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ABSTRACT
Digital health technology is becoming more ubiquitous in moni-
toring individuals’ health as both device functionality and overall
prevalence increase. However, as individuals age, challenges arise
with using this technology particularly when it involves neurode-
generative issues (e.g., for individuals with Parkinson’s disease,
Alzheimer’s disease, and ALS). Traditionally, neurodegenerative
diseases have been assessed in clinical settings using pen-and-paper
style assessments; however, digital health systems allow for the col-
lection of far more data than we ever could achieve using traditional
methods. The objective of this work is the formation and imple-
mentation of a neurocognitive digital health system designed to go
beyond what pen-and-paper based solutions can do through the
collection of (a) objective, (b) longitudinal, and (c) symptom-specific
data, for use in (d) personalized intervention protocols. This system
supports the monitoring of all neurocognitive functions (e.g., motor,
memory, speech, executive function, sensory, language, behavioral
and psychological function, sleep, and autonomic function), while
also providing methodologies for personalized intervention pro-
tocols. The use of specifically designed tablet-based assessments
and wearable devices allows for the collection of objective digital
biomarkers that aid in accurate diagnosis and longitudinal mon-
itoring, while patient reported outcomes (e.g., by the diagnosed
individual and caregivers) give additional insights for use in the
formation of personalized interventions. As many interventions
are a one-size-fits-all concept, digital health systems should be used
to provide a far more comprehensive understanding of neurode-
generative conditions, to objectively evaluate patients, and form
personalized intervention protocols to create a higher quality of
life for individuals diagnosed with neurodegenerative diseases.

CCS CONCEPTS
• Applied computing → Health care information systems;
• Information systems → Information systems applications; •
Human-centered computing→ Interaction devices.
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1 INTRODUCTION
Digital health technology is becoming more pervasive in the moni-
toring of individuals’ health as device functionalities increase as
does their overall prevalence [12]. As individuals age, challenges
can arise with using digital health technology primarily due to the
progressive decline of many physiological (e.g., sight or hearing)
and neurocognitive functions (e.g., memory, executive function,
and motor issues), in addition to an increased susceptibility to
certain neurodegenerative diseases (e.g., Parkinson’s disease (PD),
Alzheimer’s disease, and ALS) [40, 53, 54, 57]. Traditionally, neu-
rocognitive functions of interest have been assessed in clinical
settings using various accepted pen-and-paper style assessments
(e.g., Montreal Cognitive Assessment (MoCA) [31], Mini Mental
State Examination (MMSE) [49], and the Menu Task Assessment
(MT) [1]) [52]. However, these assessments only evaluate a subset of
relevant neurocognitive functions [47]. Neurocognitive functions of
motor, memory, speech, language, executive function, sensory, be-
havioral and psychological function, sleep, and autonomic functions
should all be evaluated as each of them may be difficult for individ-
uals with neurodegenerative diseases [3, 7, 9, 11, 15, 21, 23, 29, 33].
The use of digital health technology and its capabilities (e.g., device
configurations, inherent device sensors, and human-device interac-
tions) allows for the collection of far more information and objective
metrics than we ever could achieve using pen-and-paper style tests,
while also assessing all functional areas of neurocognition [10, 47].
Further, digital health systems can also support continuous and
objective health monitoring, encourage healthy behavior, support
chronic disease self-management, enhance clinician knowledge,
and aid in the personalization of interventions [20].

The objective of this paper is the formation and implementation
of a neurocognitive digital health system (NDHS) that provides ob-
jective, longitudinal, and symptom-specific data for individuals with
neurodegenerative diseases for use in personalized intervention
protocols. The NDHS uses specifically designed tablet-based assess-
ments and wearable devices to collect objective digital biomarkers,
while also collecting patient reported outcomes (e.g., by both the
individual and their caregivers) for additional insights on their
condition. This system was created to aid in accurate diagnosis,
longitudinal monitoring of all neurocognitive functions (e.g., motor,
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memory, speech, executive function, sensory, language, behavioral
and psychological function, sleep, and autonomic function), and
formation of personalized intervention protocols. The preliminary
analysis in this paper focuses on individuals with PD as they demon-
strate impaired functionality across all areas of neurocognition.
However, this work is intended to be applied to all neurodegenera-
tive conditions to aid in the monitoring of diagnosed individuals
and the formation of personalized interventions.

