Linear Algebra and its Applications 576 (2019) 124-141

Contents lists available at ScienceDirect

www.elsevier.com/locate/laa

ELCHIS

Linear Algebra and its Applications Applications

On the error of a priori sampling: Zero forcing sets | g

and propagation time

Check for
updates

Franklin H.J. Kenter **, Jephian C.-H. Lin"

& United States Naval Academy, Department of Mathematics; Annapolis, MD, USA
b University of Victoria, Department of Mathematics and Statistics; Victoria, BC,

Canada

ARTICLE INFO

ABSTRACT

Article history:

Received 25 September 2017
Accepted 10 March 2018
Available online 16 March 2018
Submitted by T. Stykel

MSC:
05C50
05C57
15A03
90C27
94C15

Keywords:

Minimum rank problem
Zero forcing

Propagation time

Error polynomial vector
Variance polynomial vector

* Corresponding author.

Zero forcing is an iterative process on a graph used to bound
the maximum nullity. The process begins with select vertices
as colored, and the remaining vertices can become colored un-
der a specific color change rule. The goal is to find a minimum
set of vertices such that after iteratively applying the rule, all
of the vertices become colored (i.e., a minimum zero forcing
set). Of particular interest is the propagation time of a cho-
sen set which is the number of steps the rule must be applied
in order to color all the vertices of a graph.

We give a purely linear algebraic view of zero forcing: Find
a set of vertices S such that for any weighted adjacency ma-
trix A, whenever Ax = 0, the entirety of x can be recovered
using only xg, the entries corresponding to S. The key here is
that S must be chosen before A. In this light, we are able to
give a linear algebraic interpretation of the propagation time:
Any error in xg effects the error of x exponentially in the
propagation time. This error can be quantitatively measured
using newly defined zero forcing-related parameters, the error
polynomial vector and the variance polynomial vector. In this
sense, the quality of two zero forcing sets can objectively be
compared even if the sets are the same size and their prop-
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agation times are the same. Examples and constructions are
given.
Published by Elsevier Inc.

1. Introduction

Zero forcing is a one-player game introduced to bound the maximum nullity of a graph
[1]. Given a graph, G = (V, E), the player selects a set of vertices S to be colored, then
iteratively applies the color change rule: Identify each colored vertex u that has only one
uncolored neighbor v, then color all such v; in which case, we say that u forces v. The
goal of the player is to find the smallest initial set S such that eventually all the vertices
become colored, such a set is called a zero forcing set. The smallest size of all zero forcing
sets is the zero forcing number of G, denoted Z(G). The propagation time of a graph G
with zero forcing set S, denoted pt(G, S) is the number of iterations of the simultaneous
application of the color change rule needed in order force the entire graph to be colored;
for emphasis, multiple vertices may force at the same time.

For a graph G = (V, E), let Sp(G) denote the set of all |V| x |V| matrices, A, over
the field F' with A;; = 0 whenever i # j and {3, j} ¢ E, A;; # 0 when {ij} € FE and the
diagonal entries may take any value. We remark that, for our purposes, Sp(G) includes
non-symmetric matrices. The maximum nullity of G over F, Mp(G), is the maximum
possible dimension of the null space of A over all matrices A € Sp(G). The following
relates the maximum nullity and the zero forcing number.

Proposition 1 (AIM Group (2008) [1]). For any graph G and any field F,
Mp(G) < Z(G).

We remark that the maximum nullity was originally defined over symmetric matrices
in SE(QG); even so, Proposition 1 is still true when non-symmetric matrices are considered.

Recently, the study of the propagation time of zero forcing and its variations has
grown [4-6,8,12]. However, these studies appear to be motivated on their own interest
without any connection to linear algebra. One interesting aspect of propagation time
is the phenomenon of “throttling” where the quantity |S| + pt(G, S) is minimized us-
ing non-minimal zero forcing sets. That is, near-minimum zero forcing sets can have
substantially faster propagation times compared to minimum zero forcing sets [4,5].

