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ABSTRACT

We introduce a Bayesian approach for analyzing (possibly) high-dimensional dependent data that are
distributed according to a member from the natural exponential family of distributions. This problem
requires extensive methodological advancements, as jointly modeling high-dimensional dependent data
leads to the so-called “big n problem. The computational complexity of the “big n problem” is further
exacerbated when allowing for non-Gaussian datamodels, as is the case here. Thus, we develop new compu-
tationally efficient distribution theory for this setting. In particular, we introduce the “conjugate multivariate
distribution,” which is motivated by the Diaconis and Ylvisaker distribution. Furthermore, we provide sub-
stantial theoretical and methodological development including: results regarding conditional distributions,
an asymptotic relationship with the multivariate normal distribution, conjugate prior distributions, and
full-conditional distributions for a Gibbs sampler. To demonstrate the wide-applicability of the proposed
methodology, we provide two simulation studies and three applications based on an epidemiology dataset,
a federal statistics dataset, and an environmental dataset, respectively. Supplementary materials for this
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1. Introduction

The multivariate normal distribution has become a fundamental
tool for statisticians, as it provides a way to incorporate depen-
dence for Gaussian and non-Gaussian data alike. Notice that
many statistical models are defined hierarchically, where the
joint distribution of the data, latent processes, and unknown
parameters are written as the product of a data model, a latent
Gaussian process model, and a parameter model (see, e.g.,
Cressie and Wikle 2011; Banerjee, Carlin, and Gelfand 2015,
among others). Jointly modeling a member from the exponen-
tial family may be seen as straightforward to some. That is, one
can simply define the data model to be the appropriate member
of the exponential family and define latent Gaussian processes
using the hierarchical modeling framework. Models of this form
are often referred to as latent Gaussian process (LGP) models
(see Diggle, Tawn, and Moyeed 1998; Rue, Martino, and Chopin
2009; Cressie and Wikle 2011, secs. 4.1.2 and 7.1.5; Holan and
Wikle 2016, among others).

In the Bayesian context, LGPs can be nontrivial to implement
using standard Markov chain Monte Carlo (MCMC) procedures
when the dataset is high-dimensional. This is primarily because
big data can lead to big parameter spaces, which allows param-
eters to be highly correlated. This in turn, creates a challenge
for defining useful proposal distributions, tuning these proposal
distributions, and assessing convergence of the Markov chain
(see, e.g., Rue, Martino, and Chopin 2009; Bradley, Holan, and
Wikle 2018 for a discussion on convergence issues of MCMC

algorithms for LGPs). In this article, our primary goal is to
introduce new distribution theory that facilitates Bayesian infer-
ence of dependent non-Gaussian data. In particular, we intro-
duce a multivariate distribution that leads to conjugate forms of
the full conditional distributions within a Gibbs sampler.

We provide a multivariate extension of the class of dis-
tributions introduced the seminal paper by Diaconis and
Ylvisaker (1979), who developed the conjugate prior for dis-
tributions from the natural exponential family (EF), which
leads to the well-known Poisson/gamma, binomial/beta, neg-
ative binomial/beta, and gamma/inverse-gamma hierarchical
models. In this article, we develop a multivariate version of
this distribution, which we call the conjugate multivariate
(CM) distribution. Similar to the special cases that emerged
from Diaconis and Ylvisaker (1979) and Chen and Ibrahim
(2003) we obtain Poisson/multivariate log gamma (MLG),
binomial/multivariate logit beta, negative binomial/multivariate
logit beta, and gamma/multivariate negative-inverse-gamma
hierarchical models. The hierarchical model that specifies the
data model to be from the natural exponential family, and
the latent process to be a CM distribution is referred to as a
latent CM process (LCM) model. The LCM model constitutes
a more general paradigm for modeling dependent data than
LGPs, since the LGP is a special case of the LCM model. An
important motivating feature of this more general framework
is that the LCM model incorporates dependency and results in
full-conditional distributions (within a Gibbs sampler) that are
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easy to simulate from. This allows one to avoid computationally
inefficient and subjective tuning methods.

An immediate issue that arises with the introduction of the
LCM model is the need to define flexible prior distributions.
One goal of this article is to describe the fully conjugate Bayesian
hierarchical model that has a data model that belongs to the nat-
ural exponential family. By “fully conjugate” we mean that each
full conditional distribution, within a Gibbs sampler, falls in the
same class of distributions of the associated process or param-
eter models. To derive a fully conjugate statistical model, we
introduce the LCM analogue to the prior distributions used in
Daniels and Pourahmadi (2002), Chen and Dunson (2003), and
Pourahmadi, Daniels, and Park (2007) for covariance param-
eters. Additionally, extensions of the standard inverse-gamma
priors for variances of a normal random variable (Gelman 2006)
are discussed in context of the LCM.

There is an added benefit of the CM distribution besides pro-
viding conjugacy in the non-Gaussian dependent data setting.
Namely, LGPs are not necessarily realistic for every dataset. For
example, De Oliveira (2013) shows that there are parametric
limitations to the LGP paradigm for count-valued data (e.g.,
when spatial overdispersion is small). We support this claim by
showing that if certain hyperparameters (defined in Section 2)
of the CM distribution are “large” then the corresponding CM
distribution gives a very good approximation to a Gaussian
distribution. This indicates that if the data suggests small values
of these hyperparameters, then the CM distribution should be
used in place of the multivariate normal distribution.

Reduced rank methods are extremely prevalent in the more
general “dependent data” setting. For example, reduced rank
assumptions are crucial for principle component analysis, which
has become an established technique in multivariate data anal-
ysis (see, e.g., Jolliffe 2002; Cox 2005; Everitt and Hothorn 2011,
among others). Additionally, reduced rank models have been
used to great effect within spatial and spatio-temporal settings to
obtain precise predictions in a computationally efficient manner
(see, e.g., Wikle and Cressie 1999; Cressie and Johannesson
2006; Shi and Cressie 2007; Banerjee et al. 2008; Cressie and
Johannesson 2008; Finley et al. 2009; Cressie, Shi, and Kang
2010a, 2010b; Kang and Cressie 2011; Katzfuss and Cressie 2011,
2012; Bradley, Holan, and Wikle 2015). Thus, an additional
motivating feature of the LCM model is that it can easily be cast
within the reduced rank modeling framework to obtain further
computational gains. The ability to specify a reduced rank LCM
does not imply that the LCM can handle all types of “big data”
problems. One type of big data problem that we do not consider
is the “big p” problem (Hastie, Tibshirani, and Friedman 2009;
Matloff 2016). Here, our focus is on difficulties with incorporat-
ing dependence when # is large. Specifically, inverses of n x n
matrices often manifest in dependent data settings (see, e.g., Sun
and Li 2012, among others). Our incorporation of reduced rank
modeling allows one to avoid order n*> computations needed for
matrix inversion, and allows one to avoid storage of large n x n
matrices.

This computationally efficient fully conjugate distribution
theory could have an important impact on a number of different
communities within and outside statistics. High-dimensional
non-Gaussian data are pervasive in official statistics (see, e.g.,
Bradley, Holan, and Wikle 2018), ecology (see, e.g., Hooten,

Larsen, and Wikle 2003; Wu, Holan, and Wikle 2013, among
others), climatology (see, e.g., Wikle and Anderson 2003), atmo-
spheric sciences (see, e.g., Sengupta et al. 2012), statistical genet-
ics (see, e.g., Lange et al. 2014, and the references therein), neu-
roscience (see, e.g., Zhang, Guindani, and Vannucci 2015; Cas-
truccio, Ombao, and Genton 2016), and many other domains.
The size of modern datasets is becoming more and more high-
dimensional, and the aforementioned computational difficulties
with LGPs suggest that there is a growing need to develop meth-
ods that are straightforward to implement (see, e.g., Bradley,
Cressie, and Shi 2016, for a discussion). Hence, the methodology
presented here offers an exciting avenue that makes new applied
research for modeling dependent non-Gaussian data practical
for modern big datasets.

The LCM model is a type of hierarchical generalized linear
model (HGLM) from Lee and Nelder (1996). However, the
current HGLM literature specifies an LGP for the dependent
data setting (Lee and Nelder 2000, 2001). Additionally, there are
other alternatives to a Gibbs sampler with Metropolis—Hastings
updates; in particular, integrated nested Laplace approximations
(INLA) (Rue, Martino, and Chopin 2009) and Hamiltonian
MCMC have proven to be useful tools in the literature. These
approaches can easily be applied to our new proposed distribu-
tion theory; however, the need to adapt INLA and Hamiltonian
MCMC (Neal 2011) to the LCM is not immediately necessary
since the full conditional distributions are straightforward to
simulate from in this setting.

