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Abstract

Constraining Jupiter’s internal structure is crucial for understanding its formation and evolution history. Recent interior
models of Jupiter that fit Juno’s measured gravitational field suggest an inhomogeneous interior and potentially the
existence of a diluted core. These models, however, strongly depend on the model assumptions and the equations of state
used. A complementary modeling approach is to use empirical structural models. These can later be used to reveal new
insights into the planetary interior and be compared to standard models. Here we present empirical structural models of
Jupiter where the density profile is constructed by piecewise-polytropic equations. With these models we investigate the
relation between the normalized moment of inertia (MoI) and the gravitational moments J2 and J4. Given that only the
first few gravitational moments of Jupiter are measured with high precision, we show that an accurate and independent
measurement of the MoI value could be used to further constrain Jupiter’s interior. An independent measurement of the
MoI with an accuracy better than∼0.1% could constrain Jupiter’s core region and density discontinuities in its envelope.
We find that models with a density discontinuity at∼1 Mbar, as would produce a presumed hydrogen–helium separation,
correspond to a fuzzy core in Jupiter. We next test the appropriateness of using polytropes, by comparing them with
empirical models based on polynomials. We conclude that both representations result in similar density profiles and
ranges of values for quantities like core mass and MoI.

Unified Astronomy Thesaurus concepts: Planetary interior (1248); Planetary structure (1256); Planetary
cores (1247)

1. Introduction

Understanding the internal structure of Jupiter is a long-
standing objective in planetary science, and efforts in this
direction go back decades (e.g., Hubbard 1968; Podolak &
Cameron 1974; Decampli & Cameron 1979). Such efforts are
still ongoing and are of great importance because Jupiter’s
interior can provide clues to its origin and evolution (e.g.,
Helled et al. 2014; Helled & Stevenson 2017; Vazan et al.
2018; Müller et al. 2019). The main theoretical tools in this
effort are structural models, designed to reproduce the
measured planetary mass, radius, and gravitational field.

For Jupiter, the ongoing Juno mission has provided accurate
measurements of its gravity field via radio tracking (Folkner et al.
2017; Iess et al. 2018). These accurate gravity data further
constrain internal models of Jupiter and therefore are used to
determine Jupiter’s bulk composition, as well as the distribution of
the different chemical elements within the planetary interior (e.g.,
Wahl et al. 2017; Debras & Chabrier 2019). However, it should be
kept in mind that the planetary composition and structure cannot be
observed directly. Information about the composition and its depth
dependence is inferred by fitting theoretical models to the available
data (see Helled 2018, and references therein).

The total potential U(r) of a planet in the rotating frame is
given by the sum of the gravitational potential V(r) and
centrifugal potential Q(r):
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where r and θ are the distance and colatitude, respectively, G
the gravitational constant, M the planet’s mass, a the equatorial
radius, qP cosn ( ) the Legendre polynomial of degree n, and
ω the rotation rate. Jn (also J-values) are the gravitational
harmonics and are integrals of the planet’s mass distribution
ρ(r) over its volume. Their calculation requires knowledge of
the planet’s shape, itself determined by the potential. An
iterative solution process converges to the self-consistent
equilibrium shape and gravity. For a fluid planet in hydrostatic
equilibrium, only the even order coefficients J2n are nonzero;
dynamic effects as well as external perturbers (e.g., a large
satellite) can give rise to nonzero odd coefficients and to
additional terms not present in Equation (1).
Figure 1 illustrates the contribution functions of the first four

even J-values for Jupiter. The contribution functions are the
normalized integrands of the gravitational moments and can
be used to illustrate the “weighting” of various regions within
the planet for a given J2n (e.g., Zharkov & Trubitsyn 1974;
Guillot & Gautier 2007). It is clear from the figure that higher-
order coefficients are more sensitive to the outer regions of the
planet and have a narrower and more pronounced region of
sensitivity.
Our understanding of Jupiter’s interior has been challenged

by Juno’s measurements. Models reproducing the new data
suggest that Jupiter’s interior is inhomogeneous and display an
extended core-envelope transition in the deep interior rather
than a sharp boundary with a well-defined heavy-element core
(Wahl et al. 2017; Debras & Chabrier 2019). These results
challenge the simplified common view of giant planets being
objects with a simple structure that can be separated into
distinct layers. In addition, these models imply that Jupiter’s
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deep interior includes hydrogen and helium, and possibly
composition gradients. This more complex internal structure
must be explained by giant planet formation and evolution
models (e.g., Helled & Stevenson 2017; Vazan et al. 2018;
Müller et al. 2019).

