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Zero forcing is an iterative process on a graph used to bound 
the maximum nullity. The process begins with select vertices 
as colored, and the remaining vertices can become colored un-
der a specific color change rule. The goal is to find a minimum 
set of vertices such that after iteratively applying the rule, all 
of the vertices become colored (i.e., a minimum zero forcing 
set). Of particular interest is the propagation time of a cho-
sen set which is the number of steps the rule must be applied 
in order to color all the vertices of a graph.
We give a purely linear algebraic view of zero forcing: Find 
a set of vertices S such that for any weighted adjacency ma-
trix A, whenever Ax = 0, the entirety of x can be recovered 
using only xS , the entries corresponding to S. The key here is 
that S must be chosen before A. In this light, we are able to 
give a linear algebraic interpretation of the propagation time: 
Any error in xS effects the error of x exponentially in the 
propagation time. This error can be quantitatively measured 
using newly defined zero forcing-related parameters, the error 
polynomial vector and the variance polynomial vector. In this 
sense, the quality of two zero forcing sets can objectively be 
compared even if the sets are the same size and their prop-
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agation times are the same. Examples and constructions are 
given.

Published by Elsevier Inc.

1. Introduction

Zero forcing is a one-player game introduced to bound the maximum nullity of a graph 
[1]. Given a graph, G = (V, E), the player selects a set of vertices S to be colored, then 
iteratively applies the color change rule: Identify each colored vertex u that has only one 
uncolored neighbor v, then color all such v; in which case, we say that u forces v. The 
goal of the player is to find the smallest initial set S such that eventually all the vertices 
become colored, such a set is called a zero forcing set. The smallest size of all zero forcing 
sets is the zero forcing number of G, denoted Z(G). The propagation time of a graph G
with zero forcing set S, denoted pt(G, S) is the number of iterations of the simultaneous 
application of the color change rule needed in order force the entire graph to be colored; 
for emphasis, multiple vertices may force at the same time.

For a graph G = (V, E), let SF (G) denote the set of all |V | × |V | matrices, A, over 
the field F with Aij = 0 whenever i "= j and {i, j} /∈ E, Aij "= 0 when {ij} ∈ E and the 
diagonal entries may take any value. We remark that, for our purposes, SF (G) includes 
non-symmetric matrices. The maximum nullity of G over F , MF (G), is the maximum 
possible dimension of the null space of A over all matrices A ∈ SF (G). The following 
relates the maximum nullity and the zero forcing number.

Proposition 1 (AIM Group (2008) [1]). For any graph G and any field F ,

MF (G) ≤ Z(G).

We remark that the maximum nullity was originally defined over symmetric matrices 
in SF (G); even so, Proposition 1 is still true when non-symmetric matrices are considered.

Recently, the study of the propagation time of zero forcing and its variations has 
grown [4–6,8,12]. However, these studies appear to be motivated on their own interest 
without any connection to linear algebra. One interesting aspect of propagation time 
is the phenomenon of “throttling” where the quantity |S| + pt(G, S) is minimized us-
ing non-minimal zero forcing sets. That is, near-minimum zero forcing sets can have 
substantially faster propagation times compared to minimum zero forcing sets [4,5].

The motivation for this study is to establish a concrete linear algebraic meaning of 
propagation time. Our main result shows that the growth of error in a certain setting 
is bounded exponentially in terms of the propagation time. As a result, one can more 
carefully quantify the trade-offs between smaller zero forcing sets with slow propagation 
times and larger zero forcing sets with fast propagation times. In particular, while we do 
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not propose a specific metric, we provide the tools to choose a more appropriate metric 
besides the seemingly arbitrary |S| + pt(G, S) mentioned above.

Before describing our result, we need to take a different perspective of zero forcing 
using a linear algebraic approach. Consider the following problem:

Problem 2 (Posing zero forcing purely linear algebraically). Given a graph G and any 
infinite field F , find a minimum set of indices Q such that for any A ∈ SF (G), any vector 
x with Ax = 0 can be uniquely determined by knowing xQ, the entries of x corresponding 
to Q, and A; for emphasis, the indices Q must be chosen before knowing A.

A more applied view of this problem is the following: Given a schematic of a system 
(i.e., the sparsity pattern), where should one place the sensors (i.e., Q) so that once the 
details of the system are known later, the entirety of the system can be determined using 
only the measurements from the sensors? Indeed, the concept of having to choose where 
to measure before knowing the exact details of the system appears in the ever-growing 
applications of zero forcing including monitoring power grids [3] and measuring quantum 
systems [11], and analyzing the controllability of consensus dynamics [9].

