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Abstract—We present the skip vector, a novel high-
performance concurrent data structure based on the skip list.
The key innovation in the skip vector is to flatten the index and
data layers of the skip list into vectors. This increases spatial
locality, reduces synchronization overhead, and avoids much of
the costly pointer chasing that skip lists incur.

We evaluate a skip vector implementation in C++. Our imple-
mentation coordinates interactions among threads by utilizing
optimistic traversal with sequence locks. To ensure memory
safety, it employs hazard pointers; this leads to tight bounds
on wasted space, but due to the skip vector design, does not lead
to high overhead. Performance of the skip vector for small data
set sizes is higher than for a comparable skip list, and as the
amount of data increases, the benefits of the skip vector over a
skip list increase.

Index Terms—Concurrency, synchronization, linearizability,
speculation, concurrent data structures, ordered maps

I. INTRODUCTION

Spatial locality is one of the most important factors when
optimizing the performance of software. Cache misses are
expensive, and thus it is advantageous to organize data such
that they can be brought to the processor with as few misses
as possible. Indeed, the constant factors associated with poor
locality can be so significant that they overshadow asymptotic
complexity for some workloads. This point was articulated
by Stroustroup in 2012 [1]. We repeat his experiments on a
modern Intel Xeon Platinum CPU in Figure 1.

The figure shows a single-threaded set microbenchmark.
The workload mix is 80% Lookup, 10% Insert, 10%
Remove, with keys drawn from a uniform distribution whose
range is given on the X axis. The set is pre-populated with
half the keys in its range, so that the set size is stable
throughout the experiment. We compare four set implemen-
tations: an unsorted vector (O(n) overhead), a sorted vector
(O(n) Insert and Remove, O(lg(n)) Lookup), a C++
map (balanced internal tree with O(lg(n)) overhead), and a
skip list [2] (O(lg(n)) overhead). The unsorted vector has
the worst asymptotic behavior, but gives the best performance
up to 7-bit key ranges. The sorted vector outperforms the
map until 8-bit key ranges, and the skiplist up to 14-bit key
ranges. The precipitous drops in performance for the vectors
as the key range increases establish that there is a tradeoff
between locality and asymptotic complexity: For large data
sets, asymptotic complexity becomes more important.

For large data sets, it is important for the data structure to
allow concurrent access. This introduces a tradeoff between
spatial locality and scalability. When concurrent operations
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Fig. 1: Sequential set performance as a function of key range,
for an 80/10/10 contains/insert/remove operation mix.

access data that are logically disjoint, but those data are on the
same cache line, then performance can degrade due to false
sharing and increased contention. The skip list, which has the
worst locality in Figure 1, is least prone to these problems,
and hence can be engineered to provide exceptional scalability.
Consequently, skip lists have been used as the foundation for
highly scalable ordered maps and sets [3], as well as strict [4]
and relaxed [5] priority queues.

Many concurrent data structures are based on trees, but skip
lists possess several advantages over trees. In particular, verifi-
cation is easier, and the number of contention hotspots is lower.
Furthermore, rebalancing a tree in a concurrent environment is
tricky and poses many synchronization challenges; however,
skip lists never need to be rebalanced, and any portion of a
skip list operation that maintains the skip list’s structure can be
performed off of the critical path [6]. While many applications
can use a hash map, applications that rely upon the order
among keys cannot. Indeed, when ordered traversal (i.e., range
queries) is an important part of an application, skip lists tend to
offer the best performance. Furthermore, when an application
thread performs a mutating range query on an ordered map
concurrently with insertions and removals by other threads,
skip lists can provide strong guarantees (i.e., linearizability [7])
about the values modified by the range query [8].

Figure 2 presents the general shape and structure of a skip
list. The skip list is defined as a sorted linked list (the data
layer), upon which increasingly sparse sorted “index” lists are
layered. In the figure, the data layer contains {1, 5, 30, 33, 36,
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Fig. 2: A skip list set

42,46, 50, 55,60}, the first index layer contains {1, 30, 36,42,
50,60}, and so forth. The “height” of a node is determined at
insertion time, according to a geometric distribution, so that
(w.h.p.) each index layer is half the size of the next lowest
layer. These index layers allow a thread to “skip” forward
when traversing the list. For example, consider a Lookup
searching for key 55. The first traversal, in the topmost layer,
will skip immediately to key 50, without considering half the
nodes in the data layer. When keys range from 0. . . k, the skip
list will have lg(k) layers, and the asymptotic complexity of
each operation will be O(lg(k)) with high probability.

It is possible to increase spatial locality by storing K > 1
elements in a node, a technique hereafter referred to as
“chunking”. The motivation for chunking in the data layer
is obvious: under standard assumptions and a large key range,
two operations will rarely operate on the same region of
the data layer, so optimizations that increase locality should
not increase contention. The simple but powerful observation
that motivates our work is that the geometric distribution
of node heights results in a complementary property in the
index layers: for level h of the skip list, modifications are
exceedingly rare (probability 27"). We posit that most of
the nuance of nonblocking concurrent skip lists is hence
unnecessary: At high layers, nodes are effectively immutable;
at low layers, concurrent access is rare; and in between, these
two properties change in inverse proportion. Thus chunking
should be advantageous at all levels.

To evaluate this claim, we introduce a new data structure,
the skip vector. The skip vector pushes spatial locality in skip
lists to the extreme, resulting in the following benefits:

« It employs chunking at every level, so that each layer can
be traversed with fewer cache misses.

o It needs logarithmically fewer levels than the correspond-
ing skip list, resulting in less pointer chasing.

e Since (w.h.p.) operations access lg(lg(n)) nodes, the
skip vector can use precise memory reclamation without
incurring the high overheads typically associated with
hazard pointers [9]-[11].

o The skip vector uses a novel extension of sequence
locks [12] to allow reads to progress speculatively, and
hence avoid contention.

