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Abstract. Mobile devices contain an increasing number of sensors, many
of which can be used for disease diagnosis and monitoring. Thus along
with the ease of access and use of mobile devices there is a trend to-
wards developing neurological tests onto mobile devices. Speech-based
approaches have shown particular promise in detection of neurological
conditions. However, designing such tools carries a number of challenges,
such as how to manage noise, delivering the instructions for the speech
based tasks, handling user error, and how to adapt the design to be acces-
sible to specific populations with Parkinson’s Disease and Amyotrophic
Lateral Sclerosis. This report discusses our experiences in the design of a
mobile-based application that assesses and monitors disease progression
using speech changes as a biomarker.
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1 Introduction

Neurodegeneration is the process through which the neurons and neuronal struc-
tures are compromised, hindering their proper functions, or even leading to their
death. This neurodegenerative process is the cause of many diseases such as
Alzheimer’s Disease, Huntington’s Disease, Parkinson’s Disease (PD) [1] and
Amyotrophic Lateral Sclerosis (ALS) [2]. Although there exist some treatments
for these diseases aimed at slowing down their progress or helping with their
symptoms [3,4], they remain incurable. As these diseases progress, patients
struggle with a variety of symptoms such as speech disorders, tremors, diffi-
culties with movement coordination, cognitive decline, and sensory issues[5-7].
An estimated 10 million people live with PD [8], while ALS is thought to im-
pact 6 people out of 100 000. Furthermore, with the aging of the population
worldwide, the impact of these diseases is on the rise. For example, the United
Nations predicts that, due to aging, the number of people with ALS worldwide



is expected to go up 69% between 2015 and 2040, going from about 223,000
to 377,000 people [9]. Besides the tragic effects these diseases have on a human
level, they also have a significant financial impact. The worldwide cost of de-
mentia alone, with both PD and ALS being contributing diseases [10, 11], is 614
billion dollars, or 1% of the world GDP [12].

There has been a trend towards mobile-based health assessments, as mobile
devices are often constantly with their users, but also featuring an increasing
array of sensors that can be used to extract valuable health data. In [13], the
authors present the various sensors and mobile developments made that can be
used by medical professionals to diagnose and monitor conditions such as asthma,
hypertension, or diabetes. Specifically, speech has been used in several mobile
based health assessment tools. The field of mobile health is finding new applica-
tions for all of these developments in mobile technologies, as shown in [14]. When
trying to develop mobile health applications, specific challenges need to be taken
into account. In [15], the authors list privacy concerns and usability as some of
the main difficulties to be addressed. With a traditional test done in a medical
setting, the privacy of the patients data is handled by the strict regulations and
policies in place. But with a mobile application, the data is being collected from
the patients’ devices, and needs to be stored and transmitted securely at all
times, adding to the complexity of device based assessments. Usability is also
complicated by the small screen sizes, the complex inputs, and the sometimes
slow interaction speeds of some lower end mobile devices. Similarly, in [16], the
authors considered several categories of challenges when designing mobile-based
health applications. For the application itself, the two main challenges were the
user interface (i.e., how to make sure that the layout of the graphical elements
help and not overwhelm the patients), and the design of the task (i.e., how to
handle interruptions such as phone calls, how to handle the test being performed
in different types of environments). They also noted that several challenges came
from the devices’ hardware, such as the screen size (i.e. how to be read by differ-
ent populations on smaller screens, how to account for variations in screen size),
the input (i.e. how to handle various types of input scheme), and the network
(i.e. how to deal with sometimes spotty or even nonexistent connectivity).

We created a mobile-based application designed to detect the presence of PD
and ALS using speech analysis. The application uses speech based tests, adapted
from existing speech language pathology tests, to collect speech samples from
participants. Using several metrics extracted from these speech samples, we then
developed models to identify features that would help with the classification of
participants with PD and ALS. As we designed and developed our application
however, we met several challenges that we had to address, such as user prompts,
noise handling, data safety, speech sample capture, and user error. This paper
describes details of our application and the challenges we met when developing
it.