Of course, using this view, if S is a zero forcing set of G, then by taking Q to be S, one 
can use the entries of xQ and the zero forcing color change rule allows one to “backsolve” 
uniquely for the entirety of x. However, the converse is not as obvious; in Section 2 we 
will prove the following:

Proposition 3 (Zero forcing viewed linear algebraically). Given a graph G and a field F
(except F2), the following are equivalent:

i. S is a zero forcing set of G.
ii. For any matrix A ∈ SF (G), the columns corresponding to V (G) \ S are linearly 

independent.
iii. For any matrix A ∈ SF (G), whenever Ax = 0, the vector xS is always sufficient to 

uniquely determine the entirety of x.
iv. For any symmetric matrix A ∈ SF (G), the columns corresponding to V (G) \ S are 

linearly independent.
v. For any symmetric matrix A ∈ SF (G), whenever Ax = 0, the vector xS is always 

sufficient to uniquely determine the entirety of x.

The viewpoint that zero forcing can be viewed as “placing sensors” before one knows 
the details of the system is essential to our interpretation of propagation time. Consider 
the following variation of Problem 2 now posed with error in measurement:

Problem 4 (Zero forcing viewed linear algebraically with numerical error). Let G be a 
graph and S a zero forcing set of G. Suppose Ax = 0 with A ∈ SR(G), and a vector 
x′
S is given with absolute error ‖x′

S − xS‖∞ < ε. Using x′
S , can you compute a vector x̂

such that the absolute error ‖x − x̂‖∞ is small and x̂S = x′
S .
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Our main result shows that if one chooses the vertices to monitor (i.e., a zero forcing 
set), then any error in the measurement at those vertices propagates exponentially in 
the propagation time based on two other parameters, ∆, the maximum degree of G, and 
the multiplicative row-support spread, κ′(A), defined as follows.

Definition 5 (Multiplicative row-support spread). For an m × n matrix A, define

κ′(A) := max
i,j,k

∣∣∣∣
Aij

Aik

∣∣∣∣

where the maximum is taken over all entries where both Aij , Aik are nonzero. As a 
convention for the zero matrix, κ′(0m×n) = 1.

Theorem 6. Let G be a graph with maximum degree ∆. Let F be R (or C). Fix a zero 
forcing set S with propagation time τ . For any A ∈ SF (G) if Ax = 0 and ‖x−x′‖∞ < ε, 
then only using x′

S, the entries of x′ corresponding to S, and A, a vector x̂ can be 
computed with ‖x − x̂‖∞ ≤ [κ′(A)∆]τε and x̂S = x′

S.

It will be helpful to understand what this theorem actually says. Here, and throughout 
the paper, x represents the true solution to the equation Ax = 0, x′ represents the 
measured values of x (with error), and x̂ represents a complete vector you can compute 
using only selected entries of x′. The theorem says that if you select a set of entries of x′

that correspond to a zero forcing set, not only can you compute x̂, but the error between 
x̂ and x is limited as quantified in the theorem based upon the propagation time τ .

There are three aspects of Theorem 6 to emphasize. First, sampling the same entries 
of x′ will work regardless of the A given, and in all cases, the error bound still holds. 
Second, the propagation time may differ between zero forcing sets of the same size; hence, 
the choice of the zero forcing set matters. Lastly, the error bound in Theorem 6 may, 
in fact, be quite wasteful, as the bound assumes the worse possible case for each entry. 
Later in this article, we establish Theorem 8 which improves Theorem 6 by considering 
the specific forcing strategy (known as “forcing chains”) used. The improved error bound 
in Theorem 8 uses new concept called the error polynomial vector given in Section 5.

2. Zero forcing viewed linear algebraically

2.1. Proof of Proposition 3

Proof. Using the definition of zero forcing, (i) implies (ii) and (iv).
Additionally, (ii) and (iii) are equivalent by the subspace decomposition: Rn =

Wker
⊕

Wcoimg. Similarly, (iv) and (v) are equivalent. Note that (ii) implies (iv); there-
fore, it suffices to prove “(iv) implies (i)” by showing “not (i) implies not (iv).”