It should be noted, however, that these recent internal
structural models of Jupiter strongly depend on the equation of
state (EoS) of the assumed composition; in particular, the EoS
of hydrogen under planetary conditions, the phase separation of
helium (e.g., Morales et al. 2013), and the behavior of mixtures
(see Helled et al. 2020, for a recent review). Necessarily, the
planetary composition has to be assumed by the modeler, of
course with some free parameters in control. Even with robust
formation theories and thermodynamic considerations directing
these assumptions, there is still the risk of unavoidable
uncertainties and biases “contaminating” the results.

While structural models that are based on physical EoSs
generate detailed and easy to interpret models of Jupiter’s
composition and its depth dependence, there is also clear value
in taking a complementary approach where the density profile
is generated with a mathematical function, without direct
reference to composition (e.g., Helled et al. 2009, 2011b; Ni
2018; Movshovitz et al. 2020). A convenient approach is to use
an empirical density profile based on polytropes (e.g., Hubbard
1975) or polynomials (e.g., Helled et al. 2009; Movshovitz
et al. 2020).

Using gravitational data to describe and constrain a planet’s
interior yields nonunique solutions. In particular, it is hard to
constrain the innermost region of a planet since the J2n-values
are “blind” to this part of the planet as shown in Figure 1.

In this paper we address the following questions: (1) Is it
possible to put some limits on Jupiter’s core properties using
only an accurate measurement of J2 and J4? (2) Is there usable
information in Jupiter’s normalized moment of inertia (MoI)

that is not degenerate with J2 and J4? In order to answer these
questions we construct a large range of empirical density
profiles for Jupiter. In particular, we focus on the innermost
region that can be viewed as representing a “core.” We
investigate the sensitivity of the calculated MoI, J2, and J4
values to the assumed core properties.
Our paper is organized as follows. In Section 2, we explain

the calculation method and the characteristics of our models. In
Section 3, we present and discuss the resulting density profiles.
A summery and discussion are presented in Section 4.

2. Methods

First, we generate density profiles of Jupiter that fit the
measured gravitational coefficients J2 and J4, as well as its
mass, equatorial radius, and rotation period. Table 1 sum-
marizes the planetary properties used for these models.
Our empirical models are based on polytropes. A polytrope

describes the relation between the pressure P and the density ρ
according to the free parameters n and K:

r= +P K . 21 n
1 ( )

Despite the simplicity of this function, it was found that
polytropes can represent Jupiter’s interior rather well (e.g.,
Hubbard 1975, 1999; Wisdom & Hubbard 2016).
Although Jupiter’s interior can be represented fairly well

with a single polytrope, it is insufficient to fully fit its gravity
data. In order to produce interior models that are consistent
with Jupiter’s gravity field and to explore a large parameter
space, we consider density profiles constructed with piecewise
polytropes. That is, different polytropic relations hold in
different radial regions of the interior. We allow up to three
polytropes; up to three regions in the planet that have a
different physical behavior. The difference from traditional
three-layer models is that the distinct regions, defined in our
case by large differences in polytropic parameters, do not
necessarily represent regions of homogeneous composition.
Solutions with consolidated polytropes, leading to fewer
density jumps and fewer distinct regions are also permitted.
To facilitate the description of the results, we utilize the

following notation. We designate the polytrope defining the

Figure 1. An example of calculated contribution functions of Jupiter (modified
from Helled et al. 2011a). One can calculate the J-value by integrating over the
enclosed area (between the abscissa and the corresponding curve). However,
for better visualization, each value is normalized. J0 corresponds to the mass.

