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We present fully general-relativistic numerical evolutions of self-gravitating tori around spinning black
holes with dimensionless spin a=M ¼ 0.7 parallel or antiparallel to the disk angular momentum. The initial
disks are unstable to the hydrodynamic Papaloizou-Pringle instability which causes them to grow persistent
orbiting matter clumps. The effect of black hole spin on the growth and saturation of the instability is
assessed. We find that the instability behaves similarly to prior simulations with nonspinning black holes,
with a shift in frequency due to spin-induced changes in disk orbital period. Copious gravitational waves
are generated by these systems, and we analyze their detectability by current and future gravitational wave
observatories for a large range of masses. We find that systems of 10M⊙—relevant for black hole–neutron
star mergers—are detectable by Cosmic Explorer out to ∼300 Mpc, while DECIGO (LISA) will be able to
detect systems of 1000M⊙ (105 M⊙)—relevant for disks forming in collapsing supermassive stars—out to
cosmological redshift of z ∼ 5 (z ∼ 1). Computing the accretion rate of these systems we find that these
systems may also be promising sources of coincident electromagnetic signals.
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I. INTRODUCTION

To realize the full potential of multimessenger astronomy,
it is necessary to model a wide range of gravitational
wave (GW) sources. With planned sensitivity upgrades to
Advanced LIGO, KAGRA, and Virgo [1] as well as the
construction of future more sensitive detectors such as
Cosmic Explorer [2] and the Einstein Telescope [3], a large
volume of space will be opened up to GWastronomy in the
coming years. Space-based missions such as DECIGO [4]
andLISA [5]will open up lower frequencies extending down
to 0.1 and10−4 Hz, respectively, which are inaccessible from
the ground and will enable the potential detection of entirely
new types of sources. With such a large volume of space and
such a wide range of frequencies on the verge of being
observed, we should be prepared to detect the unexpected,
especially once detectors of sufficient sensitivity are brought
on-line. It is therefore prudent to investigate sources that have
not yet received significant consideration.
While much modeling has been done for compact binary

coalescences (for reviews, see [6–13]), comparatively little
work has been done exploring the multimessenger signa-
tures of black holes (BHs) surrounded by massive accretion
disks. These systems can arise in various astrophysical
environments. For example, disks with rest masses ≳10%
of the BH Christodoulou mass can form following black
hole–neutron star mergers with rapidly spinning black

holes [14] or in the collapse of supermassive stars [15–
21], and possibly also in collapsars [22–26]. Binary neutron
star systems with large mass asymmetry can also produce
massive disks [27]. Accretion disks onto black holes can be
hosts of a wide range of dynamical instabilities that can
produce a time-varying quadrupole moment, making them
promising GW candidates. In addition, such systems can
generate bright electromagnetic signals, and hence they are
true multimessenger sources.
A prime example of a dynamical disk instability that

develops a time-varying quadrupole moment is the so-
called Papaloizou-Pringle instability (PPI). The PPI is a
hydrodynamic instability that grows in fluid tori orbiting in
a central potential [28]. It results in the growth of non-
axisymmetric modes in the rest-mass density ρ0 of the form

ρ0 ∝ eiðmϕ−σtÞ; ð1Þ

where m is a positive mode number, and σ has a real
component that causes pattern rotation and an imaginary
component that causes growth. The growth rate is on the
order of the orbital timescale of the disk, with m ¼ 1 being
the dominant mode for thick tori [29]. For low-m modes in
tori of finite extent, exponential growth can be thought of as
resulting from the exchange of a conserved quantity between
wavelike disturbances on the disk’s inner edge that propa-
gate opposite to the flow, and wavelike disturbances on the
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disk’s outer edge that propagate with the flow [30–35]. The
existence of unstable PPI modes depends on the profile
of a disk’s specific angular momentum, j. In a Newtonian
context, j is defined as

j≡ rvϕ; ð2Þ

where r is the cylindrical coordinate and vϕ is the fluid
velocity in theϕ-direction. In [36] itwas shown that disks are
susceptible to the instability when they have a sufficiently
shallow j profile:

j ∝ r2−q;
ffiffiffi
3

p
< q ≤ 2: ð3Þ

Values of q greater than 2 result in decreasing j profiles,
which render disks unstable to an axisymmetric instability
discovered previously by Rayleigh [37].
The PPI has long been known to saturate into persistent

nonaxisymmetric configurations of orbiting lumps1 [38].
Numerical relativity simulations have shown that the PPI
can occur in self-gravitating disks around nonspinning BHs
[39,40], and generate gravitational radiation [40].
While the conditions under which PPI unstable disks can

form dynamically are unclear, in [41] the simulation of the
tidal disruption of a white dwarf by a supermassive BH,
found that a nearly axisymmetric torus formed that was
unstable to the PPI. This remnant disk had a small mass,
and subsequent studies concluded that the resulting GW
signal would be weak [42,43]. The numerical relativity
simulations in [14] find that the disks with disk to black
hole mass of ∼20% forming dynamically following a black
hole–neutron star merger appear to be stable for the times
simulated. However, these are limited studies and the
parameter space of black hole–neutron stars is large, so
that more studies of such mergers are necessary to under-
stand if there exist conditions under which PPI unstable
disks form in these systems. On the other hand, the
simulations of supermassive stellar collapse in [20] find
that the BH disks arising in the process have properties that
are favorable for developing the PPI. The above demon-
strate that there exist potential channels for the dynamical
formation of PPI-unstable disks, and hence it is worth
exploring their potential as multimessenger sources with
gravitational waves. To better understand how time chang-
ing quadrupole moments in disks around black holes result
in GW emission, it is more efficient to start with BH-disk
initial data and evolve these as a means to study many
progenitors at once, instead of performing simulations of
the dynamical formation of such disks from different
progenitors. This is particularly feasible when the matter
is modeled with a Γ-law equation of state, in which case
there is an inherent scale freedom to the set of equations

governing the evolution. This is the approach we will adopt
in this work.
It is worth noting that magnetized disks unstable to the

magneto-rotational instability (MRI) could suppress the
PPI growth [44]. However, both MRI and PPI are expo-
nential instabilities, and both occur on the orbital timescale
of the disk. Therefore, if conditions are such that the PPI
develops first, then it is plausible that the PPI can grow and
survive for longer times. This is supported by the findings
of [44] who demonstrated that when the m ¼ 1 mode is
initially excited, which is possible in dynamical disk
formation scenarios, the PPI dominates the dynamics for
several disk orbits before finally succumbing to the MRI.
Therefore, it is important to further study the PPI, and most
importantly the detectability of the multimessenger signa-
tures of BH-disk systems.
In the context of simulations in full general relativity,

