.4. Suppose that Ly : R — P* is a restricted immersed circle
which misses the left and right edges of the pillowcase. Then the vertical
degree d is defined and even, and for any € >0 and g, HF(L3Y, L1) has
rank % in each of the 4 grading degrees.

Proof. Since L; misses the right and left edges of the pillowcase, it is ho-
motopic to a vertically monotonic immersed circle. The proof is therefore a
consequence of Corollary O

5.5. Pillowcase homology

Hereafter, a restricted immersed 1-manifold in the pillowcase P is a disjoint
union of a single restricted immersed arc and a finite number of restricted im-
mersed circles. More precisely, suppose Lj : R — P is a map of a 1-manifold
R to the pillowcase, where R is the disjoint union of an arc Ry and finitely
many circles Ry, ..., R,, and the restriction of L; to each component is a
restricted immersed curve. Assume €, g are chosen so that (Lg?, L1|g,) form
an admissible pair for each i.

Define the pillowcase homology of L to be the direct sum of the homolo-
gies HF(LgY, L1|R,),

HY(Ly) = ®fgHF(Ly?, Li|R,).

Each summand is relatively Z/4 graded, although initially there is nei-
ther a relative nor absolute Z/4 grading on all of H%(L;) if L; is not con-
nected. The notation H? is adopted in order to indicate the relationship to
the reduced instanton homology I H?.

6. Pillowcase homology of 2-stranded tangles and reduced
instanton homology

6.1. Traceless representation varieties of 2-stranded tangles

We now introduce traceless character varieties. We identify SU(2) with the
set of unit quaternions throughout. For the basic properties of the unit
quaternions and their Lie algebra, we refer the reader to Section 2 of [I§].
A traceless quaternion means a quaternion with zero real part.
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Given a pair (A, B) consisting of a (compact) manifold and a properly
embedded codimension 2 submanifold, call a representation 7 (A\ B) —
SU(2) traceless if it sends all meridians of B to the conjugacy class C(i) of
i. Define the traceless character variety (or traceless flat moduli space)

R(A,B) ={p:m(A\ B) = SU(2) | p is traceless}/conjugation

An embedding of pairs (Ay, By) C (A2, By) induces a restriction map
R(AQ,BQ) — R(Al,Bl).

Consider a decomposition of a pair (X, K), where K is a knot (or link)
in a homology 3-sphere X, and X contains a separating 2-sphere S C X
which intersects K transversally in four points. We assume that one of the
two regions S bounds is a 3-ball D, and that DN K is a standard trivial
2-stranded tangle.

(17) (Xa K) = (Yv T) U(S,{a,b,c,d}) (Da U)

We refer to as a 2-tangle decomposition associated to the knot (X, K).
We fix an identification D = B3 so that

U= {(=501) 11e [0 )

and fix an identification 9(D,U) = (S?, {a,b,c,d}) witha = (7 7) b=
1 1 1
(_ﬁ’o’ﬁ)’c:(_ﬁ’o’_\f) d—( 0,—\/) We call (Y,T) a 2-
tangle associated to the knot (X, K).
Observe that to recover (X, K) from (Y,T) requires only a choice of

identification

V2’

L:O(Y,T) = (5% {a,b,c,d})

(in the same way that a Dehn filling is determined by a manifold with torus
boundary and an identification of its boundary with the boundary of a solid
torus). We will omit the choice of ¢ from the notation since the identification
will be clear from context.
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To a 2-tangle decomposition of (X, K), one associates the diagram

R(S,{a,b,c,d})

(18) R.(Y,T) R

where m, 7. refer to certain holonomy perturbations 7" =mUm,, and
R, (M, L) denotes the corresponding m-perturbed traceless character variety.

Holonomy perturbations are used to make the Chern-Simons function
(whose Morse theory defines instanton homology) have only non-degenerate
critical points. They are constructed and explained in the context of the
traceless character varieties in [I8, Section 7] and also in Section below.
They were introduced in gauge theory by by Donaldson, Floer, Taubes, and
others [9, 14, 34].

It is not necessary for this article to understand precisely what the f
superscript means beyond knowing the statement of Theorem [6.2] below.
But roughly, RErE(D, U) refers to Ry, (D,U U E), where E is an additional
small meridian component to one of the components of U and one considers
representations which come from flat connections on an SO(3) bundle with
wy dual to an arc spanning U and FE. This construction, introduced by
Kronheimer-Mrowka in [2], is an ingredient in the definition of reduced
instanton knot homology. We refer to [I8] 21] for the details.

The space R(S?,{a,b,c,d}) is a pillowcase. Indeed the following sim-
ple proposition is proved in [I8] (and elsewhere). In the statement we abuse
notation and let a, b, ¢, d also denote the oriented meridians of the four punc-
tures.

Proposition 6.1 ([18], Proposition 3.1). There is a surjective quotient
map

Y R? = R(S% {a,b,c,d})

given by

b(7,0) ai, b e, e ™, de 7R
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The map 1 induces a homeomorphism of the pillowcase P with R(S?,{a,b,
c,d}). The four corner points are the image under v of the lattice (7Z)?,
and correspond to abelian non-central representations. All other points cor-
respond to non-abelian representations.

We urge the reader not to confuse (S2,{a,b,c,d}) with the pillowcase
P = R(S% {a,b,c,d}), a homeomorphic space!

The only fact we will need to recall about R (D,U) is the follow-
ing, which follows immediately by combining [I8, Theorem 7.1] with Theo-
rem (9.1 proved below.

Theorem 6.2. Given any € > 0 and g € X, there is a holonomy perturba-
tion we depending on € and g so that REFE(D, U) is a circle, and the restriction
to the pillowcase (the northwest map in Diagram (@) is given by a map

L§? of Definition .

What Proposition [6.1]and Theorem [6.2 tell us is that a decomposition of
a knot or link into two 2-tangles, one of which is trivial, gives the pillowcase
P and the map Lg? : ST — P*.

The remaining input needed to define the pillowcase homology (as in Sec-
tion associated to the 2-tangle decomposition is a restricted immersed 1-
manifold. Loosely speaking, L : R(Y,T) — R(5?%,{a,b,c,d}) is generically
a union of a restricted immersed arc and some number of restricted im-
mersed circles. The arc arises as one component of the space of traceless
binary dihedral representations of 7 (Y \ T'), and the endpoints are the two
conjugacy classes of abelian traceless representations (Theorem 3.2 of [15].)

It is not always literally true, however, that Ly : R(Y,T) — P is a re-
stricted immersed 1-manifold. It is true for certain tangles associated to
2-bridge knots [I8| Section 10], and for some, but not all torus knots [15].

In fact, there exist decompositions of knots for which R(Y,T'), rather
than being a smooth 1-manifold, is instead a singular real algebraic variety
of dimension greater than or equal to 1. For example in [I8, Section 11]
(see Figure it is shown that for a tangle associated to the (3,4) torus
knot, R(Y,T) is a singular 1-dimensional variety, homeomorphic to the let-
ter ¢. Many more examples are given in [I5]. In general one can construct
examples so that R(Y,T) is highly singular and has strata of high dimen-
sion by placing local knots in one of the strands of a 2-tangle. Hence the
traceless character variety R(Y,T) must first be desingularized before we
can construct its pillowcase homology. In order to preserve the relationship
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to gauge theory and instanton homology, we use holonomy perturbations to
smooth R(Y,T).

The space R(Y,T) for a certain natural 2-tangle decomposition of a
torus knot is typically singular ([15, [18]). We prove below that any torus
knot admits a 2-tangle decomposition and an arbitrarily small holonomy
perturbation 7 so that R, (Y,T) is a compact 1-manifold with two boundary
points, and L; an immersion which satisfies all the requirements to be a
restricted immersed 1-manifold except possibly the requirement that it have
no fishtails. Based on index calculations and examples, it is reasonable to
expect that for any knot, arbitrarily small holonomy perturbations exist
which make Ly : R;(Y,T) — P a restricted immersed 1-manifold.

Conjecture 6.3. For any 2-tangle (Y,T) in the 3-ball (or a homology 3-
ball), there exist arbitrarily small holonomy perturbations w so that R (Y, T)
is a compact 1-manifold with two boundary points and the restriction map
Ly : R.(Y,T) — R(S? {a,b,c,d}) is a restricted immersed 1-manifold on
each component in the sense of Definition [3.6.

Given a 2-tangle decomposition of a knot and a perturbation 7 which
satisfies the conclusion of Conjecture denote by H%(Y, T, r) the resulting
pillowcase homology of Ly : R (Y,T) — P,

HYY,T,n) = HY(Ly) = ©; HF(Ly’, L,

R,)-

We will simplify this to H*(Y, T) if the perturbation 7 is clear from context.

As explained in [18], if € # 0 is small and Ly = LS’O intersects L; trans-
versely, then the intersection points of Ly and L also form generators of the
reduced instanton homology I*(X, K). Theorem implies that this holds
for Ly = Ly? for any small g € X.

We state this formally.

Proposition 6.4. Given a small perturbation m which makes L1 : R (Y, T)
— P a restricted immersed 1-manifold, and given a transverse Ly = Lg?
with € and g small, there is a (possibly different) differential

8KM : C(L(),Ll) — C(Lg,Ll)

so that the homology of (C(Lg, L1),0xnr) is the reduced instanton homology
I'"(X,K).
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The differential Ok s is defined by Kronheimer-Mrowka in terms of sin-
gular instantons on cylinders (X, K) x R. There is a well known procedure
for producing approximate instantons from bigons in character varieties as-
sociated to lagrangian intersection diagrams; see for example [36, Section
4]. Tt is therefore not unreasonable to conjecture that there is a relationship
between I%(X, K) and HY(Y,T,n). Indeed, we have found these to be iso-
morphic in every example we have computed. We extend Conjecture [6.3] to
an optimistic “Atiyah-Floer” type conjecture:

Conjecture 6.5. Given a knot (X, K) in a homology 3-sphere, there ex-
ists a 2-tangle decomposition as in Fquation , such that for suitably
small generic perturbations w, Ly : Rx(Y,T) — P is a restricted immersed
1-manifold and HH(Y, T, ) is isomorphic to the reduced instanton homology
I'"X,K).

