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We present simple and predictive realizations of neutrino masses in theories based on the SU(6)
grand unifying group. At the level of the lowest-dimension operators, this class of models predicts a
skew-symmetric flavor structure for the Dirac mass term of the neutrinos. In the case that neutrinos
are Dirac particles, the lowest-order prediction of this construction is then one massless neutrino and
two degenerate massive neutrinos. Higher-dimensional operators suppressed by the Planck scale
perturb this spectrum, allowing a good fit to the observed neutrino mass matrix. A firm prediction of
this construction is an inverted neutrino mass spectrum with the lightest neutrino hierarchically lighter
than the other two, so that the sum of neutrino masses lies close to the lower bound for an inverted
hierarchy. In the alternate case that neutrinos are Majorana particles, the mass spectrum can be either
normal or inverted. However, the lightest neutrino is once again hierarchically lighter than the other
two, so that the sum of neutrino masses is predicted to lie close to the corresponding lower bound for
the normal or inverted hierarchy. Near future cosmological measurements will be able to test the
predictions of this scenario for the sum of neutrino masses. In the case of Majorana neutrinos that
exhibit an inverted hierarchy, future neutrinoless double beta experiments can provide a comple-

mentary probe.
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I. INTRODUCTION

Multiple neutrino oscillation experiments over the past
two decades have conclusively established that neutrinos
have nonvanishing masses [1], thereby providing concrete
evidence of new physics beyond the Standard Model
(SM). However, although these experiments have mea-
sured the neutrino mass splittings and mixing angles, the
actual values of the neutrino masses still remain unknown.
In particular, it is not known whether the neutrino mass
spectrum exhibits a normal or inverted hierarchy. Several
medium and long-baseline neutrino oscillation experi-
ments have been proposed to settle this issue [2]. At
present, the important question of whether neutrinos are
Dirac or Majorana fermions also remains unanswered.
Future neutrinoless double beta decay (Ovff) experiments
may be able to resolve this question [3].
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Grand unification [4-6] is one of the most attractive
proposals for physics beyond the SM. In these theories, the
strong, weak, and electromagnetic interactions of the SM
are unified into a larger grand unifying group. The fermions
of the SM are embedded into representations of this bigger
group, with the result that quarks and leptons are also
unified into the same multiplets. These representations
often contain additional SM singlets, which can naturally
serve the role of right-handed neutrinos in the generation of
neutrino masses. The fact that the SM quarks and leptons
are now embedded together in the same multiplets often
leads to relations between the masses of the different SM
fermions [7]. If these multiplets also contain right-handed
neutrinos, these theories can impose restrictions on the
form of the neutrino mass matrix, leading to predictions for
the neutrino masses. Familiar examples of unified theories
that can relate the masses of the neutrinos to those of the
charged fermion include the Pati-Salam [4] and SO(10)
[8,9] gauge groups.

In this paper, we explore a class of models based on the
SU(6) grand unified theory (GUT) [10,11] that leads to
sharp predictions for the neutrino mass spectrum. In these
theories, the right-handed neutrino emerges from the same

Published by the American Physical Society


https://orcid.org/0000-0002-7321-8073
https://orcid.org/0000-0003-4655-2866
https://orcid.org/0000-0003-4471-2336
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.035020&domain=pdf&date_stamp=2020-08-20
https://doi.org/10.1103/PhysRevD.102.035020
https://doi.org/10.1103/PhysRevD.102.035020
https://doi.org/10.1103/PhysRevD.102.035020
https://doi.org/10.1103/PhysRevD.102.035020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CHACKO, DEV, MOHAPATRA, and THAPA

PHYS. REV. D 102, 035020 (2020)

multiplet as the lepton doublet of the SM. A natural
consequence of this construction is that, at the level of
the lowest-dimension terms, the Dirac mass term for the
neutrinos is skew symmetric in flavor space, so that the
determinant of the Dirac mass matrix vanishes. If neutrinos
are Dirac particles that obtain their masses from this term,
then, in the absence of corrections to this form from terms of
higher dimension, the neutrino mass spectrum consists of
two degenerate species and a massless one. Once higher-
dimensional terms suppressed by the Planck scale Mp, are
included, this class of models can easily reproduce the
observed spectrum of neutrino masses and mixings. A firm
prediction of this construction is that the spectrum of
neutrino masses is inverted, with the lightest neutrino
hierarchically lighter than the other two. Then the sum of
neutrino masses is predicted to lie close to the lower bound
of 0.10 eV set by the observed mass splittings in the case of
an inverted hierarchy. Future precision cosmological experi-
ments, such as LSST [12], Euclid [13], DESI [14], the
Simons Observatory [15], and CMB-S4 [16], that have the
required sensitivity to the sum of neutrino masses will be
able to test this striking prediction. The final phase of
Project-8 [17], with an expected sensitivity of 0.04 eV to the
absolute electron neutrino mass, will also be able to test this
scenario. Similarly, future large-scale long-baseline neu-
trino oscillation experiments, such as Hyper-K [18] and
DUNE [19], will be able to test the prediction regarding the
inverted nature of the mass spectrum.

It is well established that there is a lower bound on the
light neutrino contribution to the Ovff process in the case
of Majorana neutrinos that exhibit an inverted mass
hierarchy [20,21]. In particular, it has been pointed out
that if long-baseline neutrino experiments determine that
the neutrino mass hierarchy is inverted, while no signal is
observed in Oypf down to the effective Majorana neutrino
mass m,, < 0.03 eV, then this would constitute compelling
evidence that neutrinos are Dirac rather than Majorana
fermions [22]. The model we present here is an example of
a GUT framework that can naturally accommodate such a
scenario.