For Poisson counts there are a number of choices besides
the LGP strategy available to incorporate dependence (see, e.g.,
Lee and Nelder 1974; Kotz, Balakrishnan, and Johnson 2000;
Demirhan and Hamurkaroglu 2011, among others). For exam-
ple, Wolpert and Ickstadt (1998), introduced a spatial convolu-
tion of gamma random variables, and provide a data augmen-
tation scheme for Gibbs sampling that produces spatial predic-
tions. Similarly, Frithwirth-Schnatter and Wagner (2006) have
an approximate Bayesian method for Poisson counts with latent
Gaussian random variables. The recently proposed multivariate
log-gamma distribution of Bradley, Holan, and Wikle (2018)
results in a special case of our modeling approach when the
data model is Poisson, and the latent processes are distributed
according to a type of CM distribution. Additionally, in more
specific settings (e.g., Pareto data spatio-temporal data), conju-
gate distribution theory has been developed (Nieto-Barajas and
Huerta 2017; Hu and Bradley 2018).

The remainder of this article is organized as follows. In Sec-
tion 2, we introduce the conjugate multivariate distribution and
provide the necessary technical development for fully Bayesian
inference of dependent data from the natural exponential family.
Specifically, we define the CM distribution, give the specification
of the LCM model, discuss important methodological proper-
ties, introduce additional hyperpriors, and derive the full con-
ditional distributions for a Gibbs sampler. Then, in Section 3, we
provide a simulated example and an in-depth simulation study
to show the performance of the LCM model compared to LGPs.
Several illustrations from different subject matter areas are also
presented in Section 3, which is done in an effort to demonstrate
the wide-applicability of the LCM. Specifically, we provide an
example analyzing an epidemiology dataset, a federal statis-
tics dataset, and an environmental dataset. Finally, Section 4



contains discussion. For convenience of exposition, proofs of
the technical results, Matlab and R code, and instructions on
implementation are given in the Supplemental Appendix.

2. Distribution Theory for Dependent Data From the
Natural Exponential Family

In this section, we propose methodology for Bayesian analysis
of non-Gaussian dependent data from the natural exponential
family. In Section 2.1, we review and develop the univariate dis-
tribution introduced in Diaconis and Ylvisaker (1979). Then, in
Section 2.2, this univariate distribution is used as the rudimen-
tary quantity to develop the CM distribution. This new mul-
tivariate distribution theory is incorporated within a Bayesian
hierarchical model (i.e., the aforementioned LCM model) in
Section 2.3, and the corresponding methodological properties
are discussed in Section 2.4. A collapsed Gibbs sampler is
derived in Section 2.5, and additional properties associated
with the Gibbs sampler are discussed in Section 2.6. Finally,
prior distributions on remaining parameters are discussed in
Sections 2.7 and 2.8.

2.1. The Diaconis and Ylvisaker Conjugate Distribution

Suppose Z is distributed according to the natural exponential
family (Diaconis and Ylvisaker 1979; Lehmann and Casella
1998), then

FZIV) = exp{ZY —by (V) +c(2)}; Ze Z,Y e, (1)

where f will be used to denote a generic probability density
function/probability mass function (pdf/pmf), Z € Z, Z is the
support of Z, Y is the support of Y, b is possibly unknown, and
both y(-) and c(-) are known real-valued functions. The func-
tion by (Y) is often called the log partition function (Lehmann
and Casella 1998). It will be useful for us to discuss ¥(Y) and
not byr(Y); hence, we refer to ¥ (Y) as the “unit log partition
function” because its coefficient is one and not b. Let EF(Y; )
denote a shorthand for the pdf/pmf in (1). It follows from Dia-
conis and Ylvisaker (1979) that the conjugate prior distribution
for Y is given by,

f(¥|a,k) = K(a,k)exp {aY — k¥ (Y)};
YEy,%EZ,K>0, (2)

where K(a,x) is a normalizing constant. Let DY(a,«; )
denote a shorthand for the pdf in (2). Here “DY” stands
for “Diaconis—Ylvisaker;” and we will refer to Y as either a
Diaconis—Ylvisaker random variable or a DY random variable.
Diaconis and Ylvisaker (1979) proved that the pdf in (2) is
proper (i.e., yields a probability measure). We also call @ and
x “DY parameters.”

Multiplying both sides of (2) by exp(tY) and integrating,
gives the moment generating function

K(a,k)
K(a +t,x)’

which exists provided that (@ + f)/k € Z,x > 0, and the
corresponding values of K(a + t,x) and K(«,«) are strictly

Elexp(tY)|a, k] = (3)
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positive and finite. This gives us that the mean and variance of
Yis

E(Y|a,x) = K(a, K)KV (o, k) (4)
var(Y|a, k) = K(a, ) K@ (a, k) — K(a, )2 KD (e, k), (5)

assuming that the moment generating function exists at t =
m = |4___L __ @ —
0, where K'\V(a, k) = [3; K(“Jf"”)]r:o and K'(a,x) =

d? 1
[F Kla+ix) ] =0
Finally, it is immediate from (1) and (2) that

Y|Z,a,6 ~ DY (& + Z,k + b; ). (6)

This conjugacy motivates the development of a multivariate
version of the DY random variable to model dependent non-
Gaussian data from the natural exponential family. Thus, in
this section, we define a conjugate multivariate distribution
and develop a distribution theory that we find useful for fully
Bayesian analysis in the dependent non-Gaussian (natural expo-
nential family) data setting.

2.2. The Conjugate Multivariate (CM) Distribution

Bradley, Holan, and Wikle (2018) use a linear combination
of independent log-gamma random variables to build their
multivariate log-gamma distribution. In a similar manner, we
take linear combinations of DY random variables to generate
a conjugate version of the DY distribution. Specifically, let the
n-dimensional random vector w = (wy,...,w,) consist of
n mutually independent DY random variables such that w; ~
DY(aj, k53 ) fori = 1,...,n. Then, define Y = (Yy,...,Y,)
such that

Y=pn+ Vw, (7)

whereY € M", thematrixV e R"xR",andu € R". Thespace
M?™" is not necessarily equal to V" = {Y = (Y},...,Y,) : ¥; €
V,i=1,...,n}; for example, if ) is strictly positive, we obtain
a Y that can have negative components since V. € R"” x R".
Call Y in (7) a conjugate multivariate (CM) random vector.
A special case of the CM random vector is the multivariate
normal random vector. To see this, let &; = 0, x; = 1/2, and
¥ (Y) = Y2 for Y € R. Then, it follows that (7) is a multivariate
normal distribution with mean u and covariance matrix VV’,
since the elements of w consist of iid standard normal random
variables. Additionally, the aforementioned MLG distribution
can be written as a CM distribution when & > 0, x > 0, and
¥ (Y) = exp(Y).

To use the CM distribution in a Bayesian context, we require
its pdf, which is formally stated below.

Theorem 1. Let Y = pu + Vw, where Y = (Y1,...,Y,),
jt € R", the n x n real valued matrix V is invertible, and the
n-dimensional random vector w = (wy,...,w,)’ consists of
n mutually independent DY random variables such that w; ~
DY(aj, k5 ¥) fori=1,...,n.
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(i) Then Y has the following pdf:
fY|pr, V,a,6) =

det(V™h) l]‘[ K(k;, af)} exp [’ VH(Y — )

i=1
— k'Y (VY — w}]IY € M7, ®)

where I(-) is the indicator function, the jth element of
¥ {V71(Y — )} contains ¢ evaluated at the jth element
of the n-dimensional vector V™1(Y — ), “det” denotes
the determinant function, « = (ay,...,q,), and ¥k =
(K1se.oskn).
(ii) The mean and variance of Y is given by,
E(Y|et,k) = p + Vk(e, k)

cov(Y|et, k) = VK(et, )V, (9)

where, the n-dimensional real-valued vector

k(e 1) = (K(al,xl)Kﬂ)(al,xl),. . )
X Kt k)KD(@psin))

and the n x n diagonal matrix K(e,k) =
diag [K(a,-, k) KD (i, k7)) — K(a,',xf)zK(l)(a;,Kf)z}-

The proof of Theorem 1(i) can be found in the Supplemental
Appendix. In general, we let CM(u, V, &, k; ) denote the pdf
in (8). Theorem 1(ii) follows immediately from Equations (4)
and (5), and thus, Theorem 1(ii) is stated without proof.

When comparing (1), (2), and (8) we see that the univari-
ate natural exponential family, the DY pdf, and the CM pdf
share a basic structure. Specifically, all three distributions have
an exponential term and an “exponential of —y term.” This
pattern is the main reason why conjugacy exists between the
distributions from the natural exponential family and the DY
distribution, which we take advantage of in subsequent sections.
Also, Theorem 1(ii) shows that if we restrict V (or equivalently
V~1!) to be a lower unit triangle matrix, then the expression of
the covariance matrix of Y in (9) is a type of LDL decomposition
(Ravishanker and Dey 2002). Hence, in subsequent sections we
assume that V is lower unit triangular.