The motivation for this study is to establish a concrete linear algebraic meaning of
propagation time. Our main result shows that the growth of error in a certain setting
is bounded exponentially in terms of the propagation time. As a result, one can more
carefully quantify the trade-offs between smaller zero forcing sets with slow propagation
times and larger zero forcing sets with fast propagation times. In particular, while we do
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not propose a specific metric, we provide the tools to choose a more appropriate metric
besides the seemingly arbitrary |S| + pt(G, S) mentioned above.

Before describing our result, we need to take a different perspective of zero forcing
using a linear algebraic approach. Consider the following problem:

Problem 2 (Posing zero forcing purely linear algebraically). Given a graph G and any
infinite field F, find a minimum set of indices @ such that for any A € Sp(G), any vector
x with Ax = 0 can be uniquely determined by knowing x¢, the entries of x corresponding
to @, and A; for emphasis, the indices () must be chosen before knowing A.

A more applied view of this problem is the following: Given a schematic of a system
(i.e., the sparsity pattern), where should one place the sensors (i.e., @) so that once the
details of the system are known later, the entirety of the system can be determined using
only the measurements from the sensors? Indeed, the concept of having to choose where
to measure before knowing the exact details of the system appears in the ever-growing
applications of zero forcing including monitoring power grids [3] and measuring quantum
systems [11], and analyzing the controllability of consensus dynamics [9].

Of course, using this view, if S is a zero forcing set of G, then by taking @ to be S, one
can use the entries of xg and the zero forcing color change rule allows one to “backsolve”
uniquely for the entirety of x. However, the converse is not as obvious; in Section 2 we
will prove the following:

Proposition 3 (Zero forcing viewed linear algebraically). Given a graph G and a field F
(except Fy), the following are equivalent:

i. S is a zero forcing set of G.

ii. For any matric A € Sp(G), the columns corresponding to V(G) \ S are linearly
independent.

iii. For any matriz A € Sp(G), whenever Ax = 0, the vector xg is always sufficient to
uniquely determine the entirety of X.

iv. For any symmetric matrizx A € Sp(G), the columns corresponding to V(G) \ S are
linearly independent.

v. For any symmetric matric A € Sp(G), whenever Ax = 0, the vector xg is always
sufficient to uniquely determine the entirety of x.

The viewpoint that zero forcing can be viewed as “placing sensors” before one knows
the details of the system is essential to our interpretation of propagation time. Consider
the following variation of Problem 2 now posed with error in measurement:

Problem 4 (Zero forcing viewed linear algebraically with numerical error). Let G be a
graph and S a zero forcing set of G. Suppose Ax = 0 with A € Sg(G), and a vector
XY is given with absolute error ||x5 — xgs|s < €. Using XY, can you compute a vector X
such that the absolute error ||x — %|| is small and g = xJ.
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Our main result shows that if one chooses the vertices to monitor (i.e., a zero forcing
set), then any error in the measurement at those vertices propagates exponentially in
the propagation time based on two other parameters, A, the maximum degree of G, and
the multiplicative row-support spread, x’(A), defined as follows.

Definition 5 (Multiplicative row-support spread). For an m x n matrix A, define

ij

k' (A) := max |—~
(A) A

0,5,k

where the maximum is taken over all entries where both A;;, A;;. are nonzero. As a

R
convention for the zero matrix, £'(0pxn) = 1.

Theorem 6. Let G be a graph with maximum degree A. Let F be R (or C). Fiz a zero
forcing set S with propagation time 7. For any A € Sp(G) if Ax =0 and ||x—x'|| < &,
then only using Xy, the entries of x' corresponding to S, and A, a vector X can be
computed with |x — X||eo < [ (A)A]"e and kg = X5.

It will be helpful to understand what this theorem actually says. Here, and throughout
the paper, x represents the true solution to the equation Ax = 0, x’ represents the
measured values of x (with error), and % represents a complete vector you can compute
using only selected entries of x’. The theorem says that if you select a set of entries of x’
that correspond to a zero forcing set, not only can you compute X, but the error between
X and x is limited as quantified in the theorem based upon the propagation time 7.