If, in addition to the skew-symmetric Dirac mass term,
there is also a large Majorana mass term for the right-
handed neutrinos, the neutrinos will be Majorana particles.
In this scenario, the skew-symmetric nature of the Dirac
mass term implies that the lightest neutrino is massless, up
to small corrections from higher-dimensional operators. In
contrast to the case of Dirac neutrinos discussed above, the
spectrum of neutrino masses can now exhibit either a
normal or inverted hierarchy. However, the lightest neutrino
is still predicted to be hierarchically lighter than the other
two, so that for both normal and inverted hierarchies the sum
of neutrino masses is predicted to lie close to the corre-
sponding lower bound dictated by the observed mass
splittings, i.e., 0.06 eV for the normal case and 0.10 eV
for the inverted. This is a prediction that can be tested by
future cosmological observations once long-baseline

experiments have determined whether the spectrum is
normal or inverted. In addition, these predictions for the
sum of neutrino masses translate into upper and lower
bounds on the Ovff rate for each of the normal and inverted
cases, with important implications for future Ovff experi-
ments. In our analysis, we explore both the Dirac and
Majorana possibilities in detail and obtain realistic fits to the
observed masses and mixings.

To understand the origin of the prediction that the Dirac
mass term for the neutrinos is skew symmetric, we first
consider the minimal grand unifying symmetry, namely,
SU(5) [5]. In this class of theories, the SU(5) grand
unifying symmetry is broken at the unification scale,
Mgyr ~ 10'® GeV, down to the SM gauge groups. In
simple models based on SU(5), all the SM fermions in
a single generation arise from the 5 and 10 representations.
The 5 is the antifundamental representation, while the 10
is the tensor representation with two antisymmetric
indices. The Higgs field of the SM is contained in the
fundamental representation, the 5. The up-type quark
masses arise from Yukawa couplings of the schematic
form e"’l"”/’SH,clﬂ,lﬂlOl,,,, where 5y contains the SM Higgs,
€ is the five-dimensional antisymmetric Levi-Civita
tensor, and the Greek letters represent SU(S) indices.
Similarly, the down-type quark and charged-lepton masses
arise from Yukawa couplings of the form 5;”10,”5”.
Although attractive and elegant, the minimal SU(5) model
does not contain SM singlets that can play the role of right-
handed neutrinos and does not make predictions regarding
the neutrino masses. Simple extensions of minimal SU(5)
to SU(6), however, do contain natural candidates for the
role of right-handed neutrinos and also allow for elegant
solutions to the doublet-triplet splitting problem [23-28].

In the simplest extension of SU(5) to SU(6), the SM
fermions emerge from the 6 and 15 representations. While
the 6 is the antifundamental representation of SU(6), the
15 is the tensor representation with two antisymmetric
indices. Under the SU(5) subgroup of SU(6), these
representations decompose as 15— 10+5 and 6 > 5+1
and can be seen to contain particles with the quantum
numbers of the SM fermions. But now, in addition, the
singlet of SU(5) contained in the 6 representation is a
natural candidate to play the role of the right-handed
neutrino. If the SM Higgs emerges from the fundamental
representation of SU(6), the down-type quarks and charged
leptons can obtain masses from terms of the schematic form
6"y ISM,,(_S”. However, with this set of representations, it is
not possible to obtain masses for the up-type quarks of the
SM at the renormalizable level. This presents a problem
because the top Yukawa coupling is large.

One possible solution to this problem, first explored in
Refs. [29,30], is that the third-generation up-type quarks
emerge in part from the 20 of SU(6), which is the tensor
representation with three antisymmetric indices. This
decomposes as 20 — 10 + 10 under SU(5). This allows
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the third-generation up-type quarks to obtain their masses
from a renormalizable term of the form 47?6y, 15,,20,,,,.
Nonrenormalizable operators suffice to generate masses for
the up-type quarks of the lighter two generations.

The problem of the top-quark mass in SU(6) GUTs admits
an alternative solution if electroweak symmetry is broken by
two light Higgs doublets rather than one, so that the low-
energy theory is a two-Higgs-doublet model. In this frame-
work, one of Higgs doublets, which gives mass to the up-type
quarks, is assumed to arise from the 15 of SU(6). This allows
all the up-type quark masses to be generated from renorma-
lizable terms of the form e’“”””"lSHMISWISM, where the
Higgs doublet is now contained in the 15y [10]. The other
Higgs doublet, which arises from the 6 of SU(6), gives mass
to the down-type quarks and charged leptons. The central
observation is that the same Higgs doublet in the 15y that
generates the large top-quark mass can also be used to
generate a Dirac neutrino mass term through renormalizable
operators of the form y,/15y,,6 6;1., where i and j are flavor
indices. Since the 15 of SU(6) is antisymmetric in its tensor
indices, this vanishes if the flavor indices i and j are the same.
Therefore, this construction naturally leads to a skew-
symmetric structure for the Dirac mass matrix of the
neutrinos in flavor space.

This framework can naturally accommodate either Dirac
or Majorana neutrino masses. The right-handed neutrinos
can naturally acquire large Majorana masses of order
MZp/Mp ~10'* GeV from nonrenormalizable Planck-
suppressed interactions with the Higgs fields that break the
GUT symmetry. This naturally leads to Majorana masses
for the neutrinos of the right size through the seesaw
mechanism [31-34]. Alternatively, as a consequence of
additional discrete symmetries, a Majorana mass term for
the right-handed neutrinos may not be allowed, while the
coefficient of the Dirac mass term is suppressed. In such a
scenario, we obtain Dirac neutrino masses. In this paper, we
will consider both the Dirac and Majorana cases.

This paper is organized as follows. In Sec. II, we outline
the framework that underlies this class of models and show
how the pattern of neutrino masses emerges in the Dirac and
Majorana cases. In Sec. III, we present a realistic model in
which the neutrino masses are Dirac and perform a detailed
numerical fit to the neutrino masses and mixings using a
recent global analysis of the three-neutrino oscillation data.
We show that this framework predicts an inverted spectrum
of neutrino masses with one mass eigenstate hierarchically
lighter than the others. In Sec. IV, we present a realistic
model in which the neutrino masses are Majorana and again
perform a detailed numerical fit to the neutrino oscillation
data. We show that in this scenario one neutrino is again
hierarchically lighter than the others, but the spectrum of
neutrino masses can now be either normal or inverted. We
also explore the implications of this scenario for future Ovfp
experiments and future cosmological observations. Our
conclusions are presented in Sec. V.