Bayesian inference not only requires the pdf of Y, but also
requires simulating from conditional distributions of Y.

Table 1. Special cases: we list the form of the CM distribution by ¢ forj = 1,...,4.

Theorem 2. Let Y ~ CM(u,V,o,k; %), and let Y =
(Y1,...,Y,) = (Y}, Y}), so that Y, is r-dimensional and Y,
is (n — r)-dimensional. In a similar manner, partition vl =
[H B] into an n x r matrix H and an n x (n — r) matrix B.
Also let u* = V~'u — Bd for d € R™". Then, the conditional
distribution Y;|Y; = d, u*, H, &,  is given by

f(Y]. |Y2 = d) M‘*) H,II,IC)
=M exp{¢’HY, — o'p* — k'Y (HY, — pn*)}
x I{(Y},d') e M"}, (10)
where M is a strictly positive and finite normalizing constant.

Let CMc(u*,H, &, k; ¥) be a shorthand for the pdf in (10),
where the subscript “c” represents the word “conditional”

In Supplemental Appendix A, we describe technical results
related to simulating from the conditional CM distribution.

In this article, we consider CM distributions that are implied
by the unit log partition function of the data model including:
the gamma data model, binomial data model, negative bino-
mial data model, the Poisson data model, and the normal data
model (see Tables 1 and 2). In the univariate case, each of
these special cases lead to well-known hierarchical models (i.e.,
gamma/inverse-gamma, (negative) binomial/beta, Poisson/log-
gamma, and normal/normal models) (Diaconis and Ylvisaker
1979). To delineate from the univariate setting, we shall refer
to CM(u, V,a, k;¢;) for j = 1,...,4 (see Table 1 for the
definitions of ¥y, Y2, ¥3, and v4) as the multivariate negative-
inverse-gamma distribution, multivariate logit-beta distribu-
tion, the multivariate log-gamma, and the multivariate normal
distribution, respectively.

These choices of the CM distribution are themselves
general. For example, when ¢ = J,;, we obtain an
exponential/multivariate  negative-inverse-gamma  model.
Similarly, the binomial/multivariate logit-beta model has a
Bernoulli/multivariate logit-beta model as a special case, which
occurs when the number of Bernoulli trials that define the
binomial distribution is equal to one. Likewise, when the
number of successful Bernoulli trials is equal to one, the
negative binomial/multivariate logit-beta model reduces to a
geometric/multivariate logit-beta specification. This creates
opportunity for analyzing many different types of dependent
data.

Unit log partition function (i.e., ¥)

CM distribution (i.e., f(Y|u, V, ¢, k)

v(Y) = log (—7)
Y2(Y) = log (1 + exp(Y))
v3(Y) = exp (Y)

va(Y) = Y2

Kki+1

det(v=") {14 ﬂ;;ﬁ_ 5 { exP [ot’s —«'log (—s(_”)] I(—s e B)
det(v—1) []_[?=1 rﬁ%};_‘—m] exp [a*V_1(Y — ) —«'log [Jm + exp [V_1 (Y- ,u]] ” Y ¢ B™)
det(V-" 1T, K('(;_) } exp [oz"l_1 (Y —p) —x'exp [V_1(Y — ,u)” I(Y e R
det(W=") {17 ()" exp |~ — = py VT E- VY = = y) 72} 1Y < BT

NOTE: The first column has the unit log partition function 1}, and the second column has the form of the CM distribution with generic V-1 c R x RO Let Jm g denote a
m x g matrix of ones, s = (s9,..., sn) =V 1Y — ),y = (i‘% ..... 2‘%);, s = (1/sq,..., 1/sp)’,and £ = diag (21? i=1,..., n).
1



Table 2. A cross-tabulation of a hold-out dataset with 216 observations and the
corresponding rounded predicted values (i.e., the posterior mean estimated from
the Gibbs sampler).

Hold-out data value

0 1 2 3 4 5 6 7

0 18 0 0 0 0 0 0 0

1 0 75 14 0 0 0 0 0

2 0 14 43 15 1 0 0 0

3 0 0 3 13 8 1 0 0

Rounded Poisson 4 0 0 0 0 9 0 0 0
LCM predictions 5 0 0 0 0 4 3 0 0
6 0 0 0 0 0 1 2 0

7 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 1

NOTE: These predictions are rounded to the nearest integer, since the hold-out
dataset is known to be integer-valued. The bold values indicate that the rounded
predictions and the hold-out data exactly agree.

2.3. The LCM Model
The LCM model is proportional to the product of the following

conditional and marginal distributions:

ind ’ ’
Data Model : Z;|8,1,& ~ EF (X8 + ¢in + &; ¥));

i=1..,nj=1,...,4

Process Model 1: 3|V, ay,ky ~ CM (0,1, V,0ty, k3 Yk) 5
Process Model 2: &|ag, kg ~ CM (0,1, Ve, e, kg5 Vi) 5
Parameter Model 1 : b|ay, k ~ CM (0, 1, &y, kp; Yi) I(b = 0)
Parameter Model 2: Blag, kg ~ CM (0,1, Vg, g, kg5 Vi) ;
k=1,....4 (11)

where v; and ¥ (for j,k = 1,...,4) are defined in Table 1 and
the elements of n-dimensional vector Z = (Zy,...,Z,)’ repre-
sent data that can be reasonably modeled using a member from
the natural exponential family. Additionally for each i, x; is a
known p-dimensional vector of covariates, 8 = (B1,..., )" €
RP is an unknown vector interpreted as fixed effects, ¢; is a
known r-dimensional real-valued vector (see Section 3.5 for
an example), and the r-dimensional vector = (n1,...,7n,)
and n-dimensional vector § = (&,...,&,) are interpreted
as real-valued random effects. We have not yet provided spec-
ifications of the hyperparameters and variance parameters:

ag = (@pn.-app)s @y = (agn..amy), @ =
(a?;',lr .- -:aé’,n)!s Kg = (Kﬁ,ls ces r"cﬂ,p);: Ky = (Kn,].: ces !’cr,l,r),r
ke = (kg 1s....ken), Vg e RFE xR, VeR xR,and V¢ €
R" x R", where agi/kp; € V, apj/inj € V, azk/kek € ),
kgi > 0, kpj > O0,and kg > 0;i = 1,...,p,j = L...,r,
k =1,...,n. These details are presented in Sections 2.7 and 2.8.

Parameter Model 1 in (11) is only included when b is
unknown (i.e., when the data model is specified to be either
the negative binomial or gamma distributions). The truncated
CM distribution is chosen because it is conjugate; see details in
the Supplemental Appendix. In our experience (see Section 3.4),
b is difficult to learn, and the results are extremely sensitive
to the choice of «p, and «p. Several priors have been suggested
for the overdispersion parameter when the data are distributed
according to a negative binomial distribution (see, e.g., Gelman
2006, among others), some of which have been developed based
on the gamma-Poisson interpretation of the negative binomial
distribution (see Zhou and Carin 2015, and the references
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therein). In this article, we focus on using CM priors, and hence,
other choices of priors on b (for LCM models) may lead to
better results. We have found that the results are more favorable
when specifying a different data model for the settings where
b is unknown. Specifically, for the negative binomial setting
we suggest using a Poisson distribution, and when the data is
distributed as gamma we suggest taking the log transform and
using a normal distribution.

Another important quantity that needs to be specified are
the basis functions {@,}. This choice is very important and
requires careful consideration. To illustrate the generality of our
proposed model we consider three classes of basis function,
each of which are demonstrated in Sections 3.3-3.5, respectively.
Many analyses let {¢;} consist of known covariates (see, e.g.,
Wilson and Reich 2014, for a recent example). Another choice
is to specify latent classes to model within-subject variability; in
this setting, {¢;} is sometimes referred to as a “random effect
design matrix” (see, e.g., Hodges 2013, chap. 1 for a discussion).
Consider the example where g; C {1,...,n} represents the kth
group. In Section 3.3, g; represents the kth herd of cows, and
each element in g; represents a specific cow in the sample. Here,
we shall specify ¢; = (I(i€g),...,I(i g,))". For spatial
and time-series datasets, it is often assumed that {¢;} consists
of spatial/temporally varying functions, referred to as “basis
functions” For example, Fourier basis functions/wavelets are
often used in the image analysis literature (see, e.g., Donoho
and Johnstone 1994, for a classic reference). Similarly, radial
basis functions, empirical orthogonal functions, and splines
have been used to great effect in the spatial statistics, time-series,
and spatio-temporal statistics literature (see, e.g., Wahba 1990;
Bradley, Cressie, and Shi 2016; Bradley, Wikle, and Holan 2017;
Wikle 2010, for a different choices of basis functions).