Suppose S ⊂ V is not a zero forcing set. Then, we can keep applying the color change 
rule until there is no more vertices can be colored. Let X be the set of the colored 
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vertices at this point, which is also called the derived set. Since S is not a zero forcing 
set, Y := V (G) \X is not empty.

For the remainder, given sets of indices Q and R, we will denote the matrix A re-
stricted to the columns indicated by Q as A:,Q, and similarly, we will let AQ,R denote 
the matrix A restricted to the rows corresponding to Q and columns corresponding to R.

We will construct a symmetric matrix A ∈ S(G) such that A:,Y has zero row sum on 
each row, so the columns of A:,Y are dependent. First, we may set AY,Y as the Laplacian 
matrix of the graph induced on Y , so each row of A:,Y that corresponds to Y has zero 
row sum.

Since there is no more forcing to do, every vertex in X (the set of colored vertices) 
has either no or at least two neighbors in Y (the set of uncolored vertices). This means 
each row of AX,Y either has all zero entries or at least two nonzero entries. If the row 
has all zero entries, then it has zero row sum already. If the row has k nonzero entries, 
say x1, . . . , xk, then we solve the equation

x1 + x2 + · · · + xk = 0, xi "= 0 (i = 1, . . . , k)

by the following process. First let x1 = · · · = xk−2 = 1. Next pick a nonzero value for 
xk−1 such that

x1 + · · · + xk−1 "= 0.

(This can be done as long as the field has at least two nonzero elements, or equivalently, 
F "∼= F2.) Finally, pick

xk = −(x1 + · · · + xk−1),

which is nonzero. Repeating this process for all rows that correspond to X, we found a 
matrix A:,Y with zero row sums. Finally, extend A by choosing AX,X to be any suitable 
symmetric matrix and AY,X to be AT

X,Y . !

2.2. A counterexample for F = F2

We present a counterexample to Theorem 3 when F is the field of two elements. 
Consider G as obtained by removing two disjoint edges from K6, say {1, 5} and {2, 6}. 
Thus, the matrix in SF2(G) necessarily looks like

A =





x1 1 1 1 0 1
1 x2 1 1 1 0
1 1 x3 1 1 1
1 1 1 x4 1 1
0 1 1 1 x5 1
1 0 1 1 1 x6




,
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where x1, . . . , x6 ∈ F2. For A, the first three columns are always linearly independent 
since

A{4,5,6},{1,2,3} =
[1 1 1

0 1 1
1 0 1

]

is a nonsingular matrix over F2. However, {4, 5, 6} = V (G) \{1, 2, 3} is not a zero forcing 
set. Indeed, Z(G) = 4 but not 3, by brute force or the Minimum Rank Software Library 
in Sage [7] or other software (see sources within [2]).

3. Proof of Theorem 6

Proof. We proceed by induction on the propagation time, τ . We will let Si denote the 
set of vertices colored after i iterations of the color change rule with S = S0.

Base case (τ = 0): If τ = 0, then S = S0 = V (G), and so one can set x′ = x̂ and the 
theorem follows.

Induction step: Suppose the theorem holds for τ ≤ t − 1, we will show it holds for 
τ = t.

Since S is a zero-forcing set for G, it is also a zero forcing set for the graph induced on 
Sτ−1. Hence, by using the induction hypothesis, we can define x̂ on the vector components 
corresponding to the vertices i ∈ Sτ−1 so that |xi − x̂i| ≤ [κ′(A)∆]τ−1ε.

Since Sτ−1 is a zero forcing set of G with propagation time of 1, for every k ∈ Sτ−Sτ−1, 
there is some i ∈ Sτ−1 that forces k. Hence, all the neighbors of i, except for k are colored, 
and in particular, x̂j is well-defined (using the induction hypothesis) for all neighbors of 
i, j "= k. Therefore, we can define

x̂k := −1
Aik

∑

j∈N [i]\{k}
Aijx̂j . (1)

It remains to show that for all such vertices k ∈ Sτ − Sτ−1, |xk − x̂k| ≤ [κ′(A)∆]τε.
For k ∈ Sτ that is forced by i, using the i-th row of Ax = 0, we have

0 =
∑

j∈N [i]
Aijxj

−Aikxk =
∑

j∈N [i]\{k}
Aijxj

xk = −1
Aik

∑

j∈N [i]\{k}
Aijxj . (2)
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By combining (1) and (2), we have

|xk − x̂k| =

∣∣∣∣∣∣
−1
Aik

∑

j∈N [i]\{k}
Aijxj −

−1
Aik

∑

j∈N [i]\{k}
Aijx̂j

∣∣∣∣∣∣
(3)

≤
∑

j∈N [i]\{k}

∣∣∣∣
Aij

Aik

∣∣∣∣ |xj − x̂j | (4)

≤
∑

j∈N [i]\{k}
κ′(A)[κ′(A)∆]τ−1ε

≤ [κ′(A)∆]τε.