2 RELATEDWORK
2.1 Device Capabilities
As digital health technology is becoming more commonplace in the
healthcare arena, integration of device sensors and capabilities for
the collection of relevant and objective data increases [47]. Previ-
ous work has identified sensor-based digital assessments (e.g., ac-
celerometry based gait assessments or speech recognition systems
for healthcare) which provide promising user-device interactions
for the collection of objective digital biomarkers across functional
areas of neurocognition [5, 17, 28, 41, 50, 55]. Inherent device sen-
sors (e.g., accelerometers, gyroscopes, cameras, microphones, and
timers), along with human device interactions (e.g., screen taps or
device manipulation) can enhance the monitoring of neurocogni-
tive functions (e.g., motor, memory, speech, and executive function)
for individuals with neurodegenerative conditions [5, 19, 50, 55].
Further, wearables and other functional sensing devices can allow
for even more vital data to be collected [26, 35]. Using device-based
sensors and/or interactions in the formation and configuration of
functional tasks enhances the utility and quality of collected data.
Additionally, with increased opportunity for user participation on
their own devices and the ability of clinicians to collect and analyze
enhanced objective datasets, digital health systems become a robust
modality for the administration of neurocognitive assessments [47].

2.2 Patient Reported Outcomes
Although digital health technology can provide objective measure-
ments of physiological and neurocognitive data of patients; another
important aspect of personal health is information obtained from
the patient themselves [13]. Patient reported outcomes (PROs) are a
commonly utilized way to monitor a patient’s thoughts or opinions
with respect to short-term (e.g., day to day) changes, and can also
lead to improved disease management by allowing the individual
to recognize and understand their condition and to be aware of
their symptoms and triggers [13, 51]. Exploratory analyses show
that high PROs for physical activity is associated with less disease
progression for individuals with neurodegenerative diseases [2].
However, the aim of digital health systems should be to increase
the reliability and accuracy of this patient reported data by com-
bining it with objective data from mobile devices, as there may be
individual variability and/or bias [32, 37, 39].

2.3 Interventions
Currently there are both pharmacological and nonpharmacological
therapies for individuals with neurodegenerative diseases. Non-
pharmacological therapies include physical interventions (e.g., func-
tional strength activities, boxing, and yoga) and speech, occupa-
tional, psychological, and music therapies [16, 24]. Previous work

suggests that physical activity during the critical window of early-
to mid-stage of muscular neurodegenerative diseases is vital to the
management of symptoms and disease progression [8, 22]. These ac-
tivities encompass both routine activities of daily living (ADLs) (e.g.,
household activities, walking) and dedicated exercise (e.g., aerobics,
strength training) [27]. Further, supervised and structured exercise
is noted to be effective at improving functional performance out-
comes (e.g., balance and functional ambulation) in individuals with
neurodegenerative diseases [38, 46]. However, many studies evalu-
ate interventions as a one-size-fits-all concept as current evidence is
not sufficient to develop personalized rehabilitation programs [34].
To gain further insights for personalized rehabilitation programs,
it is imperative to administer precise and objective assessments for
the understanding of current intervention approaches [42].