self-gravitating disks around black holes were studied in
[45] where the runaway instability was investigated. With
regards to the focus of this work, the PPI has been explored
for self-gravitating disks with constraint-satisfying and
equilibrium initial data only around nonspinning black
holes [39,40]. Simulations around spinning black holes, but
adopting constraint-violating, and nonequilibrium initial
data were performed in [46]. Here, we initiate a study of the
dynamics of the PPI in massive, equilibrium, self-
gravitating disks around spinning black holes adopting
constraint-satisfying and equilibrium initial data [47]. Our
focus is to determine whether the spin of the BH alters the
onset of the PPI or its saturation state in any way, and what
effect BH spin may have on the detectability of the GW
signal, as well as other observables. Our initial disks all
obey the same rotation law, have an approximately flat
specific angular momentum profile (q ≃ 2), and approxi-
mately the same mass. In this work we focus on scenarios
where the BH spins have dimensionless value of 0 or 0.7,2

either aligned or antialigned with the disk orbital angular
momentum. In forthcoming work, we will explore the
dynamics of misaligned BH spins, where spin-orbit pre-
cession effects are expected.
We find that the dynamics of the PPI in our aligned and

antialigned spin simulations is similar to the nonspinning
case, which has been studied previously. However, keeping
other quantities nearly fixed, the presence of BH spin
causes unavoidable differences in the structure of the disks,
which in our case appear as shifts in the orbital frequencies
of the disks, thereby affecting the dynamics. The differing
innermost stable circular orbit (ISCO) radii also affect the
accretion rates, so that the case with the smallest ISCO
accretes an order of magnitude more slowly than the others.
This result holds in the absence of magnetic fields and for
the particular initial inner disk edges we start with; we will

1These are sometimes referred to as “planets,” although they
are not self-gravitating.

2This spin coincides closely with those of the BHs formed by
collapsing stars at the mass-shedding limit, as shown by [15,16].
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explore these effects in future work. Following saturation of
the PPI, the GW emission is nearly monochromatic, and is
strong enough to be detectable at great distances by Cosmic
Explorer, DECIGO, and LISA. In particular, for systems
where the disks are ∼10% the mass of the central BH,
Cosmic Explorer could detect a 10M⊙ system at 200–
320 Mpc, DECIGO could detect a 103M⊙ system out to
z ∼ 5, and LISA could detect BH-disk systems with mass
few × 105 M⊙ out to cosmological redshift of z ∼ 1.
Assuming that 1% of the accretion power escapes as
radiation, e.g., powering jets, we find electromagnetic
bolometric luminosities of Oð1051–52Þ ½erg=s� could arise
from these systems, making PPI-unstable disks promising
multimessenger candidates with GWs for the next gener-
ation of GW observatories.
The remainder of this paper is organized as follows: In

Sec. II we describe our initial data, and our methods both
for generating the initial data and for the dynamical
evolutions. In Sec. III we discuss the results of the
evolutions, comparing the growth and saturation behavior
of the instability for all three BH spin states, as well as the
GW signals, and the properties of potential electromagnetic
radiation. We then scale our results to a number of
astrophysically relevant regimes, and analyze the detect-
ability of such systems by LIGO, Cosmic Explorer,
DECIGO, and LISA. We conclude in Sec. IV with a
summary of our findings and discussion of future work.
Unless otherwise stated, all quantities are expressed in

geometrized units where G ¼ c ¼ 1. Throughout M des-
ignates the Christodoulou mass [48] of the central BH.

II. METHODS

Our methods for generating initial data and for perform-
ing evolutions have been described in detail elsewhere.
Here we briefly summarize these methods, pointing the
reader to the appropriate references, and list the properties
of our initial data.

A. Initial data

Self-gravitating disks in equilibrium are computed using
the COCAL code and the techniques described in [47]. In
particular the complete initial value problem is solved for
the full spacetime metric including the conformal geometry.
The Einstein equations are written in an elliptic form and
their solution is obtained through the Komatsu-Eriguchi-
Hachisu scheme [49] for black holes [50].
Our initial data of self-gravitating disks onto black holes

correspond to three BH spin states, which wewill refer to as
S0 for the nonspinning case, and S↑ (S↓) for the case with
black hole spin aligned (antialigned) with the disk orbital
angular momentum. Table I summarizes the parameters for
all cases. Aside from the BH spin, the BH Christodoulou
mass (M) and the disk inner edge were kept constant, while
the rest of the quantities were determined by keeping the

disk rest mass the same to within ∼10% from the non-
spinning case. Also, the ratio of the disk rest mass to the BH
mass was chosen to be ∼0.1. The initial spacetime closely
corresponds to the Kerr metric, with distortions due to the
presence of the self-gravitating torus. The disks are
modeled as perfect fluids obeying a polytropic equation
of state

P ¼ kρΓ0 ; ð4Þ
where Γ ¼ 4=3, appropriate for a radiation-pressure domi-
nated gas. The disk inner edge radius was chosen to be at
least 10% greater than the corresponding vacuum Kerr
ISCO radius in all cases.
The crucial ingredient for the PPI is the differential

rotating law of the disk. As in [47] we assume that the
relativistic specific angular momentum j ¼ utuϕ profile is
given by jðΩÞ ¼ A2ðB0 −ΩÞ with A ¼ 0.1 and B0 a
constant that is evaluated during the iteration scheme.
This choice leads to a nearly constant (j ∼ r0.01) angular
momentum profile as can be seen in Fig. 1 that renders the
disk unstable to the PPI. In terms of the Newtonian Eq. (3)
we have q ≈ 2.
Solutions were then generated satisfying these condi-

tions for each of the three BH spin states and solving the
complete initial value problem [47]. The resulting disks
differ in their radii of maximum density, which are smaller
for more positive spin values. This is responsible for the
increase of MΩc seen in Table I, as the values of Ωc

TABLE I. Properties of the initial data for the three simulations:
a=M is the dimensionless BH spin parameter whose sign implies
whether the BH spin is aligned (þ) or antialigned (−) with the
disk orbital angular momentum; MADM is the Arnowitt-Deser-
Misner mass of the spacetime; rISCO is the cylindrical radius of
the vacuum Kerr ISCO with the same BH Christodoulou mass
and dimensionless spin; rInner, rc, rOuter are the equatorial
cylindrical radii of the disk inner edge, maximum density, and
outer edge, respectively; Ωc is the orbital frequency at rc; and
Mdisk is the total disk rest mass.