2 Related Work

There has been extensive research in speech features and using speech as a
biomarker to detect neurodegenerative diseases. In [17], the authors showed
that variation in the fundamental frequency (F0) could be used to differenti-
ate between healthy and PD patients. Moreover, in [18], the authors found that
changes in F0’s variability could lead to an early diagnosis of PD. In this lon-
gitudinal study, which followed a PD patient for eleven years, including seven
years pre-diagnosis, they were able to detect abnormal variability in FO five years
before the diagnosis was made. The work in [19] also identified specific speech
metrics that are affected by PD. The authors showed that besides the variabil-
ity of fundamental frequency already discussed above, breathiness and asthenia
(weakness) were the two metrics most impacted by PD. These two metrics were
measured by subjective means using the GRBAS scale, an auditory-perceptual
evaluation method for hoarseness. The Diadochokinetic (DDK) rate and maxi-
mum phonation time, both measured objectively by a computer, were also found
to be different (shorter) in PD patients.

Similar to our project, in [20], the authors used a ‘quick vocal test’ to assess
which of the participants in their sample, 46 native speaking Czech, had PD.
Their vocal test was made up of three different parts: a sustained phonation
task, a DDK task, and a running speech task. Although they were able to get
a classification performance of 85%, they used eight metrics from the frequency
domain such as jitter, shimmer, and variability of fundamental frequency, to
reach that result with only 24 PD patients. This means an average of only three
participants per significant metrics, which is below the five to ten recommended
to avoid overfitting [21, 22].

PD is not the only disease that has been shown to impact the production of
speech. In [23], the authors found that ALS affected the speech of the patient by
causing abnormal pitch (either too low or too high), limited pitch range, high
harmonics-to-noise ratios, and increased nasality, among others symptoms.

From these studies’ results, we were encouraged in our hypothesis that dif-
ferent neurodegenerative diseases impact the speech of the patients in specific
ways, thereby different speech metrics patterns could assist with the diagnosis of
specific neurological diseases. These related efforts on PD detection are different
from our system since for one they only rely on a subset of the speech-based tasks
contained in our application. They also limited their research to the detection
of PD while we have a broader approach that allows for the detection of various
neurodegenerative diseases.

3 Application Design

3.1 Overview and workflow

Developed on i0S, our application is used to collect metadata and speech samples
from participants with neurodegenerative diseases PD and ALS, as they have
been shown to have a strong impact on speech [17,18,23]. This paper focuses



on the design and functionality of the application itself, as well as the challenges
involved in them, up to the upload of the data to our servers. The analysis of
the data made on the servers is outside of the scope of this paper.

Our application consists of a practitioner questionnaire, which includes an
optional feedback form, for research purposes to assess the ease of using the
application, a participant questionnaire, and a series of speech-based tasks, and
an optional participant feedback form. The workflow of the application can be
seen in Figure 1. The workflow is composed of four main steps, detailed below
in different subsections.
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Fig. 1. The workflow of the mobile application



Step 1: the practitioner input / selection The first screen of the application
is the list of first and last names of practitioners registered on the device for
selection. It also has two buttons, one to upload the device’s data to our cloud
servers, and one to create a new practitioner profile. The profile creation page
asks for a for basic information (i.e. name, degree, institution), and has an option
for the practitioner to submit feedback back to us.

Step 2: the participant input / selection The participant questionnaire
collects the participant’s personal and medical information. In order to access
the questionnaire, the participant first has to read through and agree to the
consent form for our study.

The personal information section consists of asking the participant their
name, gender, birth date, and native language. As for the practitioner, we hash
the first name, last name and birth date, to create a unique ID for the partici-
pant.

The age, gender, and native language are relevant when extracting metrics
from the speech samples. The questions about the native language and the
strength of the accent serve two purposes. For our initial data collection, it
allows us to exclude participants with an accent, as their accents would have
been an extra parameter that biased our model. With more data being collected
in the future for different accents, we will be able to create specific models
for people with different accents. We also ask if the participant has undergone
speech therapy of any kind, as it might impact the characteristics of the speech
recordings.