In the remainder of this article we establish some partial results and carry
out calculations which provide evidence for these conjectures. The reader
should realize, however, that there are no non-zero differentials in C'(Lg, L1)
between generators which lie on different path components of L;. We know
of no reason why this should be true for the instanton complex. It is likely
that there are differentials in the instanton complex which don’t appear in
C(Lg, Ly). For example, the pairs of generators p,, p— near each intersection
point p of L1 with the diagonal arc A, described in Section [5.1], arise from
a holomony perturbation which “tilts” a Bott-Morse circle of critical points
of the Chern-Simons function [I8]. Analogy with finite-dimensional Morse
theory suggests that there exists a cancelling pair of gradient flow lines (i.e.,
instantons) from py to p_ in the Kronheimer-Mrowka instanton complex,
whereas there are no bigons connecting these points of intersection.

6.2. Absolute grading

We remark that, by construction, H u(Y, T, ) splits as the direct sum over
the path components Ry, R1, ..., R, of R(Y,T):

Hh(Ya Tvﬂ—) = @ZHH(LI

R,)-

and that each of the summands admits a relative Z/4 grading. The relative
grading of the summand corresponding to the arc component Ry can be
promoted to an absolute Z/4 grading for small perturbations, using the
knot signature, as follows.
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Assume that (X, K) := (Y, T) U, (D, U) is a 2-tangle decomposition of a
knot K in an integer homology sphere X. The signature of K, o(K), is an
even integer. There are two traceless abelian representations of w1 (Y \ T'),
r+ and r_ distinguished by the property that 4 extends to 71 (X \ K) (and
r_ does not). The point r; is a Morse critical point of the Chern-Simons
function, and a regular point of R(X, K). In particular, it remains regular
after small perturbations.

The points ry and r_ are endpoints of an embedded arc of binary di-
hedral representations, which, by Theorem 3.2 of [I5], is the image in the
pillowcase under the branched cover of an embedded linear segment join-
ing two lattice points. This line segment has slope different from 1 (the slope
is different from 1 since the 2-fold branched cover of a knot in a homology
sphere is a rational homology sphere, so the integer h(bc~!) in Theorem 3.2
of [I5] is non-zero). In particular, the arc of binary dihedral representations
is properly immersed (in fact, embedded) in P.

Small perturbations only change the slopes near the endpoints slightly,
and one can keep them bounded away from 1. By Lemma there is a
unique intersection point 7 of R(Y,T') and Lg? for all small €, g. We promote
the relative grading of the subcomplex corresponding to the component Ry
by declaring

(19) gr(r§) = o(K)

for small perturbations.

We have not found an elementary approach to promote the relative grad-
ing of the generators of the subcomplexes associated to the circle components
R;,i >0, and so we will use the following awkward definition as a conse-
quence of Proposition choose a generator on each circle component and
declare its absolute grading to be the one assigned to it by Kronheimer-
Mrowka in [24] Proposition 4.4].

A proof that the relative Z/4 grading of generators of C'(Lg, L) (Defini-
tion coincides with the grading assigned the these generators (by Propo-
sition of singular instanton knot homology by [24, Proposition 4.4] is
given by using splitting theorems for spectral flow [5] 8, 26]. We outline how
this is done, referring to [5] for details.

First, the relative grading is defined to be the mod 4 reduction of the
spectral flow of the Hessian of the Chern-Simons function (acting on sin-
gular connections) along a path joining a pair ag, a; of critical points, i.e.,
perturbed flat connections. If the restrictions of ag, a; to Y\ T' can be joined
by a smooth path of flat connections, i.e., by a smooth path in R, (Y, T),
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then the approach of [5, Theorem 3.9] can be modified to show that the
spectral flow equals the Maslov index along the path of the tangent space of
the immersed 1-manifold R,(Y,T) — P* in the pillowcase, with respect to
some a priori unknown line field f;,s, and hence is given as in Definition

Changing the homotopy class of a line field determines a difference class
z € HY(P*;Z/4). The identification of fi,g is therefore equivalent to the
identification of z. Its identification with the explicit class of Definition [3.1]is
completed by calculating a few examples of 2-bridge knots, whose instanton
homology is known, to deduce the values of z on a basis of 1-cycles in Hy (P*).

This argument, combined with the additivity of spectral low under com-
position of paths of self-adjoint operators, also shows that if L1 : R; — P*is
an immersion of a smooth circle component R; C R, (Y, T), then Ly satisfies
the condition p(L1(R;), linst) = 0 mod 4 required of restricted immersed cir-
cles. In this case, one uses the fact that the two smooth paths in R; joining
ap to a; must give the same relative Z/4 grading, since the relative grading
in the singular instanton complex is well defined (and independent of the
tangle decomposition). As the proof of Proposition shows, this is only
possible if Ly : R; — P* satisfies (L1 (R;), linst) = 0 mod 4.

7. Examples: 2-bridge knots

Two-bridge knots can be described as the union of two trivial tangles along
a 4-punctured sphere. We recall some of the results about their tangle de-
compositions from [I§]. In particular, we will show that for such a tangle
decompositions of a 2-bridge knot K, Ly : R(Y,T) — P is a restricted im-
mersed (in fact linearly embedded) arc which meets LB’O transversely in
det(K) points, and that all differentials in the Lagrangian-Floer complex
are zero.

These facts, together with the identification of the relative Z/4 grad-
ings in C(Lg, L1) and the singular instanton complex via a spectral flow
splitting theorem as explained above, imply that H%(Y,T) is isomorphic to
the reduced instanton homology I%(S%, K), which is known [24] to equal
the reduced Khovanov homology Kh"*¢(K™) of the mirror of K for a 2-
bridge knot. We conjectured in [18] that placing the distinguished generator
r¢ in grading o(K') agrees with Kronheimer-Mrowka’s absolute grading [24,
Proposition 4.4] (a conjecture borne out in all our calculations) and, modulo
this point, for 2-bridge knots, H%(Y, T), I*(S®, K), and Kh™?(K™) (with its
bigrading (7, j) reduced to i — j + 1 mod 4) contain the same information.
In particular, Conjecture holds for 2-bridge knots.
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Suppose that (p, q) are relatively prime integers, with p odd and positive.
Then there is a 2-bridge knot K = K(p, ¢) determined by the condition that
its 2-fold branched cover is the lens space L(p,q). In [I8, Figure 13], a 2-
tangle decomposition (S3, K) = (Y, T) U (D, U) determined by a continued
fraction expansion of % is described. It is proved that R(Y,T) is a smooth
arc and the restriction map to the pillowcase is given, in R? coordinates, by

R(Y,T) = [0,7] 2t (qt,(q — p)t) € P.

Thus L; : R(Y,T) — P is a restricted embedded arc. In particular, no
perturbation 7 is needed to smooth R(Y,T"). Hence we can choose Ly = Lg’o
for a small € and form the chain complex C(Lg, L1). Since L1 maps in linearly
and Lg is close to the linear arc A, there can be no immersed bigons, and
therefore all differentials are zero.

There are p intersection points of L; with Lg. In fact, there are
intersection points of (y(t),6(t)) = (¢t, (¢ — p)t), t € [0, 7] with the arc A,
these occur at

p+1
2

= (g2t (q — p)2nt — p=1
(20) xz—(q;,(q p);),ﬁ—o,l,..., L

The points zp, £ > 0, each give rise to a pair of intersection points :(:j, T,
of Ly with L§, and the point xy gives rise to the distinguished point r¢ of
Lemma Hence C(Lo, L1) and H%(Y,T) have rank p. The intersection
points are illustrated in the case of K = K(11,—5) (72 in the knot tables)

in Figure [T5]

We show how to calculate the gradings. First, the observation of Sec-
tion shows that gr(:cz, x, ) = 1. Next, recall that we promote the relative
grading to an absolute grading by setting gr(r%) = o(K) mod 4, where o (K)
denotes the signature of the knot K. Thus the determination of all other
gradings is reduced to calculating gr(re, wZ) for{=1,...,p.

The slope % is not equal to £1 since p and ¢ are relatively prime.
There are four different cases to be considered, depending on the slope. For
simplicity we assume % is positive and greater than 1; the other cases are
treated similarly.

For each m?,ﬁ =1,...,p, one can find a path ag in Lo from r% to xz’
which lies on the front of the pillowcase. One can then take a path a4 in Lq
from .1‘2_ back to 7% . Notice that since L is an arc, the path a; is unique.

We are in the situation explained in Section [5.2| and can calculate grad-
ings using the Equation . Since the tangent line to Ly is everywhere
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transverse to the slope one line field ¢1, Equation simplifies further to
gr(ri,x?) = z(apa1).

The same formula holds when % < —1. When —1 < % <1, an en-
tirely similar calculation yields gr(r$,z, ) = z(apa1).

‘We summarize:

Theorem 7.1. Let K = K(p,q) C S% be a 2-bridge knot with p > 0 odd,
and equip it with the 2-tangle decomposition described in [18, Figure 13].
Then Ly : R(Y,T) — P is a linearly embedded arc of slope %, and hence

a restricted immersed arc. Taking Lo = Lgo with € > 0 small, C(Lg, L) has
rank p, generated by the points r< and xz, z,,0=1,... %. The Z/4 grad-
ing 1s determined by

gr(ry) = o(K), gr(z, z;)=1

and, letting z denote z; if [T > 1 and z, if [T 2] <1

gr(ry, =) = z(a)

where « is the loop in P* which starts at r<, follows Lo to xj, then re-
turns to rS. along L1, and z € H'(P*;Z/4) is the class of Definition|3.1 All
differentials are zero and hence C(Lg, L) = H'(Y,T).

The knot K(11,—5) has signature o = 2, and hence gr(r{) = 2. The
generators are illustrated in Figure The loop o which follows Lg from 7¢
to xf on the front of the pillowcase and then follows L; back to r¢ satisfies
z(a) = 2. Hence gr(r,z{) = 2. A similar calculation applies to the other
:z:éIr and yields
>)

+)_

=0, gr(ry,z7)

gr(ri,zy) =1, gr(ri,z =3, and gr(rj_,afr) =2.
The gradings gr(r,z, ) are computed using the fact that gr(xzr, zr,) =1
Thus, in the notation introduced above, H (Y, T) = (3,2,3,3).

The choice (p,q) = (11,6) gives a different tangle decomposition for
the same knot K = K(11,—5) = K(11,6). The resulting homology is again
(3,2,3,3).