« It offers a variety of options for tuning the size and im-
plementation of its chunks, which is especially beneficial
at large data set sizes.

o It trivially supports linearizable range operations.

The remainder of this paper is organized as follows. Sec-

tion II discusses related research into scalable skip lists.
Sections III and IV introduce the skip vector algorithm and

argue its correctness. Section V presents a detailed evaluation.
Finally, Section VI concludes and suggests future work.

II. RELATED WORK

There are many scalable (un-chunked) skip lists [6], [13]—
[16], which employ a common set of techniques. First, they
treat nodes in each layer as immutable, and replace them in-
stead of updating them (analogous to copy-on-write). Second,
they leverage speculation and some form of deferred memory
reclamation [16]-[18], so that traversing the index layer does
not require locking or reference counting of nodes. Third,
they postpone updates to the index layer (required for certain
Inserts and Removes) until after the data layer is modified.
Fourth, they mitigate the impact of concurrent updates by
aggressively pursuing nonblocking progress guarantees. In
particular, updates to the index layer are performed in a way
that ensures that concurrent operations remain correct and need
not block, even when the index layer is stale.

In addition, there are three significant chunked skip list
designs. The LeapList [19] allows data layer nodes to hold
up to K keys, and is synchronized by a combination of Soft-
ware Transactional Memory [20] and consistency-oblivious
programming [21]. In comparison to a non-blocking skip list,
the LeapList showed slightly faster lookups and slightly slower
inserts and removes. The LeapList can serve as either a set or
a map. Its main benefit is that it provides linearizable read-
only range queries that are an order of magnitude faster than
the non-linearizable range queries of the baseline.

The concurrent unrolled skip list (CUSL) [22] also employs
chunking in the data layer. However, its focus is on achieving
nonblocking progress, not fast range queries. CUSL uses a
novel group mutual exclusion technique to allow concurrent
operations on a (chunked) data layer node. Unfortunately, the
CUSL cannot serve as a map, only as a set. Additionally,
the need for atomic update of elements under group mutual
exclusion limits the types of keys: on a 64-bit machine, they
can be no more complex than a 32-bit integer.

The GPU-Friendly Skip List (GFSL) [23] exploits memory
coalescing within a GPU by using chunking in the index
and data layers. The chunk size is tightly coupled to the
GPU geometry, with each chunk having a maximum size that
matches the number of threads in a warp. By using intra-warp
collective operations (e.g., _shfl), the GFSL can process a
chunk in constant time. Chunks are protected by locks, but
since all fields of a chunk can be updated simultaneously by
a full warp, locks are only needed for insertion and removal;
lookup operations are lock free. Like the other chunked skip
lists, and indeed all of the skip lists discussed in this section,
precise memory reclamation is not possible for the GFSL:
nodes used by the GFSL cannot be returned to the system
until the GFSL reaches a quiescent state.

A. Summary and Design Goals

In the evolution from classic nonblocking skip lists to
chunked skip lists, we observe the following challenges:



Listing 1: The skip vector map and its data types.
Type SkipVectorMap(KeyType, ValueType)

layerCount Integer
targetindexVectorSize Integer
targetDataVectorSize Integer
mergeThreshold Integer
head Nodex
Type SequencelLock

sequenceNumber Bit[61]
isLocked . Bit
isOrphan . Bit
isFrozen : Bit

Type IndexNode extends Node
vector VectorMap (KeyType, Nodex)
next IndexNodex
lock . Sequencelock

Type DataNode extends Node

vector VectorMap (KeyType, ValueType)
next DataNodesx
lock Sequencelock
Type VectorMap(KeyType, ValueType)
size : Integer
targetSize Integer
keys KeyType[2 x targetSize]
vals ValueType[2 x targetSize]

1) Scalability appears to be at odds with precise memory
reclamation, with all known scalable skip lists accepting
significant worst-case space overheads.

2) Despite the appeal of chunking in index layers, only one
algorithm has exploited it thus far, and could only do so
by relying on special intra-warp GPU instructions.

We also observe the following opportunities:

1) Despite using locks in some cases, the LeapList and
GFSL are able to scale on par with (or better than) their
nonblocking competitors.

2) Chunking reduces the number of index layers, which
reduces pointer chasing.

3) Flexibility in the size of chunks, and their implementa-
tion (especially sorted versus unsorted) have the poten-
tial to deliver new performance opportunities.

We now present our skip vector algorithm, which aims to
address these challenges and exploit these opportunities.

III. DESIGN OF A CONCURRENT SKIP VECTOR MAP

The skip vector retains the asymptotic guarantees and scal-
ability of the skip list, while increasing locality and reducing
manual memory management overheads. Structurally, a skip
vector is similar to a skip list, consisting of nodes organized
into layers. The primary difference is that sequences of ad-
jacent layers are flattened into vectors. Listing 1 presents the
data types for the skip vector map.

An example skip vector is depicted in Figure 3. It is
initialized with two nodes in each layer containing sentinel
keys L and T which serve a purpose similar to head and tail
nodes in a skip list (Figure 3a). The skip vector keeps a pointer
to head, the head node in the top index layer. The layers are
indexed from bottom to top starting with the data layer as
layer 0. The keys within a node may or may not be sorted
(see Section V), but keys are always ordered among nodes.

The data layer is an ordered set of all key-value pairs in
the map, implemented as a list of DataNodes. Index layers
are ordered sets of key-pointer pairs, implemented as lists of
IndexNodes. For each key-pointer pair (K, down), down points
to a node in the layer beneath whose first element is K.

Nodes contain a VectorMap, a map implemented using
two fixed-capacity vectors for keys and values correlated by
index. size is the current number of elements. The parameter
targetSize (or T') determines the expected size of each node;
we use 27 as the capacity. When a node n exceeds capacity,
we create a new node o, move the latter half of n’s elements
to o, and insert o immediately after n. Note that there is no
pointer to o in the layer above; it can only be reached by
following n’s next pointer. We call nodes with this property
orphan nodes, as they lack a parent node in the layer above.