Label a
M

MADM
M

rISCO
M

rInner
M

rc
M

rOuter
M MΩc

Mdisk
M

S↑ 0.7 1.13 3.39 9.00 15.6 31.7 1.61 × 10−2 0.12
S0 0.0 1.14 6.00 9.00 16.9 35.0 1.47 × 10−2 0.135
S↓ −0.7 1.14 8.14 9.00 18.9 38.9 1.23 × 10−2 0.13

FIG. 1. Specific orbital angular momentum (j) on the equatorial
plane as a function of cylindrical radius on the equatorial plane.
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computed for circular geodesics at the corresponding radii
in the Kerr metric agree closely with the orbital frequencies
of our initial data. The differences in orbital period are
small but not insignificant, and end up affecting the
dynamics of the disks, as we discuss in Sec. III.

B. Evolution

The BH-disk systems were evolved with the Illinois
dynamical spacetime, general relativistic magnetohydro-
dynamics adaptive-mesh-refinement code: Illinois GRMHD

AMR [51–53]. Built within the CACTUS/CARPET infra-
structure [54,55], this code is the basis of the publicly
available counterpart in the Einstein toolkit [56]. The
spacetime metric is evolved by solving the Baumgarte-
Shapiro-Shibata-Nakamura equations [57,58] using the
moving-puncture gauge conditions [59,60], with the shift
vector equation cast into first-order form (see e.g., [61]).
The fluid is evolved using a Γ-law equation of state,
P ¼ ðΓ − 1Þρ0ϵ, where Γ ¼ 4=3, ρ0 is the rest-mass den-
sity, and ϵ the internal specific energy.

1. Grid hierarchy

The evolution grid hierarchy consists of nested cubes,
demarcating 11 concentric refinement levels. Here we will
refer to the levels by their index, n, where n ¼ 1 corre-
sponds to the finest level and n ¼ 11 the coarsest. The
finest level half-side length is set to r1 ¼ 2.19M, and the
first three are then rn ¼ 2ðn−1Þr1 (n ≤ 3). The remaining
levels have half-side lengths rn ¼ 2nr1 (n > 3). The
physical extent of levels n ≥ 4 is increased by the extra
factor of 2 to provide high resolution over the extended area
of the disk. Thus, the outermost level has a half-side length
of 2250M.
We set the spatial resolution on the finest level to

dx1 ¼ M=25.6. Each subsequent refinement level has half
the resolution of the previous. Therefore, the resolution of
refinement level n is given by dxn ¼ 2ðn−1Þdx1. We adopt
Cartesian coordinates, and equal spatial resolution is
chosen for the x, y, and z directions, without imposing
any symmetries on the grid. This resolution is comparable
to that used by [39,44], and significantly exceeds that of
[40] in the region of the disk, making it suitable for
capturing the established dynamics of the PPI.

2. Diagnostics

During the evolution, we monitor the normalized
Hamiltonian and momentum constraints calculated by
Eqs. (40)–(43) of [62].
The growth of the unstable density modes was tracked by

evaluating the following integral at regular time intervals:

Cm ¼
Z ffiffiffiffiffiffi

−g
p

d3xu0ρ0eimϕ; ð5Þ

which provides a measure of the nonaxisymmetric rest-
mass density modes that develop (see e.g., [63–65]). Here g
is the determinant of the spacetime metric, u0 the 0
component of the fluid four-velocity, and ϕ the azimuthal
angle.
GWs are extracted using the Newman-Penrose Weyl

scalar ψ4 at various extraction radii. We decompose ψ4 into
s ¼ −2 spin-weighted spherical harmonics up to and
including l ¼ 3 modes. The GW polarizations hþ and
h× for each mode are computed by integrating the
corresponding mode of ψ4 twice with time using the fixed
frequency integration technique described in [66].

3. Resolution dependence

In addition to the standard resolution grids described in
Sec. II B 1, we performed “low-resolution” simulations of
each disk with a grid structure that contains a less extended
refinement level, halving the resolution outside a box of
half-side length 17.4M, thereby decreasing the resolution
near the densest part of the disks by a factor of 2. These
additional evolutions were performed through saturation of
the PPI. A qualitative comparison of our simulation results
using these different grids/resolutions is presented in Fig. 2.
Despite the reduction in resolution, we observe nearly
identical dynamics to our standard “high-resolution” simu-
lations in which the densest parts of the disks are resolved
by a factor 2 better. As shown in Fig. 2, the evolution of the
dominant PPI density modes shows good agreement
between the two sets of simulations.
Additionally, the Illinois GRMHDAMR code used for this

study was designed to exhibit second-order convergence in

FIG. 2. Comparisons of the nonaxisymmetric m ¼ 1 and
m ¼ 2 density modes, normalized by the m ¼ 0 mode, between
the final simulations (solid), and the earlier simulations (dashed)
in which a mesh refinement boundary crossed into the disk and
halved the resolution in the outer regions. Dynamics are similar in
both cases.
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hydrodynamic quantities, which numerical stress tests have
found that it reliably achieves [51–53,56]. In practice, the
Illinois GRMHD code has performed as anticipated when
resolution studies were conducted in studies of similar
astrophysical phenomena see, e.g., [67,68].

III. RESULTS

We performed two types of evolutions of our initial data.
First, we simulated the systems in the Cowling approxi-
mation (where the spacetime metric is held fixed) to study
the early growth of the PPI before it turns nonlinear and to
corroborate that the characteristics of the instability match
those of the PPI. Then we turned on the spacetime
evolution and evolved through the instability nonlinear
growth, saturation and steady state. The results of these
simulations are described in the following sections.