There are three aspects of Theorem 6 to emphasize. First, sampling the same entries
of x' will work regardless of the A given, and in all cases, the error bound still holds.
Second, the propagation time may differ between zero forcing sets of the same size; hence,
the choice of the zero forcing set matters. Lastly, the error bound in Theorem 6 may,
in fact, be quite wasteful, as the bound assumes the worse possible case for each entry.
Later in this article, we establish Theorem 8 which improves Theorem 6 by considering
the specific forcing strategy (known as “forcing chains”) used. The improved error bound
in Theorem 8 uses new concept called the error polynomial vector given in Section 5.

2. Zero forcing viewed linear algebraically
2.1. Proof of Proposition 3

Proof. Using the definition of zero forcing, (i) implies (ii) and (iv).

Additionally, (ii) and (iii) are equivalent by the subspace decomposition: R" =
Wier @ Weoimg- Similarly, (iv) and (v) are equivalent. Note that (ii) implies (iv); there-
fore, it suffices to prove “(iv) implies (i)” by showing “not (i) implies not (iv).”

Suppose S C V is not a zero forcing set. Then, we can keep applying the color change
rule until there is no more vertices can be colored. Let X be the set of the colored
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vertices at this point, which is also called the derived set. Since S is not a zero forcing
set, Y := V(G) \ X is not empty.

For the remainder, given sets of indices () and R, we will denote the matrix A re-
stricted to the columns indicated by @ as A. g, and similarly, we will let Ag r denote
the matrix A restricted to the rows corresponding to ( and columns corresponding to R.

We will construct a symmetric matrix A € S(G) such that A. y has zero row sum on
each row, so the columns of A. y are dependent. First, we may set Ay y as the Laplacian
matrix of the graph induced on Y, so each row of A.y that corresponds to Y has zero
row sum.

Since there is no more forcing to do, every vertex in X (the set of colored vertices)
has either no or at least two neighbors in Y (the set of uncolored vertices). This means
each row of Ax y either has all zero entries or at least two nonzero entries. If the row
has all zero entries, then it has zero row sum already. If the row has k nonzero entries,
say x1,...,Tk, then we solve the equation

1‘1+.’E2+~“+.’Ek=0,$2‘7&0(Z':L...,k)

by the following process. First let 1 = -+ = x;_o = 1. Next pick a nonzero value for
Tr—1 such that

:c1+~~+xk_17é0.

(This can be done as long as the field has at least two nonzero elements, or equivalently,
F % T,.) Finally, pick

rp=—(T1+ 0+ Tpo1),

which is nonzero. Repeating this process for all rows that correspond to X, we found a
matrix A.y with zero row sums. Finally, extend A by choosing A x x to be any suitable
symmetric matrix and Ay x to be A% . O

2.2. A counterexample for F = Fq
We present a counterexample to Theorem 3 when F is the field of two elements.

Consider G as obtained by removing two disjoint edges from K, say {1,5} and {2,6}.
Thus, the matrix in S, (G) necessarily looks like

HO)—‘)—‘)—‘E
OH»—A»—tﬁn—l
—m, =8 e
w
H)—‘§ — =
H(;g — == O
— == O =
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where x1,...,2¢4 € Fy. For A, the first three columns are always linearly independent
since
1 1 1
Auser ez =0 1 1
1 01

is a nonsingular matrix over Fo. However, {4,5,6} = V(G)\ {1, 2, 3} is not a zero forcing
set. Indeed, Z(G) = 4 but not 3, by brute force or the Minimum Rank Software Library
in Sage [7] or other software (see sources within [2]).

3. Proof of Theorem 6

Proof. We proceed by induction on the propagation time, 7. We will let S; denote the
set of vertices colored after i iterations of the color change rule with S = Sj.

Base case (1 = 0): If 7 =0, then S = Sy = V(G), and so one can set x’ = % and the
theorem follows.

Induction step: Suppose the theorem holds for 7 < ¢t — 1, we will show it holds for
T =1.

Since S is a zero-forcing set for G, it is also a zero forcing set for the graph induced on
Sr—1. Hence, by using the induction hypothesis, we can define X on the vector components
corresponding to the vertices i € S;_1 so that |x; — %;| < [¢/(A)A] " Le.