3 NEUROCOGNITIVE DIGITAL HEALTH
SYSTEM DESIGN

The designed NDHS was created to collect longitudinal informa-
tion from a variety of sources (e.g., personal health information,
patient reported outcomes, specifically designed tablet-based neu-
rocognitive functional assessments, wearable devices, and caretaker
surveys) for the comprehensive assessment and monitoring of the
symptoms associated with neurodegenerative diseases and provide
individualized intervention recommendations. Given different de-
vices and collection methodologies, both objective (e.g., clinical
diagnoses, numerical physiologic data, neurocognitive assessment
scores) and subjective (e.g., patient or caretaker reported outcomes)
information is collected. This objective and subjective data is nec-
essary for disease classification in addition to the comprehensive
monitoring and rehabilitation of said condition [25, 30, 47]. The in-
formation collected from each NDHS component, across functional
areas of motor (e.g., fine and gross motor), memory (e.g., long and
short term), speech (e.g., frequency, variations, and repeatability),
executive function (e.g., judgement and planning), sensory (e.g.,
visual, tactile, and aural), language (e.g., semantics, syntax, and prag-
matics), behavioral and psychological function (e.g., emotion), sleep
(e.g., quality and duration), and autonomic function (e.g., heart rate,
blood oxygen saturation), are seen in Table 1. Both objective (e.g.,
diagnoses of conditions represented in personal health information,
or quantitative measures collected from tablet-based assessments
and wearables) and subjective (e.g., Patient Reported Outcomes
and Caretaker Surveys) measures are also represented in Table 1.
All neurocognitive functions of interest should be monitored by
both objective (e.g., tablet-based assessments, wearable devices, or
both) and subjective reported outcomes for a comprehensive un-
derstanding of each function. A further breakdown of each NDHS
component is seen in Subsections 3.1-3.6.

3.1 Personal Health Information
A collection of an individual’s personal health information is nec-
essary for the classification of their neurodegenerative disease [44].
Personal health information regarding an individual’s medical his-
tory including their age, gender, diagnosis (e.g., date and current
stage), comorbidities, medication and medication cycles, therapies
and interventions, initial presenting symptoms and current symp-
toms are all necessary to this classification. There are different
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Table 1: Neurocognitive function data collected from NDHS components

Neurocognitive Functions

Data Sources Motor Memory Speech Executive Sensory Language Behavior Sleep Autonomic

Objective

Personal X X X X X X X X XHealth Info

Functional X X X XAssessment

Wearables X X X
Subjective

PROs X X X X X X X X X
Caretaker Survey X X X X X X

sources for such personal health information, such as electronic
health records (EHRs); however, they can also be provided by clini-
cians or patients during initial assessments. Further, this personal
health information is intended to interoperate with sensors and
performance testing systems to allow for better and more person-
alized care [18]. Figure 1 is a sample depiction of the tablet-based
questionnaire regarding an individuals personal health information
and medical history.

Figure 1: Sample views of ‘Personal Health Information’ in-
cluding diagnosis and symptoms.

3.2 Patient Reported Outcomes
In addition to collecting the individual’s medical history, gather-
ing PROs over time is necessary for the understanding of how a
neurodegenerative disease can affect an individual [30]. As this
preliminary work focuses on individuals with Parkinson’s disease,
patient reported outcomes were determined using the Parkinson’s
Disease Questionnaire-39 (PDQ-39) where higher denoted scores
give an indication of poorer quality of life [56]. The collected infor-
mation in this part of the NDHS is a subjective evaluation based
on a Likert Scale of 1-5, with 1 indicating having zero difficulty or
zero experience of the prompted symptom and 5 indicating always

having difficulty or always experiencing the prompted symptom.
Figure 2 depicts sample views of the tablet-based questionnaire
for the collection of information on how the individual feels and
interprets their health, their comfort levels, and their ability to
participate in and enjoy life events.

Figure 2: Sample views of ‘Patient Reported Outcome Sur-
vey’ utilizing PDQ-39 [56].

3.3 Functional Assessment
Digital assessments have the capability and promise to expand
traditional functional assessments by allowing for both objective
scoring and/or the interpretation of results relating to the initial
diagnosis andmonitoring of disease progression [25]. The transition
of these assessments to mobile devices also allows for standardized
administration which is unaffected by examiner bias [58].

The developed functional assessment of the NDHS is comprised
of 14 tablet-based tasks, collecting 140 digital biomarkers (e.g., ob-
jective, quantifiable physiological and behavioral data that are col-
lected and measured by means of digital devices), with a focus on
the neurocognitive areas of motor, memory, executive function, and
speech (e.g., tracing shapes, apraxia tests, reflex tasks, card match-
ing, trail making, speech based assessments, and multi-functional
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tasks). These implemented tasks are versions of administered tasks
from commonly used screening assessments (e.g., MoCA [31] or
MMSE [49]) which are usually given whenever a neurodegenerative
condition is suspected. Figure 3 gives a depiction of the tablet-based
neurological assessment tool (e.g., from the task menu, the instruc-
tions of a functional task, and interactive view of that task) [48].
These tablet-based versions allow for the collection of objective
digital biomarkers with the use of inherent device sensors (e.g., ac-
celerometer, gyroscope, microphone, and timer) and human-device
interactions (e.g., screen taps, drawing, and device manipulation).
Instructions of the administered tasks are included.