Above, the third line follows from the definition of κ′(A) and the induction hypothesis, 
and the final line follows from the fact the sum has at most ∆ terms. !

4. Notes on Theorem 6

4.1. κ′(G) is necessary in the bound

The parameter κ′(A) is seemingly unaesthetic in the context of the minimum rank 
problem; however, we will show its use is unavoidable, as the error depends on the matrix 
chosen in S(G). For example, consider G = Kn, the complete graph on n vertices. Let 
A1,k = Ak,1 = δ > 0 for all k "= 1, A1,1 = δ2 and Aij = 1 otherwise. If we take 
S = V \ {1} to be a zero forcing set, then regardless of which vertex forces vertex 1, we 
have

x̂1 = −1
δ

∑

k &=1
x′
k.

Therefore, the error can be given by:

|x1 − x̂1| = 1
δ

∣∣∣∣∣∣

∑

k &=1
xk − x′

k

∣∣∣∣∣∣
.

If the error for each xk is the maximum allowed, say xk −x′
k = ε, then the total error 

for x̂1 is ε∆/δ. Since δ can be arbitrarily small, this demonstrates that the error can be 
arbitrarily large unless the matrix is otherwise constrained.

4.2. The exponential bound is necessary

Consider the path on n vertices labeled 1, . . . , n with n odd. Take Aij = 2min(i,j)

whenever i and j differ by exactly 1 and Aij = 0 otherwise. Indeed, the nullity of A is 1 



F.H.J. Kenter, J.C.-H. Lin / Linear Algebra and its Applications 576 (2019) 124–141 131

(maximum possible) and a nonzero null vector of A is given by vi = (−2)(n−i)/2 for i
odd and vi = 0 for i even. If the zero forcing set is taken to be S = {n} (i.e., the end of 
a path), then any error in xn will propagate by a factor of 2 at every other step.

5. Beyond propagation time: polynomial vectors

The estimate in Theorem 6 can be quite wasteful. Indeed, it is not necessarily the 
case that whenever vertex i forces vertex k at time step t that all of the neighbors of 
i have error [∆κ′(A)]t. To get a more precise measure of the error produced by a zero 
forcing set, we introduce the concept of the error polynomial vector.

We need to define the concept of a forcing chain: Given a zero forcing set of G, a forcing 
chain is set of directed paths that covers V (G) and i → j among these paths only if i
forces j. Note that the starts of all the paths correspond directly with the zero forcing 
set. In essence, the forcing chain details the exact strategy as to which vertices force 
which other vertices if, for instance, there are two or more vertices can force a particular 
vertex.

Definition 7 (Error polynomial vector of a forcing chain). Let S be a zero forcing set of 
G with forcing chain S′. We define the error polynomial vector of S′, qS′(t), as a vector 
of polynomials, recursively, as follows:

qS′

k (t) =






1 if k ∈ S

t
∑

j∈N [i]\{k}
qS′

j (t) if i forces k.

Note that qS′(t) is well-defined, as each vertex i is either in S or is forced by a unique 
vertex k as determined by the forcing chain S′.

Theorem 8. Let G be a graph, and let F be R (or C). Fix a zero forcing set S with 
forcing chain S′ and error polynomial vector qS′(t). Then, for any A ∈ SF (G) with 
multiplicative row-support spread κ′ := κ′(A), if Ax = 0 and ‖x − x′‖∞ < ε, then only 
using x′

S, the entries of x′ corresponding to S, and A, a vector x̂ can be computed with 
|xi − x̂i| ≤ qS′

i (κ′) ε for all i and x̂S = x′
S.

Proof. The proof is very similar to that of Theorem 6. After (4), we have

≤
∑

j∈N [i]\{k}

∣∣∣∣
Aij

Aik

∣∣∣∣ |xj − x̂j |

≤
∑

j∈N [i]\{k}
κ′qS′

j (κ′) ε

≤ qS′

k (κ′) ε.
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Above, the second line follows from the corresponding induction hypothesis and final 
line follows from the definition of qS′(t). !