The value of r is a feature of the observed dataset when
specifying {@; } to be either covariates or a random effects design
matrix (see Sections 3.3 and 3.4 for examples). However, when
using a known class of basis functions, r must be specified. In
this setting, selection criteria are often used to investigate both
the sensitivity to the choice of r and how many are necessary to
give reasonable predictions (see, e.g., Wahba 1990; Henao 2009;
Bradley, Cressie, and Shi 2011, among others). Spike and slab,
horseshoe priors, and SSVS (among other similar techniques)
are extensions of the LGP, which one might adapt to the LCM
to select covariates and basis functions (O’'Hara and Sillanpaa
2009); however, we do not consider these extensions of the LCM
in this article. When spatial basis functions depend on knot
locations (thin-plate splines), a common rule-of-thumb is to
specify equally spaced knots over the spatial domain (see, e.g.,
Nychka 2001, among others). In Section 3.5, we demonstrate the
use of a known kernel using a big Bernoulli dataset consisting of
cloud fractions. Here, we use the same basis functions specified
in Sengupta et al. (2012), where the knots were chosen to be
equally spaced.

2.4. Methodological Properties of the LCM

An important point argued in Section 1 is that the LGP model is
a special case of an LCM. This can now easily be seen by letting
j=L...,4k=40ag = 0,;,a, = 0,and &, = 0.
This specification yields an LGP model. A difficulty with this
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specification is that we lose conjugacy by specifying j # k.
Bradley, Holan, and Wikle (2018) showed that the multivariate
log-gamma distribution they proposed can be made arbitrarily
close to a multivariate normal distribution by specifying the
shape and scale parameters to be large. This essentially allows
one to use a LGP specification with a Poisson data model, and
also use the conjugacy that arises from the MLG distribution
when j = k = 3 in (11). This important property of the
MLG distribution can be extended to the more general CM
distribution.

Theorem 3. Suppose that ¥ # 4, and denote the first and
second derivatives with ¥' and ", 0 < ¥’ < o0o,and 0 <
¥" < oo. Let the n-dimensional random vector Y distributed
according CM(, (¥ (0)/¢(0)""* a'/2V, &l 555 ¥)
ignoring proportionality constants. Then Y converges in distri-
bution to a multivariate normal random vector with mean p and
covariance matrix VV’ as o approaches infinity.

The restriction of ¥ # 4 is sensible, since ¢ = 4 yields a
CM exactly equal to a multivariate normal distribution. Also,
Theorem 3 does not hold for the multivariate negative-inverse-
gamma distribution, since | (0) = —oo.

The “best” DY parameters, for the multivariate logit-beta
distribution and the MLG distribution, might not lead to some-
thing that looks Gaussian. That is, we should be able to learn
whether or not the multivariate normal distribution is appro-
priate for latent processes of binomial and Poisson data by
observing whether or not posterior replicates of the DY param-
eters (ie., & and k) are large (which would invoke Theorem 3).
Hence, from this point-of-view, it is very important that we
place prior distributions on the DY parameters, as we describe
in Section 2.8.

These connections to the Gaussian distribution are impor-
tant because it shows potential for the LCM to outperform a
latent Gaussian process model. However, for the LCM to be as
widely applicable as an LGP, we also require an important theo-
retical property referred to as Kolmogorov consistency (Daniell
1919; Kolmogorov 1933). That is, if the index on Z; is defined
over space or time, for example, then we need the CM distri-
bution to be well defined for every possible subset of locations
(Gelfand and Schliep 2016).

Theorem 4. The CM distribution, as defined in Theorem 1, is
Kolmogorov consistent.

Theorems 3 and 4 are important methodological properties;
however, if it is more difficult to implement LCM over the LGP,
then these results may have less of an impact in practice. In Sec-
tion 2.5, we show that it is rather straightforward to implement
the LCM using a collapsed Gibbs sampler.

2.5. An Example Gibbs Sampler for the LCM

To simulate from a posterior distribution that is proportional to
(11) we consider the following likelihood:

ind ’ '
Data Model: Zlg,1,& ~ EF (X8 + ¢n + & + bj; q

+ b9, + b s v’fj) .

Process Model 1 : r}lV,a,],x,],q,,

~CM (—VBnqn,V,aq,xn; q;k) ;
Process Model 2 : Elotg, kg, Qg

~ CM (—VgBeqg, Ve, ag, kg5 Yi) 5
blay,kp ~ CM (0, 1, ap, k33 Y) I(b > 0)
Parameter Model 2 : Blag.kp.qg

~ CM (~VgByqg Vg,ap.kp; Vi)
Parameter Model 3 : f(qg) =1
Parameter Model 4: f(q,) =1
Parameter Model 5 : f(qE) =1;
4,k=1,...,4,

Parameter Model 1 :

i=1,...,nj=1,..., (12)
where bg ;, b, ;, and b ; are prespecified n-dimensional vectors
and the p x n matrix Bg, the r x n matrix B,, and the n x n
matrix Bg are also prespecified. There is an immediate connec-
tion between (11) and (12), which introduces the improper n-
dimensional random vector qg, n-dimensional random vector
q,> and n-dimensional random vector ;. Specifically, when
conditioning (12) on the events 94 = 0n1,q, = Op1, and
qz = 0,,1, we obtain a likelihood that is proportional to (11).
Consequently, we suggest implementing the collapsed Gibbs
sampler (Liu 1994) outlined in the pseudo-code. In general, one
can interpret qg, g, and g as location parameters for 8, , and
£, and are given non-informative priors.

As an example, consider deriving the full-conditional distri-
bution in Step 2. Write the data model in (12) as

f(Z.qpl) ocexp |ZXB +Z' 09+ 25 + Z'By1q,

— U1, WX+ @0 +E+Bpagp) | b (13)

where the n x n matrix Bg 1 = (bg1,...,bg)’, n x p matrix
X = (X,...,X,), the n x r matrix ® = (¢1,...,¢,,)’,

= {[TL, IB +¢m +& <))}, and & denotes the “pro-
portional to as a function of Z” symbol. Using (12) and Param-
eter Model 2 in (13) we have that

fBgl) o M (s Vi ok ) b (1)

!

= Vi (w0 —£.0,), @y = Z.ap). k) =
(b) 165, V“_l = (Hg,Qp), the (n + p) x p matrix Hg =
(X, V’ )’ a.nd the (n + p) x n matrix Qg = (B:’B l,B’ ). See
the Supplemental Appendix for the algebra leading to (14) The
full-conditional distribution in (14) is not well defined when
Z; = 0 for some i, because this produces a zero shape parameter.
In this setting one can add an “€” to the elements of Z to
force nonzero shape parameters. However, this choice changes
the prior from a CM distribution to a CM, distribution, and
a considerable amount of book-keeping is required to derive
the full-conditional distributions. For ease of exposition, we put
these details in the Supplemental Appendix C.

where ,ug



Algorithm 1 Pseudo-code: Collapsed Gibbs sampler for the
model in (12)
1: Set b = 1 and initialize 81, [, and £!°!.
2: Sample 3[3] from f(B|Z, ?}[g_ll,i,’[g_l],b[g_”,q,] =
04,9 = 0y).
—1 _
3: (S)a.;nple 18] from f(y|Z, B8], £l8—11, pls 1],qﬁ =0,q; =

4: Sample 5[3] fromf(EIZ,ﬁLg],??[g],b[g_l],qﬂ = Onq, =
0,).
5: Sample b8l from f(b|Z,ﬁ[gl,rj[g],‘g'Lg],qﬁ = Ongq, =

0y, q; = 0,).
6: Repeat Steps 2, 3, and 4 until ¢ = G for a prespecified value
of G.

If we prespecify Qg so that it is equal to the basis for the
null space of Hg (ie, QgQp = I QgHp = 0,p, and

Hp(HzHp) ~'Hj + QpQ) = Luyp)- Then,

(H, Hg) 'H,
Vi = (Hp, Qp) ™' = ( P é, p ) (15)
P

From (7) we see that to sample a value from

f(B.qg|Z,n,&,b,q, = 0,,q; = 0,) we can compute

( B ) _ ( (HHp) " Hj; (@1 + ) )

qﬁ 0y,
(HyzHp)™'Hpw )

r 3 16
+( S (16)

where w ~ CM (0,,+P, I,,+p,a:§,x§; y’f), which can easily be
generated using (7). Thus, to simulate according to Step 2 of the
collapsed Gibbs sampler we can compute,

B = —(HyHp) 'Hy(®n + &) + (H;Hp) 'Hyw.  (17)

It is (computationally) easy to simulate in this manner provided
that p « n. Recall that Hg is n x p, which implies that
computing the p x p matrix (H,Hg)™! is computationally
feasible when p is “small” By small we mean a value such that
the Gauss-Jordan elimination method for the inverse of a p x
p matrix can be computed in real-time. Furthermore, the p-
dimensional random vector f is an orthogonal projection of the
n-dimensional random vector w onto the column space spanned
by the columns of Hg. This provides a geometric interpretation
of random vectors generated according to (17).