The choice (p,q) = (5,—3) yields a tangle decomposition of the Fig-
ure 8 knot. The map L; is illustrated (with different notation) in [I8] Fig-
ure 16]. There are 5 generators, ri,x{c,wf, and computing gradings us-
ing z yields gr(r$) = o(K) = 0,gr(zf) = 3,gr(z3) = 2, and hence H" =
(1,1,2,1). This agrees with the calculation of reduced instanton homology
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Figure 15: The intersection of Ly and L; in P for the 2-bridge knot
K(11,-5).

and reduced Khovanov homology of the Figure 8 knot. Choosing (p,q) =
(5,2) gives a different tangle decomposition for the Figure 8 knot, but again
yields H* = (1,1,2,1).

The trefoil knot corresponds to (p,q) = (3,—1); one calculates H? =
(1,0,1,1). The same answer is obtained when taking instead (p,q) = (3,2).

Theorem can easily be used (and implemented in a computer algebra
program) to compute HY(Y,T) = I%(S3 K) = Kh"4(K™) for any 2-bridge
knot K. In particular, this gives a novel approach to computing the reduced
Khovanov homology of 2-bridge knots (with its bigrading (i, j) reduced to
i —j+ 1 mod 4).

We point out that the main new ingredients contained in this discussion
of 2-bridge knots which were not implicit in [18] are first, the construction
of the complex C(Lg, L) associated to a tangle decomposition of a 2-bridge
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knot, and second, the use of the cohomological invariant z € H'(P*;Z/4)
and the Maslov index to define and compute the relative grading.

8. Some general properties of R(Y,T)

8.1. Structure of R(Y,T) near the abelian points

Suppose that (Y, T) is a 2-tangle. Our goal (not fully realized in this article)
is to establish Conjecture[6.3] To this end, we start by showing that the two
boundary points of R,(Y,T) are well defined for small perturbations, and
correspond to the precisely two abelian representations in R(Y,T'), namely
the conjugacy classes of the two representations

re :m(Y\T)— {£1,+i} C SU(2)
uniquely characterized (since H1(Y \ T') = Z @ Z, generated by p1, p2) by

re(p) =1, ra(pe) = +i

The following proposition proves that r; and r_ each have a neigh-
borhood in R(Y,T) homeomorphic to a half-open interval. The outline of
the argument is as follows: the space R(Y,T) is identified with a subspace
of the space of conjugacy classes of representations of the 2-fold branched
cover (the equivariant representations in the sense of [32]). Then a Kuranishi
model argument shows that the representation space is locally a half open
interval near the lifts of r4.

Proposition 8.1. For a 2-tangle T in an integer homology ball Y, each of
the two abelian traceless representations r+ has a neighborhood in R(Y,T)
homeomorphic to a half-open interval. The restriction map to the pillowcase
P properly embeds each half-open interval, taking the endpoints to distinct
corners with limiting slope not equal to 1.

The proof is an extension of [I5, Theorem 3.2]. That theorem identifies
the subvariety R (Y, T) C R(Y,T) of traceless binary dihedral representa-
tions with the disjoint union of one arc and a number of circles (the number
determined by the torsion submodule of the homology of the 2-fold branched
cover of Y branched along T'). The endpoints of the arc are precisely r and
r_, and the arc of binary dihedrals is linearly embedded into the pillowcase
with slope different from 1 (see Section [6.2). Hence what must be shown



The pillowcase and traceless representations 11 779

is that there are no non-binary dihedral representations in small enough
neighborhoods of r4.

We begin with a lemma which permits us to transfer the problem to one
about the 2-fold branched cover of (Y,T'). To this end, Let ¢ : m (Y \T) —
{£1} be the unique homomorphism sending both p; and pe to —1 (this is
just the homomorphism r%r =72). Let B — Y denote the corresponding 2-
fold branched cover. Denote the preimage of T' by T'. Consider 7 (B \ T) as
the index 2 subgroup of 71 (Y \ T, i.e., as the kernel of ¢. Let fi1, fia denote
the meridians of the two components of T. Hence, in m (Y \ T), fi; = w2

Denote by Ri4(B, f) the space of conjugacy classes of representations
of 71 (B \ T') which take the fi; to £1. Since the square of a traceless element
of SU(2) is —1, restriction to the index 2 subgroup defines a map

R(Y,T) — R_{(B,T).

Lemma 8.2. Pointwise multiplication by c defines a Z/2 action on R(Y,T)
with fized points the traceless binary dihedral representations. The restriction
map R(Y,T) — R_1(B,T) is constant on Z/2 orbits and embeds the quotient
R(Y,T)/Z/2 C R_1(B,T).

Assuming Lemma the proof of Proposition [8.1| can be completed as
follows.

Denote by by 7+ the restrictions of 74 to the index 2 subgroup 71 (B \ T).
Then 71 takes values in the center {£1} of SU(2) and 74 (fi;) = r4(u?) =
—1.

It follows that pointwise multiplication of a representation by 7y defines
a continuous map R_1(B,T) — Ri(B,T). This map is a homeomorphism
(in fact real analytic isomorphism) with inverse given again by multiplication
by 7.

Let x(B) denote the space of conjugacy classes of (all) SU(2) representa-
tions of 71(B). The Seifert-Van Kampen theorem shows that the restriction
X(B) = Ry(B,T) is a homeomorphism. Hence we have a sequence of maps:

R(Y,T) — R(Y,T)/Z/2 C R_1(B,T) = R\(B,T) = x(B).

It therefore suffices to prove that a neighborhood of 7.7y in x(B) is
homeomorphic to a half-open interval. Notice that 7,74 : m(B) — SU(2)
is the trivial representation, and 7.7_ : m1(B) — SU(2) is central but non-
trivial (it takes uipe to —1).
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The 3-manifold B has torus boundary and has first homology isomor-
phic to Z & O for O an odd torsion abelian group, since 1" is a tangle in a
homology ball (see [15, Section 3] for details).

The Kuranishi method identifies a neighborhood of ¢+ in R(B) with
K=1(0)/5U(2), where K : HY(B; su(2)ad ¢, ) — H?(B; su(2)ad ¢, ). The ad-
joint action of c4 is trivial since c4 is central, and hence these are untwisted
cohomology groups with coefficients in su(2) = R3. The universal coefficient
theorem gives H!'(B;R3) = R3 and H?(B,R?) = 0, so that c+ has a neigh-
borhood homeomorphic to R3/SU(2) = R3/SO(3) 22 [0, 1), as desired.

Proof of Lemma|8.2 First, if p represents a conjugacy class in R(Y,T'), then
the function cp(7y) = c(7)p(7) is again a representation, since c takes values
in the center {+1}. Moreover, since ker c = 71 (B \ T'), the restrictions of p
and cp to m(B\ T) agree. Since ¢* = 1, this shows that multiplication by
¢ defines a Z/2 action on R(Y,T) and the restriction R(Y,T) — Ry(B,T)
factors through the quotient of this Z/2 action.

Conversely, suppose p1,p2 : m1(Y \ T) — SU(2) are two traceless repre-
sentations whose restriction to the index 2 subgroup 71(B\ T) are equal.
For clarity, denote this restriction by g, s0 p = pilkerc = P2|kere-

We claim that, perhaps after conjugating ps without changing its re-
striction to ker ¢, p1(u1) and pa(p1) commute. To see this, first note that for
each 7 € kerc,

(21) pr(parpy ') = p(uarpy ') = pa(parpy )
so that
(22) [p2(p1) L p1(p1), (7)) =1 for all 7 € kere.

If p has non-abelian image, Equation (22)) implies that ps(p1) ™' p1(u1)
is central, so that pa(p1) = £p1(p1) and hence they commute. If p has cen-
tral image, then conjugating ps by any element of SU(2) does not change
its restriction to kerc, and since pq(u1) and p2(u1) are traceless, they are
conjugate. Hence ps can be conjugated so that pi(u) = p2(u) and their re-
strictions to ker c agree.

Consider as a final case that p has abelian non-central image. We show
that again ps can be conjugated without changing its restriction to kerc to
make p1(p1) and p2(p1) commute. Choose a traceless quaternion q so that
the image of p lies in the circle subgroup S := {eeq}. Then Equation
shows that po(u1)~1p1(u1) lies in S. If one of p1 (1) or pa(pu1) lies in S then
they both do since their product does, and hence they commute. Suppose
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that neither lies in S. Equation shows that conjugation by pi(u1) and
p2(p1) leaves the circle S invariant. This in turn shows that there exists an
element of S which conjugates pa(p1) to pi(u1). This conjugation leaves S
fixed, so that we have shown that in this final case, ps can be conjugated

without changing its restriction to ker ¢ to make p1(u1) and pa(p1) commute.
Define f : m (Y \T) — {£1} by the formula

fn= pi(p)pa(pua) ™" if v € kere.

{1 if vy €kerc
Then it is easy to see that f is a homomorphism (using the fact that pj (1)
and po(p1) commute). Moreover, a simple calculation shows that

p2(7) = f(7)p1(7) for all y € m (Y \ T).

Note that there are exactly two possibilities for f since ker ¢ has order 2. In
fact, the two possibilitites are the trivial homomorphism and c. This proves
that the restriction map R(Y,T') — R(B,T) factors through an injective
map on the orbit space of this Z/2 action.

It remains to prove that the fixed points are exactly the traceless binary
dihedral representations ([I5, Definition 3.1]). Suppose that cp is conju-
gate to p for p € R(Y,T). Thus there exists g € SU(2) so that gp(v)g~! =
c(y)p(v) for all v € m (Y \ T). In particular, gp(y)g~! = p(v) for all v €
ker c¢. Since c(u1) = —1, g # £1, so that g lies in a unique circle subgroup
which we denote S.

If p sends every 7 € ker ¢ to the center {£1}, then the image of p lies in
the subgroup {1, £p(u1)} of order 4, and p is traceless binary dihedral.

On the other hand, if there exists v € ker ¢ such that p(y) # +1, then g
and p(7y) commute, and hence p sends all of ker ¢ into S. Furthermore, for
each ~ in the non-trivial coset, p(y)"'gp(y) = —g, which implies that p(v)
is traceless and S U p(7)S is (a conjugate of) the binary dihedral subgroup
containing the image of p. Hence p is traceless binary dihedral. O

8.2. Perturbations

Proposition shows that R(Y,T) is a 1-manifold with boundary near the
two abelian representations r1. The space R(Y,T) is a real algebraic variety,
but in general it may be singular. To prove Conjecture for some (Y, T)
one must first desingularize R(Y,T').