Each node has a Sequencelock, implemented as a 64-bit
integer, from which we re-purpose two bits as flags: isOrphan
and isFrozen. The former indicates if the node is an orphan.
The remaining 62 bits behave as an ordinary sequence lock:
the least significant bit, isLocked, indicates if the lock is held,
and the remaining bits form the sequenceNumber. (isFrozen
will be discussed in Section III-B.)

Figure 3 illustrates the behavior of a skip vector. First, three
keys are inserted at random heights (Figure 3b). Each is placed
into the data layer, but the taller keys are also placed into the
index layers. In Figure 3c, several more keys are inserted at
height 0. Figure 3d inserts key 24, but since the destination
data node is full, it is split, creating an orphan, shaded gray.
Figure 3e’s insertion of 31 at height 1 requires splitting an
existing data node, stealing all elements > 31.

Orphans can also be created by removals. Figure 3f shows
the result of removing 31 from the data structure. Removing
31 from the index layer removes a link to the rightmost data
node, making it an orphan. This node should be merged into
its predecessor, but to improve concurrency, merging is lazy:
it is left for some future operation to do. Finally, suppose an
attempt is made to insert key 59. It will fail, as 59 is already
present, but the insert method will merge the orphan, resulting
in the skip vector reverting to Figure 3d.

A. The Sequential Algorithm

We now describe a sequential implementation of the skip
vector map. In our presentation, we refer to the listings for the
concurrent algorithm, Listings 2, 3, and 4. The sequential al-
gorithm is not listed; however, it is the same as the concurrent
algorithm, only without locks or hazard pointers.

1) Lookup: Listing 2 presents the Lookup operation. The
sequential algorithm does not need to use hazard pointers
(lines 2, 13, 15, 19, 23, 38, 41), and can reclaim memory
immediately (31). In addition, it does not need to use sequence
locks (lines 3, 12, 16, 17, 18, 24, 25, 27, 28, 37, 40). Lookup
searches for key K in a manner similar to a Lookup in
a skip list: starting with head (the first IndexNode in the
topmost layer), it searches rightward (via TraverseRight)
for the node storing the largest key < K. Once found,
it uses the corresponding pointer to move down one layer
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Fig. 3: Operations on a very small example skip vector.

(ExchangeDown). Each time the search moves downward,
it has used the previous layer to skip into the new layer at a
node whose minimum key is necessarily < K, and w.h.p. close
to it. When the data layer is reached, w.h.p. K is within the
range of keys stored in the chosen DataNode; if not, then K
will be within the range of one of the DataNode’s successors.

In more detail, suppose a Lookup at node n searches the
keys in n.vector. There are two possibilities. In the common
case, it finds a pair (Ky,down) (line 6), and Ky is not the
largest key in n.vector. Then, the search can use down to move
down one layer. In the second case, Ky is the last key in
n.vector, and so the search must consider the node at n.next.
If next’s minimum key is < K, the search continues there.

It is advantageous for lookup operations to avoid modifying
the data structure. However, as we will see, a Remove can
leave an empty node, or a consecutive pair of nodes n;,n;
where the count of elements in the two nodes is less than
mergeThreshold. In the former case, a Lookup will remove
the empty node. In the latter, a Lookup will overlook the
violated invariant, but an Insert or Remove will repair it

Listing 2: Pseudocode for thread-safe lookup in a
concurrent skip vector with hazard pointers.

function Lookup (K )

1 curr < head
2 HP.take curr
3 curr_ver < read curr.lock
// Traverse rightward and downward to reach data layer
4 while typeof curr = IndexNode do
5 (curr, curr_ver) <— TraverseRight (curr, curr_ver,
Ky)
6 (Ky,down) < k/v pair for largest key < K, in
curr.vector
7 (curr, curr_ver) < ExchangeDown (CUrT, CUIr_ver,
down)
// Traverse rightward in data layer
8 (curr, curr_ver) <— TraverseRight (curr, curr_ver, K)
9 if curr.vector.Contains (Ki) then
10 | result < currvector.GetValue (Kx)
11 else result + L
12 verify curr.lock = curr_ver else HP.dropAll restart
13 HP.dropAll
14 return result

// Move downward via hand-over-hand sequence(read) locking
function ExchangeDown (curr, curr_ver, newNode)

15 HP.take newNode

16 verify curr.lock = curr_ver else HP.dropAll restart
17 new_ver < read newNode.lock

18 verify curr.lock = curr_ver else HP.dropAll restart
19 HP.drop curr

20 return (newNode, new_ver)

// Move rightward via hand-over-hand sequence(read) locking
// — may perform cleanup of empty/underfull nodes in any layer
function TraverseRight (curr, curr_ver, Ky)

21 next < curr.next

22 while curr.size = 0 V K; > curr.maximumKey do

23 HP.take next

24 verify curr.lock = curr_ver else HP.dropAll restart

25 next_ver < read next.lock

// uncommon case: merge/remove nodes left by prior

Remove() calls

26 if next.isOrphan A (next.size = 0 V (called by Insert
or Remove A CUIT.Size + next.size <
mergeThreshold)) then

27 tryUpgrade curr.lock else HP.dropAll restart

28 tryUpgrade next.lock else release curr.lock

HP.dropAll restart

29 move all elements from next to curr

30 curr.next <— next.next

31 HP.mark next

32 release next.lock

3 next < curr.next

34 curr_ver < release curr.lock

35 continue

36 if K < next.minimumKey then

37 verify next.lock = next_ver else HP.dropAll restart

38 HP.drop next

39 break

40 verify curr.lock = curr_ver else HP.dropAll restart

41 HP.drop curr

42 (curr, curr_ver) «+ (next, next_ver)

43 next < curr.next

44 return (Curr, curr_ver)

during its call to TraverseRight (line 26).