The medical information section asks if the participants have an hearing im-
pairment, so that we can assist them if they have difficulties hearing the prompts
from the speech based tasks. We also record what cognitive changes if any, have
been experienced by the participant, if the participant has been experiencing
any unusual movements, or if the participant has felt more emotional or anxious
than usual. We also ask if the participant have any problem with their speech.
These questions are there for us to see if there is any correlation between the
answers obtained from the participants about their self-assess well being, and
the metrics extracted from their speech samples.

Finally, we ask what type of disease has the participant has been diagnosed
with, and when. For the participants with PD, we also ask when did the partici-
pant took the last dose of their treatment. PD having a very regular medication
cycle, we want to show a correlated impact on the metrics extracted from the
speech samples, by collecting data from the same participants at different point
of their medication cycle.

Step 3: the speech-based tasks The speech-based tasks constitute the core
of our application. Fourteen tasks were designed based on de facto standards
in the field of speech-language pathology. A summary of the speech based tasks
can be seen in the list below.

— Vowel Tests



Vowel ‘Ah’ with Timer
Vowel ‘Ah’ without Timer
Vowel ‘Eh’ with Timer
Vowel ‘Eh’ without Timer
Participants with speech impairments will have trouble maintaining a con-
stant pitch or power throughout, or will exhibit vocal fry and breathiness.
Two different vowels are being used, ‘ah’ and ‘eh’. We chose these tasks
because they have been shown to be a good indicator to detect jitter and
shimmer [24, 25], and have been used in research to monitor the evolution
of PD in patients [26]. Both the time and non timed version of the task are
used, in order to see if a difference can be seen in the way control, ALS and
PD populations managed running out of air while performing this task.
DDK Rate
e Repetitions of monosyllabic words. ("Pa”/ ”Ta” / ”"Ka”) and Repetition
of a polysyllabic word. ("PaTaKa”) for 5 seconds intervals
Measure the Alternating Motion Rate (AMR) and Sequential Motion Rate
(SMR). The DDK rate is the number of iterations per second a participant
is able to produce correctly over a five second window. This permits the
assessment of oral motor skills by giving a measure of the participant’s ability
to make rapid speech movement using different parts of the mouth. This task
has been shown to capture differences in control, PD and ALS populations
[19,27,28].
Grandfather Passage
e Reading the grandfather passage
The text of the grandfather’s passage was designed to contain almost every
phoneme in the English language, thus allowing us to see whether the partic-
ipants have some difficulties with specific phonemes. As an aside, the history
of this text is interesting in its own right [29]. This task has been used in the
past to detect acoustic characteristics in speech [30, 31], and characteristics
specific of PD and Multiple Sclerosis (MS) patients [32].
Monosyllabic Words & Increasing Syllabic Words
e List of easy words. (mom, Bob, peep, bib, tot, deed, kick, gag, fife, sis,
zoos, church, shush, lull, roar)
e Increased syllabic count task. (cat, catnip, catapult, catastrophe / please,
pleasing, pleasingly / thick, thicken, thickening)
Here, we test to see at which point, if any, the participants either struggle
or become unable to produce the correct word. We look for a ”breakdown ”
in their ability to sequence the words correctly in order to rule out a ”motor
planning” issue versus a specific motor issue. This task was designed to assess
the production of every consonant and vowel in the English language [33-36].
Picture Description
e Describing a picture presented on the screen
Checking the participant capacity to handle volitional speech, with the ex-
tra cognitive load it entails to construct the sentences. A picture is chosen
at random from ten possible pictures, and the participants are asked to de-
scribe it using any words of their choosing. With this, we are able to both