II. THE FRAMEWORK

Our model is based on the SU(6) GUT symmetry with the
fermions of each family arising from a 6 representation,
denoted by y, and a rank-two antisymmetric representation
15, denoted by y. For now, we omit the generation indices.
Note that anomaly cancellation for the SU(6) group requires
that there be two 6 chiral fermion representations for each 15
fermion. We denote the additional 6 of each family by 7.
After the breaking of SU(6) to SU(5), the fields in ¥ that
carry charges under the SM gauge groups acquire large
masses at the GUT scale by marrying the non-SM fermions
in the 15. Therefore, these fields do not play a role in
generating the masses of the light fermions. However, the
SM-singlet field in 7, which has no counterpart in the 15,
may remain light. We employ the familiar convention in
which all fermions are taken to be left-handed, and the SM
fermions are labeled as (Q, u¢, d°, L, e¢), with QT = (u, d)
and LT = (v, 7).

The SU(6) symmetry is broken near the GUT scale down
to SU(S), which contains the usual embedding of SM
fermionsina5anda10of SU(5). Without loss of generality,
we take the SU(5) indices to be (2,3,4,5,6), so that the index
1 lies outside SU(5). Color indices run over (4,5,6).

We now consider the assignment of fermions under
representations of SU(6). Under the fermion multiplet y
that transforms as a 6, we have

x:(2>, 1)
dC

where L is the SM lepton doublet, LT = (v, #). Note that
the Dirac partner v“ of the SM neutrino is embedded in the
same multiplet as the left-handed leptons. The fermions in y

also transform as 6,
N¢
f=(£>- (2)
Dc

The fermion content of yw, which transforms as a 15-
dimensional representation of SU(6), is given by

0| L D
0 e d
0 U
Y = (3)
0 u§ —us
0 uf
0
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The breaking of SU(6) down to SU(5) at the GUT scale
is realized by a Higgs field H which transforms as a 6 under
SU(6) and acquires a large vacuum expectation value
(VEV) along the SM-singlet direction. A Higgs field X,
which transforms as an adjoint under SU(6), further breaks
SU(5) down to the SM gauge group. The breaking of
electroweak symmetry is realized through two Higgs
doublets H and A that arise from different SU(6) repre-
sentations. The field H, which gives masses to the down-
type quarks and charged leptons, emerges from a 6 while A,
which gives masses to the up-type quarks, arises from a 15.
The Higgs fields H, H, and A are assumed to have the
following VEVs:

M 0
0 vy
. 0 0
H=14,1 =1,
0 0
0 0
0O w», 0 0 0 O
-, 0 0 0 0 O
0O 0 0 0 0 O
W=1"09 0000 0 )
0O 0 0 0 0 O
0O 0 0 0 0 O
The VEV of ¥ takes the pattern
0O 0 0 00 O
0 —% 0 0 0 0
(ﬁ)zl\;l 0 0 —% 0 0 0 (5)
0O 0 0 1 0 O
0O 0 0 01 o0
0O 0 0 0 0 1

The field content is summarized in Table 1. Here N
denotes the number of flavors.

We now discuss the generation of fermion masses. The
additional fermions L, D¢ in 7 and L¢, D in y acquire
masses at the GUT scale through interactions with H of the
form

_‘Cdecouple = /Tijll/i)?jﬁ + H.c., (6)

where we have suppressed the SU(6) and Lorentz indices
and shown only the flavor indices. Consequently, these
fields do not play any role in the generation of the masses of
the SM fermions. These interactions do not give mass to the

TABLE 1. Field content of the SU(6) model under
consideration.

Multiplets SU(6) representation Np
Fermion

Scalar

M P> III S NN
S o oo
_— = W W W

SM-singlet field N¢ in . However, even if N¢ is light, the
fact that it is a SM singlet means that in the absence of other
interactions its couplings to the SM fields at low energies
are very small.

The SM fermions acquire masses from their Yukawa
couplings to the Higgs fields H and A after electroweak
symmetry breaking. The SU(6)-invariant Yukawa cou-
plings take the form

~Ly = yaiwiriH + yuiwiw ;A" + He. (7)

The down-quark and charged-lepton masses arise from the
v, term in the Lagrangian after the Higgs field H acquires
an electroweak-scale VEV. Similarly, the up-quark masses
arise from the y, term in the Lagrangian after A acquires a
VEV. In general, the masses of the SM fermions also
receive contributions from higher-dimensional operators

suppressed by the Planck scale (Mp) that involve 2, such as

yu,ij
Mp,

Va.ij A
~Lay = wiy 2H +
Mp "~

z//iy/jﬁAT +H.c. (8)
The VEV of £ breaks the SU(5) symmetry that relates
quarks and leptons [cf. Eq. (5)]. Therefore, these higher-
dimensional operators violate the GUT symmetries that
relate the masses of the down-type quarks to those of the
leptons of the same generation.

A Dirac mass term for the neutrinos may be obtained
from interactions of the form

—Lp = yzx,ij)(i)(jAT + H.c. )

As explained earlier, the fact that A is an antisymmetric
tensor under SU(6) implies that y, ;; is skew symmetric in
flavor space. Consequently, the resulting Dirac mass matrix
for the neutrinos has vanishing determinant. We expect
corrections to the Dirac mass term from Planck-suppressed
higher-dimensional operators, such as

—Lap = KM”f xiHyH +He. (10)
1

P
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TABLE 1L

under Z; as e**n/7,

Quantum numbers of the various fermion and scalar fields under the discrete Z, x Z; symmetry
in the model of Dirac neutrinos. Here the integer entries n correspond to transformation under Z, as e

2rin/4 and

Multiplets SU(6) representation Z, quantum number Z7 quantum number
Fermion X 6 +1 +4
7 6 -1 -1
W 15 +1 +1
H 6 +2 +2
Scalar H 6 0 0
A 15 +2 +2
3 35 0 0
c 1 0 +1
In general, this contribution will be suppressed by a factor —La—s = Yuij ML xixjAT +H.e. (12)
Pl

Mgurt/Mp, ~ 1072 relative to that from Eq. (9).