2) Insert: Listing 3 presents the pseudocode for an
Insert operation. As with Lookup, the sequential version



Listing 3: Pseudocode for thread-safe insertion in a
concurrent skip vector with hazard pointers.

function Insert (K, Vy)

1 height < randomly generated height
2 prevs « ]
3 layer < layerCount — 1
4 curr < head
5 HP.take curr
6 curr_ver < read curr.lock
// Traverse rightward and downward to reach data layer
7 while typeof curr = IndexNode do
8 (curr, curr_ver) <— TraverseRight (curr, curr_ver,
Ky)
// Will we add Ky, at this index layer?
9 if layer < height then
10 tryFreeze curr.lock else HP.dropAll restart
1 HP.drop curr // HP not needed for frozen nodes
12 prevs|layer] « curr
13 set checkpoint // On a restart, resume from here
14 (Ky,down) < k/v pair for largest key < K, in
curr.vector
// If Ky, found in index, Insert () fails
15 if K, = Ky then
16 verify curr.lock = curr_ver else HP.dropAll restart
17 thaw all frozen locks
18 HP.dropAll
19 return false
20 (curr, curr_ver) <— ExchangeDown (CUrT, CUIT_Ver,
down)
21 layer < layer — 1
22 (curr, curr_ver) < TraverseRight (curr, curr_ver, K)
23 tryFreeze curr.lock else HP.dropAll restart
24 prevs[0] < curr
25 HP.drop curr
// If Ky, present, clean up and return
26 if curr.Contains (Kj) then thaw all frozen locks return false
// If Ky, absent, insert into appropriate layer(s)
27 value <+ V,
28 for layer € [0, height — 1] do
29 acquire prevs|layer].lock // move node from frozen to
locked
30 newNode < new node(K}, value)
31 move all elements > K} from prevs|layer] to newNode
32 newNode.next < prevs|layer].next
33 prevs|layer].next «+— newNode
34 release prevs|layer].lock
35 value <— newNode
// At the chosen insert height, K}, gets added to an existing node
36 acquire prevs|height].lock // move node from frozen to locked
37 prevs|height].Insert (Ky, value)
38 release prevs|height].lock
39 return true

of the algorithm would elide all uses of hazard pointers and
locks, and also checkpointing (e.g. line 13).

The primary challenge in Insert, relative to Lookup,
is that an Insert may need to update index layers. Such
updates cannot be performed until after an operation has
verified that the target key is absent in the data layer. An
Insert of key K first generates a random height (line 1),
using targetDataVectorSize (I'p) and targetlndexVectorSize
(Ty). First, TZD,;I of insertions will have height 0, and thus
only exist in the data layer. When height = 0, Insert
proceeds much like a Lookup, except that once it reaches
the desired data node n, it adds the mapping from K to V,

into n.vector (line 37). If n is full, then the operation splits
n, creating an orphan to the right. For the remaining inserts,
a height will be generated using geometric distribution with
p = 7 from 1 to layerCount — 1.

When height > 0, the operation searches for the appropriate
data node as before, but along the way, it keeps track of the
pointers to all of the index nodes it will need to modify in
order to perform the Insert in an array prevs[] (line 12).
A node will need to be modified if K is in its range and its
height is < height. Once the operation reaches the data layer at
node n, it returns false if K is present (line 26). Otherwise, the
operation inserts a new node into the data layer with K as its
first element, and moves all of the elements > K into it from
n. It repeats a similar process for all index layers < height,
splitting the nodes at K and inserting a pointer to the newly
inserted node below (lines 28-35). The process terminates at
level height, where K is inserted into the appropriate node at
that layer (line 37) without splitting it (unless it is at capacity).
Finally, the operation returns true.

3) Remove: Listing 4 presents the Remove operation. The
structure of the skip vector ensures that when K is present
in index node I; at level [, and I; is not an orphan node,
then either (a) K is the smallest element in [;, and is also
present in an index node at next highest level [ + 1, or (b) K
is not the smallest element in I;. While we defer discussion
of concurrency until Section III-B, the listing addresses two
possible concurrent interleavings on lines 8 and 17. For the
sequential code, these conditions cannot arise.

The main challenge that arises in this code relates to the
removal of a key from the index layers. Otherwise, a Remove
of key K proceeds much like a Lookup. In the common case
where K is not observed in any index layer (lines 14-22), the
result of the operation depends on whether K is found in the
data layer, and no maintenance is required in index layers.

If K is found in any index layer, then the operation exits
the index traversal early (line 12). It is guaranteed to find K as
the first element in each subsequent index and data layer as it
takes an optimized downward traversal path (lines 23-27). It
removes K from every node where it was found (lines 24, 28),
data layer and index layer alike, before returning true.

Note that for all but the top-most node, the removal of K will
have the side effect of making that node an orphan (line 24).
This can result in orphan nodes with too few elements,
which should be merged with their predecessors. We explicitly
offload this burden to future operations (TraverseRight
lines 27-34). Whenever an Insert or Remove operation
needs to check a next pointer, it also checks if the next
node is an orphan, and whether the sum of the two nodes’
sizes are less than mergeThreshold. If they are, then the
orphan’s elements are moved into its predecessor, and the
orphan node is removed from the skip vector. When any
operation discovers an empty orphan, it will remove it, as
empty nodes violate the assumption that a minimum element
exists (TraverseRight line 36).