measure the ease of the participants to select and program words on their
own, with the extra stress it involves with word finding, semantics, syntax
and pragmatic language features. by measuring features such as the rate of
word production, the size of the dictionary used (number of different words),
and the complexity of the words chosen.
— Multisyllabic Words
e List of complex words. (participate, application, education, difficulty,
congratulations, possibility, mathematical, opportunity, statistical anal-
ysis, Methodist episcopal church)
Can the participant handle the complex motor patterns required to go from
the front to the back of the mouth when saying these words.
— Sentences
e Sentences. (We saw several wild animals, My physician wrote out a pre-
scription, The municipal judge sentenced the criminal, The supermarket
chain shut down because of poor management, Much more money must
be donated to make this department succeed)
Can the participant program the whole sentence while handling the forma-
tion of complex words that compose it. Part of the sentences used in this
task were designed by Dr. Julie Liss from Arizona State University. Her goal
with these sentences was to determine the type of dysarthria of participants
based on rhythmicity of speech while uttering these sentences [37]. These
sentences are: In this famous coffee shop they serve the best doughnuts in
town, The chairman decided to pave over the shopping center garden, The
standards committee met this afternoon in an open meeting.
— Automatic Speech Production
e Iterate the days of the week
e Iterate the months of the year
e Count from 1 to 30
Test the participants’ automatic speech production, and their endurance in
producing speech. It is considered automatic speech, as opposed to volitional
or imitative speech, as the participants do not repeat the words like with the
other tasks so far, but do not have to truly think about the words they
are saying either, like in the picture description task, since they are part of
sequences that are deeply ingrained into the participants’ minds for having
used them since childhood. The endurance part of the task comes from the
length these tasks have, especially the first one. With some diseases, such
as ALS, producing speech over such a long list of words in a row can be
difficult.

3.2 Challenges in Design

We began data collection with a first version of the application for 28 days in
November 2015 before implementing an improved V2 of our application. With
this first version, a total of 1260 recordings have been made, corresponding to
103 minutes recorded, but with unfortunately 34% of these recordings which
could not be used. We identified challenges that were addressed in subsequent
versions; these challenges being discussed in the remainder of this paper.



User Handicap The first issue we ran into was the difficulty for some partic-
ipants, particularly ALS ones, to perform all of the tasks. They often did not
have the endurance to go through all of the tests without having to take long
pauses to recuperate, In order to deal with this, we added the option to skip
tasks, and modified the tasks’ order. This order is designed to allow the ALS
patients to perform as many tasks as possible before they had to stop the testing.
The screen listing the speech based tasks can be seen in Figure 2.

8:49 AM Mon Mar 11 = 88% mm)

{ Back
ALL TESTS IN A ROW
Sustained Vowel 'ah’ with Timer -> TAKEN
Sustained Vowel 'ah' with no Timer -> TAKEN
Sustained Vowel ‘eh’ with Timer -> TAKEN
Sustained Vowel 'eh' with no Timer -> TAKEN
DDK rate -> TAKEN
Grandfather Passage -> TAKEN
Monosyllabic Words -> TAKEN
Increasing Syllabic Words -> TAKEN
Picture Description -> TAKEN
Multisyllabic Words -> TAKEN
Sentences -> TAKEN
Days of the Week -> TAKEN
Months of the Year -> TAKEN
Counting to Thirty -> TAKEN

FEEDBACK QUESTIONNAIRE

Fig. 2. The list of tasks after completion of a series

User Prompts Each task needs audible instructions to explain to the partic-
ipants what they are to do. Using a text-to-speech software avoid introducing
any bias for participants that would try to mimic the speech patterns of a hu-
man voice. However, text-to-speech voice was reported as confusing for a lot
of participants and had a clear negative impact on the application’s usage, as
participants did not understand the prompts. Instructions provided by a human
voice are now used, that we made as even toned and accented as possible.

For the sustained vowel task, the challenge is to have the participant under-
stand that the sound has to be sustained for a relatively long time. We displayed
a long ‘aaaaaaaaah’ across the device’s screen, and had a small arrow going
under its length in 5 seconds. However, not everyone understood exactly what
sound they were expected to make, which was solved by using audible prompts.



Also, many participants did not understand that they were to start when the
arrow under the text started moving nor were they able to know exactly how
long the task was going to run for, and had trouble managing their breath to
maintain voicing throughout. So a timer is now used, indicating how long the
task is going to run for, and how much of it is left at all times, as can be seen in
Figure 3.