Since S-_1 is a zero forcing set of G with propagation time of 1, for every k € S, —S,_1,
there is some i € S-_; that forces k. Hence, all the neighbors of i, except for k are colored,
and in particular, X; is well-defined (using the induction hypothesis) for all neighbors of
i, j # k. Therefore, we can define

. -1 Z .
ik . -
JEN[I\{k}

It remains to show that for all such vertices k € S; — Sr_1, |[xx — Xi| < [F'(A)A]e.
For k € S; that is forced by 4, using the i-th row of Ax = 0, we have

]

JEN[:

—Ajpxy = Z Ajjx;
JEN[I\{k}
-1

JENT\{k}
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By combining (1) and (2), we have

R -1 1
|k — %i| = . Z Aijxj — A, Z AijX; (3)
* jeNTI\{k} ik jeNliN\{k}
A, .
< ) = — %] (4)
JENTNRY TR
< Y FAF(A)A e
JENTIN{k}
< [K'(A)A]e.

Above, the third line follows from the definition of £’'(A) and the induction hypothesis,
and the final line follows from the fact the sum has at most A terms. O

4. Notes on Theorem 6
4.1. K'(G) is necessary in the bound

The parameter «'(A) is seemingly unaesthetic in the context of the minimum rank
problem; however, we will show its use is unavoidable, as the error depends on the matrix
chosen in §(G). For example, consider G = K,,, the complete graph on n vertices. Let
Ay =Ap1 =0>0forallk #1, Ay; = 52 and A;; = 1 otherwise. If we take
S =V \ {1} to be a zero forcing set, then regardless of which vertex forces vertex 1, we
have

. -1
Therefore, the error can be given by:
sl = 5[5
X1 —X1| = = Xp — X
1 1 5 k
k#1

If the error for each xy, is the maximum allowed, say x; —xj, = ¢, then the total error
for %1 is eA /4. Since § can be arbitrarily small, this demonstrates that the error can be
arbitrarily large unless the matrix is otherwise constrained.

4.2. The exponential bound is necessary

Consider the path on n vertices labeled 1,...,n with n odd. Take A;; = 2in()
whenever i and j differ by exactly 1 and A;; = 0 otherwise. Indeed, the nullity of A is 1
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(maximum possible) and a nonzero null vector of A is given by v; = (—2)(»=9/2 for i
odd and v; = 0 for ¢ even. If the zero forcing set is taken to be S = {n} (i.e., the end of
a path), then any error in x,, will propagate by a factor of 2 at every other step.

5. Beyond propagation time: polynomial vectors

The estimate in Theorem 6 can be quite wasteful. Indeed, it is not necessarily the
case that whenever vertex i forces vertex k at time step ¢ that all of the neighbors of
i have error [Ax’(A)]*. To get a more precise measure of the error produced by a zero
forcing set, we introduce the concept of the error polynomial vector.

We need to define the concept of a forcing chain: Given a zero forcing set of G, a forcing
chain is set of directed paths that covers V(G) and ¢ — j among these paths only if ¢
forces j. Note that the starts of all the paths correspond directly with the zero forcing
set. In essence, the forcing chain details the exact strategy as to which vertices force
which other vertices if, for instance, there are two or more vertices can force a particular
vertex.

Definition 7 (Error polynomial vector of a forcing chain). Let S be a zero forcing set of
G with forcing chain S’. We define the error polynomial vector of S’, qS/ (t), as a vector
of polynomials, recursively, as follows:

1 ifkesS
ay (t) =1 ¢t Z qf/ (t) if ¢ forces k.
JENTI\{k}

Note that q () is well-defined, as each vertex i is either in S or is forced by a unique
vertex k as determined by the forcing chain S’.

Theorem 8. Let G be a graph, and let F be R (or C). Fiz a zero forcing set S with
forcing chain S' and error polynomial vector q° (t). Then, for any A € Sp(G) with
multiplicative row-support spread k' := K'(A), if Ax =0 and ||x — X||c < &, then only
using X'y, the entries of X' corresponding to S, and A, a vector X can be computed with
Ixi — %] < (k') € for all i and % = Xs.