2.6. Properties of the Augmented LCM Model

As discussed in Section 2.2 and Supplementary Appendix A, it
is difficult to simulate directly from a CM. distribution since H
in (10) is not square, and hence, one cannot use Equation (7).
In Section 2.5, we instead consider simulating from CM, after
marginalizing across a location parameter with improper prior.
This leads to the following result.

Theorem 5. Let q,|c,H,o,k ~ CMc(c,H,a, k), where H €
RM » R is full column rank, « = (ai,....,aym), &k =
(k15....6km)sai/k; € Y,andk; > Ofori=1,..., M. Assume a
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reparameterized value of c = —Bq, + 1, and the improper prior

f(q,l¢, H,B, o, k) o 1, where q, is (M — r)-dimensional. Also
let B, € RM x RM—" be the orthonormal basis for the null space
of H,q = (q},q,)’, . € RM, 1, be an n x n identity matrix, and
let w ~ CM. (s, H, &, k). Define V-! = (H, B).

(i) Then,
ff(qllc = —Bq, + 1, H,B,, k)dq, o

[ e {evta—ew (v-ig = u)} das
(18)

where ¢ is a unit log-partition function and the inte-
grand on the right hand side of (18) is proportional to
CM(Vi,V = (H,B)l,a,k). Furthermore, the affine
transformation (H'H)~'H'w is a draw from the density in
(18).

(ii) The conditional mean and covariance can be computed as

E(q,|V, e, k) = (HH)'Hk(a, k)
cov(q, |V, a, k) = (HH)""H'K(a, k) HH'H) ™},

where we have integrated across q,.

The proof of Theorem 5(i) is given in the Supplemental
Appendix. The proof of Theorem 5(ii) follows immediately from
Theorem 1(ii) and Theorem 5(i). Thus, we state Theorem 5(ii)
without proof.

Theorem 5(i) offers a more formal statement of a heuristic
described in the rejoinder of Bradley, Holan, and Wikle (2018)
for the MLG distribution. Thus, this result is an important
contribution as it provides the necessary conditions required to
argue the use of the sampler described in Section 2.5. As dis-
cussed at the end of Section 2.4, computational considerations
are extremely important when proposing a new complex model.
A collapsed Gibbs sampler will allow one to avoid Metropolis—
Hastings updates, which in turn, increases the effective sample
size and, consequently, the computational performance of the
method.

The integrand on the left-hand-side of (18) is proportional
to a CM_, and is of the same form as the full-conditional distri-
butions that arise in the LCM in Section 2.5. Theorem 5 shows
that it is (computationally) easy to simulate from the left-hand-
side of (18) provided that r <« n and that q, is marginalized.
Recall that H is n x r, which implies that computing the r x r
matrix (H'H)~! is computationally feasible when r is “small””
By small we mean a value such that the Gauss-Jordan elimi-
nation method for the inverse of a r x r matrix can be com-
puted in real-time. Furthermore, Theorem 5 shows that the r-
dimensional random vector q is an orthogonal projection of the
n-dimensional random vector w onto the column space spanned
by the columns of H. This provides a geometric interpretation
of random vectors generated from CM. after marginalizing q,.

2.7. Prior Distributions on Covariance Parameters

A critical feature of our proposed distribution theory is the
incorporation of dependence in non-Gaussian data from the
exponential family. From this point-of-view it is especially
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important to learn about these dependencies, which are quanti-
fied by the unknown n x n real-valued matrix V (or equivalently
V~1). Thus, we place a prior distribution on V1. Specifically,
let V! be an unknown lower unit triangle matrix. That is, let
V! = {v;;}, where v;; = 1 forj = i,v;; = 0forj > i, and
vij € Rforj < i. It will be useful to organize the elements below
the lower main diagonal into the (i — 1)-dimensional vectors
vi=(ij:j=1...,i—1) fori=2,...,n.

We place a CM prior distribution on v; for each i. Specifically,
let

ind
Vi '~ CM(0;_1, Ciaju ki3 ¥); i=2,...,1, (19)

where, in practice, the (i — 1) x (i — 1) matrix C; is set equal to
oyl;_1, and &}, k;, and o, are specified such that (19) is relatively
“flat” This specification leads to a conjugate full-conditional dis-
tribution within a Gibbs sampler (see Supplemental Appendix C
for the derivation).

The CM prior distribution on the modified Cholesky decom-
position of the precision matrix is similar to priors considered by
Daniels and Pourahmadi (2002), Chen and Dunson (2003), and
Pourahmadi, Daniels, and Park (2007) in the Gaussian setting.
In fact, when ¢ = 4 the prior distribution in (19) reduces to
the prior distributions used in Daniels and Pourahmadi (2002),
Chen and Dunson (2003), and Pourahmadi, Daniels, and Park
(2007). Thus, (19) constitutes a general non-Gaussian (natu-
ral exponential family) extension of such priors on modified
Cholesky decompositions of precision and covariance matrices.

There are certainly other prior distributions for V~! that
may be more appropriate. For example, see Yang and Berger
(1994) and Bradley, Wikle, and Holan (2016, for the spatial
setting) for a Givens angle prior on covariance parameters. The
Wishart and inverse Wishart are also common alternatives (see,
e.g., Gelman et al. 2013, for a standard reference). However,
conjugacy may not always be present depending on the choice
of CM distribution. Thus, in this article, we investigate the fully
conjugate form of the LCM and specify the prior for V™! as
stated in (19).

2.8. Prior Distributions on DY Parameters

Following the theme of the previous sections, we define conju-
gate priors for the DY parameters by defining a distribution with
an exponential term and an exponential to the negative unit log
partition function. That is, consider

f(‘x’-‘fh’l’}’bﬂ)ocexp I:}lla—i_nx_plog[ : ]:I’
K(a,k)

(20)
where yi, 2, and p are hyperparameters. The parameter space
for y1, y2, and p that ensures that (20) is proper (i.e., can be
normalized to define a probability measure) is an immediate
consequence of a result from Diaconis and Ylvisaker (1979). In
particular, from Theorem 1 of Diaconis and Ylvisaker (1979),
the distribution in (20) is proper provided that J is a nonempty
real-valued open set, the range of ¥ is a nonempty real-valued
openset, y1/p € V, v2/p € Vy,and p > 0, where YV, = {M :
M = —(Y),Y € )}. For the CM distribution associated with
Yr; we seethat Y = {Y : Y < 0} and the range of ¢ is R; thus,
for this setting y1 < 0, 2 € R, and p > 0 results in a proper

prior in (20). For the CM distributions associated with 3, 3,
and ¥4 we have that } = R and v is a strictly positive; thus, for
this setting y; € R, » < 0,and p > 0 ensures propriety of (20).

There are many interesting special cases of the prior dis-
tribution in (20). For example, when « is integer-valued and
¥ = 13 then the prior in (20) has a relationship with the
Conway-Maxwell-Poisson distribution (Conway and Maxwell
1962) and the gamma distribution. These special cases (listed in
Table 3 of the Supplemental Appendix C) are particularly useful
because they give rise to interpretations of the hyperparameters.
In particular, for ¢ = 1, we have that p can be interpreted as
a dispersion parameter (in relation to the dispersion parameter
of a Conway-Maxwell-Poisson distribution), y; can be inter-
preted as a location parameter, and y, can be interpreted as a
scale parameter. When ¢y = v, we have that y; and y, can be
interpreted as functions of a proportion (i.e., the inverse logit
or log of a proportion). For ¢+ = 3, we have that p can be
interpreted as a dispersion parameter, y, can be interpreted
as a location parameter, and y; can be interpreted as a scale
parameter. Finally, when ¢ = 14 we have that y, is interpreted
as a location parameter, p represents a shape parameter, and y
represents a scale parameter.

The most familiar special case occurs when ¢ = 4 (e, a
normal data model) and « = 0. Namely, (20) reduces to inde-
pendent gamma prior distributions on « with shape parameter
p/2 + 1, and scale parameter —y,. When recognizing that « is
equal to one-half the unknown variance of a normal random
variable (see Table 1), we see that the conjugate prior distri-
bution implies an inverse gamma distribution for the variance
parameter, which is a common choice of a prior distribution on
the variance parameter for normally distributed data (Gelman
2006).