It should be emphasized that for a zero forcing set S, the choice of S′ indeed matters. 
For instance, if two vertices can force the vertex k, one may have a different value of 
qS′(t) than the other. To compare two entries of qS′(t) (i.e., polynomials in t), we say 
p(t) * r(t), if p(t) ≤ r(t) for sufficiently large t (i.e., r has greater coefficients for the 
highest degree(s) until the first non-equal coefficient). This choice may seem arbitrary, 
and indeed, as in Theorem 8, the total error is not solely determined by the highest power. 
However, since κ′(A) is the input for the polynomial vector, necessarily κ′(A) ≥ 1, and 
κ′(A) can be arbitrarily large, it makes sense to use this ordering based on the higher 
coefficients.

Definition 9 (Error polynomial vector of a zero forcing set). Given a graph G and a zero 
forcing set S, define the error polynomial vector of S

qS
i (t) = min

S′,'
qS′

i (t)

where the minimum is taken over all forcing chains S′ using the zero forcing set S, under 
the order *.

For emphasis, we define the error polynomial for a zero forcing set as the entry-wise 
minimum over all forcing chains. However, we now show that there is a chain that achieves 
the minimum for all vertices.

Proposition 10. Given a graph G and a zero forcing set S, there is a forcing chain S′ of 
S such that qS(t) = qS′(t).

Proof. We construct the forcing chain S′ as follows. Whenever a vertex k can be forced, 
choose the vertex i, among all possible vertices that can force k, such that

∑

j∈N [i]\{k}
qS′

j (t)

is minimized under *. Observe that the degree of qS′

k (t) is the time index at which k be-
comes colored (or 0 if k ∈ S). Hence, waiting for a subsequent vertex to force k will result 
is a greater polynomial under the order *. Therefore, by taking the minimum choice at 
the minimum possible time step, the entry of qS′

k (t) is guaranteed to be minimum. !

In short, Proposition 10 says that the “best” forcing chain is determined by the initial 
zero forcing set S as determined in a greedy manner.

Theorems 6 and 8 are interested in the worst possible error. In many applications, 
the input error is not absolute, rather, it is random. As we will discuss going forward, 
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the variance of this error may be different in the random setting than in the absolute 
setting.

With regard to the probability we will use below, we will let E[X] denote the ex-
pectation of the random variable X and Var[X] := E(X − E[X])2 to be the variance 
of X.

Definition 11 (Multivariate error polynomial vector of a forcing chain). Let S be a zero 
forcing set of G with forcing chain S′. We define the multivariate error polynomial vec-
tor of S′, qS′ as a vector of multivariate polynomials (with variables t, α1, . . . , α|S|), 
recursively, as follows:

qS′

i (t;α1, . . . ,α|S|) =






αi if i ∈ S

t
∑

j∈N [i]\{k}
qS′

j (t;α1, . . . ,α|S|) if i forces k.

Proposition 12. For a graph G with a zero forcing set S and forcing chain S′,

qS′(t; 1, . . . , 1) = qS′(t).

The proof follows immediately by setting αi = 1 for all i. !

Definition 13 (Variance polynomial vector of a forcing chain). Let S be a zero forcing 
set of G with forcing chain S′. We define the variance polynomial vector of S′, VS′(t)
as a vector of polynomials:

VS′(t) =
∑

i∈S

[
[αi]qS′

i (t;α1, . . . ,α|S|)
]2

where [αi](p(· · · )) is the coefficient of αi, which is a polynomial in t.

Theorem 14. Let G be a graph. Fix a zero forcing set S with forcing chain S′ and variance 
polynomial vector VS′(t). Then, for any A ∈ SR(G) with multiplicative row-support 
spread κ′ := κ′(A), if Ax = 0 and x′

i is a random variable with mean xi and variance ε, 
independent from all other i ∈ S, by only using x′

S, the entries of x′ corresponding to S, 
a vector x̂ can be computed so that the random quantity xi− x̂i has mean 0 and variance 
at most VS′

i (κ′) ε.