Proof. The proof is very similar to that of Theorem 6. After (4), we have

Ayl .
< > ; x; — %
JENEN{K} '
< Y Hqi'(W)e
JEN[I\{k}

<q; (K) e
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Above, the second line follows from the corresponding induction hypothesis and final
line follows from the definition of ¢ (). O

It should be emphasized that for a zero forcing set S, the choice of S’ indeed matters.
For instance, if two vertices can force the vertex k, one may have a different value of
qs (t) than the other. To compare two entries of qsl(t) (i-e., polynomials in t), we say
p(t) = r(t), if p(t) < r(t) for sufficiently large ¢ (i.e., r has greater coeflicients for the
highest degree(s) until the first non-equal coefficient). This choice may seem arbitrary,
and indeed, as in Theorem 8, the total error is not solely determined by the highest power.
However, since £’(A) is the input for the polynomial vector, necessarily «’(A) > 1, and
k’'(A) can be arbitrarily large, it makes sense to use this ordering based on the higher
coefficients.

Definition 9 (Error polynomial vector of a zero forcing set). Given a graph G and a zero
forcing set S, define the error polynomial vector of S

s s
S(t) = ST (¢t
q; (t) = minq;” (¢)
where the minimum is taken over all forcing chains S’ using the zero forcing set .S, under
the order <.

For emphasis, we define the error polynomial for a zero forcing set as the entry-wise
minimum over all forcing chains. However, we now show that there is a chain that achieves
the minimum for all vertices.

Proposition 10. Given a graph G and a zero forcing set S, there is a forcing chain S’ of
S such that q°(t) = q°'(t).

Proof. We construct the forcing chain S’ as follows. Whenever a vertex k can be forced,
choose the vertex i, among all possible vertices that can force k, such that

>oooaf )

JeN[\{k}

is minimized under <. Observe that the degree of g (¢) is the time index at which k be-
comes colored (or 0 if k& € S). Hence, waiting for a subsequent vertex to force k will result
is a greater polynomial under the order <. Therefore, by taking the minimum choice at
the minimum possible time step, the entry of q,f/ (t) is guaranteed to be minimum. O

In short, Proposition 10 says that the “best” forcing chain is determined by the initial
zero forcing set S as determined in a greedy manner.

Theorems 6 and 8 are interested in the worst possible error. In many applications,
the input error is not absolute, rather, it is random. As we will discuss going forward,
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the variance of this error may be different in the random setting than in the absolute
setting.

With regard to the probability we will use below, we will let E[X] denote the ex-
pectation of the random variable X and Var[X] := E(X — E[X])? to be the variance
of X.

Definition 11 (Multivariate error polynomial vector of a forcing chain). Let S be a zero
forcing set of G with forcing chain S’. We define the multivariate error polynomial vec-
tor of S, qS, as a vector of multivariate polynomials (with variables t,a1,...,qg)),
recursively, as follows:

Q; ifieS
qf (tron, ..., apg) =19 ¢ Z qf'(t;al, ..o,apg)) if @ forces k.
JEN[iIN\{k}

Proposition 12. For a graph G with a zero forcing set S and forcing chain S’,

The proof follows immediately by setting a; = 1 for all &. 0O

Definition 13 (Variance polynomial vector of a forcing chain). Let S be a zero forcing
set of G with forcing chain S’. We define the wvariance polynomial vector of S’, VS’ (t)
as a vector of polynomials:

VI =Y [leda Gson, )]

i€S
where [a;](p(--+)) is the coefficient of a;, which is a polynomial in ¢.

Theorem 14. Let G be a graph. Fix a zero forcing set S with forcing chain S’ and variance
polynomial vector VS’ (t). Then, for any A € Sg(G) with multiplicative row-support
spread k' = K'(A), if Ax = 0 and X} is a random variable with mean x; and variance €,
independent from all other i € S, by only using Xy, the entries of X' corresponding to S,
a vector X can be computed so that the random quantity x; —X; has mean 0 and variance
at most V' (1) €.