Listing 4: Pseudocode for thread-safe removal in a
concurrent skip vector with hazard pointers.

function Remove (K})

1 curr < head
2 HP.take curr
3 curr_ver <+ read curr.lock
// Traverse rightward and downward to reach data layer
4 while typeof curr = IndexNode do
(curr, curr_ver) <— TraverseRight (curr, curr_ver,

Ky)
6 (Ky,down) < k/v pair for largest key < K, in

curr.vector

// Do we need to remove from this index layer?
7 if K, = Ky then
// Handle concurrent interleaving.
8 if curr.minimumKey = Kj. A —curr.isOrphan then
9 | HP.dropAll restart
// Subsequent layers can be traversed non-speculatively

10 tryUpgrade curr.lock else HP.dropAll restart
11 HP.drop curr
12 break
13 (curr, curr_ver) <— ExchangeDown (CUrT, CUIT_Ver,

down)

// Common case: Ky, not in any index layer
14 if typeof curr = DataNode then
// Search rightward for key, remove it if found

15 (curr, curr_ver) <— TraverseRight (curr, curr_ver,
Ky)
16 tryUpgrade curr.lock else HP.dropAll restart
17 if curr.minimumKey = Kj. A —curr.isOrphan then
18 | HP.dropAll restart
19 result < curr.Remove (Kx)
20 release curr.lock
21 HP.drop curr
22 return result
// Upon break@line 12, process layers downward
23 while typeof curr = IndexNode do
24 down < curr.Remove (K})
25 acquire down
26 down.isOrphan « true
27 release curr.lock
28 curr.Remove (Ky)
29 release curr.lock
30 return true

B. Extensions for a Concurrent Skip Vector

This subsection describes the algorithmic modifications for
concurrency; their sufficiency is argued in Section IV-C. We
employ sequence locks [12] and hazard pointers [9] to make
the skip vector concurrent. A sequence lock is a spinlock based
on a strictly increasing counter. Even values indicate the lock
is unheld, odd values indicate the lock is held, and a read-only
critical section can operate speculatively by reading the lock,
reading data, and then re-reading the lock to ensure it is both
even and unchanged. We augment each index and data node by
attaching a sequence lock to it. As discussed in Section III-A,
we have re-purposed two bits from this sequence lock to
represent boolean values, isOrphan and isFrozen. Note that
the use of sequence locks introduces low-level code changes in
order to remain compliant with the C++ memory model [12].

Threads use sequence locks to traverse the data structure
optimistically. Operations employ a hand-over-hand strategy,

read-locking each node visited. If an operation observes a
change to a sequence lock that it has read-acquired, it aborts
and retries (Lookup lines 12, 16, 18, 24, 27, 28, 37, 40).
Write-locks are only acquired just before an operation modifies
a node, and released immediately afterward.

To reduce blocking, Insert uses the isFrozen bit. Freezing
a node puts it into a state where only the thread that froze it
can acquire it, but other threads can still read it. In this way,
an Insert may block conflicting Inserts and Removes,
without delaying the traversal of other operations.

Our discussion uses several keywords to encapsulate com-
plex behavior. restart is used to restart an operation after
a sequence lock read failure. If restart is invoked from
inside one of the helper functions—ExchangeDown or
TraverseRight—it is the top-level Lookup, Insert, or
Remove that is restarted. Insert may invoke restart after
acquiring a write-lock on a node; if it does, it restarts from
the last node it locked rather than the start. This is indicated
in the listing with the line “set checkpoint” (line 13).

After reading a node, threads use verify to ensure that the
read was valid by checking the sequence lock again. If another
thread changes the sequence number or sets isLocked, the
operation will drop all held hazard pointers and invoke restart.

In languages with manual memory reclamation, threads take
hazard pointers on nodes prior to accessing them, denoted
as HP.take. There is a danger that the node was deleted
concurrently with the acquisition of its hazard pointer. The
combination of hazard pointers and sequence locks leads to a
useful optimization: the thread must have found that pointer
in another node, so its verify of that node also indicates that
the hazard pointer was successfully taken. This optimization
reduces instructions, and also avoids read-read memory fences
on systems with relaxed memory consistency.

acquire and release take and release a sequence lock,
respectively. acquire spins until isLocked bit is clear, then use
a compare-and-swap operation in order to set the isLocked bit
and therefore take the lock for this thread. release atomically
clears isLocked and increments sequenceNumber. tryUpgrade
is used when a thread has performed a read on a sequence
lock, and wishes to upgrade itself to a writer on that node.
This keyword combines a verify with an acquire, acquiring a
sequence lock only if its value is unchanged, and triggering a
restart otherwise. Finally, tryFreeze is similar to tryUpgrade,
but merely tries to set isFrozen.

IV. CORRECTNESS
A. Sequential Correctness

First, we argue that the skip vector correctly implements a
sequential map interface. We say that K is the set of keys
in the map, and V is the set of values in the map, such that
there is a unique v; € V for each k; € K. We represent the
mapping from k; to v; as k; — v;. Initially, K and V are
empty, and thus Vk;,k; — L. From an arbitrary state, the
sequential specification of a map requires the following. First,
if Insert(k,v’) is invoked, and k¥’ € K, false is returned.
Otherwise k' is added to K, v’ is added to V, a mapping



k' — v’ is created, and true is returned. Second, in response
to Lookup(k’), if ¥ ¢ K, then L is returned. Otherwise
there must be some mapping k' — v/, and v’ is returned.
Third, when Remove(k’,v’) is invoked, if k' ¢ K, then false
is returned. Otherwise there must be a mapping k' — v’. In
this case, the mapping is removed, %’ is removed from K, v’
is removed from V, and true is returned.

The correctness argument for the sequential skip list is
similar to the correctness argument of the skip list. When a
skip list inserts a node, it uses a geometric distribution to
determine the height. The distribution uses parameter p to
indicates the relative probabilty between two adjacent values.
Skip lists commonly use p = 0.5, so that each height is half
as dense as the one below it. We also note that each index
layer, as well as the data layer, can be implemented with
any arbitrary map data structure, so long as it is possible to
maintain pointers into the next lower layer. Each layer could,
for example, be a single array, or a list of arrays. Therefore,
we argue that a skip vector is a skip list where the layers are
implemented as lists of arrays rather than linked lists, with
p= %, where T is the targetSize of the index and data layers.
(We assume for brevity and clarity that the index and data
layers have the same value for targetSize, but the argument is
similar when they do not.) The correctness of the skip vector
therefore follows directly from the correctness of a skip list.