A. Cowling approximation

Analytical studies of the PPI looked at its early growth
phase for tori in stationary spacetimes, such as in [69]
where a Schwarzschild background was assumed. To make
contact with these earlier works, we evolved our initial data
using the Cowling approximation. While not identical to
the disks in [69] (the background spacetime is not precisely
Kerr due to the disks’ self-gravity), this allows us to
qualitatively compare the early growth in our simulations
to analytical expectations, without any of the effects of
backreaction onto the spacetime. More importantly, fixing
the background spacetime metric makes the spacetime
coordinates well defined as “Kerr-Schild”-like coordinates.
Through the Cowling approximation evolutions the early-
time PPI growth rates can be estimated.
Perturbations seeded due to finite resolution excite all

modes to a small degree. At early times the modes grow
exponentially until only the fastest-growing ones dominate.

For the tori geometries we simulated, analytical studies
predict the dominant modes to be m ¼ 1 and m ¼ 2 [29].
This was observed in our simulations as well. In Fig. 3 we
plot the m ¼ 1 and m ¼ 2 mode amplitudes for all three
disks as computed based on Eq. (5). The growth of these
modes approximately follows an exponential trend, as
shown by the dotted lines in the figure. The estimated
exponential growth rates are reported in Table II, and are of
the order Oð0.1Þ when normalized to Ωc. While a direct
comparison with the disks onto Schwarzschild black holes
in [69] is not possible, because we have different disks and
spacetimes, we find broad agreement with the rates
calculated semianalytically in [69] when comparing models
with approximately the same rInner=rc—the way [69]
parametrized the disks. In addition, we find qualitative
agreement with [69] in that the growth rate is exponential,
and that the low-m modes dominate, supporting the
conclusion that the instability that develops in our simu-
lations is the PPI, as expected from the specific angular
momentum profile of the disk.
The self-gravitation of our tori makes the Cowling

approximation unsuitable for studying the dynamics
through saturation, thus we also evolved them in dynamical
spacetime. We turn next to our dynamical spacetime study,
which showcases the full dynamics of these systems from
early growth until long after saturation.

B. Dynamical spacetime

When the disks are evolved in full general relativity, all
three undergo violent nonaxisymmetric instabilities. As
shown in the first three columns of Fig. 4, all three disks
develop nonaxisymmetric density modes that grow quickly
to saturation over a few orbits. Shocks develop during the
development of the instability, which redistribute angular
momentum until finally the density pattern saturates with
the m ¼ 1 mode dominating the subsequent evolution. The
rightmost column of the figure contains snapshots of the
disks long after saturation, which show that the density
mode pattern still persists.
For all the dynamical spacetime evolutions, we choose

t ¼ 0 to be the time of saturation of the instability (defined
to be the time at which the amplitude of the m ¼ 1 mode
becomes maximum for the first time). Thus positive

FIG. 3. Early amplitude growth of the nonaxisymmetric density
modes for m ¼ 1 and m ¼ 2, evolved with the spacetime back-
ground held fixed. A linear fit to each curve is plotted (dotted
lines), which indicates the exponential growth rate of the modes.

TABLE II. Exponential growth rates of m ¼ 1 modes in the
fixed spacetime evolutions. σ is the complex mode frequency,
defined in Eq. (1). The factor rInner=rc was used in [69] to
parametrize disk geometries, and is included here to show how
our disks relate to those studied in that paper.

Label rInner=rc ImðσÞ=Ωc

S↑ 5.76 × 10−1 1.25 × 10−1

S0 5.34 × 10−1 2.64 × 10−1

S↓ 4.76 × 10−1 2.34 × 10−1
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(negative) values of t indicate times after (before) the
instability has saturated.
Density mode amplitudes are shown in Fig. 5. As in the

Cowling approximation evolutions, we find that the fastest

modes are still m ¼ 1 and m ¼ 2, which are the ones
plotted. The figure reveals that the normalized nonaxisym-
metric m ¼ 1 and m ¼ 2 density modes for all three disks
saturate near the same values, but the m ¼ 1 mode
dominates. The PPI growth as measured by the Cm is still
approximately exponential in coordinate time before satu-
ration. In [39] the PPI growth rate was reported to be
slightly greater in a dynamical spacetime than for a fixed
spacetime. Although statements based on coordinate time
are gauge dependent in evolutions where the spacetime and
coordinates are dynamical, our results show qualitative
agreement with this previous finding: the instabilities grow
more quickly in the dynamical spacetime evolutions.
In Fig. 6 we compare the spectra of the modes, which are

similar across the different cases, with the only significant
difference being the location of the peak frequency. We find
that the peak frequencies correlate closely with the orbital
frequencies at maximum density of the initial data. When
plotted relative to each disk’s respective orbital frequency,
as in Fig. 7, the spectra are nearly identical. The spectra for
the m ¼ 2 modes are less clean, but their peak frequencies
are double that of the m ¼ 1 modes in each case, as

FIG. 4. Snapshots of xy-plane cross sections of the rest-mass density normalized to its maximum value over the entire evolution. Each
row corresponds to a single simulation (labeled on the left S↑, S0, S↓), with snapshots arranged chronologically from left to right. The
initial time is negative because we have shifted the time such that t ¼ 0 is the time of the PPI saturation, which approximately coincides
with the third column snapshots. This definition of t is used in all subsequent figures. Apparent horizon regions are filled in white, and
the snapshots are centered on the BH coordinate centroids. (The change in size of the horizons between the first and second snapshots of
each simulation is due to coordinate relaxation.)

FIG. 5. Full dynamical evolution of the amplitude of the
nonaxisymmetric m ¼ 1 and m ¼ 2 density modes, normalized
by the m ¼ 0 mode amplitude.
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anticipated when the dynamics is driven by anm ¼ 1mode
[64], and therefore they are nearly equal for the different
cases when scaled by orbital frequency. We also find that
higher-m modes are excited but are orders of magnitude
weaker than the m ¼ 1 and m ¼ 2 modes.

The above results suggest that in the case of aligned or
antialigned BH spins, we do not observe any significant
difference from the PPI’s established behavior around
nonspinning black holes. The only change is a frequency
shift that matches the orbital frequency shift between the
initial data for each case. As discussed in Sec. II A, these
orbital frequency shifts originate from slight differences in
the initial data and are driven by the BH spin. If we were to
alter the disk parameters so that the initial orbital frequen-
cies match, we would have to choose disks with different
values for rinner or Mdisk or change the rotation law, which
could alter the PPI in other ways. Here we chose to fix

Rinner and approximately Mdisk instead, to focus on the
effects of the BH spin.
Ultimately, the effect of BH spin is both indirect and

unavoidable. Although there seems to be no direct change
in the nature of the PPI due to spin (at least not for spins up
to a=M ¼ 0.7), the different spin states still force disks to
assume different structures, which alter the PPI in a
predictable way. Therefore, spin is an important parameter
to consider when exploring the range of dynamics of
possible PPI-unstable BH-disk systems, and predicting
their gravitational-wave signatures.
As mentioned above, while the disk density modes are

useful for understanding the character of the instability, they
suffer from gauge ambiguities.We can lift these ambiguities
by studying the instability through the gravitational radia-
tion instead, which can be extracted unambiguously.