A large Majorana mass term for the right-handed
neutrinos can be obtained from Planck-suppressed non-
renormalizable interactions of the form

it me
Ly =22 H yHiy. 11
M MP] J ( )

This leads to Majorana masses for the right-handed
neutrinos of order M/ Mp;, which is parametrically of
order the seesaw scale ~10'* GeV. Then, from Egs. (9) and
(11), we obtain Majorana neutrino masses of the right size.

If neutrinos are to be Dirac particles, the mass term for
the right-handed neutrinos shown in Eq. (11) must be
absent. Furthermore, we require the coefficients of the
Dirac mass terms to be extremely small, y, ;;.k,;; ~ 107",
to reproduce the observed values of the neutrino masses. In
Sec. III, we shall show that the absence of the Majorana
mass term for the right-handed neutrinos, Eq. (11), and the
smallness of y, ;; and k, ;; can be explained on the basis of
discrete symmetries.

ITI. DIRAC NEUTRINO MASSES

A. Pattern of neutrino masses

We now present a simple model that realizes the pattern
of Dirac neutrino masses discussed in Sec. II. The model is
based on discrete Z, x Z; symmetries under which the
fermions and Higgs scalars have the charge assignments
shown in Table II. The Yukawa couplings that generate
masses for the SM fermions, Egs. (7) and (8), are consistent
with the Z, and Z; symmetries. The interaction in Eq. (6)
that gives GUT-scale masses to the extra fermions L, D¢ in
#and L, D iny is also allowed by the discrete symmetries.
However, the renormalizable Dirac mass term for the
neutrinos, Eq. (9), is now forbidden by the discrete Z,
symmetry. Instead, the leading contribution to the neutrino
masses arises from the dimension-5 term

The field o, which is a singlet under SU(6), is assumed to
acquire a VEV, thereby spontaneously breaking the discrete
Z; symmetry. For (¢) ~ 10" GeV, we obtain Dirac neutrino
masses in the right range. Since A is in an antisymmetric
representation of SU(6), these mass terms are antisym-
metric in flavor space, i.e.,

Yvij = —Yuji- (13)

This leads to a highly predictive spectrum, with one zero
eigenvalue and the other two eigenvalues equal in magni-
tude and opposite in sign. This corresponds to an inverted
mass hierarchy, in which the smaller Am? arises from the
difference between the masses of the two heavier eigen-
states. We can perform phase rotations on the right-handed
neutrinos to ensure that the elements of this mass matrix are
real, so that the phase in the PMNS (Pontecorvo-Maki-
Nakagawa-Sakata) matrix vanishes.

Clearly, the mass pattern above is ruled out experimen-
tally. However, we need to include the effects of higher-
dimensional terms, which will give corrections to the
pattern above. Since these corrections are expected to be
small, we expect to retain the qualitative features of
the spectrum above, in particular, an inverted ordering.
An example of such a higher-dimensional operator is the
following dimension-6 term:

Lo = ° L HyH
—Lg—¢ _K”jjm)(iH )(jH + H.c. (14)
Pl
This correction is parametrically smaller than the antisym-
metric contribution in Eq. (12) by a factor M gyp/Mp ~ 1072,

In order for the terms in Eq. (12) to give rise to the
leading contribution to the neutrino masses, other possible
mass terms involving the light neutrino fields v and v must
be suppressed. The discrete Z, symmetry forbids Majorana
mass terms for v and v¢. It also forbids Dirac mass terms
between v and N¢. A Dirac mass term between v and N°¢
can be generated as a Z;-breaking effect, but only at
dimension-8,
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13
o A A
—Lyg = e 7H yA" +Hec. (15)
Pl

This is too small to have any observable effect. Therefore,
without loss of generality, the neutrino mass matrix has the
form of a real skew-symmetric matrix with a small complex

symmetric component. We write the mass term in matrix
form as

Ve

_ c c c
_’Cmass_(ye Dﬂ UT)My l/ﬂ
vz

(16)

It is convenient to decompose the Dirac mass matrix as
M, = MY + sm. (17)

Here MY is skew symmetric and takes the form

0 m, my,
MY=1|-m, O m [, (18)
-m, -m, 0

while om is an anarchic symmetric matrix whose entries are
parametrically smaller than those in MY. We can choose m,,,
my,, and m, in Eq. (18) to be real without loss of generality.
However, in general, the elements of ém are complex.

The PMNS matrix U is, as usual, defined to be the
rotation matrix that relates the flavor eigenstates v, of the
active neutrinos to the mass eigenstates v;,

Ve 13
v, | =U] v |. (19)
vz U3

Defining D, = diag(m,, m,, m3) as the diagonalized mass
matrix with mass eigenvalues m; corresponding to the
eigenstates v;, we have

DD, = U'MiM,U. (20)

Therefore, the PMNS matrix is identified with the matrix
that diagonalizes the matrix M ZMD. By a suitable choice of
my, my, m., and the elements in ém, we can fit the observed
neutrino mass splittings and mixing angles.

Before proceeding with a numerical scan, we first
estimate the region of parameter space consistent with
observations. Although there are a large number of free
parameters, since only m,, m,, and m, are expected to be
large, this scenario is very predictive. We parametrize the
elements of the skew-symmetric matrix M9 as follows:

m, = mcosécos ¢,
my = mcos@sing,

m. = msin@. (21)

Since om arises from a higher-dimensional operator, it can
be treated as a perturbation. At zeroth order in this pertur-
bation, the eigenvalues for MM, are simply {m?, m2,0}.
This corresponds to a limiting case of an inverted mass
hierarchy in which the smaller (solar) mass splitting
vanishes. By convention, in an inverted hierarchy, the
mass eigenstates m;, m,, ms are labeled such that mjy
corresponds to the mass of the lightest state and the smaller
splitting is between m; and m,, with m, > m;. In our case,
these correspond to the masses of two degenerate eigen-
states with mass m. Then the eigenstate with vanishing
mass is identified as v3. The mixing angle 6;, mixes states
in the degenerate subspace and hence is arbitrary at this
order. It will be fixed by the perturbation. The other two
mixing angles are given by 0,3 = 6 and 8,3 = ¢. The Dirac
CP phase d-p can be rotated away at this order as well.