3. Empirical Results

In Sections 3.1 and 3.2, we use simulations to demonstrate
the performance of the LCM when analyzing binomial and
Poisson data. To demonstrate the wide-applicability of the CM
distribution, we also give several illustrations from a variety
of disciplines; namely, we analyze an epidemiology dataset
(Section 3.3), a federal statistics dataset (Section 3.4), and an
environmental dataset (Section 3.5). Our computations were
performed on a dual 10 core 2.8 GHz Intel Xeon E5-2680
v2 processor with 256 GB of RAM. All R code and Matlab
code used in these examples are provided in the Supplemental
Appendix. User-friendly R code is provided at: https://github.
com/JonathanBradley28/CM.

3.1. Simulation Example

‘We compare predictions using the LGP versus predictions based
on a LCM. As discussed in Section 1, the LGP is the standard
approach for Bayesian analysis of dependent data, and thus, the
results in this section are meant to provide one comparison
of the LCM to the current state-of-the-art. It is important to
emphasize that if the LGP is more appropriate than the LCM,
our model will be able to identify this for some settings because
of Theorem 3; that is, if the posterior replicates of the DY


https://github.com/JonathanBradley28/CM
https://github.com/JonathanBradley28/CM

parameters are large then Theorem 3 suggests that the latent
processes are approximately Gaussian.
The n x p matrix X = (xy,...,Xp)’, the r x r matrix ® =

(#1.---.¢,), and the r x r lower unit triangle matrix V" are
randomly generated with p = 500 and r = 10. The choices for
p and r were made to represent realistic values that one might
see in practice. For example, see Matloff (2016, chap. 2), where
they consider a dataset taken from a “data exposition” provided
by the American Statistical Association’s Sections on Statistical
Computing and Statistical Graphics. This example had n =
500,000 and p = 29 and was considered to be a moderate p
and large n setting. Also, see Huang and Sun (2018) for a recent
example where n = 2,153,888 and r = 60 is considered to be a
moderate r and large n setting. Each element of the n x p matrix
X, the n x r matrix ®, and the r x r matrix V! are selected
from a standard normal distribution. The elements of the fixed
and random effects 8, 5, and & are randomly selected from a
standard normal distribution as well. Then, we define p; =
exp(x;f+din+E&; .
% fori = 1,...
data models in this section. In particular, we consider observa-
tions Z; generated from a binomial distribution with sample size
t; (generated from a Poisson with mean 40) and probability of
success p; fori = 1,.. ., n. For example, consider n households,
where for each household i there are f; individuals, and let p;
represent the probability that an individual is female. Then Z;
would represent the number of women living in household i.
Here, one might choose ¢; = (1,0)’ if the total income of the
household is below the poverty line, and ¢; = (0, 1)’ otherwise.
Similarly, we consider observations Z; generated from a Poisson
distribution with mean exp(x;8 + ¢m+E)fori=1,...,n
Using the Gibbs sampler outlined in Supplemental Appendix
C we implement the LCM in Model 1 with j = k and use
the appropriate data model (i.e., binomial or Poisson). We use
the R-package 1me4 to implement a LGP. Default choices were
used when possible in when using 1me4. For each i, denote the
posterior mean of p; with p;, the posterior mean of p with 7;,
and define the total squared prediction errors to be

, 1. We consider two different

Z(th’ — 1p;)*
Z (i — @)%

Difference in log MSPE between
LGP and Binomial LCM

(21)

4.34

4.36 4.38 4.4

Figure 1. Histogram over the difference in log MSPE: For each of the fifty realizations of {Z1, ..

4.42
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used for the binomial and Poisson settings, respectively. We
used a burn-in of 10,000 and generate B = 20,000 posterior
replications for both data models that are considered.

We consider a large sample size of n = 100,000 and simulate
{Z,...,Z,} 50 times from the binomial distribution, and sim-
ulate another 50 independent replications of {Z;,...,Z,} from
the Poisson distribution. In Figures 1(a) and (b), we plot the
difference in log mean squared prediction error (MSPE) error
of the LCM model and the total squared prediction error of
the LGP model over the 50 independent replicates. A difference
greater than zero indicates that the LCM has smaller total square
prediction error. Here, we see that the differences in log MSPE
are consistently larger than zero, and hence, the LCM clearly
outperforms the LGP for this simulation design for both the
binomial and Poisson settings. Thus, not only does the LCM
lead to practical advantages (no tuning is involved) over the LGP
for this example, there are also clear gains in predictive per-
formance. Thus, this simulation suggests that the LCM model
yields precise predictions, and is computationally feasible for a
large dataset with moderate values for p and r. Note that the high
predictive performance of the LCM model occurs in a setting
where we do not generate the truth from a multivariate logit-
beta distribution.

3.2. ASimulation Study

Real datasets often do not perfectly reflect the statistical model
used for implementation. As such, it is necessary to provide
evidence of the robustness (of prediction) to model misspeci-
fication through simulation studies. We do this by considering
several specifications of the simulation model in Section 3.1
and of the fitted model used to analyze the simulated data with
n = 100. Specifically, we consider the following factors in an
analysis of variance (ANOVA) experiment:

« Factor 1 (Random effects in the simulation model): The sim-
ulated data are generated from the Poisson distribution in
the same way as in Section 3.1 with: (Level 1) Gaussian ran-
dom effects and (Level 2) multivariate log-gamma random
effects.

« Factor 2 (Number of covariates in the simulation model): The
simulated data are generated from the Poisson distribution
in the same way as in Section 3.1 with: (Level I) p = 10 and
(Level 2) p = 50.

Difference in log MSPE between
LGP and Poisson LCM

3.85 39 3.95 4 4.05

., Zp} from a (Poisson distribution) binomial distribution, we produce ({i1;})

{pi} using the appropriate LCM model, produce ({i;}) {p;} using the LGP model, and compute the difference in log MSPE. The difference in log MSPE for the (Poisson
distribution) binomial setting is the log of the total squared prediction error of ({7i;}) {{p;} from the LGP model minus the log total squared prediction error of ({71;}) {fp;}
computed using the LCM model. The histogram in the (right) left panel is over the 50 independent replicates from the (Poisson distribution) binomial distribution.



2046 J.R. BRADLEY, 5. H. HOLAN, AND C. K. WIKLE

» Factor 3 (Number of basis functions in the simulation model):
The simulated data are generated from the Poisson distribu-
tion in the same way as in Section 3.1 with: (Level 1) r = 10
and (Level 2) r = 50.

» Factor 4 (Distributional assumptions of the fitted model): We
make the following distributional assumptions when fitting a
model to the simulated data: (Level 1) a Poisson LGP model,
(Level 2) a Poisson LCM model with j = k = 3, and (Level 3)
a negative binomial LCM with j = k = 2.

« Factor 5 (Number of covariates in the fitted model): We make
the following assumptions when fitting a model to the simu-
lated data: (Level 1) p = 10 and (Level 2) p = 50.

» Factor 6 (Number of basis functions in the fitted model): We
make the following distributional assumptions when fitting
a model to the simulated data: (Level 1) r = 10 and (Level 2)
r = 50.

There are a total of 2° x 3 = 96 factor level combinations (Factor
4 has three levels). The response in this experiment is the log
total prediction error in (21). The log transformation is done to
aid in producing normality in an analysis of variance (ANOVA)
experiment. Within each factor-level-combination we simulate
10 independent replicates of {Z,...,Zip}, and compute the
log total prediction error in (21). This leads to a total of 10 x
96 = 960 observations used in our ANOVA. Notice that we
consider cases were we both correctly and incorrectly specify
the covariates, basis functions, and distributional assumptions.
This is done in an effort to assess robustness (of prediction) to
model misspecification.

We implement an ANOVA with up to two-way interactions
between the factors defined in the bulleted list above. The
ANOVA table is provided in Supplemental Appendix D. The
first and fourth main effect, and their interaction, have large F
statistics. The remaining F statistics are not “significant” This
suggests that, for our simulation setup, the proposed model is
fairly robust to misspecification of covariates and basis func-
tions. However, the specification of the fitted model (i.e.,an LGP
or LCM) appears to explain most of the variability in the log
total prediction error. In Figure 2, we plot the interaction plot
associated with Factors 1 and 4. Here we see that even when
the data are simulated with Gaussian random effects, we appear
to outperform the LGP with either LCM. Both LCMs perform
similarly in this setting. When the data are simulated with
multivariate log-gamma random effects the ANOVA suggests
that the Poisson LCM performs considerably better than the
LGP, and slightly outperforms the negative binomial LCM.