C. Gravitational wave signal

In Fig. 8 we compare the l ¼ 2,m ¼ 2 and l ¼ 2,m ¼ 1
multipole moments of the gravitational radiation. All three
cases exhibit an initial burst corresponding to the saturation
of the instability, and then a relaxation to a quasimono-
chromatic signal of lower amplitude. The l ¼ 2,m ¼ 2 plot
in Fig. 8 exhibits a noticeable difference between the peak
amplitudes of the signal from disks S↑ and S0, and disk S↓.
What is the reason for the difference in signal amplitude?
The quadrupole formula provides insight. To a rough
approximation we can model the system of the BH and
m ¼ 1 mode-dominated disk as a pair of orbiting point
masses, one representing the black hole, and one represent-
ing the displaced center of mass of the dominant non-
axisymmetric mode. In this model, we assume that the
effective reduced mass μ is essentially the disk mass due to
the small mass ratio. Then, assuming that the orbital
separation rc and reduced mass μ change slowly relative
to Ωc, the quadrupole formula predicts the strain signal3 for
viewpoints in the orbital plane to be (for derivation,
see [70]; see also [71])

rh ¼ 4r2cμΩ2
ce2iΩct; ð6Þ

where Ωc is the orbital frequency, which we also take from
Table I, and h is the strain. All three disks have nearly
identical profiles of jCmj=C0 for m ¼ 1 and m ¼ 2, with
the higher m having much smaller amplitudes, and after
∼2500M accretion has resulted in similar disk masses.
Therefore, in the model we can assume they each has the
same values of μ (the orbital motion of the effective point
mass can account for the phase rotation of Cm, since they
are observed to have frequencies proportional to m). Then
we can use the values of Ωc and rc from Table I to compute
the expected amplitude ratios between the three disks. We

FIG. 6. Normalized spectra of the m ¼ 1 and m ¼ 2 non-
axisymmetric density modes for the three disks. The dominant
frequency of the m ¼ 2 modes is roughly twice that of m ¼ 1 in
each case.

FIG. 7. Spectra of the m ¼ 1 and m ¼ 2 modes from Fig. 6,
plotted relative to each disk’s respective initial orbital frequency
at maximum density. The plot reveals that the density modes
among different cases are in close agreement.

3In this formula the real and complex parts of h represent the
þ and × polarizations of the strain, respectively.

GRAVITATIONAL WAVES FROM DISKS AROUND SPINNING … PHYS. REV. D 103, 043013 (2021)

043013-7



find that the amplitude of S0 should be 1.14× that of S↓,
and the amplitude of S↑ should be 1.21× that of S↓, which
is in broad agreement with what we observe. Hence, the
difference in GW amplitude can be accounted for as yet
another effect of the shift in disk orbital frequency due to
the different BH spin states.
To quantify the frequency-domain behavior we calculate

the characteristic strain (see [72]), which is defined only
over positive frequencies as

hc ¼ 2fjh̃resj; ð7Þ
where h̃res is conventionally taken to be the Fourier trans-
form of the interferometer response to the incoming strain
waveform h. However, in this work we will consider
multiple detectors with different response functions, so
we instead choose

h̃res ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃þj2 þ jh̃×j2

2

s
; ð8Þ

where h̃þ, h̃× are the Fourier transform of the þ and ×
polarizations of the incoming signal. For the remainder of
this paper we will take hc to be the “polarization-averaged”
characteristic strain, defined through Eqs. (7) and (8).
Figure 9 compares the characteristic strain of each

waveform. All radiation multipoles up to and including
l ¼ 3 are used in the calculation. The multipoles are
combined with appropriate spin-weight spherical harmon-
ics, assuming a viewing angle of θ ¼ π=2.34 away from the
orbital axis, which was chosen so that the observed
amplitude of the dominant l ¼ 2, m ¼ 2 multipole would

equal its direction-averaged value. Once again, measured
relative to the orbital frequencies the spectral peaks of the
three different cases align well with each other, with the
dominant peaks occurring at forbit and 2forbit for the m ¼ 1
andm ¼ 2modes, respectively. This figure demonstrates in
a gauge-independent way the results we found using the
density modes in the previous section: the dominant non-
axisymmetric modes are the m ¼ 1 and m ¼ 2.

D. Accretion and possible electromagnetic counterparts

In addition to GWs, BH-disk systems are likely to emit
electromagnetic (EM) radiation because of accretion. As
the disk undergoes dynamical relaxation, shocks within the
disk redistribute angular momentum, which allows accre-
tion to proceed. Associated with this accretion mechanism
bright, electromagnetic counterparts are possible. While
there is no source of (effective) viscosity in our simulations,
if net poloidal magnetic flux is accreted onto the black hole
at the rate found in our simulations it would power jets [73].
In cases where a viscous dissipation mechanism is involved
emission is expected to arise locally as gravitational bind-
ing energy is released when matter is gradually transported
to circular orbits closer to the BH. If the disks become
dense and hot enough they can also generate copious
neutrino emission, but this is more relevant to stellar mass
systems. The power available for EM emission is usually
taken to be proportional to the accretion power. Under this
assumption we can therefore expect the luminosity of the
disk to obey

LEM ¼ ϵ _Mdiskc2; ð9Þ
where _Mdisk is the rest-mass accretion rate, and ϵ is the
efficiency for converting accretion power to EM luminosity.

FIG. 8. Strain waveforms for the l ¼ 2,m ¼ 2 (top), andm ¼ 1
(bottom) radiation multipoles. To ease comparison, phases have
been rotated to align at maximum amplitude of the l ¼ 2, m ¼ 2
mode.