To summarize, for 6m = 0, which corresponds to zeroth
order in the perturbation, the model predictions for the solar
and atmospheric mass-squared splittings, the mixing
angles, and the Dirac CP phase are given by

Am?,=Am3, =0, Ami, =|Amd,|=m?,

sol —
O13=0, 0y =¢, 0,=abitary, 5cp=0, (22)

2 mf Once we add the perturbation m,
the solar splitting and the mixing angle ,, are fixed. The
perturbation dm can be parametrized as xriz, where 7 is an
anarchic symmetric matrix with entries of order m. The
lightest eigenstate acquires a mass of order #m from the
perturbation, and the solar splitting is now

where Amlgj =m

Am2, = m5 —m? ~2nm?. (23)

The atmospheric mass splitting Am2,,, = |m3 — m3| con-
tinues to remain of the order of m?. The ratio of the solar
and atmospheric splittings determines the parametric size
of 1, which in turn sets the mass of the lightest eigenstate.
Putting in the numbers, we have

my =~/ AmZ,, ~0.05 eV,

2

Msol . 0.05 eV,
2m1

my>~m; +

A 2
Mol 7% 107 eV. (24)

2y Ay,

We see that a satisfactory fit to the data requires the
parameter 7 to be of order m5/m; ~ 1072, Remarkably, this
is in excellent agreement with the expected value of 7 from
our construction, 5 ~ Mgyr/Mp ~ 1072,

We see that this flavor pattern results in a very predictive
spectrum of neutrino masses and mixings. We obtain an
inverted mass hierarchy, with one neutrino hierarchically

ms =~
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TABLE III. The values of the parameters for three benchmark points chosen to fit the neutrino oscillation data in
the case of Dirac neutrinos.

Fit X1 x| X33 X12 X13 X3 P11 P22
Fit 1 (IH) 0.0620 0.0180 0.0410 0.0088 0.0184 0.0075 227.18°

Fit 2 (IH) 0.1012 0.0234 0.0202 0.0113 0.0151 0.0022 292.30°

Fit 3 (IH) 0.0620 0.0604 0.0239 0.0038 0.0236 0.0041 269.50° 288.10°

lighter than the other two. This prediction can be con-
clusively tested in future long-baseline oscillation experi-
ments such as Hyper-K [18] and DUNE [19]. Since the
CP-violating phase 6p in the PMNS matrix vanishes in the
limit that ém is zero, it might have been expected to be
small. However, the results of our numerical scans in
Sec. III B show that this need not be the case, and that fairly
large values of §.p can be obtained even for n < 1072

B. Fits to the data

Our strategy for the scan is as follows. The neutrino mass
matrix is parametrized in terms of a skew-symmetric matrix
MY with a small symmetric correction dm, as discussed
|

0 m, m, 0
M,=|-m, 0 m,|+ém=m, —X1
-my, —-m, O —X;

As can be seen from Eq. (21), the values of x; and x, are
fixed at 4.393 and 4.931, respectively. The elements of the
perturbation matrix dm are restricted to be much smaller
than m,, m;, and m.. The input parameters x;; shown in
Table I1I are examples of fits that are in excellent agreement
with the recent global-fit results from NuFit [35]. In
obtaining these fits, all the elements of 6m have been
taken to be real except om;; and 6m,,. We have introduced
phases ¢, and ¢,, in the elements ém;; and O&my,,
respectively, in order to obtain a nonzero CP phase in
the PMNS matrix. Although the addition of just a single

in Sec. Il A. We fix the parameters {m,, m;, m.} of the
skew-symmetric matrix M? in Eq. (18) such that the zeroth
order predictions match the measured values of Am2,,, 6,3,
and 6,3 as given by Eq. (22). In particular, we take
m? = Am2,, = 2.509 x 1073 eV?, 0=0,; = 8.61°, and
¢ = 0,3 = 48.3° corresponding to the central values from
NuFit [35] for the inverted hierarchy case and employ
Eq. (21) to determine m,, m,, and m,. Further, the size of
the perturbation 7 is fixed by Am?2,,/Am2,,. We then scan
over the anarchic matrix /1 and obtain numerical predic-
tions for the entire PMNS matrix. We choose to parametrize
the mass matrix in Eq. (17) in terms of m, and the ratios
Xy =mg/me, Xy =my,/m., and x;; = 6m;;/m,,

Xy X |xy|efon X12 X13
0 1 [+ X12 |xaa]e'?2 xa3 (25)
-1 0 X13 X23 X33

I

phase, say ¢, can give us a nonvanishing 6.p (as in Fits 1
and 2), we find that in this case a large d-p requires a
somewhat larger value of |x;;| (as in Fit 2). The addition of
a second phase ¢,, allows us to obtain a large 5-p even if all
the x;; are small (as in Fit 3).

The predictions of these fits for the oscillation param-
eters are shown in Table IV, along with the 3¢ allowed
range from NuFit4 .1 global analysis [35]. Also included
are the predictions for the mass of the lightest neutrino.
Note that in each of these fits the lightest neutrino mass is
hierarchically lighter than the other two mass eigenstates by

TABLE IV. Predictions of the three benchmark points for the neutrino oscillation parameters in the case of Dirac
neutrinos, compared to the 3¢ allowed range from a recent global fit. Also included are the predictions of the

benchmark points for the mass of the lightest neutrino.