Participate Participate

Fig. 3. From left to right: timer for timed tasks (here, the sustained vowel), screen
while the participants listen to a word, screen when the participants repeat a word,
picture description task while device in portrait mode, picture description task when
device has been switched to landscape mode

For the DDK test, special care had to be taken, as here we needed the
application to explain what specific sounds to produce, and the fact that these
sounds needed to be produced as fast as possible, but not too fast that it hindered
the proper production of the expected sounds. The initial design would show the
words go across the screen, but for one, people would read ‘Pa’ several different
ways, and, more importantly, the participants would, try to match the speed of
the text on the screen rather than reaching their own maximum speed. Like in
the sustained vowel task, an audible prompt is now used to indicate the proper
pronunciation and a timer is now used to indicate how long remains on the test.

With this grandfather passage, the difficulty is to choose how to display the
text. The ability to choose the font, and potentially make the page scrollable
would introduce too much variables from participant to participant. So we chose
to instead use a fixed font that would be as big as possible as to fit the whole text
on the screen. After testing this design, feedback from the practitioners taught
us that it would be easier for most participants if the font was a bit smaller and
instead the line spacing a bit bigger, so these modifications were integrated into
the application.

Clipping of the recordings Another challenge with the design of the speech-
based tasks was to deal with participants not being timed properly with the
application’s prompts, talking before the end of the instructions, or going to the
next task, or part of a task, as they are still completing the previous one. We
thought it would be best to make one recording per word or sentence, making
it easier to know what words contained each recordings. After the end of each



instruction, a new recording would start, and end when the participant pressed
the ‘next’ button that was on the screen. After some data collection, it became
clear that a lot of clipping was happening, from people that would start to talk
a little bit before the instruction’s recording was done, or tap the next button
while they were still talking. This lead to a lot of recordings either too clipped
for use, or empty all together. Out of all the recordings that are not usable, 42%
of them where due to this issue.

To correct for this, we had a two-fold approach. The first thing we did was to
add a color code to the ‘next’ button making it clear that we were only recording
between after the word or sentences had been said aloud by the application, and
before the press of the button when the participant is done repeating it. During
that time, the button at the center of the screen turns red and a red label
indicate that a recording is in progress, as can be seen in Figure 3. We also
changed the way we record, now doing so continuously throughout the task,
from beginning to end. We also keep track of the times at which any events
happen (end of instruction sound file being played, button being tapped by
user, etc.). With this, we are able to know when in the sound file we can find
the participant talking. To deal with what clipping still happens in spite of the
clearer color coding during the task, we can also crop the sound file for each
word or sentences a few 10s of a second before and after the timing information
recorded the participant to be talking, insuring that we capture all of the speech
sample.

User Error Another big challenge was handling incorrect inputs from the par-
ticipants. As seen in Figure 3, there are two buttons present at the upper right
corner of the screen during each task: ‘Skip’ and ‘Stop’. When pressing skip,
the practitioner signals that the task was either avoided altogether or that the
participant could not complete it. This allows for a task series to be completed
even by participant who do not have the capacities to go through all the tasks.
When pressing the stop button, the task currently being performed is canceled
and the application goes back to the list of tasks. The recordings for that task
is not saved, nor are the meta-data about the task, which thus remains as non-
taken on the screen with the list of tasks. When doing all the tasks in a row,
we added a transition screen in between tasks to redo a specific task without
having to stop the series. This screen gives the option, at the end of every task,
to either proceed to the next one if all went well, or redo it if the first attempt
was not performed properly, without leaving the current series.

After a test series is completed, and all the tasks as marked as taken, the
practitioner can still, if needed, redo any of the task that might not have been
properly performed by the participant. The data previously collected for that
task would then be overwritten by the new recording. This way, the data from
tasks that needed redoing are not kept, keeping the data collected as clean as
possible. By default, the task series are automatically reset at the end of each
day, so that if a task series exists for the selected participant, and it has been



started on a day prior to the current one, this task series is closed and a new
one is created at the current time and date.

