Brief Announcement: Semantic Conflict Detection for
Transactional Data Structure Libraries

Yaodong Sheng Ahmed Hassan Michael Spear
Lehigh University Lehigh University Lehigh University
Bethlehem, PA, USA Bethlehem, PA, USA Bethlehem, PA, USA
yas616@lehigh.edu ahh319@lehigh.edu spear@cse.lehigh.edu
ABSTRACT transactions as a true conflict, which causes at least one of the

The Transactional Data Structure Library (TDSL) methodology
improves the programmability and performance of concurrent soft-
ware by making it possible for programmers to compose multiple
concurrent data structure operations into coarse-grained transac-
tions. Like transactional memory, TDSL enables arbitrarily many
operations on arbitrarily many data structures to appear to other
threads as a single atomic, isolated transaction. Like concurrent
data structures, the individual operations on a TDSL data structure
are optimized to avoid artificial contention.

We introduce techniques for reducing false conflicts in TDSL im-
plementations. Our approach allows expressing the postconditions
of operations entirely via semantic properties, instead of through
low-level structural properties. Our design is general enough to
support lists, deques, ordered and unordered maps, and vectors. It
supports richer programming interfaces than are available in ex-
isting TDSL implementations. It is also capable of precise memory
management, which is necessary in low-level languages like C++.

CCS CONCEPTS

« Information systems — Data structures.

KEYWORDS

Transactional memory; Concurrent data structures; Synchroniza-
tion

ACM Reference Format:

Yaodong Sheng, Ahmed Hassan, and Michael Spear. 2021. Brief Announce-
ment: Semantic Conflict Detection for Transactional Data Structure Li-
braries. In Proceedings of the 33rd ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA °21), July 6-8, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3409964.3461826

1 INTRODUCTION

Composition is a significant challenge when writing concurrent
software. Transactional Memory (TM) provides an easy mechanism
for combining several data structure operations into coarse, serializ-
able transactions [5, 7]. However, these composed transactions can
struggle to scale, because TM treats any memory conflict among

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA 21, July 6-8, 2021, Virtual Event, USA.

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8070-6/21/07.

https://doi.org/10.1145/3409964.3461826

conflicting transactions to abort.

Some TM systems can “forget” certain memory conflicts [2, 4].
However, these techniques require more cleverness than is appro-
priate for a language mechanism that is supposed to make it easy
to write correct concurrent code. A more promising technique
is to use a transactional style of programming, but not TM. The
Transactional Data Structure Library (TDSL) [8] provides several
hand-crafted data structures. A programmer can start a transac-
tion, interact with multiple TDSL data structures, and then commit.
The data structure implementations themselves are responsible for
ensuring correctness while avoiding conflicts for operations that
ought to commute. They also are designed such that operations can
be rolled back. A complementary approach, the Lock-Free Trans-
actional Transformation (LFTT), provides a similar functionality,
with nonblocking progress guarantees [10].

These works tightly coupled their data structures with the trans-
action management code. For example, LFTT’s transaction manage-
ment only knows about the semantics of insert, lookup, and remove
operations, and uses this knowledge to detect conflicts. TDSL’s
transaction management has explicit functionality for managing
a skip list’s index nodes outside of the logical transaction. Tight
coupling makes it difficult to add new features (e.g., range queries)
and new data structures (e.g., hash tables).

We present a refined approach to composable concurrent data
structures with three key components:

o The use of TM as an implementation technique within data
structures (§2): This ensures deadlock freedom for complex
operations (e.g., multiple writes in a doubly linked list), mem-
ory safety, and straightforward reasoning about correctness.

e Enhanced metadata that expresses ownership, structural
versioning, and semantic versioning (§3): This avoids false
aborts for commutative operations, and naturally supports
range queries and in-place modification of shared data.

e Lightweight complier support, based on techniques from
TM [9] (§4): This enables our data structures to support
arbitrary data types without increasing programmer burden.

2 TRANSACTIONAL DOUBLY LINKED LISTS

Concurrent data structures often rely on a single compare-and-
swap as the linearization point [6] for an operation that entails
several memory updates [3]. Our technique uses TM to implement
multi-word compare-and-swap. This simplifies the synchronization
protocol. Furthermore, by varying the TM implementation, we can
explore different tradeoffs between latency, precision of memory
reclamation, and progress guarantees.

https://doi.org/10.1145/3409964.3461826
https://doi.org/10.1145/3409964.3461826

[Jeleojer{ . Je{T][H

_----»18

-------- > 2

Figure 1: List traversal with multiple transactions.

This design makes complex data structures (e.g., doubly linked
lists) easy to synchronize. However, TM does not allow a datum
to be read nontransactionally if a concurrent thread is using a
transaction to update it. Thus the read-only traversal phase of our
data structure operations must also use TM. This can create false
contention and false aborts. We extend the idea of telescoping
transactions [1, 11]. The general idea, as show in Figure 1, is to
employ a sequence of traversals of contiguous segments of the data
structure. In the figure, the first segment iterates from the head
sentinel to node 30, the second iterates from node 30 to node 60,
and the third iterates from node 60 to the tail sentinel.