Model prediction

Oscillation parameters 30 allowed range from NuFit4 .1 [35] Fit 1 (IH) Fit 2 (IH) Fit 3 (IH)
Am3, (107 eV?) 6.79-8.01 7.35 7.39 7.41
Am3; (1072 eV?) 2.416-2.603 2.540 2.506 2.540
sin® 6, 0.275-0.350 0.319 0.314 0.305
sin® 6,5 0.430-0.612 0.557 0.558 0.559
sin® 6,5 0.02066-0.02461 0.0230 0.0224 0.0227
dcp () 205-354 330.8 277.7 287.7
my (107% eV) 1.57 1.56 2.88

035020-7



CHACKO, DEV, MOHAPATRA, and THAPA

PHYS. REV. D 102, 035020 (2020)

98 BF(NUFit)
& Fitt
* Fit2

= Fit3

.5t

1o CL
20 CL
30 CL

0.018 0.020 0.022 0.024
sin2013

0.026 0.028

0.70

38 BF(NuFit)

< Fit1

0.65

* Fit2

0.60

= Fit3

0.55 o

sin2 023

0.50

1o CL
— 20 CL
30 CL

0.45

0.40

0.018 0.020 0.022 0.024 0.026 0.028
sin2013

FIG. 1.

38 BF(NUFit)
— 8.0 & Fit1
N
> * Fit2
() = Fit3
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N 7.0
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30 CL
6.5
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Global oscillation analysis obtained from NuFit4 .1 for the case of an inverted hierarchy (IH) compared to the results from

our benchmark points for the Dirac model (Fitl, Fit2, Fit3). The gray-, green-, and pink-colored contours represent the NuFit 1o, 20, and
30 CL allowed regions, respectively, while the red markers represent the NuFit best-fit values for an IH. The blue, black, and brown
markers are, respectively, the predictions of the benchmark points corresponding to Fit 1, Fit 2, and Fit 3, as given in Table IV.

more than 2 orders of magnitude. The results for the fits
presented in Table IV are also displayed in Fig. 1 as Fit 1,
Fit 2, and Fit 3 in a two-dimensional projection of the 1o
(gray), 20 (green), and 30 (pink) confidence level (CL)
regions of the global-fit results (without the inclusion of the
Super-K atmospheric Ay?-data). The NuFit best-fit points
in each plane are shown by the red markers, while the blue,
black, and brown markers correspond to Fit 1, Fit 2, and
Fit 3, respectively.

Interestingly, we find no significant restriction on the
CP-violating phase 6cp in the PMNS matrix in this
scenario. In particular, as seen from Fit 3, we can get a
large CP phase in the PMNS matrix even if all the elements
of ém are smaller by a factor of order 1072 than the
observed atmospheric splitting. Larger §-p values seem to
be preferred by the recent T2K results [36], and in the
future, a more precise determination of 5.p can only help us
better constrain the parameter space of the model.

IV. MAJORANA NEUTRINO MASSES

A. Pattern of neutrino masses

We now present a simple model in which the pattern of
Majorana neutrino masses discussed in Sec. II is realized.

The model is based on a discrete Z¢ symmetry under which
the fermions and Higgs scalars have the charge assignments
shown in Table V. With this choice of charge assignments,
the interaction in Eq. (6) that gives GUT-scale masses to the
extra fermions (L, D) in # and (L€, D) in y is allowed by
the discrete Zg symmetry. The Yukawa couplings that
generate masses for the SM quarks and charged leptons,
Egs. (7) and (8), are also allowed. Turning our attention to
the neutrino sector, the renormalizable Dirac mass term for

TABLE V. Quantum numbers of the various fermion and scalar
fields under the discrete Zg symmetry in the model of Majorana
neutrinos.

Multiplets SU(6) representation  Zg quantum number
Fermion  y 6 +1

7 6 -2

W 15 +1
Scalar H 6 -2

q 6 +1

A 15 +2

z 35 0
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TABLE VI. Values of the parameters chosen for four different benchmark models that fit the neutrino oscillation
data in the case of Majorana neutrinos.
Fit Vi Y2 vl Y22 Y12 Vi3 Y23 9 M, (eV)
Fit 1 (IH) 4.152 5.100 0.9937 0.8351 —-0.0640  0.0537 0.0877 131.5° 8.485x 10~
Fit 2 (IH) 4.459 4.868 0.9773 0.8608 —0.0624  0.0458 0.0745 148.0° 1.000 x 1073
Fit 3 (NH) 05116 0.4549 0.1330 -0.7430 —0.0375 0.0990 0.0263 241.3° 1.127 x 102
Fit 4 (NH) 0.4983 0.4614 0.1211 —0.6934 —0.0430 0.0980 0.0425 245.4° 1.204 x 1072
the neutrinos, Eq. (9), and the nonrenormalizable Majorana 0 m;  nm,
mass term foF the righF—handed neutrinos, Eq. (11), are both Mp=| -m, 0 msy |,
consistent with the discrete symmetry. In the absence of
other mass terms involving v and v°, these interactions lead —my —mz 0
to the desired pattern of Majorana neutrino masses. The My, My, M
singlet neu.trlnos N in y obtain large Majorana masses of My =| M, My My (27)
order the right-handed scale through the operator
My; My; Mz

AN lj A A
YHH ..
Moy XilH'7;

—Lrun = (26)

The discrete symmetry forbids a renormalizable Dirac mass
term between the SM neutrinos v and the singlet neutrinos
N. Any allowed Dirac mass terms between v and N are
highly Planck suppressed and much smaller than their
Majorana masses. It follows that the effects of N on the
neutrino masses are small and can be neglected. Then,
the Dirac mass term in Eq. (9) and the Majorana mass
term in Eq. (11) give the dominant contributions to the
neutrino masses, leading to Majorana neutrino masses of
parametrically the right size that exhibit the pattern dis-
cussed in Sec. IL

B. Fits to the data

In this subsection, we obtain fits to the neutrino masses
and mixings for the case of Majorana neutrinos. The skew-
symmetric Dirac mass matrix M, and symmetric Majorana
mass matrix M. are parametrized as

TABLE VIL

In the limit that M), < M{, we can write the following

seesaw relation for the light neutrino masses:
M, ~-MpM;'MFE
0 » » yile® yi oy
=-My| -» 0 1 Y12 Y22 Y23
-y -1 0 Y13 vz 1
0 -y -»
x|y 0 -1, (28)
Y2 1 0

where we choose to parametrize the mass matrix in terms
of y;=m;/ms, y;j = M,;/Ms;, and My = m}/M;. The
overall mass scale M| is required to be tiny, of order
107! GeV, to obtain the observed values of neutrino
masses. We perform a numerical scan of the input param-
eters, as shown in Eq. (28), to obtain predictions for the

Predictions of the benchmark models for the neutrino oscillation parameters in the case of Majorana

neutrinos, compared to the 30 allowed range from a recent global fit.