Data handling As our application is dealing with medical data, privacy and
security are of the utmost importance. It is imperative that the data be kept
secured on the device, as well as on the backend servers, and in transit from
the former to the later. On the device, the data is kept encrypted by iOS which
prevent the data to be accessed by anyone without the device’s password.

Initially, our application’s data was stored in flat text files. This was easy to
implement but made analysing the data complex as dedicated scripts had to be
written to query the data. Starting with V2 of the application, we now use a
SQLite database through iOS Core Data, allowing the data to be queried using
SQL.

To increase the security of the participant’s private information, we upload
the nonymous information from the participant on a different server than the
rest of the data collected. This allows for an extra layer of security: even if one
of the server were to be breached, the data of each server would not be useful
for an attacker without to data from the other as they would either get access
to a list of name with no associated information, or to completely anonymized
data. When uploading, the application first separate the nonymous information
from the participants (first and last name of the participants), together with
the unique ID generated for each participants. The nonymous data is then sent
through an encrypted connection to an AWS server. The rest of the data is sent,
still through an encrypted connection, to a different server hosted by the Center
for Research Computing (CRC) at Notre Dame. Both servers are located behind
firewalls to prevent unallowed access.

4 Conclusion and Future Work

Data has been recorded between November 2015 and March 2019. The V2 has
been implemented from December 2015 while V3 was used from August 2018.
A total of 70 individuals were tested, including control group, ALS suffering
individuals and Parkinsons suffering individuals, and team members testing the
application. Out of those 70 individuals we excluded all the tests and all bad
recordings, which let us with a total of 64 individuals having contributed us-
able recordings. Each individual has been recorded under a single version of the
application, none has tested different versions of the application. The average
number of recordings per participant is 26, while the average total recording of
an individual is almost 7 minutes. Of all 64 participants, 56% were men and 44%
were female, while the distribution per pathology can be seen in Figure 4.

A total of 509 minutes of recordings have been made, out of them 446 minutes
are considered ‘good’, i.e. can be properly analysed. For most individuals all
recording was conducted within a single day, while it was organized in 2 or even
3 days for around 20% of them.



Number of good recordings per pathology

Control
31%

Parkinsons
47%

Fig. 4. Distribution of the participants per pathology

Improving Recordings Quality (%)

V2 v3

m good recordings bad recordings

Fig. 5. Proportion of bad recordings per version of the application

To determine the quality of the recordings, we created a small iOS applica-
tion that allowed us to efficiently check each of the recordings manually. For each
recording, we could set a boolean to indicate if the recording could be used in
our analysis, and a comment to indicate why not (no sound, loud ambient noise,
participant did not understand the test...). With each version of the application,
the percentage of good recordings kept on going higher. Through this data col-
lection process, learning from our errors, we have been able to overcome each of
the challenges detailed in this paper. From more than a third of the recordings
not fit for analysis, we achieved to go under the 10% threshold with less than



8% of poor quality recordings in the current version of the application, which
we consider acceptable, as can be seen in Figure 5. With each version, the incre-
mental improvements made allowed for the application to perform better. In its
current state, it is able to record more accurately, prompting the users clearly
and without introducing biases, collecting more metadata for a richer and easier
analysis of the recordings.

With the data that we have now collected, we are working on building statis-
tical and machine learning models to classify the recordings with high accuracy.
We will first work on extracting metrics from each of the recordings, both from
the time and frequency domain. In the time domain, these could be the number
of utterance per second for the DDK test, or the number of words per second,
total time per sentences, amount of time in between each words for the sen-
tences tests, and grandfather passage. These can be measured by using Sphinx
[38] to measure the start and end of each words in the tests. For the frequency
domain, a large array of metrics will be extracted using python and praat [39],
such as the shimmer, jitter, average pitch, variance in intensity, breathiness...
All these metrics will then serve as the basis for our modelling work to classify
each recording as control, PD or ALS. The work is currently in progress and will
be presented as part of a future paper.
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