B. Asymptotic Guarantees

A skip list with n elements needs log,,(n) layers to
1

maintain asymptotic guarantees. (For example, when p = 3
and n = 232, it needs logs(23?) = 32 layers.) The minimum
number of layers a skip vector needs, then, is logr(n). Any
operation on a vector of length 7' grows with respect to 7.
As T is a constant, this is O(1). At each layer, we expect
w.h.p. that the number of consecutive orphans is less than some
constant c. Therefore, a Lookup spends constant time at each
layer. With logr(n) layers, the total run time is proportional
to logr(n), i.e. O(log(n)).

Following the above logic, so long as the amount of work
done at each layer can be shown to be constant, then the
whole operation is O(log(n)). Therefore, consider a a worst
case Insert, which modifies all layers. In addition to the
cost of traversing the data structure (constant per layer, like
Lookup), an Insert would also have to perform split and
insert operations on at most one vector per layer. Again, as 7' is
constant, this is constant. Similar logic applies to a worst-case
Remove. Up until now we have ignored the cost of merging
orphans. Although an operation may merge many nodes per
layer in a pathological case, each Insert creates at most one
node per layer, and so the cost of merging can be amortized
to the Insert that creates the node, which still amounts to
constant work per layer for that Insert.

C. Concurrent Correctness

In this section, we argue that our concurrency scheme is
linearizable [7] and deadlock-free. First, consider a simpler
concurrency scheme in which each node has an ordinary mutex

instead of a sequence lock, and locks are not released until
the end of an operation. By replacing read operations with
mutex acquires, we immediately achieve a race-free algorithm:
the fields of a node are only accessed by a thread while
it is holding the lock. Similarly, the algorithm is trivially
deadlock-free, due to the absence of cycles in the lock graph:
locks in higher levels are always acquired before locks in
lower levels, and within a level, locks are always acquired
in ascending order. For this simpler algorithm, the argument
for either serializability or linearizability is also trivial, since
it obeys two-phase locking [24]. Each operation can happen
immediately after its last lock is acquired.

Next, consider an implementation that replaces the mutex
lock on each node with a starvation-free readers/writer lock.
Each operation now takes a read lock or a write lock on each
node as needed. This implementation remains correct with
regard to atomicity, as the result still obeys two-phase locking.

Third, let us transform the implementation to use sequence
locks with a freeze bit in place of readers/writers locks. There
are two new concerns. First, the skip vector must be designed
so that it is possible to safely discard any invalid results that
may be computed due to a reader seeing inconsistent state.
In our algorithm, we accomplish this by having any operation
that sees inconsistent state restart from either the beginning,
or a checkpoint node known to be unchanged because the
operation has it frozen. Second, all accesses must be memory-
safe. We achieve this by taking a hazard pointer prior to any
risky read. Additionally, the node’s vectors have a fixed size,
and all vector operations are implemented in a way that they
are guaranteed to terminate even if concurrent changes occur.
Therefore, there is no way to go out of an array’s bounds or
fail to reach the end of its reader critical section.

The final transformation is to do away with two-phase
locking for the read-only part of an operation, and replace it
with hand-over-hand locking, such that any read-only traversal
phase needs at most two hazard pointers and two read locks
at a time. It remains impossible for the nodes an operation
currently has read-locked to change (without forcing a restart),
so the only adverse effect this change creates is that it is now
possible for an operation to end up in a situation where nodes
it previously visited have changed without causing it to abort
and retry. For this to be correct, we must show that either this
operation fails and restarts, or it completes correctly—that is,
it has the exact same effect as if it were canceled and restarted.

We observe that an operation on key K will never traverse
through a node n unless n’s minimum element is < K.
(TraverseRight may briefly visit the successor of such
an n, but only to rule it out.) Thus, an operation can never
“overshoot” the target element and end up too far to the right;
it can only “undershoot,” ending up too far to the left. Since
the nodes of each layer form a list, if a Lookup undershoots
in one level, TraverseRight will fix that in the next layer.
Though it may take a longer path than it otherwise would, it
will still reach the right data node and complete correctly.

The correctness of Insert immediately follows. An
Insert of key K at height h will succeed if it first freezes the



correct node for K in layer h. This node will be reached in the
same manner for both Insert and Lookup: overshooting is
impossible, and undershooting in layer L. > h only results
in more traversal in layer L — 1, where L — 1 > h. Once
an Insert freezes its first node, its behavior is analogous
to the mutex-based, two-phase locking case, but with freezing
instead of acquiring locks. Once it has frozen all the way
down to the data layer, it determines if the key is already
present. If not, it upgrades frozen locks to acquired, updates
the corresponding nodes, and releases. This behavior has the
same serializability argument as two-phase locking, but since
it updates nodes from the bottom up, it does not violate the
correctness of the search phase of concurrent operations.

A concurrent Remove resembles hand-over-hand locking in
a list: once K is found in node ny, at layer L, the node holding
K one layer down (nr_1) is locked, K is removed from np,
and then the operation repeats at node ny_;. For the highest
level L such that K € ny, the act of reaching some node np,
is the same as for Lookup. The exceptional circumstance is
that L must be the highest level at which K appears. Note that
this problem is unique to Remove, and results from the fact
that Remove does not know the height of a to-be-removed
K until after its operation begins traversing the skip vector.
In contrast, Insert pre-determines the uppermost height of
its to-be-inserted K on line 1. If K is concurrently added to
the skip vector by another Insert, then once the second
Insert reaches a level that was also modified by the former
Insert, it will return false.