Proof. Without loss of generality, label the vertices so that S = {1,...,|S|}. For i € S,
take X; = x';; for k ¢ S, as in the spirit of Theorem 6, take X, to be defined recursively
based upon the vertex v that forces k:

N -1 .
X = A - Z Avaj,

JEN\{k}
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and just as in the proof of Theorem 6, we have

Xk — )A(k = —1 Z AUij — ;—1 Z Avj)A(j

vk e N[o]\{k} * jeNT\ [k}
-1 N
= A - Z Avj(Xj 7Xj). (5)
Y jEN)\{k}

For i € S, Let a; denote the random quantity x; — X;.
By inductively applying (5) we have that for any k ¢ S, the random quantity
X — Xi can be expressed as a (non-random) linear combination of the random quan-

tities a1, ..., a|g. For the remainder, we will let X — x;, = > .o Cira; be this linear

ies
combination of X — xj over the «;. )

Since, by hypothesis, for each i € S, the random quantity %; := x} has mean x;, the
random quantity «; has mean 0. Since for any k ¢ S, X — X, is a linear combination of
ai,...,qg), it follows by linearity of expectation that X — x; must also have mean 0
as well.

Therefore, it remains to show that for all ¢, the variance of X; — x; is bounded by
VS () e.

Claim 1: For any vertex k,

Cit] < [[eslag (K50, ap8))]
where the right side the coefficient of «; in q,f/ (K501, ,09))-

Proof. We proceed on induction on m,0 < m < 7 = pt(G, S), the number of iterations
of the color change rule needed to color k. (If k € S, m = 0.)

Base case (m = 0). For m = 0, necessarily k € S. Therefore, by the definition
of qfl(n/;al,...,a|s|), [ai]qf/(/{/;al,...,awo = 1if ¢ = k and 0 otherwise. Hence,
Ci = qf,(/i’; ai,...,qg), and the claim holds.

Induction step (m = T'). Suppose, the claim holds for m =T — 1. Then, for k forced
by v at iteration T', we have

Cal=lld [ X 9 %)

JEN\{k} T OF
A'u' N
= § A . ;] (XJ %))
i vk
JEN\{k}

IA

Z n'C’ij

JEN[v\{k}
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< Z n/.[ai]qf'(nl;al,...,a‘s‘)
JEN[v]\{k}
= [Oél] Z l{l~qf/(lﬂj/;a1,...,a|s|)
JEN[v]\{k}
= [ai]qf/(m’; ar, ..., aig)|,

where the fourth-to-last line follows from the definition of &', third-to-last line fol-
lows from the induction hypothesis, and the last line follows from the definition of

!
qg ("{I;ah"'?a\S\)’ O

Recall that for random independent variables X7, ..., X,,

ar (i: c,»Xi> = i: cVar(X
i=1 i=1

Therefore,

Var (X, — xi) = Var (Z Cikai>

€S

Z 2 Var(oy)

€S
S'o 2
< Z [[az]qz (KJ NS ) Oé|5|):| €
€S
= Vi (W)e,

where the last line follows from Claim 1 and that Var(k; — x;) = Var(x}) = Var(x;) = ¢
as given in the hypothesis of the theorem. O

As with qS/ (1), v (t) is defined for a given forcing chain. Actually, one can apply
all possible forcing chains simultaneously and choose the “best” entry. As a result, for a
zero forcing set S, we can define V() similar to q“(¢):

Definition 15 (Variance polynomial vector for a zero forcing set). Given a graph G and
a zero forcing set S, define the variance polynomial vector of S

VS = mln VS
S/

where the minimum is taken over all forcing chains S’ using the zero forcing set S, under
the order <.
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0 0
D D
J J
max; g7 (1) 1+ 363 + 4¢2 2+ 22t | 3P+ T+ A+t
S s 7 6 5 4 | t8 47 +8t6 485 | 38 + 14¢7 + 25¢5 + 2245
max; V7 (¢) | ¢8 +2t7 + 76 + 8¢5 + 6t F6td 4 4t 4 o2 104 4 23 4 2

Fig. 1. Different zero forcing sets and their maximum entries for q°(¢) and V°(¢) under the ordering <.