Further details on how the LCM outperforms the LGP (in
terms of prediction) in several settings are provided in Figure 3.
Here, we isolate 9 factor level combinations (or settings) of inter-
est that compare the predictive performance of the LGP and the
LCM. Specifically, Figure 3 displays boxplots of the log MSPE (of
both the LGP and LCM) when the covariates and basis functions
are either correctly specified or misspecified. In general, we see
that both the Poisson and negative binomial LCMs consistently
outperform the LGP in each setting (i.e., when the covariates
and basis functions are either correctly or incorrectly specified).
For the LGP it appears that the log MSPE is larger when too few
covariates and basis functions are specified, but is fairly robust
to the case when too many are specified. This is consistent with

Interaction Plot Between Factor 1 and Factor 4

== Pojisson LGP Simulation Model
=== Poisson LCM Simulation Model

Log Total Prediction Error

25

Levels of Factor 4

Figure 2. A two-way interaction plot for Factors 1 and 4, using the log total
prediction errorin (21) as the response. The levels of Factor 1 are given in the legend,
and the levels of factor one are listed on the x-axis. Notice that the models that are
implemented (labeled on the x-axis), may be different from the models that the data
are simulated from (indicated by the solid blue, and dashed red lines). Regardless of
how the data are generated, fitting the LCM (levels 2 and 3 of Factor 4) appears leads
to smaller log total prediction error than when fitting the Poisson LGP on average.

previous results in the literature (see, e.g., Bradley, Cressie, and
Shi 2011, among others). However, the predictive performance
of the LCM models appears less sensitive to when fewer covari-
ates and basis functions are present.

3.3. AnApplication to Contagious Bovine
Pleuropneumonia in Ethiopian Highlands

Contagious bovine pleuropneumonia (CBPP) has been classi-
fied as a list-A disease by the World Organization for Animal
Health. For this reason, Lesnoff et al. (2004) conducted an
extensive study on herds of cows located within the Boji district
of West Wellega, Ethiopia. They collected the incidence of CBPP
among 15 herds over four time periods that span 16 months.
They were interested in tracking the probability of contracting
the disease as a function of time, and considered a generalized
linear mixed model to assess this. Time was found to be an
important fixed effect, and the herds were found to be an impor-
tant random effect (Lesnoff et al. 2004). This is a small dataset
consisting of 54 observations.

We fit a binomial LCM to these data, where the response is
the number of cows infected and the total number cows in the
heard is known (i.e., t;). We define x; to consist of indicators of
the different time-periods. Let gi represent the kth herd of cows,
and let each element in g represents a specific cow in the sample.
Specify ¢; = (I(i € g1),....1(i gr))! for cowsi = 1,...,54.
We compare our results to a LGP fitted using a standard R-
package for generalized linear models; namely, the R-package
1lme4, and using the function “glmer” (Bates et al. 2017). In
Figure 4, we plot the ratio of the mean squared prediction
errors (i.e., MSPE associated with LGP and the MSPE associated
with the LCM). Here, the paired ¢-test resulted in a p-value of
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Comparison of LGP and LCM in Several Settings
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Figure 3. We provide boxplot of the log MSPE in several settings. These settings represent 9 factor level combinations of the 96 available. In particular Factor 1 is set equal
to Level 1, where the Gaussian random effects are specified. The labels along the x-axis indicates the values for Factors 2 through 6. Here, “LGP" indicates Factor 4 is set to
Level 1, “P LCM"indicates that Factor 4 is set to Level 2, and “NB LCM" indicates that Factor 4 is set to Level 3. When the label contains the word “equal” Factor 2, 3, 5,and 6
are all set to Level 1 so that the choice of p and r in the fitted model is equal to the value of p and r generating the data. When the label contains the word “large” (“small”)
Factors 2 and 3 are set to Level 1 (Level 2) and Factors 5 and 6 are all set to Level 2 (Level 1) so that the choice of p and r in the fitted model is larger (smaller) than the value

of p and r generating the data.

Boxplot of Ratio of MSPE of LGP versus LCM
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Figure 4. The response is the ratio between mean squared prediction
error using the LGP model and the mean squared prediction error of the
LCM. We hold out roughly 5% of the observations. A boxplot is displayed
over 50 different hold-out observations. The mean squared prediction
error (MSPE) is between the predicted mean (e.g., posterior mean of
tiexp {x?ﬁ +¢in +§,—} /1 +exp {x?ﬁ + ¢y +§,—}]) and the hold out
dataset. Values greater than one (indicated By the dashed-dotted magenta line)
suggest that the binomial LCM outperforms the binomial LGP.

1.27x10~>, which suggests that the LCM is outperforming the
GLM in this setting. However, visually Figure 4 suggests that the
LCM and LGP give similar results for this example. The LGP

and LCM both were computed in under a minute on average
(across holdout data). The LGP on average took 0.07 min, while
the LCM was took slightly longer at 0.86 min. The fast speed of
both methods is not surprising since this is a very small dataset.

3.4. An Application to Count-Valued ACS Public-Use
Micro-Data

The US Census Bureau has replaced the decennial census long-
form with the American Community Survey (ACS), which is
an ongoing survey that collects an enormous amount of infor-
mation on US demographics. (To date there are over 64,000
variables published through the ACS.) The estimates published
from the ACS have a unique multiyear structure. Specifically,
the ACS produces 1-year and 5-year period estimates of US
demographics, where 1-year period estimates are summaries
(e.g., median income of a particular county) made available over
populations over 65,000 and 5-year period estimates are made
available for all published geographies (see, e.g., Torrieri 2007,
for more information).

A difficulty with using ACS period estimates published over
predefined geographies is that it is difficult to infer fine-level
(ie., household) information. As a result, the ACS provides a
public-use micro-sample (PUMS) over public-use micro-areas
(PUMASs). PUMS consists of individual and household infor-
mation within each PUMA, where the location of the household
within the PUMA is not released to the public. In this section,
we focus on household level PUMS found within one particular
PUMA; namely the PUMA that covers the metropolitan area of
Tallahassee Florida (labeled as PUMA number 00701).
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Boxplot of Ratio of MSPE of LGP versus LCM
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Figure 5. The response is the ratio between mean squared prediction error using the LGP model and the mean squared prediction error of the LCM. We hold out roughly
5% of the observations. A boxplot is displayed over 50 different hold-out observations. Values less than one suggest that the LCM outperforms the LGP. The left boxplot
represents the 50 ratios of the MSPE using the Poisson LCM and the MSPE using the Poisson LGP. The right boxplot represents the 50 ratios of the MSPE using the negative

binomial LCM and the MSPE using the Poisson LGP.

Consider 2005-2009 PUMS estimates of the number of indi-
viduals living in a household contained within PUMA 00701.
This is a fairly large dataset (for multivariate statistics) consisting
of 4537 observations. An important inferential goal, besides
giving an illustration of the LCM, is to accurately predict vacant
households (i.e., predict zero people living in a household).
Vacant households exhaust resources for those conducting sur-
veys, and is of practical interest to the US Census Bureau (see
http://www.census.gov/en.html).

We would expect the number of individuals living in a house-
hold to be spatially correlated, since certain neighborhoods
within Tallahassee are known to be more attractive for those
with a family, and hence, have more people living within a
household in these neighborhoods. However, the spatial corre-
lation cannot be leveraged, since the location within PUMAs are
not publicly available. Consequently, we model the dependen-
cies within the PUMS using a generic multivariate distribution;
namely, the CM distribution. In particular, we assume that the
data follows a LCM. We consider three types of LCMs: the first
is a Poisson LCM (i.e., j = k = 3), the second is a negative
binomial LCM (i.e., j = k = 2), and the third is a Poisson
LGP (ie.,j = 3 and k = 4). There are a large number of
potential covariates (there are 358 in total) including fuel cost of
the household, number of bedrooms in the household, and lot
size, among others. For illustration, we picked a small subset of
covariates using least angle regression (Efron et al. 2004), which
lead to 41 covariates. We consider defining each covariate as
the coefficient of the random effects (i.e., a column of ¥) so
that r = 41. Additionally, we include an intercept as a fixed
effect (i.e., X = J,,;). Convergence of the MCMC algorithm was
assessed visually using trace plots, and no lack of convergence
was detected.

To assess the quality of the predictions we randomly selected
216 observations (roughly 5% of the data). Using the remaining

data, we produce estimates of the mean number of individuals
living in a household for the 216 observations. As an example,
see Table 2 where we display the hold-out dataset and the
corresponding Poisson LCM predictions that were based on
the remaining 4321 observations. Here, we see that a majority
of the rounded (to the nearest integer) predictions are exactly
equal to the hold-out data. In fact, 163/226 =~ 72% of the 226
hold-out dataset are exactly equal to the corresponding rounded
predicted value, and the remaining 30% are within two counts
of the corresponding hold-out data value. Furthermore, we are
able to very accurately predict an empty household, which may
have implications for sampling done by the US Census Bureau.