Breaking the transaction into segments is not trivial. When the
first segment commits, another thread could remove node 30, which
would invalidate the second segment of the traversal. We adopt
the approach in [11]: Each node hashes to an entry in an array of
integers, which is incremented when the node is unlinked from
the table. Traversals can sample the appropriate table entry before
ending one segment, and then check it upon starting the next. If
the value is unchanged, the operation can pick up where it left off.
We call these integers fenceposts.

Our design decouples the traversal segments of an operation
from the final segment that reads or modifies the node that it finds.
That is, in [11], an insertion’s final search segment would stitch
a node into the data structure, whereas our stitch operation is a
separate, subsequent transaction. To make this work, we require
fencepost increments during removal and insertion (prior work
only required increments during removal). That is, our fenceposts
do not only indicate that some node is present in the list; they also
indicate that some nodes are absent.

3 CONFLICT DETECTION WITH VARIABLE
PRECISION

§ 2 provides a scalable, low-contention list. We now extend it with
a transactional data structure interface that defines conflicts in
terms of semantic information, instead of structural information.
We augment data structure nodes with five fields:

o owner: the thread currently performing a semantic operation
on the node

e state: one of 10 values, discussed below

e semantic: a counter that tracks the number of semantic
changes to the node.

e structural: a counter that tracks the number of structural
changes to the node.

e subscribers: a count of transactions that are monitoring
changes to semantic and structural.

In TM and TDSL, ownership is a binary property: either a loca-
tion is owned, in which case the owner has exclusive access to that

Legend
— Read (any)
- 9 Read (owner)
— Insert (any)
~ - Insert (owner)
— Remove (any)
— 9 Remove (owner)
— Update (any)
— < Update (owner)
—» Commit

Abort

Figure 2: Node ownership state transitions.

location, or else that location is not owned, in which case all threads
may read that location. We expand ownership to ten states (four are
related to range queries), which express semantic information. This
allows operations to eagerly acquire locations, without impeding
non-conflicting concurrent operations.

Figure 2 shows the transitions among states. We use DNE as a
shorthand for when a key does not exist. The states are as follows:

o P (present): the node is not owned. A transaction may read
it, but may not remove it or modify it.

o PI (pending-insert): the node is being inserted by a pending
transaction. To all transactions other than the owner, the
node is effectively not present.

e PD (pending-delete): the node is being removed by a pending
transaction. To all transactions other than the owner, the
node is effectively present.

¢ PM (pending-modify): the node being modified by a pending
transaction (e.g., modify the value of a key/value pair).

e PDI (pending-delete-insert): a transaction intended to insert
this node but subsequently decided to remove it.

e PDM (pending-delete-modify): a transaction modified this
node but subsequently decided to remove it.

These states preserve concurrency in the face of contention. For
example, if some transaction owned a node in a sorted list with key
60, TM and TDSL would forbid other transactions from accessing
that node, or traversing past it. In our design, another transac-
tion searching for 64 could traverse through that node. Indeed, if
the owner was modifying the value at key 60, even a concurrent
existence check for key 60 could be allowed to succeed.

We illustrate the benefit of these states by considering opera-
tions that return false (e.g., insertion of a key that already exists,
lookup or removal of a key that does not exist). In these cases, there
is no natural location in the data structure for storing semantic
information. Figure 3 depicts three alternatives that we support. In
all cases, a thread is searching for node 62, which does not exist.
The first way to represent this absence (Struct) is structurally, by
recording the fact that 60 points to 64. This is the only way to
represent non-existence in TM and TDSL. In our design, a failed
lookup can monitor the structural version of 60. If 60 is removed,
or if anything is inserted between 60 and 64, the structural version
will change, causing an abort.

In the row labeled Range, we introduce a range node type. Range
nodes hold two keys and no value. The state pattern F, Lg 1 encodes
whether the First key of the range is Inclusive or Exclusive, and

™ (. e
TDSL (H

&8
2 &
2] (&)

&

@
=
c
Q
s
(=]

H

Py
o
3
Q
@
[
N
o3
2]
!

H

_'
©
o
©
°3
2]
!

Figure 3: Unsuccessful list::contains(62)

whether the Last key is Inclusive or Exclusive. Expressing inclu-
sivity/exclusivity is necessary when keys are not enumerable (e.g.,
floats, strings). A FrLj range node where key1 = key2 = 62 can be
used to encode that 62 is not in the list. An operation that returns
false can insert such a node, which will prevent other transactions
from inserting 62. This approach has the benefit of avoiding false
conflicts: in contrast, with structural nonexistence, if a set only
contains 2 and 22°, then any insertion and lookup of values in the
range {3...2% — 1} conflict.