782 M. Hedden, C. M. Herald, and P. Kirk

There are various ways to smooth the singular space R(Y,T); we re-
strict attention to holonomy perturbations since these have a gauge theo-
retical counterpart which permits us to compare our constructions to those
of [21], 24]. In particular, with this choice of perturbations, Proposition
identifies the generators of the reduced knot instanton homology chain com-
plex with the intersection points of R.(Y,T) and Lg in the pillowcase for
any appropriate perturbation .

We recall how to understand holonomy perturbations on the level of
representations. What follows can be taken as a definition. The reader should
keep in mind, however, that the perturbed equations we give below arise from
a perturbation of the Chern-Simons functional on the space of traceless
SU(2) connections. In particular, what we call a perturbation function is
essentially the derivative of the conjugacy invariant function on SU(2) which
is used to perturb the Chern-Simons function.

A holonomy perturbation is associated to a pair m = (E, f), where

1) E is an embedding £ : S' x D> C Y \ T (we use E also as notation
for the image F(S! x D?)), and

2) f is a perturbation function, i.e.,
feX={feC®R,R)| [ isodd, 27 periodic}.

Call a representation p: m (Y \ (TUE)) — SU(2) a w-perturbed traceless
representation if p takes the meridians of T to C(i), the conjugacy class of i,
and satisfies the perturbation condition on the meridian up = E({1} x 0D?)
and longitude A\g = E(S' x {1}):

(23) p(Ap) = 9 implies p(pp) = /(9

for @) € su(2). Then define the perturbed traceless flat moduli space R (Y, T)
to be the space of conjugacy classes of m-perturbed traceless representations.
We refer the reader to [10, [14], 34]; expositions tailored to our notation can
be found in [16, Lemma 61] and [I8, Section 7].

More generally, one can choose a collection F;,¢ =1,...,n of disjoint
embeddings, and corresponding functions f; define 7 = {FE;, f;}, and take
R, (Y, T) to be the space of conjugacy classes of m-perturbed traceless repre-
sentations, defined by requiring the perturbation condition to hold for
each i. One useful choice is f;(x) = ¢; sin(z) for some small ¢;.

The following proposition shows that the two abelian representations are
stable with respect to (sup norm of f;) small perturbations.
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Proposition 8.3. For small enough perturbations, R;(Y,T) contains ex-
actly two conjugacy classes of abelian representations. These are sent to
distinct corner points in the pillowcase by the restriction map R (Y,T) —

R(S? {a,b,c,d}).

Proof. Let py, po denote meridians of the two components of T'. Let ug,, ...,
pg, denote the meridians of the pertubation curves. Then puq, p2, g, - .., tE,
generate Hi (Y \ T).

Let £;(p1, po, pgys--- 1E,), ¢ =1,...,n, express the longitude Ag, in
H(Y\T) as a linear combination of the meridians of the meridians.

Identify the diagonal maximal torus in SU(2) with the circle S' and
let 77+2 = (S1)"*+2. For each 6 > 0, Let 7(J) denote the perturbation data
obtained by multiplying each f; by §. Then define a self-map of 7712

Q(é) . Tn+2 N Tn+2

as follows. The first two coordinates encode the traceless condition and are
given by

Q(5)1(691i, 692i7 eOé1i, e eoéni) — —6291i,
Q(d)Q(eeli 692i eali eoz"i) _ —6292i
) 5 Sy )

The remaining coordinates encode the perturbation condition:

Q((s)i+2(691i7 €92i, eali, el eani) _ eoa,iie—&fi(&-(91,92,a1,...7an))i_

Then Q(8)1(1,...,1) parameterizes the perturbed traceless abelian repre-
sentations (not conjugacy classes) with values in the diagonal maximal torus
of SU(2), with respect to the functions 4 f;: the point (e11, %21 el eani)
€ Q(6)7(1,...,1) corresponds to the representation

m(B\ (TUE)) = H(B\ (TUE)) = S' c SU(2)

sending each meridian to its corresponding coordinate.

The proof is completed by observing that Q(0) is a covering map, hence
a submersion. Since submersions are stable, Q(6)7!(1,...,1) varies by an
isotopy for small 4. O
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For any perturbation 7, restricting to the boundary punctured sphere
induces a map to the pillowcase

R.(Y,T) — R(5% {a,b,c,d}).

The two abelian representations guaranteed to persist after small perturba-
tions by Proposition [8.3| necessarily are mapped to corners of the pillowcase,
since the restriction of an abelian representation is abelian, and non-corner
points are non-abelian, as one can see from Proposition [6.1

Putting the Propositions and together, we conclude the
following.

Theorem 8.4. Let (Y,T) be a 2-tangle in a Z-homology ball. Then, for any
sufficiently small holonomy perturbation m, there are two abelian perturbed
flat representations r+ € R, (Y, T) with neighborhoods Uy in R(Y,T) half-
open intervals. The restriction map

R:(Y,T) — R(S? {a,b,c,d})

restricts to an immersion on Uy UU_ which takes r4 to distinct corners of
the pillowcase, with slope # 1.

Thus Theorem reduces the problem of defining H*(Y,T) for a 2-
tangle T" to finding an (arbitrarily) small holonomy perturbation 7 so that

1) R:(Y,T)\ {r4,r_} is a smooth l-manifold.

2) The restriction of Ly : R:(Y,T) — P to the arc component is an im-
mersion into P* containing no fishtails.

3) The restriction of L; : Rx(Y,T) — P* to each circle component is an
immersion into P* containing no fishtails.

It is well known that calculations of Zariski tangent spaces using
Poincaré-Lefschetz duality show that if R.(Y,T) is a smooth l-manifold
away from the two endpoints, then the restriction map Ly : R (Y,T) — P
immerses R.(Y,T)\ {ry,r—} into P*. Thus for a given (Y,T), what is
needed is a holonomy perturbation which desingularizes R(Y,T) so that
the resulting restriction to P has no fishtails.
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9. Perturbing near the 2-sphere

In this section we construct holonomy perturbations in (52, {a,b,c,d}) x I
which induce a family of Hamiltonian isotopies of the pillowcase. These were
used in Sections [3] and [6] to make Ly and L; transverse. These will also be
used for other purposes below and in further work.

Consider the product pair
(8% x I,{a,b,c,d} x I).

Its traceless character variety is P, and the traceless character variety of its
boundary

(5% x {0,1}, {a,b,c,d} x {0,1})

is P x P. The restriction map
R(S% x I,{a,b,c,d} x I) = R(S* x {0,1},{a,b,c,d} x {0,1})

is the diagonal map P — P x P, which we consider as the graph of the
identity map P — P.

Given suitable perturbation data 7 for (5% x I, {a,b,c,d} x I), the re-
striction map

R(S?* x I,{a,b,c,d} x I) = R(S? x {0,1},{a,b,c,d} x {0,1})

gives a Lagrangian correspondence c; : P — P. Choosing a path from the
trivial perturbation to 7 gives a homotopy of the identity to c¢,. We focus
on a special class of 7 for which ¢, is an explicitly defined diffeomorphism.

Figure [16] shows the 4-punctured 2-sphere with the four based meridian
generators a, b, ¢, d based at a point s. An additional curve e is also indicated.

Let E: S* x D? — S2\ {a,b,c,d} x I be a tubular neighborhood of the
curve obtained by pushing e into the interior of S? x I. Fix a perturbation
function f € X and let § = (E, f) denote the perturbation data. Recall that
f can be any smooth odd, 27 periodic function.
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Figure 16: Generators a, b, ¢, d for the fundamental group of the 4-punctured
sphere and an embedded curve e.

Theorem 9.1. With perturbation data § = (E, f), the map
P — R5(S% x I,{a,b,c,d} x I

induced by the inclusion S* x {0} — S% x I is a homeomorphism, and the
composite

P—)R(;(S2 X I7{a,b,C,d} XI)
L R(S? {01, {asbye,d} x {0,1)) = P x P

is the graph of the self homeomorphism (smooth away from the corners) of
the pillowcase

(24) cs: P— P, cs(v,0) = (7,0 +2f(v+m)).

Using the 1-parameter family of perturbations tf,t € [0,1] gives an isotopy
from the identity Id : P — P tocs: P — P.

Proof. Let a’,b/,c/,d" and ug be based loops in m1(S? x I'\ ({a,b,c,d} x
TUE),s) so that a/,, ¢, d represent the meridians of the punctures in the
other boundary component S? x {1}, and pg denotes the meridian to the
perturbation curve E. These curves are illustrated in Figure where, for
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convenience, the four-punctured sphere is identified with a three-punctured
disk.

Figure 17: The perturbation curve F in the cylinder

The curves a, b, ¢, d, i generate m1(S? x I'\ ({a,b,c,d} x TUE), s) and
the relations

ba = Cd7 a = a, b = bv d = HECLE, d = MEd,aEa

hold. The natural longitude Ag for E is represented by the homotopy class
ba.

As explained in [I8] Proposition 3.1] (see Proposition above), any
representation of (a, b, c,d | ba = cd) taking a, b, c,d to traceless elements is
conjugate to one given by

(25) arsi, b e, e e, de ek,

for some (v, #) € P. Thus, to any representation p : 71 (S? x I'\ ({a,b,c,d} x
IUFE))— SU(2) sending a,b,c,d to traceless elements, one can associate
(7,0) € P. Then p(Ag) = p(ba) = —e¥* = O™k,

If p€ Rs(S? x I,{a,b,c,d} x I), then p satisfies the perturbation con-
dition (see Equation (23)):

(26) plug) = &/ 0T,
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Hence

(27) p(a/) — i, p(b,) _ ewki’ p(C/) _ ef(’y-|—7r)k69ki€—f(’y-|-7r)k _ 60—&—2f(7—|—7r)k

Conversely, given any (7, 0) € P and e®¥ there exists a unique traceless rep-
resentation p : 71(S% x I'\ ({a,b,c,d} x [UE)) — SU(2) and p(ug) = k.
This satisfies the perturbation condition, and hence

p € Rs(S* x I,{a,b,c,d} x I)

provided ek = ¢f(7+mk,
We have shown that to each (7, 0) € P there exists a unique p € Rs(S? x
I,{a,b,c,d} x I), given by , , and . Moreover the restriction

R5(S% x I,{a,b,c,d} x I) = R(S? x {0,1},{a,b,c,d} x {0,1}) =P x P

has image (v, 60,7,0 + 2f(y + 7)).