Model prediction

Oscillation 30 allowed range

parameters from NuFit4 .1 [35] Fit 1 (IH) Fit 2 (IH) Fit 3 (NH) Fit 4 (NH)
Am3, (107 eV?) 6.79-8.01 7.40 7.39 7.24 7.50
Am3; (1073 eV?) (IH) 2.416-2.603 2.509 2.504
Am3, (1073 eV?) (NH) 2.432-2.618 2.532 2.500
sin® 6, 0.275-0.350 0.309 0.310 0.303 0.300
sin® 6,5 (IH) 0.430-0.612 0.590 0.544 e e
sin% 6,; (NH) 0.427-0.609 o e 0.516 0.527
sin® 6,5 (IH) 0.02066-0.02461 0.02258 0.02241 . e
sin? 6,5 (NH) 0.02046-0.02440 e . 0.02232 0.02231
Scp (©) IH) 205-354 296.3 286.4
Scp (°) (NH) 141-370 . 282.3 277.2
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entire PMNS matrix. It is beyond the scope of this work
to scan over the full parameter space; instead, we perform
a constrained minimization in which the five neutrino
observables (sin® 05, sin? 0,3, sin® O3, Am3,, and |Am3|
with [ = 1 in the case of normal hierarchy and [ = 2 for
inverted) are restricted to lie within 26 of their exper-
imentally measured values. The parameter M, has been
chosen to be complex in order to induce a CP-violating
phase in the PMNS matrix, but the other parameters have
been taken to be real. We emphasize that the lightest neu-
trino is exactly massless due to the skew-symmetric nature
of the Dirac mass matrix Mp.

The input parameters shown in Table VI provide
excellent fits to the oscillation data, as can be seen in
Table VII. For each of the benchmark points, the CP phase
in the PMNS matrix is large, showing that there is no
restriction on its value. Fits 1 and 2 correspond to an
inverted hierarchy, whereas Fits 3 and 4 represent a normal
hierarchy. The benchmark points (Fit 1, Fit 2, Fit 3, and Fit
4) are also displayed in Fig. 2 as Fit 1 (IH), Fit 2 (IH), Fit 3

(NH), and Fit 4 (NH) as blue, black, brown, and gray
10CL ) 38 BF(NUFit) (IH)
0.36 _____ 20 CL(NH) & BF(NUFit) (NH)
-------- 30 CL (NH)
; * Fitl (H)
. 0.34 Lenne * Fit2 (IH)
-y ,' % = Fit3 (NH)
N: 0.32 ! \\ 3 : v Fitd (NH)
7] e
0.30 i
10 CL (IH) “._. e
20CL(H)
0.28 30 CL(IH)
0.018 0.020 0.022 0.024 0.026 0.028
sin2013
0.70 10.CL (NH) 38 BF(NUFit) (IH)
..... 20 CL (NH) # BF(NuFit) (NH)
0.65f ...... 37 CL(NH) o Fitl (H)
0 0.60 * Fit2 (H)
u  Fit3 (NH)
o 0.55 _
- v Fitd (NH)
¥ 0.50
10 CL (H) | !
0.45 —2gCLH) o
30 CL (H)
0.40
0.018 0.020 0.022 0.024 0.026 0.028

sin2913

markers, respectively, in various two-dimensional projec-
tions of the global-fit results [35].

C. Neutrinoless double beta decay

In the standard framework with only light neutrinos
contributing to Oyfp, the amplitude for the OvpBf rate is
proportional to the ee element of the neutrino mass matrix,
given by

_ 2 2 i, 2 2 i 2
Mg, = |myciyciy + e“mosiyci; + eﬁm3s13|.

(29)
Here m,, m,, and ms are the masses of the three light
neutrinos, while sizj = sin’ 6, c%j = cos? 0;; (for ij = 12,
13, 23), and (a, p) are the two unknown Majorana phases.

We can apply Eq. (29) to our framework to determine its
implications for Oypf. Since the determinant of Mp
vanishes owing to its skew-symmetric structure, the lightest
neutrino is exactly massless. For a given mass ordering
(normal or inverted), the masses of the heavier two
neutrinos can then be determined from the observed mass

v oL 38 BF(NUFit) (IH)
8.0 --—-- 20CL(NH) & BF(NuFit) (NH)
R A ™, « Fit1 (H)
[ . N N * Fit2 (H)
‘?o 75 :.' '* : .‘E = Fit3 (NH)
A y 5/ "' v Fit (NH)
N S S
& 7.0 “~.._;,_.»“ )
£ 10 CL (H)
< — 20 CL(H)
30 CL (H)
6.5
0.018 0.020 0.022 0.024 0.026 0.028
- 2
sin“043
27 1o oL 32 BF(NuFit) (IH)
— 20 CL (NH) & BF(NUFit) (NH)
N> 26t SocLi o Fit1 (H)
o %
© p * Fit2(IH)
|° | = Fit3 (NH)
™ 2.5 K
~ v Fitd (NH)
~_
o~
E 24 10 CL (IH)
ﬂ 20 CL (IH)
30 CL (H)
2.3
0.018 0.020 0.022 0.024 0.026 0.028
= 2
sin“043

FIG. 2. Global oscillation analysis obtained from NuFit4 .1 for both the normal hierarchy (NH) and inverted hierarchy (IH)
compared to our benchmark models for the Majorana case (Fit 1, Fit 2, Fit 3, Fit 4). The gray-, green-, and pink-colored contours
represent the NuFit 1o, 26, and 36 CL contours, respectively, in the NH case, whereas the solid, dashed, and dotted lines correspond to
the 1o, 20, and 36 CL contours, respectively, for IH. The red and purple markers in each case correspond to the NuFit best-fit values for
the TH and NH, respectively, while the blue, black, brown, and gray markers are the predictions of the benchmark models corresponding

to Fits 1, 2, 3, and 4, respectively, as given in Table VIIL. In the bottom right panel,

splitting, with / = 1(2) for NH (IH).