Proof. Without loss of generality, label the vertices so that S = {1, . . . , |S|}. For i ∈ S, 
take x̂i = x′

i; for k /∈ S, as in the spirit of Theorem 6, take x̂k to be defined recursively 
based upon the vertex v that forces k:

x̂k := −1
Avk

∑

j∈N [v]\{k}
Avjx̂j ,
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and just as in the proof of Theorem 6, we have

xk − x̂k = −1
Avk

∑

j∈N [v]\{k}
Avjxj −

−1
Aik

∑

j∈N [v]\{k}
Avj x̂j

= −1
Avk

∑

j∈N [v]\{k}
Avj(x̂j − xj). (5)

For i ∈ S, Let αi denote the random quantity xi − x̂i.
By inductively applying (5) we have that for any k /∈ S, the random quantity 

xk − x̂k can be expressed as a (non-random) linear combination of the random quan-
tities α1, . . . , α|S|. For the remainder, we will let x̂k − xk =

∑
i∈S Cikαi be this linear 

combination of x̂k − xk over the αi.
Since, by hypothesis, for each i ∈ S, the random quantity x̂i := x′

i has mean xi, the 
random quantity αi has mean 0. Since for any k /∈ S, x̂k − xk is a linear combination of 
α1, . . . , α|S|, it follows by linearity of expectation that x̂k − xk must also have mean 0 
as well.

Therefore, it remains to show that for all i, the variance of x̂k − xk is bounded by 
VS′

i (κ′) ε.
Claim 1: For any vertex k,

|Cik| ≤ |[αi]qS′

k (κ′;α1, . . . ,α|S|)|

where the right side the coefficient of αi in qS′

k (κ′; α1, . . . , α|S|).

Proof. We proceed on induction on m, 0 ≤ m ≤ τ = pt(G, S), the number of iterations 
of the color change rule needed to color k. (If k ∈ S, m = 0.)

Base case (m = 0). For m = 0, necessarily k ∈ S. Therefore, by the definition 
of qS′

i (κ′; α1, . . . , α|S|), [αi]qS′

i (κ′; α1, . . . , α|S|) = 1 if i = k and 0 otherwise. Hence, 
Cik = qS′

i (κ′; α1, . . . , α|S|), and the claim holds.
Induction step (m = T ). Suppose, the claim holds for m = T − 1. Then, for k forced 

by v at iteration T , we have

|Cik| =

∣∣∣∣∣∣
[αi]




∑

j∈N [v]\{k}

Avj

Avk
(xj − x̂j)





∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

j∈N [v]\{k}

Avj

Avk
[αi] (xj − x̂j)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

j∈N [v]\{k}
κ′Cij

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣

∑

j∈N [v]\{k}
κ′ · [αi]qS′

j (κ′;α1, . . . ,α|S|)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
[αi]




∑

j∈N [v]\{k}
κ′ · qS′

j (κ′;α1, . . . ,α|S|)





∣∣∣∣∣∣

=
∣∣∣[αi]qS′

k (κ′;α1, . . . ,α|S|)
∣∣∣ ,

where the fourth-to-last line follows from the definition of κ′, third-to-last line fol-
lows from the induction hypothesis, and the last line follows from the definition of 
qS′

k (κ′; α1, . . . , α|S|). !

Recall that for random independent variables X1, . . . , Xn,

Var
(

n∑

i=1
ciXi

)
=

n∑

i=1
c2iVar(Xi).

Therefore,

Var(x̂k − xk) = Var
(
∑

i∈S

Cikαi

)

=
∑

i∈S

C2
ikVar(αi)

≤
∑

i∈S

[
[αi]qS′

i (κ′;α1, . . . ,α|S|)
]2

ε

= VS′

i (κ′)ε,

where the last line follows from Claim 1 and that Var(x̂i − xi) = Var(x′
i) = Var(x̂i) = ε

as given in the hypothesis of the theorem. !

As with qS′(t), VS′(t) is defined for a given forcing chain. Actually, one can apply 
all possible forcing chains simultaneously and choose the “best” entry. As a result, for a 
zero forcing set S, we can define VS(t) similar to qS(t):

Definition 15 (Variance polynomial vector for a zero forcing set). Given a graph G and 
a zero forcing set S, define the variance polynomial vector of S

VS
i = min

S′,'
VS′

i

where the minimum is taken over all forcing chains S′ using the zero forcing set S, under 
the order *.
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Fig. 1. Different zero forcing sets and their maximum entries for qS(t) and VS(t) under the ordering '.

We emphasize again that VS is defined entry-wise, and in contrast to qS , there may 
not be a single forcing chain, S′ that achieves VS

i = VS′

i for all i (see Section 6.3).