This shows that d = (F, f) induces the map cs(,6) = (7,0 + 2f (v +
7)), as asserted. This map is invertible, with inverse (v, 8) — (7,0 — 2f(v +
7)), and hence is a homeomorphism. O

We stated Theorem [9.1] for a specific curve e in S? \ {a,b,c,d} but one
may conjugate by any diffeomorphism ¢ of the punctured sphere to replace e
by ¢(e), generating many more homeomorphisms of the pillowcase. Although
not used in the rest of this article, these perturbations will be important in
forthcoming work.

Theorem 9.2. Given any relatively prime pair of integers p,q and ¢ € X,
there exists a holonomy perturbation along a single curve in

(8% x I,{a,b,c,d} x I)
inducing the homeomorphism

Cpa(7,0) = (v — qo(py + q0),0 + pod(py + ¢b))

of the pillowcase. This homeomorphism is Hamiltonian isotopic to the iden-
tity.

Proof. Given (v,0) € R?, Let 9(v,0) : m(S%\ {a,b,¢,d}) — SU(2) be the
traceless representation of Proposition [6.1
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Let g: (S2%,{a,b,c,d}) — (5%, {a,b,c,d}) be the half-Dehn twist diffeo-
morphism supported in the hemisphere containing ¢ and d which sends ¢
to d and d to c. (Thus g? is the Dehn twist about the curve labeled e in
Figure ) Choosing a base point near a, the induced automorphism on
m1(S?\ {a,b, c,d}) is given by

gi(a) =a, g«(b)=0b, gi(c)=d, gi(d)= dted.
Then 9(7,0)(g.(b)) = €™ and ¥(7, 0)(g«(c)) = e=7kj, ie,,
g*w(’% 9) = (’77 0 — 7)

In other words, g induces the linear map on the pillowcase:

o)) ()

Let h: (5% {a,b,c,d}) — (S%,{a,b,c,d}) be the diffeomorphism which
fixes (a neighborhood of) a, and cyclically permutes b,¢,d. This can be
chosen to induce the automorphism (52 \ {a, b, c,d}) is given by

he(a) =a, heb)=ct, hec)=d, h(d)=(cd) b (cd).

Then (7, 0)(h. (b)) = —e’ i = e+MKi and (7, 0)(g.(c)) = e=VKi, ie., h
induces the affine map on the pillowcase:

(20)  w* (g) _ 4, (g) v, A= (_01 1) L ov= (g) .

The matrices

_ 4 _ (0 —1 _ 4 (11
S=A,A —<1 O) and T—AhAg _<0 1)

are the standard generators of the modular group. It follows that given any
relatively prime pair of integers p, ¢, there exists a word w = w(g, h) in g and
h so that the resulting diffeomorphism w : (S2,{a,b,¢,d}) — (S?, {a,b, c,d})
satisfies

(30) w(3)=a(})+u a= (29

where ps — gr = 1 and u is a vector whose entries are integer multiples of 7.
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The diffeomorphism w induces a level preserving diffeomorphism
w: (8% x I,{a,b,c,d} xI) = (S? x I,{a,b,c,d} x I).

This diffeomorphism takes perturbed flat connections with respect to the
perturbation curve E of Theorem to perturbed flat connections with
respect to w(E).

To simplify notation, write ¢(z) = 2f(x + 7) + uy where f € X is the
function used in Theorem [9.1] and w; is the first component of the vector u.
Note that ¢ € X if and only if f € X. Then the self-homeomorphism of the
pillowcase given by perturbing along w(E) is the conjugate (w*)~*
which we compute

ocsow”,

((w*) ™ o c50w*) (g)
wra(a()
~ () <A (g) Tu+t <<Z>(p’y+29+u1)>>
=A™ (A <g> +u+o(py+qb +w) (?)) - A
= (g) +o(py + ¢0 + 1) (;q> .

If wq is an even multiple of 7, then we are done, since these are pillowcase
coordinates. If u; is an odd multiple of 7, replace ¢(x) by ¢(x + m); this
induces a bijection of X.

To see that ¢, 4 4 is Hamiltonian isotopic to the identity, first note that if
¢ € X, then so is t¢ for all t € R. Hence cp 44, t € [0,1] is an isotopy from
the identity to ¢, 4 4. Consider ¢ 4 14 as a flow on R2. Then the tangent field
to this flow at (v, 0) equals X = (—qo(py + ¢0), pod(py + qb)).

Define the smooth function g : R — R by g(0) = 0 and ¢/(z) = —1¢(x).
Then g is even and 27 periodic since ¢ is odd and 27 periodic. The func-
tion F(v,0) = g(py + qf) descends to the pillowcase P since g is even and
periodic.

An elementary computation shows that with w = dy A df,

WX, =)0 = dFo0)
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so that X is the Hamiltonian vector field associated to F', and hence ¢, 4 ¢
is Hamiltonian isotopic to the identity. O

10. Holonomy perturbations to smooth the traceless
character variety of a 2-tangle decomposition
of a torus knot

For the rest of this article we provide a detailed study of the traceless char-
acter varieties associated to a certain 2-tangle decomposition of a torus knot
T, - In the present section we establish that (53, Tp.q) admits a 2-tangle de-
composition as in Equation [17] which verifies Conjecture [6.3| except possibly
for the absence of fishtails.

In the next section we identify Ly : Ry (Y,T) — P for a number of T},
and verify that in all our examples, L is indeed a restricted immersed 1-
manifold, and that H*(Y,T) is either isomorphic to I7(S?, Tp.q), or, in exam-
ples where the calculation of I h(53 , T.4) is unknown, that the calculation of
HY%(Y, T) combined with Conjecture [6.5]is consistent with the conjecture [22]
that the ranks of I%(S%, K) and knot Heegaard-Floer homology OFK (K)
are equal.

We recall the description of the traceless SU(2) character variety of a
tangle associated to the (p, ¢)-torus knot from [15, [18]. Figure[1§illustrates a
3-component link H4 U Hg U K in S2, with the component K intersecting a
3-ball D in a trivial 2-tangle U. Integers r, s satisfying pr + ¢s = 1 are fixed
throughout.

Performing —% Dehn surgery on the component labeled H4 and £ Dehn
surgery on the component labeled Hp yields S% again, and the knot labeled
K becomes the (p,q) torus knot. In this S3, let Y denote the complement
of the illustrated 3-ball D, and T the part of the (p, ¢) torus knot contained
in Y. Precisely, Y is obtained from S\ D by performing —% and % surgery
on Hy and Hp, and T C Y denotes that part of K which lies in Y. Note
that Y is itself diffeomorphic to a 3-ball.

Let P4 and Pp in Y be the cores of the Dehn surgery solid tori which
are added after neighborhoods of H4 and Hp are removed. We will perform
holonomy perturbations along these curves in Y.

Generators a, b, ¢, d, x,y of the fundamental group

m(Y\ (TUPLUPR)) =7 (S*\ (DUKUH4UHg))

are illustrated.
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Figure 18: A 2-tangle decomposition of the (p,q) torus knot.

One computes (see [18]) that

m (Y \ (T'UP4UPg)) = (z,y,a,b,c | ¢c = Taz,ada = yzbzy,
[y, 2b] =1, [z, day] = 1).

The curves
Ay = (xb)?y" and Ay = (xzb) Py’

form a longitude-meridian pair for the component P4. The curves
By = (day) *z? and By = (day) z?

form a (commuting) longitude-meridian pair for the component Pg. In par-
ticular, m (Y \ T') is obtained from 71 (Y \ (7'U P4 U Pg)) by killing A2 and
Bs.

Working with the presentation of m1(Y \ (T'U P4 U Pg)) given above,
together with the fact that pr + gs = 1 yields:

A3 = (ab)™y™® = (ab) () Py’ = ab((abPy")" = abA}
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and so
xb=ATA;".

Similar calculations give
y=AlAY, x=DB3B], day= B;'B5,
from which one obtains

(31) a = yxbz(day) ™' = AiﬂjAg_rB'f_rB;(erp)
and b=Zxb= B] "B, A{A;".

Since ¢ = Tazr and d = ayxbzya, it follows that the four elements Aj,
As, By, By generate m1(Y \ (T'U P4 U Pp)). A simple extension of the ob-
servation in [I8] that m (Y \ T') is free on A; and B (they are labeled A
and B in that article) shows that 71 (Y \ (T'U P4 U Pp)) is the free product
of the free abelian group generated by A;, Ao and the free abelian group
generated by B, Bs.

We use the perturbation functions €4 sinz on P4 and egsinz on Pg
for some (e1,€2) € R2. Recall from Equation (23| that with this choice,
perturbed-flat connections modulo gauge are identified with representations
p:m (Y \ (T'UPsU Pg)) — SU(2) which satisfy the perturbation conditions

(32)  p(Ag) = e 5nuQa if (A1) = "Q4 for some Q4 € C(i)

p(By) = €? sinv@s jf p(B1) = e’@5  for some Qp € C(i).

If (e4,ep) = (0,0), then perturbed-flat connections send Ay and Bj to
1 € SU(2), hence by the Seifert-Van Kampen theorem correspond exactly
to SU(2) representations of m1(Y \ T).

As above, we define the perturbed traceless flat moduli space

R€A,GB (K T)
={p:m(Y \ (T UP4UPg)) = SU(2) | p traceless, satisfying ([32)) }/con;

Theorem 10.1. There exists a neighborhood O C R? of (0,0) such that
for any (ea,ep) € O, the space R, ¢, (Y, T) is a smooth compact 1-manifold
with two boundary points and such that the restriction map to the pillow-
case Re, ¢, (Y,T) — P satisfies the conditions to be a restricted immersed
1-manifold except possibly the absence of fishtails.
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In extensive calculations we have not found any small non-zero €4, ep
for which Re, ,(Y,T) — P is not a restricted immersed 1-manifold.

The strategy to prove Theorem [10.1]is standard: we form a parameter-
ized moduli space, prove it is a smooth manifold, and apply Sard’s theorem
to the projection to R2. We start with a gauge fizing theorem which identifies
R, ,(Y,T) with a subset of the box [0, 7] x [0, 7] x [—1,1].