FIG. 9. Frequency-domain comparisons of the polarization-
averaged characteristic strain [defined in (7) and (8)] of the GWs
from the three disks, with respect to the orbital frequency.
Radiation multipoles are combined assuming a viewing angle
of θ ¼ π=2.34 away from the orbital axis, where −2Y

2
2 equals its

direction average.
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Note that LEM is dimensionless in natural units, and there-
fore the luminosity of such a source does not scale with the
total mass: it is a scale-invariant property of the BH-disk
system. For geometrically thin disks in the Kerr metric the
difference in binding energy between infinity and ISCO
allows maximum possible values of ϵ up to 40%, depending
on BH spin, and in astrophysically realistic settings ϵ is
typically estimated to be ≈10% [74]. For thick disks around
BHs arising from magnetized black hole–neutron star
mergers, binary neutron star mergers or supermassive stellar
collapse Poynting dominated jet power satisfies ϵ ≃ 0.1%–
0.5% [19,73,75,76]. Here we will adopt a nominal value of
ϵ ¼ 1%, but it is important to keep in mind that it is possible
that ϵ ≪ 1%. We will test this assumption in a forthcoming
work where we treat the effects of magnetic fields. Note that
even if magnetic fields allow the PPI to operate for a few
orbits [44], theGWsignal would likely be accompanied by a
magnetically powered jet.
In Fig. 10 the rest-mass accretion rate is plotted for all

three cases. Disks S0 and S↓ display repeated spikes in their
accretion rates, the periods of which scale approximately
with torb, as shown in panel (b). As time goes on the
accretion rates of S0 and S↓ become less volatile, so the
spiking is likely a transient effect associated with the
relaxation of the initial data into the PPI saturation phase.
The root cause of this spiking is unclear, and it is unknown
whether these features are generic to PPI-unstable disks or
unique to the specific initial configurations we evolved.
After the accretion rates settle down, the disk in case S↑

ends up with a significantly suppressed rate relative to S0
and S↓. A likely reason for this is that the ISCO is further
away from the inner edge of the disk in S↑ than it is for S0
and S↓ (for the latter the ISCO nearly coincides with the
inner edge). This difference in accretion rate also translates
to significant difference in estimated bolometric luminosity.
As shown by the right axis of Fig. 10, after the transient
accretion spikes die away, the luminosities of S0 and S↓ are
Oð1052Þ ½erg=s�, while S↑ is an order of magnitude dimmer
at Oð1051Þ ½erg=s�. Even the dimmest of these bolometric
luminosities is high enough to be detectable over a large
distance, and makes such disks potentially promising
sources of electromagnetic radiation, provided the con-
version efficiency to observable frequencies is not too low.
Note that for stellar mass black holes it is possible that
much of that power is in the form of neutrinos instead, but
we would still expect jets to arise if net poloidal magnetic
flux is accreted onto the black hole.
The accretion rate is also important as the determiner of

the disk lifetime, and hence the time over which the system
emits gravitational radiation. Notably, the S↑ accretion
timescale is significantly greater than that reported by [40]
for the strictly nonspinning case. Scaling the rates reported
by [40] to a 10 M⊙ BH surrounded by a disk of ∼10% its
mass, we obtain an accretion timescale between ∼0.5 and

∼4 s. This is consistent with the S0 timescalewe find, which
is about 2.5 s. However, for S↑, the accretion timescale is
about 10 s (as can be seen in Fig. 10), which is significantly
longer. This improves the detection prospects of such BH-
disk systems, which are analyzed in the next section.
However, we note that magnetic fields should be accounted
for to test if these accretion rates are robust against the MRI.
This will be the topic of future work of ours.

E. Detectability of gravitational waves

In the previous sections, all results were reported in
terms of dimensionless quantities natural for the system
being considered. To assess detectability it is necessary to
give the systems a definite physical scale. Both GR and the
equations governing the Γ-law perfect fluid scale with the
system’s total gravitational mass. Since in our simulations
we consider disks roughly 10% the mass of the central BH,
it is the BH mass that primarily determines the mass of the
system. In this section we exploit the scale invariance of our
simulations to apply our results to a broad range of masses
and astrophysical systems.

FIG. 10. Rest-mass accretion timescales and estimated EM
luminosities for the cases in our study. The accretion timescales
(inverse accretion rates) are marked on the left y-axis, and scale
with 1=M as indicated by the axis label. The right y-axis shows
the estimated bolometric luminosities (which do not scale with
mass) using Eq. (9) with ϵ ¼ 1%. The bolometric luminosities
of S0 and S↓ are Oð1052Þ ½erg=s�, while S↑ only achieves
Oð1051Þ ½erg=s�. In the top panel the coordinate time is normal-
ized to the BH mass. In the bottom panel the time is scaled by the
initial orbital period at maximum density, showing that the period
of the accretion spikes scales with the orbital period for the three
simulations.
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There are three mass ranges of astrophysical relevance.
On the more massive side are BH-disk systems of
103–106 M⊙. It has been shown that systems of such
masses, with disks ≈10% M, can be formed by collapsing
supermassive stars (SMSs) [15–17,19,20]. Such SMS col-
lapses have been conjectured to occur in the early Universe,
providing seed BHs which may grow into supermassive BHs
[77–84], the early appearance of which at z ∼ 7 is chal-
lenging to explain (see reviews [85–87]). Masses between
several tens to a few hundredM⊙ could be populated by the
remnants of metal-free Population III stars, which are
expected in this mass range and are believed to have their
peak formation rates between z ∼ 5–8 [88,89]. Observations
have revealed Pop III stars at z ∼ 6.5 [90], providing support
for this picture. For masses 25–140 M⊙ and greater than
260M⊙ Pop III stars are expected to end their lives as
collapsars [25,26], producing failed supernova and BH-disk
remnants suspected of powering distant, long gamma-ray
bursts [23,24]. The least massive potential progenitors are
binary neutron star (NSNS) and neutron star-BH (BHNS)
mergers, the final BH masses of which are expected to cover
the approximate range 3–20M⊙ [91]. We point out that
while an EOS with Γ ¼ 4=3 is likely appropriate for
supermassive and Pop III stars [17,18,92], it is not appro-
priate for NSNS and BHNS systems where nuclear matter is
at play. Thus, when applying our results to low-mass systems
they should only be viewed as approximate.
After scaling to the appropriate mass scale, the signals are

propagated from the source frame to the observer frame
through a flat ΛCDM cosmology, and the characteristic
strain is computed [see Eqs. (7) and (8)]. In our analysis we
remove the first Δt ¼ 1000M of the signal to eliminate the
initial violent hydrodynamic relaxation of the initial data as
the instability develops. As in Fig. 9 we adopt an angle
θ ¼ π=2.34 for the orbital inclination, which results in the
dominant l ¼ 2, m ¼ 2 mode amplitude being equal to its
θ-averaged value.We then compute a “sky-averaged” signal-
to-noise ratio (SNR) for such an event if observed by
Advanced LIGO [1], Cosmic Explorer [2], DECIGO [4],
or LISA [5], assuming an optimal matched filter. Sensitivity
curves for the two ground-based observatories were obtained
from [93], divided by the sky-averaged antenna response
function for a 90° interferometer [see Eq. (51) of [72] ]. The
analytic approximations given in [94,95] were used for the
DECIGOand LISA sky-averaged sensitivities, respectively.4