6. Examples and constructions

6.1. An example where different forcing sets achieve optional qS(t) and VS(t)

To see how the error polynomial vector and the variance polynomial vector can be used 
to compare different zero forcing sets, in Fig. 1 is a graph, G, on 9 vertices, “{9, 3094}” 
in the Wolfram Database. This graph has Z(G) = 3 and a minimal propagation time 
of 4. However, Fig. 1 illustrates different minimum zero forcing sets with different qS(t)
and VS(t). In the context of error of a particular system, it would be best to consider 
maximum error or maximum variance over all the vertices in the graph, in which case, 
we can measure a zero forcing set based upon the maximum entry of the corresponding 
polynomial vector based on the ordering *. The peculiar aspect about G is that the zero 
forcing sets that achieve the minimum maximum entry are different under qS(t) than 
for VS(t). For instance, in Fig. 1, the first column is the set that achieves the minimum 
for the maximum entry of VS(t) whereas the second column is the set that achieves 
the minimum for the maximum entry of qS(t). In short, which zero forcing set is “best” 
depends upon whether one expects the error to be independent/uncorrelated (in which 
case use VS(t)) or absolute/highly-correlated (in which case use qS(t)). Further, certain 
sets with the same propagation time may have significantly worse maximum error as 
seen in the last column.

6.2. Family of graphs where different forcing sets achieve optimal qS(t) and VS(t)

For n ≥ 7, let G be the graph obtained by adding a duplicating a leaf of a path on 
n − 1 vertices, as illustrated in Fig. 2. Up to symmetry, there are only three minimum 
zero forcing sets, namely, S1 = {1, n}, S2 = {n −3, n}, and S3 = {n −1, n}. Both S1 and 
S2 has the propagation time n − 3, yet S3 has the propagation time n − 2, so S3 cannot 
be an optimal zero forcing set. For n = 7, we may compute
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Fig. 2. A forked path.

qS1(t) =





1
t

t2 +t
t3 +2t2

t
t4 +2t3 +t2 +t

1





and qS2(t) =





t4 +2t3 +2t2
t3 +t2 +t

t2 +t
1

t
t2 +2t

1





.

Thus, S1 is optimal in terms of the error polynomial vector. On the other side,

VS1(t) =





1
t

t3 +2t2 +t
t5 +4t4 +4t3

t
t7 +4t6 +4t5 +t3 +2t2 +t

1





and

VS2(t) =





t7 +2t6 +2t5 +4t4 +4t3
t5 +t3 +2t2 +t

t4 +t2

1
t2

t4 +2t3 +2t2
1





.

Therefore, S2 is optimal in terms of the variance polynomial vector. This behavior also 
happens when n = 8; inductively, it happens for all n ≥ 7.

Here are some intuitive explanations. In terms of the error polynomials, S2 requires 
the errors of n and n − 3 being carried for a long way to vertex 1, so it is not a good 
choice comparing to S1. In terms of the variance polynomials, the error of vertex 1 for S2
are evenly contributed by αn−3 and αn, causing a smaller variance. Thus, it is a better 
choice than S1.

6.3. Example where no single forcing chain yields all of the polynomial entries for 
VS(t)

Unlike Proposition 10, we will show that for the graph and the zero forcing set in 
Fig. 3, its variance polynomial vector of the zero forcing set is not achieved by the 
variance polynomial vector of any forcing chain.
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Fig. 3. A graph and its zero forcing set S such that VS &= VS′ for all forcing chain S′ of S.

Let G be the graph shown in Fig. 3 and S = {1, 3, 5} a minimum zero forcing set of G. 
Let V := VS(t) be the variance polynomial vector of S. We will show that V(t) "= VS′(t)
for any forcing chain S′ of S. Suppose, for the purpose of yielding a contradiction, there 
is a forcing chain S′ with VS′(t) = V(t). Let q = qS′(t; α1, α3, α5) be the multivariate 
error polynomial vector of S′. Since S = {1, 3, 5}, we know q1 = α1, q3 = α3, and 
q5 = α5. If 5 → 8, then q8 has degree 1. If 8 is not forced by 5, q8 will have its degree 
too high, causing the degree of VS′

8 too high. Thus, we know 5 → 8 and q8 = tα5. 
Similarly, it must be 3 → 6 and q6 = tα3. For a similar reason, 6 → 2 make q2 have 
degree 2 and is optimal. Thus q2 = tα1 + (t2 + t)α3. Now comes the first and the only 
fork. It can be 8 → 7 or 1 → 7 making q7 degree 2. (Here, 2 → 7 is impossible since it 
gives q7 degree 3.)