A representation p : (Y \ (T'U P4 U Pg)) — SU(2) satistying the per-
turbation conditions with respect to (e, ep) is traceless if and only if p(a)
and p(b) are traceless. From Equation this holds if and only if

Re(p(A7"PAS "By 7B, ™) =0 and  Re(p(B" By AjA;")) =0,

Assuming that p(A;) = "4 and p(B;) = e?? for some pair of purely imag-
inary unit quaternions @4, @Qp € C(i), these can be expressed equivalently
as

Re <e<(s+p>u+<q—r>eA sinu)Qa ,((g—r)v—(s+p)en sinv)QB> —0

and

Re <€(—rv—seB sin U)QBe(su—rsA sinu)QA)> -0

or equivalently (see [I8, Proposition 2.1]) as W(ea, €ep,u,v,7) = (0,0), where
U = (U, Uy) is defined by

(33) Ui(ea, €p,u,v,7)
=cos((¢q —7r)v — (s + p)epsinv) cos((s + p)u + (¢ — r)ea sinu)
—sin((¢ — r)v — (s + p)ep sinv) sin((s + p)u + (¢ — r)easinu)T

and

(34) Us(€a, €p,u,v,T) = cos(—rv — seg sinwv) cos(su — re4 sinu)

—sin(—rv — sep sinv) sin(su — re4 sinw)7,

with 7 the cosine of the angle between Q@4 and Qp.
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Theorem 10.2. Fiz (e4,ep) € R? and let
Wenen ={(u,v,7) € [0,7] x [0,7] x [-1,1] | Y(ea,€p,u,v,7) = 0}.

Then the assignment

arccos Tkj

lB2 — 663 smuve 1

arccos Tk

A1 — GUI,AQ — eEASHlul,Bl = eve

defines a surjection
f : W€A7€B - RGA,EB <Y7 T)

whose fiber over f(u,v,T) is the single point {(u,v,7)} unless sinu =0 or
sinv = 0, in which case the fiber is the arc {(u,v)} x [—=1,1]. The map f
sends the points of We, ¢, interior to the box to non-abelian perturbed rep-
resentations and boundary points to perturbed abelian representations.

The proof of this lemma is identical to [18, Theorem 11.1] (see also
[15, Theorem 4.2]). The essential point is that if sinu # 0 # sinv then any
representation can be uniquely conjugated so that A; is sent to e and Bj is
sent to e’ ™ for  the cosine of the angle between this representation’s
Q4 and @ p. The perturbation condition then determines where As and By
are sent. We leave the details to the reader.

A point (u,v,7) € W, ¢, which lies on the boundary of the box cor-
responds to a representation which sends A; and As to the center +1 if
sinu = 0, sends By and By to £1 if sinv = 0, and sends A1, A, B1, By to
commuting elements if |7| = 1. It follows that points in W, ., meeting the
boundary of the cube correspond exactly to abelian representations (i.e., rep-
resentations with abelian image). There are two conjugacy classes of (un-
perturbed) traceless abelian representations. This property is stable with
respect to small perturbations, as shown in Proposition [8.3

The result needed to prove complete the proof of Theorem [10.] is the
following. It says that the map ¥ of Equations , is submersive near
non-abelian points of the unperturbed traceless character variety R(Y,T).
Hence for generic small (e4,€p), the non-abelian part of R, ., (Y,T) is
smooth.

Lemma 10.3. Suppose that u,v,T are chosen so that ¥(0,0,u,v,7) =0,
with sinu # 0,sinv # 0, and |7| # 1. Then d¥ gy 7) R> — R? is surjec-
tive, and hence U is a submersion near (0,0, u,v,T).

Proof. The proof is essentially a lengthy second-year calculus computation,
and we recommend the reader skip it.
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Consider first Ws. To clarify, we adopt the following notation
A = cos(—rv), B =sin(—rv), C =cos(su), D =sin(su).

From Equation , the partial derivatives of Wy at the point (0,0, u, v, T)
are given by

AL = A(—D)(—r)sinu — BC(—r)rsinu = r(AD + BCT)sinu
Dea (0,0,u,v,T)
AL = —B(—ssinv)C — A(—ssinv)D1 = s(BC + AD7)sinv
dep (0,0,u,v,7)
AL = A(—D)s — BCst = —s(AD + BC)
du (0,0,u,v,7)
LG
ovs — _B(=r)C — A(—r)Dr = r(BC + AD7)
v (0,0,u,v,7)
o, — _BD
or (0,0,u,v,7)

Moreover, the equation Ws(0,0,u, v, 7) = 0 is equivalent to
AC — BDT =0.
Similarly, adopting the notation

E =cos((q —r)v), F =sin((q—r)v),
G =cos((s+p)u), H =sin((s+ p)u),

we obtain
\\
or =—(¢—r)(EH + FGr)sinu
86,4 (0,0,u,v,7)
g
on =(s+p)(FG+ EHT)sinv
aEB (0,0,u,v,7)
(g
on = —(s+p)(FH + FGT)
ou (0,0,u,v,7)
ov
1 =—(¢q—r)(FG+ EHT)
v (0,0,u,v,7)
o0y _ _FH
or (0,0,u,v,7)
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Moreover, the equation ¥;(0,0,u,v,7) = 0 is equivalent to
EG—-FHT=0.

Suppose that ¥ were not a submersion at (0,0, u,v,7). Then d¥; and
dWs are linearly dependent.

If d¥s =0, then AD + BCT =0, BC+ AD7T =0 and BD = 0. There-
fore AD = AD72. Since |7| # 1, this implies AD =0 and BC = 0. If A =
cos(—rv) =0, then B =sin(—rv)#0, so cos(su) =C =0 and hence
sin(su) = D # 0, contradicting BD = 0. But if A # 0, sin(su) = D = 0 and
so cos(su) = C' # 0 and hence B = 0. But this contradicts AC — BD1 = 0.
Therefore, d¥s # 0. Similarly, d¥; # 0.

Since neither d¥ nor dW¥s is zero, there there exists a non-zero a € R
so that adV¥; = d¥,. Comparing the first columns, (i.e., gTA) and using the
fact that sinu # 0 one sees

AD + BCr =« (7’ . q) (EH + FGr).

Similarly, comparing third columns gives

S+0p
s

AD+BCT=O4< )(EH+FGT>.

Since E:J_rggi =1- m # 1, and « # 0, this implies that EH + FGt = 0,
and hence also AD + BCt = 0. Comparing the second and fourth columns
and applying the same argument yields FG+ EHT =0 and AD + BCt =
0.

Then FG = —EHT = FG72. Since |7| #1, FG =0= EH and, simi-
larly, AD = BC' = 0. Since neither d¥q nor d¥, is zero, BD # 0 and FH #
0. Thus A=C=0and G=F=0.

Recalling their definitions, this says that

(35) cos(—rv) = cos(su) = cos((g — r)v) = cos((s + p)u) = 0.

Hence there exist odd integers &,/ so that —rv = k% and (¢ —r)v = {F.
Thus (¢ —r)k = —rf. Since r and g — r are relatively prime, there exist
odd integers m,n so that k = rm and £ = (¢ — r)n. Thus v = %% = —m3.

Similarly, u is an odd multiple of 5. Equation then implies that r, s, ¢ —
r,s + p are all odd, but then p,q are both even, contradicts the fact that p
and ¢ are relatively prime. Thus the assumption that ¥ is not a submersion
leads to a contradiction.
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Hence ¥ is a submersion at (0,0, u, v, 7), and so also near (0,0, u,v, ).
O

Proof of Theorem . Recall that Wy denotes the preimage in the box
[0, 7] x [0, 7] x [-1,1] of O by the map (u,v,7)+ ¥(0,0,u,v,7). Let V be
the intersection of a small open neighborhood of Wy ¢ with the interior of
the box.

Lemma implies that (after perhaps choosing a smaller V'), there is
a neighborhood O of 0 in R? so that ¥ : R? x [0, 7] x [0, 7] x [~1,1] — R?
restricts to a submersion on O x V. The parameterized moduli space P :=
O x V N¥~1(0) is a smooth submanifold of O x V. By Sard’s theorem, there
exist regular values (e4, ) of the composite P € O x V 22 O arbitrarlily
close to 0. Its preimage in the interior of the box is identified with the non-
abelian part of Rc, ., (Y,T) by Theorem The structure near the two
abelian representations was identified in Theorem O

11. Calculations for torus knots

In this section we carry out calculations of C*(Lg, L;) for some torus knots,
including examples with non-trivial differentials. In what follows, we con-
tinue to use the description of the torus knot K =T, , illustrated in Fig-
ure where we perform —% Dehn surgery on the component labeled H 4
and I surgery on the component labeled Hpg. Figure [18|illustrates a decom-
position

(537 Tp.q) = (Y7 T) U(Sz7{a,b,c,d}) (D7 U)

Recall that this decomposition depends on the choice of integers r, s satisfy-
ing pr + gs = 1. Different choices of 7, s lead to different pairs R(Y,T) and
restriction maps L.

The identification of the spaces R(Y,T) and their image in the pillow-
case was done using a computer algebra package.

Recall that Kronheimer-Mrowka prove (23] 24], also Lim [27]) that the
rank of the reduced singular instanton homology I* (83, K) is bounded below
by the sum of the absolute value of coeffcients of the Alexander polynomial,
which we denote by |Ag|.

It is conjectured that the reduced instanton homology of a torus knot K
has rank equal to |Ag|. This is a special case of a more sweeping conjecture
which relates singular instanton homology of a knot and its Heegaard-Floer
homology.

If Conjecture is true, then the rank of H%(Y, T, ) must be at least as
large as |A /| for a tangle decomposition of a torus knot K, and if in addition
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the conjecture of the previous paragraph is true, then rank(H!(Y, T, 7)) =
|Ak|. The reader can verify that in all the examples given below, the rank
of HY(Y, T, ) equals |Ag|.

In the following calculations, we take Lo = LS’O for a small € > 0. We
calculate Maslov indices relative to the slope 1 line field ¢1, making use of
Equation to simplify grading calculations. We make frequent use of the
calculus described in Section Bl

11.1. The (5,11) torus knot

Consider the tangle associated to the (5, 11) torus knot, corresponding to the
choice (p,q,r,s) = (5,11,9, —4). The unperturbed traceless character variety
R(Y,T) is a restricted immersed 1-manifold.

In fact, R(Y,T) is a union of an arc Ry and four circles Ry, Ro, R3, Ry.
The arc Ry embeds linearly with slope 2. Two of the circles, say Ry, Ry are
vertically monotonic with vertical degree 2. The remaining circles Rs3, Ry
each map precisely in the way illustrated in the example of Figures [1], [6]
and [8

Since the signature of the (5,11) torus knot is —24 = 0 mod 4, Ry con-
tributes (1,0,0,0) to H*(Y,T) by our absolute grading convention. Proposi-
tion [5.3] implies that the two vertically monotonic circles Ry, Ro contribute
(1,1,1,1) each to HY(Y,T).