Figure 3: Sample views of the tablet-based ‘Functional As-
sessment’ including Task Selection, Task Instruction, and
User Execution.

For a fine-motor tracing task the individual is instructed to use
their index finger to trace a depicted shape. In a gross-motor task
the user is to manipulate the tablet to “air”-trace a prompted shape
(e.g., a square). For reflex tasks, the user is intended to tap on the
screen to interact with a set of targets. For a memory task the user
is to tap on depicted cards until all cards have been matched in
pairs. In a trail making task the user is intended to draw a line using
their index finger to connect the shapes in increasing numerical
order. For a set of speech based tasks, the user is instructed to
read a sentence or passage out loud or name prompted objects.
Finally, a set of tasks also implements dual task interference for the
understanding of how these individuals interact in multifunctional
task approaches. Examples of dual tasks include both fine (e.g.,
tracing an object) and gross (e.g., manipulating the tablet) motor
tasks paired with a non-automatic speech task (e.g., listing the
months of the year, aloud, in reverse order; December to January).
Additionally, executive functional tasks are also dual task by nature
as the individual must “put into action” their necessary ‘executive
functions’. This is seen in the Stroop Word Color Test (SWCT) [45]
as the user is required to discern the difference between prompted
colors and words and then speak the correct response.

The collected digital biomarkers were systematically distributed
across all functional tasks (e.g., tasks assessing a singular function
received proportionally half the number of biomarkers compared
to a dual-functional received). Metrics included both temporal (e.g.,
time to interact with the tablet following a prompt, or total time to
complete the task) and accuracy measures (e.g., number of correct
screen interactions or overall distance from true value points).

3.4 Wearable Integration
Implementing wearable devices into the NDHS can allow for even
more vital data to be collected [47]. The wearable component of
this system allows for the objective monitoring of additional neu-
rocognitive functions that the functional assessment element of the
system cannot. These functional areas are autonomic function and
sleep. Digital biomarker collection from wearables relates to the ad-
ditional health-related monitoring capabilities on these devices (e.g.,
heart rate, blood oxygen saturation, and electrodermal activity [4]),
in addition to using on-device accelerometers and gyroscopes. Fur-
ther, these wearable sensors can also allow for the collection of this
objective data throughout the day, enhancing the NDHS with more
opportunistic collections. The following implementations, a labeled
event/activity and an opportunistic collection model, are seen in
Figure 4.

Figure 4: Sample views of wearable device integration for a
labeled event or activity.

3.5 Caretaker Survey
All aforementioned components of the NDHS involve the collection
of information from an individual diagnosed with a neurodegenera-
tive disease. However, the collection of supplementary information
from a caretaker who plays a critical role in the aid and well-being
of the diagnosed individual is highly beneficial [14]. Similar to the
PROs questionnaire listed prior, a set of questions based on a Lik-
ert Scale of 1-5 is asked to the caretaker regarding the diagnosed
individual’s symptoms. Figure 5 depicts sample views of the tablet-
based questionnaire given to caretakers regarding the individual
they care for.

3.6 Intervention Recommendation
The final part of the NDHS is intended to gather all objective, sub-
jective, longitudinal, and symptom-specific information to aid in
the recommendation of interventions. Many different recommenda-
tions are advocated for with respect to neurodegenerative diseases;
however, many studies evaluate some interventions as a one-size-
fits-all concept as current evidence is not sufficient to develop
personalized intervention programs [34]. The intervention recom-
mendation aspect of this system is beneficial for finding therapies
that should be recommended for newly diagnosed individuals (e.g.,
activities that positively affect the most areas of neurocognitition
to the highest extent), but also in an individualized manner (e.g., in
the formation of a personalized symptom-specific report card with
respect to different interventions). Comparing all collected data
in conjunction with administered intervention protocols for these
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Figure 5: Sample views of ‘Caretaker Survey’ usingmodified
version of PDQ-39 [56].

approaches is necessary for the improvement of exercise counseling
and the design of appropriate interventions [27, 34]. Preliminary
work with the NDHS is intended to depict how different physical
activities (e.g., boxing, functional strength, yoga, and agility) affect
neurocognitive functions through the collection of objective digital
biomarker sets (e.g., from functional assessments) with relation to
each activity. However, this concept can be extended to other reha-
bilitative intervention protocols (e.g., speech, occupational, music,
or pharmacological interventions) and by using expanded digital
biomarker sets (e.g., collected utilizing wearable devices).