Am?3,| refers to the atmospheric mass-squared
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splittings. The expression for the effective Majorana mass
given in Eq. (29) then reduces to one of the following
equations, depending on whether the hierarchy is normal or
inverted:

myy = '\/ Am%ls%ZC% + Am%ls%e,ei(ﬂ_a) . (30)
myy = ‘\/ |Am%2| - Am%lc%zc% + |Am§2|s%zc%3ei“‘.
(31)

Note that only one Majorana phase (or one specific linear
combination of phases) is relevant, due to the smallest mass
eigenvalue being zero.

To illustrate the range of possibilities for Ouvff in this
class of models, in Fig. 3, we plot the effective Majorana
mass as a function of sin® 6,, Am3,, and the sum of light
neutrino masses y , m;. We restrict to points that lie within
1o and 30 of the allowed oscillation parameter range. Each
data point in Fig. 3 represents a valid fit that has been
obtained by scanning over the input parameters shown in
Eq. (28). For the purposes of this scan, we have taken all the

elements of the M,. matrix to be complex. Here the blue
(red) points correspond to the case of normal (inverted)
hierarchy. The Majorana phases, as well as the other
observables in Egs. (30) and (31), have been obtained as
predictions of the points in the scan. First, the PMNS
matrix is identified with the matrix diagonalizing M;M,,
where M, is given in Eq. (28). Then, taking UM, U = D,
gives the diagonalized mass matrix with the appropriate
Majorana phases.

We can use Eqs. (30) and (31) to obtain upper and lower
limits on the rate of Oy in this class of models. In the case
of a normal hierarchy, the two terms in Eq. (30) add
constructively for 0 < (f — a) < n/2, while partial cancel-
lation occurs for 7/2 < (ff — a) < z. The most effective
cancellation (addition) happens when f — a = z(0). This
allows us to calculate the minimum and maximum values of
the effective Majorana mass, which is parametrized as

mg/gN‘MAX(NH) — ‘, /Am%ls%ZC% F Am%ls% . (32)

Allowing the fit values from NuFit4 .1 to vary over the
30 range, the minimum effective Majorana mass is obtained

0.100 0.100
0.050f 0.0501
®, 0.010} 2, 0.010}
3
(] @ [
g 0.005} g 0.005
0.001} 0.001}
026 028 030 032 034 036 038 040 6.0 6.5 7.0 7.5 8.0 85 9.0
. 2 can-5 2
sin6;, Am3,[107° eV?]
0.100 ;
0.050} -
1
s! EX JIr
© 0.010} ‘
Nl
$ 0,008
BT 8 §
& &
38 8
° £
0.001F 2 :
0.04 005 006 007 008 009 010 0.1 012

2m [eV]

FIG. 3. Model predictions for the effective Majorana mass m,, as a function of sin 6, (left), Am%1 (right), and > m; (bottom). The
blue (red) points correspond to NH (IH), and the dark (light) color corresponds to the 1o (36) CL for the oscillation observables.
The horizontal orange band shows the sensitivity of the future Ovff experiment nEXO at 36 CL. The vertical blue (red) band shows the
forecast 1o limits on Y m; from CMB-S4 in the case of NH (IH), whereas the vertical dotted lines show the corresponding central

values.
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as mMN = 9.7 x 107* eV, whereas the maximum effective

Majorana mass is mMAX = 4.3 x 1073 eV. One can make
similar arguments in the case of an inverted hierarchy, for
which the most effective cancellation (enhancement) hap-
pens when a = z(0) in Eq. (31). This leads to

MIN,MAX
mINMAX () :\\/ |Anidy| — Amdychycd,
+ 1/ |Am§2|s%2c%3

This allows us to determine the minimum and maximum
values of the effective Majorana mass in the case of an
inverted mass hierarchy as mM™N = 1.39 x 1072 eV and
mMAX — 4,95 x 1072 eV, respectively.

Future ton-scale Ovpf experiments such as LEGEND
[37] and nEXO [38] should be able to probe the entire
parameter space of this class of models if the hierarchy is
inverted. For illustration, we show in Fig. 3 the future
sensitivity from nEXO [38] at 3¢ CL (horizontal orange
band), where the band takes into account the nuclear matrix
element uncertainties involved in translating a given lower
bound on the half-life into an upper bound on the effective
Majorana mass parameter.

Similarly, a future cosmological measurement of the sum
of the light neutrino masses » _ m; would allow another test
of the model predictions. Shown in the bottom panel of
Fig. 3 is the lo sensitivity from CMB-S4 [16] (vertical
band) for both the normal hierarchy (blue) and inverted
hierarchy (red). It is clear from the figure that the model
predictions lie well within the 1o sensitivity of CMB-S4,
and so these measurements offer an opportunity to test this
scenario.

. (33)

V. CONCLUSION

In summary, we have presented a framework for neutrino
masses in SU(6) GUTs that predicts a specific texture for

the form of the leading contribution to the Dirac mass term.
In this scenario, neutrinos can be either Dirac or Majorana
particles. A concrete prediction in the Dirac case is that the
mass hierarchy is inverted. In the Majorana case, on the
other hand, both normal and inverted hierarchies are
allowed. In both the Dirac and Majorana cases, the model
makes cosmologically testable predictions regarding the
sum of neutrino masses. Furthermore, in the case of
Majorana neutrinos, this framework predicts lower and
upper bounds on the rate of Ouff for both the normal and
the inverted hierarchies. In the case of an inverted hier-
archy, this prediction can be tested in future ton-scale Ovfp
experiments.
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