The contributions of R3 and R4 to C(Lg, L) and H(Y,T) were com-
puted in detail in Section it was shown that each contributes a (2,2, 2,2)
summand to C'(Lg, L1), each has two bigons contributing to the differential,
and each contributes (1,1,1,1) to the homology H%(Y,T). Thus the differ-
ential 0 : C(Lo, L1) — C(Lo, L1) has rank 8 and

HY(Y,T) = (1,0,0,0) @&, (1,1,1,1) = (5,4,4,4).
In particular, the rank of HY(Y,T) is 17, which equals |Ag|. The calcula-

tion of IH(SS,Tg,’H) is unknown, but Conjecture would imply that the
Kronheimer-Mrowka lower bound is attained for 75 11.

11.2. The (3,7) torus knot

Taking the decomposition of the (3, 7) torus knot corresponding to the choice
(p,q,7r,s) = (3,7,5,—2), it is shown in [15] that the space R(Y,T) is the dis-
joint union of an arc Ry (consisting of binary dihedral representations) and
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two circles Ry, Re. In particular, L; : R(Y,T) — P is a restricted immersed
1-manifold.

The restriction Li|g, : Ro — P is the linear embedding of slope 2 ([15},
Theorem 4.1]), given by [0, 7] 5 ¢ — (¢,2t) € P. The restrictions of L; to Ry
and Rs have the same image, and each is a vertically monotonic circle of
vertical degree 2.

The line segment of slope 2 has a unique intersection point with Ly,
namely the point r¢. The signature of 7537 is —8 =0 mod 4 and so Ry
contributes (1,0,0,0) to HY(Y,T).

Since R; and R are vertically monotonic with vertical degree 2, Propo-
sition implies that Ry and Ry each contribute a summand (1,1,1,1) to
C(Lo, L1) and the differential is zero in these summands. Hence

HYY,T) = (1,0,0,0) ®2_, (1,1,1,1) = (3,2,2,2).

This agrees with the calculation of the reduced instanton homology of the
(3,7) torus knot I%(S3, T3 7) (see [I8]), as well as the calculation of the (Z/4
graded) reduced Khovanov homology K hred(Tg@).

11.3. The (5,7) torus knot

It is established in [I5] that taking (p,q,7,s) = (5,7,3,—2), R(Y,T) is
smooth, and has two components, an arc Ry and a circle R;. The restriction
of L1 to Ry is linear with slope 2. The restriction of L; to the circle is a
2-1 cover onto its image which winds four times vertically around P*. In
particular, L; : Ry — P is vertically monotonic with vertical degree d = 8.

The arc component Ry has a unique intersection point with Lg, namely
the point 7. The signature of the (5,7) torus knot is —16 =0 mod 4,
and hence Ry contributes (1,0,0,0) to C(Lg,L;) and H*(Y,T). Since R;
is vertically monotonic with vertical degree 8, Proposition [5.3] implies that
R contributes (4,4, 4,4) to C(Lg, L1). Moreover, all differentials are zero in
this summand. Thus we conclude that all differential vanish and

HYY,T) = (5,4,4,4).

This agrees with the calculation of the reduced instanton homology
I%(S3, T 7). Moreover, the reduced Khovanov homology Kh™%(T, 57%) equals
(8,6,7,8), which has stricly larger rank, corresponding to the fact that there
are non-trivial higher differentials in the Kronheimer-Mrokwa spectral se-
quence from Khovanov to instanton homology [24].



The pillowcase and traceless representations 11 801

11.4. The (5,12) torus knot

Taking (p,q,7,s) = (5,12,5,—2), it is shown in [I5] that R(Y,T) — P is a
restricted immersed 1-manifold composed of one arc Ry mapping with slope
6, and two vertically monotonic circles R, Ry each of vertical degree 6.

Proposition shows that the components Ry and Ro each contribute
(3,3,3,3) to C(Lo,L1) and H(Y,T). For the component Ry, we calcu-
late in exactly the same manner as was done for 2-bridge knots. There
are 5 representations, ri,xli,yf, and gr(ri,mf) =2, gr(z{,z3) =2, and
gr(z},x;) = 1. The signature of K5 12 is —28, and hence gr(r$) = 0 mod 4.
Since Ry maps linearly with slope 6 to the pillowcase, there can be no bigons,
and thus all differentials are zero. Therefore, the component Ry contributes
(2,1,1,1) to HY(Y, T), generated by {r<,z3 }, {z1 }, {z]}, {z5 } respectively.
We conclude that

HY(Y,T) = (2,1,1,1) @2, (3,3,3,3) = (8,7,7,7).

This agrees with the calculation of I%(S3, Tk 12) in [I8], and is smaller than
the reduced Khovanov homology Kh”d(TgﬁQ) = (20,19,19,19).

11.5. The (5,17) torus knot

Taking (5,17,7,—2), it is shown in [I5] that R(Y,T) — P is a restricted
immersed 1-manifold, the union of an arc Ry mapping linearly with slope
2 and three circles R1, Ro, R3 are vertically monotonic with vertical degrees
6,6 and 8. The signature equals —40 = 0 mod 4, and so the single intersection
7S on the arc Ry contributes (1,0,0,0) to C(Lg, L1) and H*(Y,T). Propo-
sition implies that the circles Ry, Ro, R3 contribute (3,3,3,3),(3,3,3,3)
and (4,4, 4,4) respectively to C (Lo, L;) and H*(Y,T). Hence

HY(Y,T) = (11,10, 10, 10),
which agrees with the calculation of the instanton homology I%(S3, Ty 17) in

[18]. Two of the circles (the degree 6 circles) have the same image and the
degree 8 circle double covers its image.

11.6. The (3,4) torus knot

We next give an example of a tangle decomposition so that the unperturbed
traceless character variety R(Y,T) is not smooth. After smoothing it using a
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holonomy perturbation, R, (Y, T) becomes a restricted immersed 1-manifold
and one finds a non-trivial differential in the summand corresponding to the
arc component.

Take (p,q,r,s) = (3,4,3,—2), it was shown in [I8|, Proposition 11.4] that
R(Y,T) is a singular space, obtained from 3 arcs Iy = [0, 7], I+ = [Z, 2] by
identifying the endpoints of I and I to I at § and %” to form a singular
variety homeomorphic to the letter ¢. The restriction map to the pillowcase
takes the arc Iy (consisting of binary dihedral representations) to the arc of
slope —2 via [0, 7] > t — (7 —t,—2t) and takes each of the two arcs I+ to
linear arcs of slope 4. The space R(Y,T') and its image in the pillowcase is

illustrated in Figure [T9]

2

0

Q

0 v T

Figure 19: R(Y,T) and its image in the pillowcase for the (3,4) torus knot.

Applying Theorem [10.1], we can find an arbitrarily small perturbation
so that R, ., (Y,T') is smooth. A lengthy calculation (or using a computer
algebra package) reveals that R, o(Y,T) is the union of an arc and a circle
for any small non-zero €4, as illustrated in Figure

The image of the perturbed character variety, a restricted immersed 1-
manifold composed of one arc and one circle, is illustrated in Figure 21} along
with the image of Lg. The arc component Ry intersects Lg in three points,
%, z{ and 2. The signature of the (3,4) torus knot is —6 = 2 mod 4, and
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Figure 20: R(Y,T') resolving to R., o(Y,T) for the (3,4) torus knot.

so gr(rS) = 2. The relative gradings are gr(z}",z7) = 1 and gr(zy,r$) = 1.
Hence gr(z;) = 3 and gr(z]) = 0.

A bigon from x| to r¢ is indicated in in Figure This is the only bigon
and gives the non-zero differential 0z = r¢. Thus Ry contributes (1,0, 0,0)
to H'(Y,T,n). The circle component R; is vertically monotonic of vertical
degree 2 and hence contributes (1,1,1,1) to C(Lo, L1) and H%(Y,T). Hence

HYY,T,7) = (2,1,1,1),

which is isomorphic to the reduced instanton homology I u(S?’, T3.4), as well
as the reduced Khovanov homology K h’"ed(Tg’:ﬁl).

11.7. The (3,5) torus knot

Taking (p,q,r,s) = (3,5,2,—1), the space R(Y,T) is again a (singular) ¢
curve, made up of an arc Iy = [0, 7] of traceless binary dihedral represen-
tations which maps to the bottom edge of the pillowcase with slope O:
[0,7] 2t (£,0) and two arcs I+ = [Z, 2T] whose interiors consist of non-
binary dihedral representations and which map to the pillowcase linearly
with slope 6: I+ = [Z,3%] 5 ¢+ (t,6(t — ).

However, the singularities resolve differently than in the case of the
(3,4) torus knot which was illustrated in Figure the perturbed vari-
ety Re, ,(Y,T) is a single arc Ry. The image of this arc in the pillowcase
is illustrated in Figure

One can easily see a bigon from z7 to 7. This is the only bigon, so
that 0z] = r¢ is the only non-zero differential, and gr(xz;,r%) =1. The
signature of the (3,5) torus knot is —8, so that gr(r¢) = 0. One computes
gr(zy,z5) = gr(zy,23) = gr(zy,zy ) = 2. Together with gr(z),z,) =1,
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Figure 21: The image of R, o(Y,T) in the pillowcase for the (3,4) torus
knot. The bigon giving a non-trivial differential is shaded.

this gives C(Lo, L1) = (3,2,2,2) and
HYY,T,7) = (2,1,2,2).

Once again, this agrees as an absolutely Z/4 graded group, with 1%(S3, T35)
(and Khmd(ngg)).

11.8. The (4,5) torus knot

This example is interesting in the context of instanton homology, as it was
shown by Kronheimer-Mrowka [25] that there is a non-trivial higher dif-
ferential in their spectral sequence from Khovanov homology to instanton
homology.

The description of R(Y,T') for the (4,5) torus knot, corresponding to the
tangle decomposition associated to (p,q,r,s) = (4,5,4,—3), is analyzed in
detail in [I5] Section 4]. We refer the reader to that article, where it is shown
that R(Y,T) is again a ¢ curve, and its restriction map to P is illustrated,
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U

Figure 22: The image of R, ,(Y,T') and Ly in the pillowcase for the (3,5)
torus knot. The bigon giving a non-trivial differential is shaded.

along with its nine intersection points with Ly generating C'(Lg, L1) and the
reduced instanton complex.