We emphasize again that V° is defined entry-wise, and in contrast to q°, there may
not be a single forcing chain, S’ that achieves V{ = Vf/ for all ¢ (see Section 6.3).

6. Examples and constructions
6.1. An example where different forcing sets achieve optional q°(t) and V3 (t)

To see how the error polynomial vector and the variance polynomial vector can be used
to compare different zero forcing sets, in Fig. 1 is a graph, G, on 9 vertices, “{9, 3094}”
in the Wolfram Database. This graph has Z(G) = 3 and a minimal propagation time
of 4. However, Fig. 1 illustrates different minimum zero forcing sets with different q°(t)
and V(¢). In the context of error of a particular system, it would be best to consider
maximum error or maximum variance over all the vertices in the graph, in which case,
we can measure a zero forcing set based upon the maximum entry of the corresponding
polynomial vector based on the ordering <. The peculiar aspect about G is that the zero
forcing sets that achieve the minimum maximum entry are different under q°(t) than
for V(). For instance, in Fig. 1, the first column is the set that achieves the minimum
for the maximum entry of V¥(t) whereas the second column is the set that achieves
the minimum for the maximum entry of q(t). In short, which zero forcing set is “best”
depends upon whether one expects the error to be independent/uncorrelated (in which
case use V7 (t)) or absolute/highly-correlated (in which case use q”(t)). Further, certain
sets with the same propagation time may have significantly worse maximum error as
seen in the last column.

6.2. Family of graphs where different forcing sets achieve optimal q°(t) and V5(t)

For n > 7, let G be the graph obtained by adding a duplicating a leaf of a path on
n — 1 vertices, as illustrated in Fig. 2. Up to symmetry, there are only three minimum
zero forcing sets, namely, S; = {1,n}, S2 = {n—3,n}, and S5 = {n—1,n}. Both S; and
Ss has the propagation time n — 3, yet S5 has the propagation time n — 2, so S5 cannot
be an optimal zero forcing set. For n = 7, we may compute
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Fig. 2. A forked path.

i 17 (¢4 4213 +2¢2
t 3 +t2 4t
t2 +t 2 +t
Qi (t) = 3 422 and q%2(t) = 1
t t
42t 2 4 2 2t
1 1

Thus, S7 is optimal in terms of the error polynomial vector. On the other side,

1
t
B3 422 4t
Vi(t) = VAR UL T and
t
7 4418 4¢P 3 4212 4t
1
[¢7  4+2¢6 4265 44t 4483 T
t° +t3 4212 4t
t4 +t2
Vo2 (t) = 1
t2
423 422
1

Therefore, Sy is optimal in terms of the variance polynomial vector. This behavior also
happens when n = 8; inductively, it happens for all n > 7.

Here are some intuitive explanations. In terms of the error polynomials, Sy requires
the errors of n and n — 3 being carried for a long way to vertex 1, so it is not a good
choice comparing to S;. In terms of the variance polynomials, the error of vertex 1 for So
are evenly contributed by a,,_3 and a.,, causing a smaller variance. Thus, it is a better
choice than ;.

6.3. Example where no single forcing chain yields all of the polynomial entries for
V(1)

Unlike Proposition 10, we will show that for the graph and the zero forcing set in
Fig. 3, its variance polynomial vector of the zero forcing set is not achieved by the
variance polynomial vector of any forcing chain.
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Fig. 3. A graph and its zero forcing set S such that V5 # VS’ for all forcing chain S’ of S.

Let G be the graph shown in Fig. 3 and S = {1, 3,5} a minimum zero forcing set of G.
Let V := V5(t) be the variance polynomial vector of S. We will show that V(t) # V5 ()
for any forcing chain S’ of S. Suppose, for the purpose of yielding a contradiction, there
is a forcing chain S’ with V5'(£) = V(t). Let q = q% (t; 1, as, as) be the multivariate
error polynomial vector of S’. Since S = {1,3,5}, we know q; = a1, q3 = as, and
gs = as. If 5 — 8, then g has degree 1. If 8 is not forced by 5, qg will have its degree
too high, causing the degree of Vgl too high. Thus, we know 5 — 8 and qg = tas.
Similarly, it must be 3 — 6 and qg = tas. For a similar reason, 6 — 2 make qq have
degree 2 and is optimal. Thus q2 = taj + (2 + t)as. Now comes the first and the only
fork. It can be 8 — 7 or 1 — 7 making q7 degree 2. (Here, 2 — 7 is impossible since it
gives q7 degree 3.)