Case 1: 8 → 7 and 7 → 4. In this case we have
{

q7 = (t2 + t)α5

q4 = (t2 + t)α1 + (t3 + t2)α3 + (t3 + 2t2)α5
, so





VS′

7 = t4 + 2t3 + t2

VS′

4 = 2t6 + 6t5 + 6t4 + 2t3 + t2
.

Case 2: 1 → 7 and 7 → 4. In this case we have
{

q7 = tα1 + t2α3

q4 = (2t2 + t)α1 + (2t3 + t2)α3 + t2α5
, so





VS′

7 = t4 + t2

VS′

4 = 4t6 + 4t5 + 6t4 + 4t3 + t2
.

Thus, Case 1 is better for VS′

4 but Case 2 is better for VS′

7 . Indeed, through this 
argument we also know

V =





1
t4 +2t3 +2t2

1
2t6 +6t5 +6t4 +2t3 +t2

1
t2

t4 +t2

t2





.

6.4. Explicit calculation of q{1}(t) for Pn

Consider a path Pn on n vertices with the vertices labeled as 1, . . . , n in order. Then 
S = {1} is a minimum zero forcing set, and we know qS

1 (t) = 1, qS
2 (t) = t, and qS

k (t) =
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Fig. 4. A graph and a zero forcing set with distinct leading coefficients for maximum entries of the error 
polynomial vector and the variance polynomial vector.

t(qS
k−1(t) + qS

k−2(t)) for k = 3, . . . , n. For example, the error polynomial vector of P10
with S = {1} is





1
t

t2 +t
t3 +2t2

t4 +3t3 +t2

t5 +4t4 +3t3
t6 +5t4 +6t3 +t2

t7 +6t6 +10t5 +4t4
t8 +7t7 +15t6 +10t5 +t4

t9 +8t8 +21t7 +20t6 +5t5





.

Indeed, if let T (a, b) be the number of subsets of {1, ..., a} of size k that contain no 
consecutive integers, then

[tk−1−r]qS
k (t) = T (k − 2, r).

This is because T (a, b) =
(a−b+1

b

)
and T (a, b) = T (a −1, b) +T (a −2, b −1), which meets 

the recurrence relation of qS
k . For instance, the 21t7 comes from k = 10, r = 2, and 

T (8, 2) =
(8−2+1

2
)

= 21. This integer sequence is labeled as A011973 in OEIS and also 
related to the Fibonacci polynomials; and more information can be found on [10].

6.5. A graph where qS(t) and VS(t) have different leading coefficients for optimal 
graphs

Let G be the graph in Fig. 4 and S = {4, 5} its minimum zero forcing set. Then,

qS(t) =





4t2 +t
2t
2t

1
1




and VS(t) =





8t4 +4t4 +t3

2t3
2t3

1
1




.

This shows that the leading coefficients of the maximum entries might not be the same.
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7. Discussion

In the introduction, we mentioned that previous work focused on optimizing 
|S| + pt(G, S). In particular, it is sometimes possible that the zero forcing set opti-
mizing |S| + pt(G, S) is not a minimum zero forcing set. This phenomenon is known as 
“throttling.” With the new tools of the error polynomial vector and the variance poly-
nomial vector, it would be interesting to revisit throttling. Namely, we ask: Is it possible 
to substantially decrease the error polynomial vector and/or the variance polynomial 
vector by adding a few vertices to the zero forcing set, especially in cases where the 
propagation time may remain unchanged?

The objective |S| + pt(G, S) seems arbitrary. However, with the error polynomial 
vector and the variance polynomial vector, one may be able to develop a more meaningful 
objective regarding the trade-off between the size of the zero forcing set (i.e., the number 
of sensors) and the potential error. For instance, if each sensor has a cost and the error of 
each estimate has a penalty, then one would have a different objective function that would 
almost certainly be different from |S| +pt(G, S). What are these objective functions, and 
in what ways do zero forcing sets affect them?

The parameter κ′(A) may be interesting to investigate in its own right, especially in 
the context of the minimum rank problem. In particular, for certain graphs G, the matrix 
attaining the maximum nullity (or minimum rank) might necessarily have κ′(A) > 1; 
therefore, the minimum rank may increase whenever κ′(A) is constrained from above.
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