A computer-aided calculation shows that R, o(Y,T') is the union of an
arc Ry and a circle Ry and that the restriction to the pillowcase is a restricted
immersed 1-manifold. The circle R; is vertically monotonic of vertical degree
2. Hence Ry contributes (1,1,1,1) to C(Lo, L) and H*(Y,T).

The image of the arc Ry C R, o(Y,T) in the pillowcase is illustrated in
Figure There is only one bigon and, in contrast to the examples of the
(3,5) and (4, 5) torus knots given above, the non-trivial differential does not
involve the canonical generator 7¢ . The signature of the (4,5) torus knot is
—8, so that gr(rg) = 0.

One computes that Ry contributes (2,1,1,1) to C(Lg, L1). This uses
the observation that Ry has two slope 1 tangencies. The differential takes
a generator in grading 1 to a generator in grading 0. Hence Ry contributes
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Figure 23: The image of the immersed arc Ry C Re, ¢, (Y,T) and Lg in the

pillowcase for the (4,5) torus knot. The bigon giving a non-trivial differential
is shaded.

(1,0,1,1) to H*(Y,T,7), so that
HYY,T,7) = (2,1,2,2).

Once again, this is isomorphic as a Z/4 graded group to I l1(53,T475), com-
puted in [25].

It is worth contrasting this calculation with the one Kronheimer-Mrowka,
give of the instanton homology I%(S3, K). They start with the count of the
nine generators and their relative grading to get the relatively graded chain
complex with ranks (up to cyclic reordering) (3,2,2,2). They then com-
pare this to Kh"4(Ty5) = (2,1,3,3) to conclude, from the incompatibility
of gradings, that there must be a non-trivial differential. A further non-
trivial argument identifies this differential. By contrast, the differential is
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manifest in our pictures. Of course, Conjecture [6.5 may be false, and so one
should be cautious in drawing conclusions.

11.9. The (4,7) torus knot

We take the tangle decomposition of the (4,7) torus knot determined by
the choice (p, q,r,s) = (4,7,2,—1). The singular variety R(Y,T') and its im-
age in the pillowcase is illustrated in [I5, Figure 9]. The smoothed variety
Re, e, (Y, T) is the union of an arc Ry and two circles Ry, Re. The map to
the pillowcase is a restricted immersed 1-manifold.

Figure 24: R(Y,T) and its smoothing R, ,(Y,T) = Ry U R U Ry for the
(4,7) torus knot.

The two circles each map to vertically monotonic circles of vertical degree
2; each contributes (1,1,1,1) to H*(Y, T, 7). The restriction map of the arc
Ry to the pillowcase is illustrated in Figure There are seven intersection
points, and two bigons are shaded. Notice also the four points where the
tangent line of Li(Ry) is tangent to the slope 1 line field ¢;. The (4,7)
torus knot has signature —14 =2 mod 4, so that gr(r{) = 2. From this
one computes that the contribution of Ry to C(Lg, L1) is (2,1,2,2) and to
HYY,T,x) is (1,0,1,1). Therefore,

HYY,T,7) = (3,2,3,3).

In particular, the rank is 11, equal to the sum of the absolute value of the
coefficients of the Alexander polynomial of T} 7.

The calculation of I%(S3, Ty 7) is unknown to us. Notice that C'(Lg, L1) =
(4,3,4,4) (with one non-trivial differential from grading 1 to 0 and the other
from grading 3 to 2). This is consistent with the relative gradings computed
for the instanton chain complex in [I8]. In that article we computed grad-
ings using a spectral flow splitting formula approach (suggested in [24]),
based, not on a tangle decomposition as in the current article, but rather
on the decomposition of the form (S3, K) = (S3\ N(K), ¢) Ur= (N(K), K).
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Figure 25: The image of the immersed arc Ry C Re, ,(Y,T) in the pillow-
case for the (4,7) torus knot. The two bigons are shaded.

This yielded CI%(S®, Ty7) = (1,0,0,0), @ (4,4, 3,3);, where the subscripts
denote a possible cyclic reordering. We conjecture in that article that a =
o(K) and b = 3, which implies that CI%(S3 Ty 7) = (0,0,1,0) @ (4,3,3,4) =
(4,3,4,4). Thus, although we do not know the instanton homology, we do
see that the generators of the instanton chain complex occur in the same
gradings as for C(Lg, L1).

11.10. Changing € to cancel bigons

Consider the effect of varying € in the definition for LB’O : ST — P* in Defi-
nition [I3] and illustrated in Figure

For very small € > 0, there are 2n + 1 intersection points of L (R(Y,T"))
and L§(R(D,U)), where n corresponds to the number of intersections of
Li(R(Y,T)) with the diagonal arc A, or equivalently (see [18]) n equals the
number of conjugacy classes of non-abelian traceless representations of the
corresponding knot complement. This is doubled to account for the fact that
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LB’O is a figure 8 close to A, and the extra intersection point corresponds
to the perturbation of the unique abelian traceless representation which is
mapped to the corner. An illustration of this is given in Figure where
one sees 10 = 2 - 5 points, labeled mii, corresponding to the five intersection
points with the interior of A, and one extra point 7{ which converges to the
bottom left corner as € — 0.

Increasing the parameter € in the holonomy perturbation function makes
the figure 8 LS’O wider (see [18]). In some circumstances, the regular homo-
topy of Lg’o obtained by increasing e can be used to cancel pairs of intersec-
tion points, and hence reduce the rank C(Lg, L1).

For example, for the (3, 5) torus knot, a bigon is illustrated in Figure
As € increases, the pair of intersection points r{ and x; get closer to-
gether and eventually cancel. Explicitly, when ¢ = 0.2,e¢4 = 0.1, and ep = 0,
Li(Re, 0(Y,T)) intersects Lo in 7 points. This is the minimum possible by
the lower bound given by the sum of absolute value of the coefficients of the
Alexander polynomial & —¢7 4¢3 — t* 4¢3 — ¢ + 1 of the (3,5) torus knot,
since, by Proposition the rank of C'(Ly?, L1) cannot be smaller than the
rank of the instanton homology.

The same method works for the tangle decomposition of the (3,4) torus
knot with R(Y,T) illustrated in Figure increasing € to 0.8 removes the
two generators spanned by a bigon. This shows that a suitably perturbed
Chern-Simons function on the configuration space of the (3,4) torus knot is
perfect.

We summarize:

Proposition 11.1. There exists a holonomy perturbations CS + h of the
Chern-Simons function on the orbit space of singular connections on
(S3,T54) and on (S3,Ts5) so that CS + h is perfect, and hence all dif-
ferentials in the singular instanton complex vanish.

In general, simply increasing € does not eliminate every pair of generators
spanned by a bigon. For example, in the 2-tangle decomposition of the (4, 5)
torus knot, increasing € increases the number of intersection points of Lf
with Ly. For the (4, 7) torus knot, one pair (r and x5 in Figure can be
eliminated by increasing e but the second pair (7 and z] ) cannot.

Theorem [4.1|implies that H*(L;) = HF(Ly?, L1) is unchanged by a ho-
motopy of Ly?, and, in particular, bigons can be used as guides to regularly
homotop away pairs of intersection points. For example, in the case of the
(4,7) torus knot, one can easily find a curve L{, homotopic to Ly? so that all
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differentials in the resulting complex are zero. It is not clear whether such
an L{ can can be found only using holonomy pertubations.

12. Loose ends

Several problems remain to be settled before our approach can be considered
as producing a functioning invariant of knots. Conjectures and need
to be further investigated.

An important first problem is to determine the extent to which
HY(Y,T,n) depends on the perturbation 7. Given two perturbations =, 7’
for which R(Y,T) — P and R, (Y,T) — P are both restricted immersed
1-manifolds, they are not necessarily related by a regular homotopy, but
rather by a Legendrian cobordism [16]. For example, in the calculations
with torus knots described in Section we used the perturbation cor-
responding to €4 > 0,ep = 0 with €4 small to smooth R(Y,T). Typically,
using €4 < 0,ep = 0 resolves the normal crossing singularities along the arc
of binary dihedrals in the opposite way. For these examples, the resulting
H tl(Y7 T, ) is unchanged by reversing the sign of €4. But in general, Legen-
drian cobordisms need not preserve Lagrangian-Floer homology.

A closely related question concerns the existence of fishtails, which ob-
struct 92 = 0. We would like to know that there are no fishtails for small
perturbations .

A third question concerns the relationship of H*(Y, T, ) to reduced Kho-
vanov homology, a question already solved for Heegaard-Floer theory in [29)
and for singular instanton homology in [24]. In forthcoming work we explore
this question, extending the definition of H%(Y,T) to include links, and we
have established a skein exact triangle for H%(Y,T, 7). We expect this to
lead to a spectral sequence from Khovanov homology to H*(Y, T, w) and to
an approach to prove Conjecture [6.3

A fourth question concerns the promoting of the constructions of this
article to n-tangle decompositions of knots and links. Some related work in-
cludes [20], which studies decompositions of a knot into two trivial n-tangles.
The symplectic variety corresponding to the pillowcase in this setting is no
longer 2-dimensional, making it much more difficult to understand and com-
pute with.

In a different direction, the rich collections of isotopies of the pillow-
case described in Theorems and are induced by holonomy perturba-
tions, which also induce analytically appropriate perturbations of the Chern-
Simons functional for the construction of instanton homology. These should
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prove useful in isotoping L to reduce the number of generators of the in-
stanton chain complex.

Two developments have occurred since this article was completed. First,
Poudel and Saveliev [30] have confirmed the conjecture of [18, Section 12.6]
that the distinguished point 7 € R, (53, K) identified in Sections and
when considered as a generator the instanton chain complex CI%(S3, K),
has absolute grading equal to the signature of the knot K modulo 4. Hence
the two ways of determining an absolute Z/4 grading of generators of the
pillowcase complex which lie on the same path component of R, (Y,T') agree.

Second, the second and third author have proved [19] that, for any 2-
tangle 1" in a homology ball Y, there exist arbitrarily small perturbations
7 so that R;(Y,T) is a smooth 1-manifold with two boundary points, and
the restriction Ly : R, (Y,T) — R(S?, {a,b,c,d}) is an immersion to the pil-
lowcase satisfying all the conditions to be a restricted immersed 1 manifold,
except possibly that it be unobstructed, in the sense of Definition [2.1] Hence
Conjecture [6.3]is reduced to the problem of proving that L; is unobstructed
for arbitrarily small 7.
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