This hold-out study was repeated 50 times, and the results
of the MSPE between the hold-out data and the rounded pre-
dictions are presented in Figure 5. Here, we fit the LGP (or
a Bayesian GLM) using the R-package MCMCglmm and the
function “MCMCglmm” (Hadfield 2016), and the remaining
models were fitted using the Matlab (Version 9) code in the
supplementary materials. Here, we see that both the Poisson
LCM and the negative binomial LCM outperforms the Poisson
LGP. However, the negative binomial LCM performs worse
than the Poisson LCM. The pairwise p-values for a paired t-
tests (using 50 MSPE values as the response) are as follows: a
one-sided test between the Poisson LCM and the Poisson LGP
resulted in a p-value of 0.033; a one-sided test between the
negative binomial LCM and the Poisson LGP resulted in a p-
value 0f 0.03; and a one-sided test between the negative binomial
LCM and the Poisson LCM resulted in a p-value of 4.11 x 1072,
We found that the results for the negative binomial LCM to be
sensitive to the prior on b (ie., the coefficient of the unit log-
partition function); hence, we suggest using the Poisson LCM
instead of the negative binomial LCM. The LGP and LCM both
were computed in under or slightly over a minute on average
(across holdout data). The LGP on average took 0.9 min, while


http://www.census.gov/en.html

the Poisson LCM and the negative binomial LCM took slightly
longer at 0.93 min and 3.2 min, respectively. The speed of all
three methods appears comparable.

3.5. An Application to Moderate Resolution Imaging
Spectroradiometer Cloud Data

On December 18, 1999 the National Aeronautics and Space
Administration (NASA) launched the Terra satellite, which
is part of the Earth Observing System (EOS). The Moderate
Resolution Imaging Spectroradiometer (MODIS) is a remote
sensing instrument attached to the Terra satellite and collects
information on many environmental processes. In particular,
the MODIS instrument converts spectral radiances into a level-
2 (i.e., 1 km x 1 km spatial resolution) cloud mask using cloud
detection algorithms. These cloud detection algorithms cannot
perfectly identify the presence of a cloud at each 1 km x 1
km region. Sengupta et al. (2012) cast this as a big spatial data
problem as, visually speaking, spatial correlations appear to be
present (i.e., nearby observations tend to be more similar) and
n = 2,748,620 is large.

In this article, we consider fitting a Bernoulli LCM (ie,
j =k = 2and b = 1) to the MODIS level-2 cloud mask
data from Sengupta et al. (2012). This LCM is implemented
using the code in the supplementary materials. We use the same
covariates and radial basis functions in Sengupta et al. (2012).
Specifically, let s1,...,8, € R2 represent the observed data
locations (latitude/longitude) seen in the left-panel in Figure 6.

Set ¢; = (¢1(s1),- ... #j(s) , where

lls—gll)2 .
¢j(s):[1—+] I(||s—gj||{wj); j=1...,1

]

where g;, j = 1,...,r, is the aforementioned knot points. This
radial basis function is referred to as a bisquare function (Cressie
and Johannesson 2008). The knot locations are divided into
three groups called “resolutions.” Then w; is set equal to 1.5
times the shortest great arc distance between the points that
are in the same resolution as g;. Sengupta et al. (2012) chose
r = 137 knots to have a “quad-tree” structure (or equally spaced
structure), where the knots of the different resolution all differ
from one another (see, e.g., Cressie, Shi, and Kang 2010b, among
others).

Data Predicted Probability of Clear Skys

e
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The posterior predicted value of the probability of a clear sky
is given in Figure 6 along with the posterior variance. The pos-
terior predicted probabilities reflect the general pattern of the
data. Also, the posterior variances are larger at larger posterior
predicted probabilities, which is to be expected as more extreme
probabilities tend to be more difficult to estimate. Thus, Figure 6
shows that it is possible to fit an LCM to a high-dimensional
spatial dataset (with small p) and obtain reasonable in-sample
results.

We consider only a single hold-out sample in this section,
since the computation times for this dataset are so demanding.
Here, we hold out 5% of the observations from the left-most
panel of Figure 6 and produced the posterior expected value
of the probability of clear skies. We threshold the values of
these posterior probabilities around the midpoint of the range to
classify either clear sky or cloudy. The LCM took approximately
12 hr to run, the false positive rate is 0.22, and the false negative
rate is moderately large at 0.28. We chose to compare these
values to the misclassification rates using a standard binary
classifier, support vector machines (SVM, Hastie, Tibshirani,
and Friedman 2009) fitted using Matlab’s “fitcsvm” function.
SVM took approximately three days to run, the false positive
rate is smaller at 0.11, and the false negative rate is much
larger at 0.53. Thus, this single hold-out study suggests that
the Bernoulli LCM leads to a classifier that is comparable to
the current industry standard, SVM. Moreover, we are able to
provide prediction uncertainty. The computation time of SVM
(3 days) is also considerably longer than the computation time
of the LCM (12 hr).

4. Discussion

We have introduced methodology for jointly modeling depen-
dent non-Gaussian data within the Bayesian framework. This
methodology is rooted in the development of new distribution
theory for dependent data that makes Bayesian inference possi-
ble to implement using a Gibbs sampler; hence, computation-
ally intensive and ad hoc approaches needed for tuning and
specifying proposal distributions are not needed. Specifically, we
propose a multivariate version of the prior distributions intro-
duced by Diaconis and Ylvisaker (1979). Furthermore, the prior
distributions similar to those used by Daniels and Pourahmadi
(2002), Chen and Dunson (2003), and Pourahmadi, Daniels,
and Park (2007) are adapted to the non-Gaussian setting,

Posterior Standard Deviation

Figure 6. In the left-most panel we have a plot of the data. White locations are observed clouds and black locations are observed clear skies. The middle panel are the
posterior expected value of the probability of clear skies using the Bernoulli LCM, and the right-most panel is the corresponding posterior variance of the probability of clear
skies. Posterior expected values and variances were computed using a training dataset consisting of 95% of the points in the left-most plot (these points were randomly

selected).
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Several theoretical results were required to derive this conju-
gate multivariate distribution (CM), and to develop its use for
Bayesian inference of dependent data from the natural expo-
nential family. The latter is facilitated through the introduction
of the LCM model. In particular, we show that full conditional
distributions are of the same form of a conditional distribution
of a CM random vector, and provide a way to simulate from
a collapsed full conditional distribution. Relationships between
the LCM and the LGP also provide motivation for the use of
the LCM. In particular, the latent Gaussian process (LGP) is a
special case of the LCM. Furthermore, many types of LCMs can
be well approximated by a LGP, by specifying certain parameters
of a LCM to be “large”” This result shows that the LCM is not only
computationally easier to implement, but is also more flexible
than a LGPs.

Empirical exploration of the Poisson, binomial, Bernoullj,
and negative binomial special cases were performed through
simulations studies and through analyses of several datasets
from a variety of disciplines. These examples indicate very small
out-of-sample error when using LCM for prediction, and show
gains in predictive performance over the LGP. Additionally, the
LCM model is applicable for large datasets (in the application
we implemented the LCM on a MODIS level-2 cloud-mask
data of size 2,748,620). In the first example, we considered a
small dataset of binomial counts of CBPP among herds of cows.
We obtained precise predictions and outperformed the LGP
computed using a standard R-package. In the second real data
analysis section, we predict the number of individuals within a
household over the U.S. city of Tallahassee, FL, and obtain very
precise estimates (in terms of hold-out error). The predictions
were very accurate even though 18/226 =~ 8% of the hold-
out dataset consisted of zero counts, which is known to cause
difficulties in an LGP (Lambert 2006). In the third application,
we obtain posterior predicted probabilities that reflected the
pattern of data at observed locations, and a binary classifier that
has misclassification rates that are comparable to support vector
machines.

Although there are many settings where the LCM improves
both precision and computation, there are settings where it
would not be feasible to implement the LCM. In particular, we
consider one choice of v that results in a case where M;+P )
M?PF7, and MZ" does not guarantee that X8 + ¢}y + & € Y
for each #; namely vy, which is the unit log partition function
of a gamma data model. In this case, the full conditional dis-
tributions are fruncated CM. distributions. Thus, in this setting
the LCM is most easily implemented by doing a Gibbs sampler
with component-wise updates due to the truncated support of
the natural parameter. This is computationally less efficient than
simply transforming the gamma data to the log scale and fitting
an LGP, which can give precise predictions. Additionally, we
found that the negative binomial LCM to give poorer predic-
tive results than the Poisson LCM. Thus, we suggest using the
Poisson LCM when analyzing unbounded count values instead
of the negative binomial LCM.

As discussed in Section 1, a general modeling framework for
dependent data that can model non-Gaussian (natural expo-
nential family) data as easily as Gaussian data, has important
implications for applied statistics. Nevertheless, there are also

many opportunities for new methodological results that are
exciting, since a special case of our framework (i.e., the LGP)
has been the central methodological tool used in the dependent
data literature. In particular, we are interested in developing the
LCM model within “more specific’ dependent data settings such
as time-series, spatial, spatio-temporal, and multivariate spatio-
temporal arenas.
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