4 METHODS
Participants in this preliminary study were 25 adults between the
ages of 52 and 84, all with a confirmed diagnosis of Parkinson’s
disease (stages 1-3). All individuals participated regularly (e.g., at
least twice a week) in structured, in-person, physical intervention
programs led by certified fitness instructors. These in-person inter-
vention programs are formed specifically for individuals with PD
and they occur at local health and fitness centers with access to a
variety of training and exercise equipment. A subset of these indi-
viduals also completed physical exercise either at home or outside
these structured intervention programs. Individuals were recruited
to participate in this IRB approved study via advertisement through
the structured intervention programs, physician and clinician re-
ferrals, and prior studies from our laboratory. Given the mean age
of onset for PD in the Western world is early-to-mid 60’s [36], our
recruitment efforts were limited to diagnosed individuals age 50
years or older. Participants were excluded from the current study
if they were unable to provide informed consent or if their native
language was not English (as all instructions of the functional task
assessment were formatted in English).

All participants were required to fill out questionnaires regarding
their personal health information and medical history, and patient
reported outcomes. Subsequently, all participants were required to
take the tablet-based functional assessment prior to and following
their in-person intervention program sessions. This testing protocol
was included to assess the positive affects of the intervention pro-
tocol (e.g., different activities including boxing, functional strength,
or yoga) on the individual’s neurocognitive functions. Intervention

specific protocol spanned 2 hours; allocating 15 minutes for the
tablet-based functional assessment, 10 minutes of warm up activi-
ties (e.g. stretching), 45-60 minutes of main activity (e.g., boxing,
yoga, etc.), 10 minutes of cool down activities (e.g., stretching), 15
minutes for the tablet-based functional assessment, and remaining
time for rest and transitions between each component. Improve-
ment during the intervention specific protocol was measured via
calculated deltas of eachmetric between assessments (e.g., increased
count and accuracy in a reflex test or decreased time to complete
the matching of all pairs in a memory task). As participants were
required to take the functional assessment twice within a period
of 2 hours, internal randomization was included in the functional
assessment to avoid the test-retest phenomena (e.g., for a memory
task, the location of matching card pairs; or in the Stroop Word
Color Test, the order of colors and word combinations).

5 RESULTS
Intervention recommendationswere formed using objective, symptom-
specific digital biomarkers collected from the functional assess-
ments, across all participants (e.g., given prior to and following dif-
ferent physical interventions). 140 digital biomarker metrics were
collected using different inherent device sensors (e.g., accelerome-
ters, gyroscopes, microphones, and timers) and human device inter-
actions (e.g., screen taps, drawing, and device manipulation). The
changes in these metrics following interventions were categorized
as either being improved (e.g., better following the intervention) or
staying the same/worsening.

The collected categorized information across different functional
areas of neurocognition (e.g., motor, memory, speech, executive
function, and dual task) generated the following heat map in Fig-
ure 6. Scores indicate the level of improvement that each activity
yields to individuals with PD across different functional areas of
neurocognition on a scale of 0-1. Values closer to 1 denote a higher
number of individuals with a higher proportion of digital biomark-
ers per functional area (e.g, motor, speech, memory, or executive
function) that improved due to the respective intervention (e.g,
boxing, agility, yoga, or walking). Given the sample population and
interventions listed, yoga had the highest overall improvement of
neurocognition with 62% of digital biomarkers being categorized as
improving following the intervention. Walking showed a high over-
all improvement of neurocognition while also having a relatively
even distribution of digital biomarkers that improved following the
intervention.