The results of the SNR calculation using the simulated
part of the GW signal (after 1000M) for each case are
shown in Fig. 11. The top panel shows the maximum
distance or redshift a system of given mass would be
detectable assuming an SNR detection threshold of 8. From
the plot it becomes clear that Advanced LIGO can detect
such systems at a maximum distance of just under
∼20 Mpc (for the case of a 20M⊙ BH). On the other
hand, Cosmic Explorer will be able to detect a 20M⊙
source out to ∼400 Mpc, and can detect a 10M⊙ system
[marked by a þ and labeled (a)] out to 150 Mpc. It is
therefore possible that future ground-based detectors could
observe such systems.
Space-based observatories will be able to detect more

distant and massive sources. As shown in Fig. 11,
DECIGO and LISA are well suited to detect systems
with masses 103–106 M⊙, and can detect them out to
many Gpc. DECIGO in particular, owing to its superb
sensitivity, would be able to detect such systems out to
several tens of Gpc. A system with mass 103 M⊙ [labeled
as source (b)] can be detected much further out than any
other system mass, with the maximum distance corre-
sponding to a cosmological redshift of z ¼ 4.3. On the
other hand, LISA will be able to detect BH-disk systems
with mass 105–106 M⊙ out to cosmological redshift of
z ¼ 1 ([or the source mass labeled (c)]. The characteristic
strain for sources with masses corresponding to those
labeled (a), (b), (c) in the top panel are shown in the
bottom panel for each of the three spin states we
simulated. We also plot the corresponding sensitivity
curves of LIGO, Cosmic Explorer (labeled CE in the
figure), DECIGO and LISA.
In Fig. 11, we considered just the GW signal that was

extracted from in our simulations (excluding the first
1000M). However, at the end of our simulations the
disks still emit significant gravitational radiation, and the
orbiting m ¼ 1 overdensities responsible for that radi-
ation appear to be stable features in all three cases.
Consequently, we expect that the disks will continue
emitting a strong GW signal until a significant amount
of the rest mass has been accreted, increasing the total
signal duration.
To obtain a better estimate of the detectability of BH-disk

systems, we therefore need to extrapolate beyond the
portion of the signal that was simulated. For simplicity,
we restrict ourselves to modeling the dominant l ¼ 2,
m ¼ 2 mode. Motivated by Eq. (6), we assume that the
signal will be similar to that of two orbiting point masses.
Due to accretion, mass is slowly transferred from the disk to
the BH. The simulation data show that the disk rest mass
decays approximately exponentially. This can be modeled
in the quadrupole formula by inserting μ ∝ e−γt into
Eq. (6). As long as γ is small relative to the orbital
frequency Ωc, we can ignore the time derivatives due to
mass transfer when taking time derivatives of the

4One technical complication arises: our definition of hc
already accounts for polarization averaging by dividing by a
factor of

ffiffiffi
2

p
in Eq. (8). In order to keep the ratio of signal and

sensitivity heights equal to the SNR (see the caption of Fig. 11),
we multiply the sky and polarization averaged sensitivities given
by [72,94,95] by this factor of

ffiffiffi
2

p
before plotting them, so that in

effect the plotted sensitivities account only for the sky-position
averaging, but not the polarization averaging, which is already
included in hc.
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quadrupole moment. Under these assumptions, the signal
after the transient period will be of the form

h ¼ Beðiω0−γÞt: ð10Þ

This form indeed matches the observed late-time behav-
ior of our simulated GW signal. To match this model to the
observed waveforms we first chose the value of ω0 via a
least-squares linear fit to the unrolled phase of the complex
l ¼ 2, m ¼ 2 strain. Since the normalized m ¼ 1 density
mode amplitude does not appear to decay over the duration
of simulation, we assume that the dwindling mass of the
disk determines the signal amplitude falloff at late times.
The late-time decay rate parameter γ was extracted from the
disk mass evolution, rather than from the signal itself, by
fitting the late-time profile of the total disk mass. Finally,
the amplitude, B, was chosen by a least-squares fit of Be−γt

to the late-time amplitude profile of the GW signal (with γ
fixed to the value found in the previous step). Figure 12
shows the fits.

To explore the limits of potential detectability, we
assume that the signal will persist until 90% of the disk
mass has been accreted, after which the amplitude
smoothly drops to zero over a few orbits.5

The detection horizon and characteristic strain of this
extended signal are shown in Fig. 13. By extending the
signal duration to a significant fraction of the lifetime of the
disk we raise the maximum detectable luminosity distances
for all three spin states, with S↑ receiving the biggest boost
due to its long accretion timescale. Cosmic Explorer is now
able to detect the 10M⊙ S↑ signal out to 300 Mpc, and a
20M⊙ source out to ∼500 Mpc. DECIGO and LISA can
detect sources in their frequency ranges 30%–50% further
away, with the most distant source (b) now detectable by
DECIGO out to a redshift of 6.08.

FIG. 11. Top: maximum detection distances for systems over a range of BH masses, assuming a detection threshold of SNR ¼ 8 (sky
and polarization averaged). The colors and line patterns correspond to the spin state and detector, as shown in the legend. Three
hypothetical sources are marked by crosses, representing the most distant systems at three different BH masses that can be detected
assuming the S↑ waveform: (a) 10M⊙, 150 Mpc; (b) 1000M⊙, 40000 Mpc (z ¼ 4.3); (c) 2 × 105 M⊙, 7000 Mpc (z ¼ 1.02). Bottom:
characteristic strain curves [see Eqs. (7) and (8)] for each spin state (colored lines) with overlaid the sky-averaged detector characteristic
sensitivity curves for LIGO (dotted), Cosmic Explorer (dot-dashed), DECIGO (solid), and LISA (dashed). The labels by each set of
characteristic strain curves indicate the BH mass and luminosity distance of the source, which are marked on the bottom panel. The area
between the sensitivity and signal curves determines the SNR. In both plots, we consider only the part of the signal after t ¼ 1000M, as
the earlier portion may be strongly influenced by transients arising from hydrodynamic relaxation of the initial data.