Returning to Remove, if a concurrent Insert places K at
height h, and Remove only removes K from levels L < h,
then the skip vector will be malformed. When we consider
the shape of the skip vector, an important invariant emerges.
A down pointer for a given key K in an index node always
points to a non-orphan node in the next layer down whose
minimum key is K. Furthermore, we know that each key can
only appear at most once in each layer. Therefore, if we find
a key K in a node n in a layer L, we can determine whether
K exists in any index layer above L by examining n. If n is
an orphan node, or K is not the minimum key in n, or both,
then K cannot appear in any layer above L. Therefore, when
Remove first finds K in the data structure (line 7), it checks
these two conditions (line 8). If either holds, then execution
continues. Otherwise, the operation retries.

To conclude: through a series of refinements, we have
established that our concurrency scheme is equivalent to two-
phase locking. We have also argued that the lock graph is free
of cycles, and thus deadlock-free. We also argued that data
are never read without holding the corresponding node’s lock
(either as a writer or via a sequence lock read critical section).
From the perspective of linearizability, successful Insert
and Remove operations linearize on the instruction that write-
acquires their last lock. All remaining operations are read-only,
and linearize at the point where they find (or fail to find) their
target key in some node of the data layer. The linearization
point of these operations is the instruction that performs the
final verification of the sequence lock at the data layer.

V. EVALUATION

In this section, we evaluate the performance of the skip
vector. Our main goal is to explore how well the skip vector
scales on microbenchmarks and more realistic workloads. We
also explore the impact of hazard pointers, the relative merit
of chunking in the index and data layers, and the impact of
skip vector configuration parameters.

All experiments were conducted on a machine with four
Intel Xeon Platinum 8160 CPUs at 2.10GHz, which provided
96 cores/192 threads and 768GB of RAM. All data points
are the average of five runs. We did not observe significant
variance. Our machine ran Red Hat Enterprise Linux Server
7 with Linux kernel 3.10.0, and all code was compiled using
g++ version 7.3.1 and O3 optimizations.

For our microbenchmark experiments, we (1) utilized 64-bit
integers as the key type and 64-bit pointers as the value type,
(2) pre-filled each data structure half of the keys in the range,
in a NUMA-fair way, and (3) ran each trial for 5 seconds.

A. Scalability

To evaluate the scalability of the skip vector (marked as
SV in the legend), we compare it against a lock-free skip
list based on Fraser’s algorithm [16] (FSL in the legend),
taken from the Synchrobench suite [3]. Synchrobench has a
few other skiplist implementations—notably, the no hotspot
nonblocking skip list [6], the rotating skip list [15], and
NUMASK [14], but these were consistently worse than Fraser
for the workloads we evaluated. Unfortunately, the CUSL [22]
is not publicly available. We produced a fair approximation
(USL in the legend) by removing index-layer chunking from
the SV implementation, to evaluate the impact of doing so.

While the skip vector bears similarity to B+ trees, we were
not able to find any correct, concurrent, high-performance
open-source B+ trees to compare against. The closest options
we found were the B+ tree by Braginsky and Petrank [25]
and PALM [26]. In the former case, the implementation was
by a third party, and was written in the Go language. Due
to differences in language (i.e., garbage collection and the
threading model), performance was not comparable. In the
latter case, the implementation was also by a third party, and
crashed at high thread counts.

We consider key ranges up to 2°*, at which point Fraser and
the other competitors available in Synchrobench experienced
out-of-memory errors; SV was able to complete for key ranges
up to 23°. The charts depict SV and USL variants which
use hazard pointers to reclaim memory precisely (HP in the
legend), and variants which leak memory (Leak in the legend).
FSL does not reclaim memory, so only one variant is shown.

The skip vector has several tunable parameters; their im-
pact is discussed in detail in Section V-B. We performed
tuning experiments at every reported key range, and found
an ideal tuning for each (marked Tune in the legend). For
use cases where the number of elements is not known a
priori, we also found general parameters that work well at
most sizes: layerCount = 6, targetDataVectorSize = 32,
targetindexVectorSize = 32, and mergeThreshold = 1.67 X
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targetSize.) In most cases, tuning did not significantly improve
perfomance, so we omitted the tuned results. Additionally,
USL-HP is omitted in charts where the worst skip vector
outperforms USL-Leak, as it performed worse in all cases.

Figure 4 presents the performance on a microbenchmark
performing a mix of 80% Lookup, 10% Insert, and 10%
Remove (80/10/10), for key ranges 22°, 224, 228 'and 23!, For
figure 5, the ratio is 0% Lookup, 50% Insert, and 50%
Remove (0/50/50). Operations are chosen randomly, and keys
are drawn from a uniform distribution.

In an 80/10/10 workload mix with a key range of 220
(Figure 4a), SV-Leak provides the best performance. SV-HP
outperforms FSL up to 96 threads. It is possible to adjust
parameters to outperform FSL (SV-HP-Tune, with parameters
targetDataVectorSize = 64, mergeThreshold = 1.0, and
layerCount = 4), but the larger point is that even with blocking,
memory reclamation overheads, and default parameters, SV-
HP is a solid performer. Lastly, we see that the skip vector

always outperforms its USL equivalent. As the key range
increases, the advantage of the skip vector only grows. At 224
and 228 keys (Figures 4b-4c), the skip vectors perform roughly
twice as well as their competitors, even with precise memory
reclamation and without special tuning. At 23! (Figure 4d),
the gap nears 3x.