6 DISCUSSION
Following the generation of the aforementioned heat maps, with
respect to both intervention types and neurocognitive functions,
personalized intervention recommendations can be formed. The
information collected from personal medical information, patient
reported outcomes, and caretaker surveys give insights to which
functional areas of neurocognition that a individual diagnosed with
a neurodegenerative disease struggles with (e.g., motor function,
memory, or speech). The generated heat map is intended to give
insights to which functional areas of neurocognition are positively
affected by different interventions. The preliminary work displays
structured physical interventions like boxing, agility, functional
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Figure 6: Relation between interventions and neurocogni-
tive functions to aid in ‘Intervention Recommendation’.

strength, and yoga; however, this process can be applied to other
intervention programs including speech therapy, music therapy,
or occupational therapy and across more areas of neurocognition
(e.g., autonomic function, sleep, language, sensory, and behavioral
or psychological function). Further, this preliminary work focuses
on a group based approach for the formation of heat maps. This
is beneficial for finding activities that should be recommended for
newly diagnosed individuals (e.g., activities that positively affect the
most areas of neurocognitition to the highest extent). However, in
the use case of Parkinson’s disease (e.g., a “designer disease”, with no
two diagnosed individuals manifesting the exact same symptoms [6,
43]), this process should also be implemented in an individualized
manner. As an individual interacts with new therapies over time,
the collection of their digital biomarkers (e.g., both prior to and
following interventions) will give insights on how that participant
fares with respect to a specific intervention. Thus, generated heat
maps given objective, longitudinal, and symptom-specific data can
be created for an individual with specific recommendations given
their symptoms and response to interventions.

The implementation of wearable devices into the NDHS allows
for the collection of objective digital biomarkers for autonomic
function, motion, and sleep. This expands what is depicted by the
presented heat map. Further, these wearable devices give the abil-
ity for new labeling capabilities and opportunistic data collections.
Although the presented data shown above does not represent the
implementation of the wearable device, the corresponding appli-
cation for the wearable has been created for integration in future
work. Future work is also intended to validate the efficacy of the
collected digital biomarkers from this portion of the system.

As digital health systems for neurocognitive assessments become
more readily available, it is also important to maintain clinical ex-
pertise [47]. Subjective biases are reduced with the implementation
of these new objective digital health systems with the collection of
digital biomarkers. With the increased opportunity for user partici-
pation on their own devices and the ability of the clinician to collect
and analyze enhanced objective datasets, this becomes a robust

modality for the administration of neurocognitive assessments. Ad-
ditionally, although this version of the digital assessment [48] was
created for individuals to perform tasks by themselves without help,
clinician interactions should be maintained for both onboarding
and overall recommendations (e.g., nonpharmacological therapies).

A limitation of this work is that all participants in this study
participated in intervention protocols. Individuals with neurodegen-
erative diseases who do not participate in any structured programs
as well as age-matched control populations were not represented
in this work. A further understanding of how individuals with neu-
rodegenerative conditions fare given no or limited interventions is
necessary to see the benefit of various interventions overall. Fur-
ther, analysis of how different interventions help individuals in
different stages of their condition in comparison to age-matched
control populations is necessary to assess. Additional work should
also be completed to understand how individuals with different
neurodegenerative conditions (e.g., Alzheimer’s disease, ALS, and
dementia) and stages are affected given no, limited, or various struc-
tured interventions. This system could also be utilized for routine
examinations of at-risk populations for the monitoring of their neu-
rocognitive functions over time. Finally, future work includes the
provision of revised versions as needed to accommodate individuals
with other conditions and at different stages.

7 CONCLUSION
Using a digital health system approach for the monitoring of in-
dividuals with neurodegenerative diseases allows for a more com-
prehensive understanding of how neurological conditions manifest
while also providing methodologies for more personalized inter-
vention protocols. The collection of both digital biomarkers and
patient reported outcomes across all areas of neurocognition is
imperative to a comprehensive digital health system. With the
influx of quality data from digital health systems, further efforts
should be directed into evaluation and development of personal-
ized rehabilitation programs to create a higher quality of life of
the participants. Ultimately, the formation of usable digital health
systems, for the monitoring of neurocognitive functions, can aid
clinicians, diagnosed populations, and caretakers in the monitoring
of individuals with neurodegenerative diseases while also allowing
for the increased accuracy for both diagnostic and rehabilitative
purposes.
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