5Ending the GW signal after 50% of the disk was accreted
reduced the maximum detectable distance by a factor of ∼0.9
compared to the 90% case, so detectability is not sensitive to the
termination threshold, because most of the SNR comes from the
early part of the signal.
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Taken together, Figs. 11 and 13 provide a range of the
potential detectability of PPI-unstable disks. We can there-
fore conclude that PPI unstable disks similar to S↑ are

detectable by DECIGO out to z ≈ 5, and around z ≈ 1 by
LISA. For lower mass systems, Cosmic Explorer will likely
be able detect them out to several hundred Mpc, with the
limit of detectability of a system with a 10M⊙ BH around
∼300 Mpc, which is near the estimated distance of two
confirmed LIGO binary merger detections [96,97], making
it a realistic distance to expect black hole–neutron star
mergers.

IV. DISCUSSION

Instabilities in BH accretion disks can result in time-
changing quadrupole moments and hence result in copious
emission of GWs. We embarked on a comprehensive study
of such events, starting with the PPI as a promising
multimessenger candidate for future ground-based and
space-based GW observatories. We consider the PPI in
BH-disk systems where the BH is spinning, and perform
hydrodynamic simulations in full general relativity starting
with equilibrium and constraint satisfying initial data.
When the BH spin of a=M ¼ 0.7 is aligned (case S↑) or
antialigned (case S↓) with the disk’s orbital angular
momentum, our simulations demonstrate the dynamics
of PPI growth and saturation does not differ significantly
from the previously studied nonspinning case (labeled S0).
All three disks grew m ¼ 1 instabilities on similar time-
scales, and saturated to a similarm ¼ 1 state. The dominant

FIG. 12. Top row: signal amplitude time evolution (faint solid
lines) and model amplitude time evolution (dashed lines). Bottom
row: total disk mass (faint solid lines) and modeled disk mass
(dashed lines). The model was fit to the data only in the regions to
the right of the vertical dotted lines, to avoid interference by
transient features in the GW signal and accretion rate.

FIG. 13. Same as Fig. 11 but for the extrapolated signal. The three hypothetical sources representing the most distant systems
detectable for the same three BH masses from Fig. 11 now become (a) 10M⊙, 300 Mpc; (b) 1000M⊙, 60000 Mpc (z ¼ 6.08);
(c) 2 × 105 M⊙, 11000 Mpc (z ¼ 1.47).

ERIK WESSEL et al. PHYS. REV. D 103, 043013 (2021)

043013-12



frequencies in the nonaxisymmetric density mode spectra
were proportional to each disk’s orbital frequency at
maximum density (Ωc), and the spectra align almost
perfectly once this frequency rescaling was accounted
for. This was also true for the GW signal, except that
the spin-aligned case also had slightly higher amplitudes
than the nonspinning case, while the spin antialigned case
had slightly lower amplitudes. This behavior is consistent
with expectations from the quadrupole formula of orbiting
masses, where the amplitude is proportional to the square of
the orbital velocity [see Eq. (6)].
Due to hydrodynamic shocks arising as the instability

grows and saturates, violent rearrangement of the disk
profile takes place which leads to angular momentum
redistribution that allows accretion to proceed. Assuming
that 1% of the accretion power in the relaxed state is
converted to bolometric electromagnetic luminosity, we
estimate electromagnetic counterparts as bright as
Oð1052Þ ½erg=s�. Such high luminosities would be detect-
able at very long distances assuming the conversion
efficiency to observable electromagnetic frequencies is
not very small. In case S↑, where the BH spin was aligned
with the disk orbital angular momentum, we saw a
significant reduction of the accretion, with rates over an
order of magnitude suppressed relative to S0 and S↓, and
significantly lower than those previously reported for
nonspinning black holes [40]. This effect correlates well
with differences in distance between the inner edges of the
disks and the radii of the innermost stable circular orbit: the
initial inner edge of the disk in S↑ is much farther from
the ISCO than the disks in S0 and S↓. An exploration of
various initial accretion disk profiles would need to be
undertaken to determine how and whether the accretion rate
for a PPI unstable disk can be used to measure BH spin.
While the PPI itself appears unaffected by BH spin (at

least for magnitudes of a=M ¼ 0.7), spin has indirect
impact on the frequency of the dominant PPI modes by
affecting the orbital frequency at maximum rest-mass
density, and can significantly impact the accretion rate.
Thus, BH spin can act as a new degree of freedom for
controlling the lifetime of a disk undergoing the PPI. This
can significantly increase the lifetime of GW signals
emanating from PPI-unstable BH-disk systems, thus
increasing their detectability. However, the effects of
magnetic fields should be considered for a reliable meas-
urement of the accretion rate, and the subsequent lifetime of

the PPI unstable mode. This will be the topic of future
work.
We applied our simulation results to a range of masses,

focusing primarily on two categories of potential BH-disk
systems: compact binary remnants and supermassive col-
lapsing stars. While not detectable by Advanced LIGO, the
larger scale black hole–neutron star merger remnants are
promising candidates for detection by Cosmic Explorer,
which could detect GWs from a ≈1M⊙ PPI unstable disk
around a 10 M⊙ BH out to 150–300 Mpc. The proposed
space-based DECIGO mission seems to be ideally posi-
tioned to detect supermassive star remnants massing
Oð103ÞM⊙, which it can detect out to redshift of z ∼ 5.
While LISA could also detect the supermassive star with
mass Oð105–6ÞM⊙, it lacks the sensitivity to detect them at
redshift much larger than z ¼ 1.

Our work demonstrates that disk instabilities can be
promising sources for coincident electromagnetic and GW
detections by future GW observatories. The near quasimo-
nochromatic GWs from PPI unstable systems will make it
straightforward to design templates for detection. In a
forthcoming paper we will present the results from dynami-
cal spacetime hydrodynamic simulations of misaligned
BH-disk systems.
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