Case 1: 8 — 7 and 7 — 4. In this case we have

SO

ar = (2 + t)as V=t 2P + 12
Q=2 +t)ay + (B + Dz + (3 +26%)as VS =26 £ 615 1 614 + 23 12

Case 2: 1 — 7 and 7 — 4. In this case we have

SO

ar = ta; + t2az VS =t 41
qq = (2t2 =+ t)Oél =+ (2t3 -+ t2)()é3 =+ t2a5 ’ Vf/ — 4t6 + 4t5 + 6t4 4 4t3 + t2 ’

Thus, Case 1 is better for V:f' but Case 2 is better for V?l. Indeed, through this
argument we also know

1
o 42t3 4212
1
216 4615 +6t1 4263 2
V= 1
t2
t +t2
2
6.4. Explicit calculation of qt'}(t) for P,
Consider a path P, on n vertices with the vertices labeled as 1,...,n in order. Then

S = {1} is a minimum zero forcing set, and we know qf (t) = 1, q5 (t) = ¢, and qy (t) =
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Fig. 4. A graph and a zero forcing set with distinct leading coefficients for maximum entries of the error
polynomial vector and the variance polynomial vector.

t(ay ,(t) +ai_,(t) for k = 3,...,n. For example, the error polynomial vector of Pjo
with § = {1} is

433 42
i +4t* 4313
16 +5t4 463 4¢2
t7 4615 +10t° 4t
18 +7t7  +15t6 41065 +t4
L9 488 42147 420t  45¢°

Indeed, if let T'(a,b) be the number of subsets of {1,...,a} of size k that contain no
consecutive integers, then

(" (1) = T(k —2,7).

This is because T'(a,b) = (“_2"'1) and T'(a,b) =T(a—1,b)+T(a—2,b—1), which meets

the recurrence relation of qy. For instance, the 21t7 comes from k = 10, r = 2, and
7(8,2) = (8_3‘“) = 21. This integer sequence is labeled as A011973 in OEIS and also
related to the Fibonacci polynomials; and more information can be found on [10].

6.5. A graph where q°(t) and V°(t) have different leading coefficients for optimal
graphs

Let G be the graph in Fig. 4 and S = {4, 5} its minimum zero forcing set. Then,

42 4t 8t 4t 443

2t 2t3

Q®(t) = 2t and Vo (t) = 2t3
1 1
1 1

This shows that the leading coefficients of the maximum entries might not be the same.
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7. Discussion

In the introduction, we mentioned that previous work focused on optimizing
|S| + pt(G,S). In particular, it is sometimes possible that the zero forcing set opti-
mizing |S| + pt(G, S) is not a minimum zero forcing set. This phenomenon is known as
“throttling.” With the new tools of the error polynomial vector and the variance poly-
nomial vector, it would be interesting to revisit throttling. Namely, we ask: Is it possible
to substantially decrease the error polynomial vector and/or the variance polynomial
vector by adding a few vertices to the zero forcing set, especially in cases where the
propagation time may remain unchanged?

The objective |S| + pt(G,S) seems arbitrary. However, with the error polynomial
vector and the variance polynomial vector, one may be able to develop a more meaningful
objective regarding the trade-off between the size of the zero forcing set (i.e., the number
of sensors) and the potential error. For instance, if each sensor has a cost and the error of
each estimate has a penalty, then one would have a different objective function that would
almost certainly be different from |S|+pt(G, S). What are these objective functions, and
in what ways do zero forcing sets affect them?

The parameter x'(A) may be interesting to investigate in its own right, especially in
the context of the minimum rank problem. In particular, for certain graphs G, the matrix
attaining the maximum nullity (or minimum rank) might necessarily have x'(A) > 1;
therefore, the minimum rank may increase whenever x'(A) is constrained from above.
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