For the 0/50/50 workload (Figure 5) the performance of
the skip vector is worse overall than for 80/10/10. For 224
keys and above, contention is low, and the higher locality of
SV gives the best performance. At 22° keys and more than
48 threads, the skip vector suffers, and FSL outperforms. A
workload with a small key range and high modification rate
is the worst case for the skip vector: While modifications
to the topmost layer are rare, they are frequent enough to
cause blocking and a higher rate of cache misses. Additionally,
the granularity of contention is coarser for skip vectors than
skip lists, where each element is independently synchronized.
Furthermore, since the sequence locks are invisible to the
operating system scheduler, we occasionally have a thread
context switch while holding the top layer lock. These events,
though uncommon, immediately disrupt performance. In con-
trast, nonblocking techniques have no such pathology. Note
that even in this worst-case workload, chunking in the index
layer is advantageous: the skip vector always outperforms the
USL.

Figures 4 and 5 also show the cost of memory reclamation.
While considerable at 220 keys, it lessens significantly for
higher key ranges, typically under 20%. At 23!, the overhead
of memory reclamation is negligible. This is a significant
finding, since others have observed that linked data structures
can suffer up to a 10x slowdown with hazard pointers [27].
Second, we see that memory safety, in the form of hazard
pointers, does not impact scalability. Thus we can conclude
that the skip vector’s design reduces the cost of memory safety,
making it more viable than concurrent skiplists for languages
with manual memory reclamation.

To evaluate skip vector perfomance under more realisitc
conditions, we integrated SV-HP into DBx1000 [28], a single
node OLTP in-memory database system from the YCSB
benchmark suite. We also integrated as competitors two vari-
ants of SV-HP: the first removes index-layer chunking to
simulate the unrolled skiplist (USL-HP) and the second does
not chunck at all to simulate the traditional skiplist (SL-HP).
The integrated data structures are used as indexes to accelerate
access to keys. Figure 6 shows performance for a single table
with 24M rows. Each thread runs 100K transactions, each of
which accesses 16 rows. 90% of accesses are read-only, and
keys are generated randomly using a Zipfian distribution with
6 = 0.1, 0.6, and 0.9. When the distribution is not highly
skewed (6 = 0.1 and 6 = 0.6), chunking in both index and
data layers causes almost 2x higher throughput versus both
USL-HP and SL-HP. In a skewed workload (6 = 0.9), a similar
trend is observed for low thread count (less than 32 threads),
then performance notably degrades, and all competitors. Our
interpretation for this degradation is that the high contention
on a small subset of keys changes the bottleneck to be the
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concurrency control layer of DBx1000.

B. Sensitivity to Configuration Parameters

In a skip list, the user must set the number of layers in
advance, and must guess a high enough value to preserve
asymptotic guarantees. The skip vector is less sensitive to
incorrect guesses, since a “high” guess will not add many
layers to the index. However, the skip vector can also be tuned
by specifying values for targetindexVectorSize, targetDataVec-
torSize, and mergeThreshold, as well as by choosing between
sorted and unsorted vectors in the index and data layers.

We consider the impact of these parameters in Figure 7.
The figure considers an 80/10/10 workload mix on a skip
vector with hazard pointers, and a key range of 22%. Figure 7a
varies targetindexVectorSize, while adjusting layerCount to the
minimum value needed to maintain asymptotic guarantees and
holding all other parameters constant. The worst configuration
is about 25% slower than the best, with performance tapering
off for values farther from the best configurations (32 and
64). The graph for targetDataVectorSize is similar but omitted
for space. When these two parameters are too small, the
skip vector cannot effectively exploit locality, and begins to
behave like an ordinary skip list. When these two parameters
are too big, vector operations become too expensive, and
contention becomes a bigger problem, as modifications keep
more elements locked for longer.

Figure 7b examines the use of sorted and unsorted vectors.
The best performer uses sorted index vectors and unsorted data
vectors. For sorted vectors, lookup is cheap (binary search is
O(log(T))), but insertion and removal are expensive (O(T)).
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Thus, sorted vectors tend to be beneficial in the index layers,
where lookups are common and modifications rare. While
unsorted vectors cost O(T") for all three common operations,
insertion and removal have O(1) write complexity, making
them profitable in the data layer.

Most concurrent skip lists in research literature do not
provide a lightweight mechanism for performing robust range
operations. Some support atomic snapshots [29], and others
support read-only range queries [30]. Since the skip vector
is lock-based, it is trivial to employ two-phase locking to
provide range queries. Figure 8 measures the throughput for
mutating range queries. It compares the default skip vector
against a tuned version that does not chunk at all (SL). This
comparison minimizes differences in memory reclamation, and
both implementations are serializable. The experiments are
conducted for a key range of 22°, and we consider operations
over a small (2'2) or large (2!7) range. In both cases, the
skip vector offers substantially higher throughput while the
workload has parallelism to exploit. In the second chart there
is little parallelism, since operations access % of the total key
range. For the shorter key range, the skip vector is able to
scale to 72 threads before contention becomes an issue. Our
previous work [8] discusses more advanced techniques for
range operations, and is applicable to the skip vector.

VI. CONCLUSION

In this paper, we presented the skip vector, a concurrent map
inspired by skip lists. In comparison to skip lists, the skip vec-
tor employs coarser synchronization metadata to achieve better
spatial locality. This tradeoff is motivated by the realization



that conflicts are rare at deep layers, and writes are uncommon
at shallow layers of skip lists. We showed that these locality-
improving approaches are beneficial in both the index and data
layers. The simplicity of the skip vector belies its effectiveness:
its flexible design and high locality outperform the state of the
art in skip lists, often by a large margin. It does so while using
less memory, correctly managing and reclaiming its memory,
and supporting linearizable range queries.

As future work, we plan to explore the interplay between the
skip vector and emerging storage-class memory technologies
(e.g., [31]-[33]). The dense packing of data in the skip vector
is a good fit for these memories, which have higher latency
than DRAM [34].

We also plan to investigate the use of the skip vector as a
database index: Its flexible design can be tailored to the sorts
of range queries needed by modern data processing systems,
and its predictability and low latency make it an appealing
choice for high-performance systems.
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