Finally, the row labeled Table uses a table for representing non-
existence. This is like the Fenceposts table from Section 2: keys in
the set hash to locations in the table. On any insertion, we increment
the corresponding location in the table. This approach has the
benefit of avoiding writes for read-only operations.

Each technique provides value. For a failed get, remove, or mod-
ify, we use Table. For a range query, use Struct and Range within
the same range query. When the first element in the range is not
present, we insert an FrL. node. When the last element in the range
is not present, we insert an FyLj node. By using these Range nodes
instead of the Struct technique, we avoid the false conflicts that
would arise upon a concurrent insertion or removal outside of the
range, but immediately preceding (following) the first (last) present
node of the range. When two keys K; and K are both present, but
the keys between them are not, inserting an FELg node between
them does not provide any increased precision over the structural
technique. Instead, we record the structural version of the node
holding K;. This representation of missing nodes {K; +1...K;—1}
does not cause false aborts vis-a-vis Range: inserting any of those
nodes would invalidate the range query for either technique.

In summary, our strategy avoids using structure to express se-
mantics: when a key is present in the data structure, a transaction
will take ownership of the corresponding node, or track the se-
mantic version of that node. False aborts are never due to artificial
structural conflicts; they only arise due to hash collisions in the
Table. By tuning the size of this table, programmers can strike a
balance between false conflicts and space overheads.

4 COMPILER SUPPORT

A practical data structure must support update operations. If the
transaction subsequently aborts, the writes performed as part of
an update must be undone. We re-purpose compiler support for
TM to provide this rollback. The data structure designer writes
map::update so that it takes two arguments: a key, and a lambda
function to run on the value associated with that key. The designer

also annotates the update function to indicate that its lambdas may
perform operations that require rollback. At compile time, we locate
every lambda that is passed to update. Within each, we (1) replace
every store with a call to our library, (2) replace every allocation
and deallocation with a call to our library, and (3) make a clone of
every function reachable from the lambda, and transform the clone.
The store instrumentation logs the old value before updating it.
The allocation and deallocation instrumentation ensure that frees
do not happen until the transaction commits, and allocations are
undone on abort. Lastly, the compiler warns the programmer if
there is a call to a function whose body cannot be instrumented
(e.g., due to system calls or third-party libraries).

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a refined approach to composable con-
current data structures. The key idea behind our work is to make
semantic and structural operations explicit, so that structural and
semantic operations can commute. Implementation and evaluation
is currently in progress. To date, we have implemented scalable
lists, deques, stacks, queues, vectors, ordered maps (skip lists), and
unordered maps (hash tables). The last of these is perhaps the most
exciting: a resize (structural) can commute with arbitrarily many
elemental (semantic) operations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1814974. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

[1] Nachshon Cohen, Maurice Herlihy, Erez Petrank, and Elias Wald. 2017. The
Teleportation Design Pattern for Hardware Transactional Memory. In Proceedings
of the 21st International Conference on Principles of Distributed Systems. Lisbon,
Portugal.

[2] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. 2017. Elastic Transactions.
J. Parallel and Distrib. Comput. 100 (Feb. 2017), 103-127. Issue C.

[3] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. 2021. The Art
of Multiprocessor Programming, 2nd edition. Morgan Kaufmann.

[4] Maurice P. Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III.
2003. Software Transactional Memory for Dynamic-sized Data Structures. In
Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing.
Boston, MA.

[5] Maurice P. Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architec-
tural Support for Lock-Free Data Structures. In Proceedings of the 20th Interna-
tional Symposium on Computer Architecture. San Diego, CA.

[6] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a Correctness
Condition for Concurrent Objects. ACM Transactions on Programming Languages
and Systems 12, 3 (1990), 463-492.

[7] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory. In Proceedings
of the 14th ACM Symposium on Principles of Distributed Computing. Ottawa, ON,
Canada.

[8] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Transactional
Data Structure Libraries. In Proceedings of the 37th ACM Conference on Program-
ming Language Design and Implementation. Santa Barbara, CA.

[9] Pantea Zardoshti, Tingzhe Zhou, Pavithra Balaji, Michael Scott, and Michael Spear.

2019. Simplifying Transactional Memory Support in C++. ACM Transactions on

Architecture and Code Optimization 16, 3 (July 2019), 25:1-25:24.

Deli Zhang, Pierre Laborde, Lance Lebanoff, and Damian Dechev. 2018. Lock-Free

Transactional Transformation for Linked Data Structures. ACM Transactions on

Parallel Computing 5, 1 (June 2018).

Tingzhe Zhou, Victor Luchangco, and Michael Spear. 2017. Hand-Over-Hand

Transactions with Precise Memory Reclamation. In Proceedings of the 29th ACM

Symposium on Parallelism in Algorithms and Architectures. Washington, DC.

[10

[11

	Abstract
	1 Introduction
	2 Transactional Doubly Linked Lists
	3 Conflict Detection with Variable Precision
	4 Compiler Support
	5 Conclusions and Future Work
	Acknowledgments
	References