Table 1
Physical Properties of Jupiter and Its Gravitational Harmonics

Parameter Value

Massa 317.8 [M⊕]
Equatorial radiusa 71,492 [km]
Rotation periodb 35,729.7 [s]
J2

c 14,696.572 [×106]
J4

c −586.609 [×106]
ΔJ2,formal

c 0.014 [×106]
ΔJ2,winds

d 0.568 [×106]
ΔJ4,formal

c 0.004 [×106]
ΔJ4,winds

d 0.2257 [×106]
mrot 8.340783 [×102]

Notes. mrot = ω2s3/GM is the “small parameter” used by the theory of figures
(ToF), where ω is the angular velocity, s the mean radius, G the gravitational
constant, and M the planet’s mass.
a https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html.
b Riddle & Warwick (1976).
c Iess et al. (2018).
d Kaspi et al. (2018).
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outer region p1, the one defining the middle region p2, and the
one defining the inner region p3, each requiring two parameters,
a coefficient Ki and index ni. Two additional model parameters
define the transition radii between the different regions. r1,2 is
the radius where p1 and p2 meet, and r2,3 is the radius where p2
and p3 meet, given as fractions of the planet’s equatorial radius.
The pressure P and density ρ at these special radii are
sometimes of interest and are denoted with the same subscripts,
e.g., P1,2= P(r1,2).

We often think of the innermost region as representing
Jupiter’s core and refer to it as such, being careful to not
assume it must be compact and/or composed primarily of
heavy elements. Depending on values of the parameters p3 and
r2,3 this innermost region may instead represent a gradual
increase in density (and therefore heavy elements), perhaps
consistent with a diluted core. Note that several studies assume
a constant density core, which is not physical for compressible
material. An analysis of the validity of such a simplification is
given in Appendix D.

A key question we aim to answer is whether the gravity field
can be used to distinguish between a compact and a diluted
core, and whether an independent measurement of the moment
of inertia can help in this regard. We are therefore often
interested in the radius and mass of this innermost region, and
also designate them as =r rcore 2,3 and mcore, respectively.

Given a set of parameter values, we generate an interior
density profile that, when in hydrostatic equilibrium, is
consistent with the pressure implied by the polytropic relations.
This is an iterative process. An initial guess for a density profile
ρ(r) is used to calculate the equilibrium shape and gravity,
thereby implying a pressure profile P(r) by hydrostatic
equilibrium. The density is adjusted and the process repeated
until P(ρ(r)) matches the polytropic relations everywhere in the
planet. We keep the planet’s mass, equatorial radius, and
rotation period fixed.

The computationally time-consuming part of this process is
the calculation of the equilibrium shape, a calculation that also
yields the gravity coefficients Jn. We use an implementation of
a fourth-order Theory of Figures (ToF) (Zharkov & Trubitsyn
1970, 1975; Zharkov et al. 1978; Hubbard et al. 2014;
Nettelmann 2017), applicable to fluid planets in hydrostatic
equilibrium with uniform rotation. Our calculation therefore
neglects differential rotation or other dynamical effects. In
reality, although hydrostatic equilibrium is expected to hold
well in Jupiter’s interior, there is evidence that observed surface
winds penetrate to depth of ∼3000 km and influence Jupiter’s
gravity field (Kaspi et al. 2018). The zonal winds give rise to
nonzero odd-numbered coefficients in Equation (1), and also
shift the even-numbered J2n relative to the values derived for
static equilibrium (Hubbard 1982). In principle, this offset
could be calculated and accounted for, but this requires
knowing the actual winds’ profile deep below the surface.
Therefore we account for this offset by giving larger
uncertainties to the measured J-values (e.g., Guillot et al.
2018; Kaspi et al. 2018), compared with the formal measure-
ment errors (see Table 1).

The ToF resolves the planet’s shape on a finite set of
equipotential levels. The more levels that are evaluated, the
more precisely the planet’s continuous interior is approximated.
Our models employ 4096 levels, equally spaced in radius. The
shape equations are evaluated explicitly on 128 equally spaced
levels, and then spline interpolated in the radial direction

between them. This speeds up the calculation significantly
while maintaining the desired precision. We validate this
method by comparison with previously published results
(Militzer et al. 2019; Movshovitz et al. 2020). An investigation
of the impact of the model resolution (number of equipotential
levels) on the calculated J2n and MoI is presented in
Appendix E.
We want to generate density profiles that exhibit a wide

variety of core configurations, specifically, a wide range of
mcore and rcore values. We therefore define a large discrete set
of r m,core core( ) pairs in the range  r0.025 0.5core and

Å m M1 100core . For each pair of values (core configura-
tion) we run an unconstrained optimization algorithm to search
for values of the model parameters that minimize our objective
function  J J m, ,2 4 core( ):

d d d= + + J J m A J B J C m, , , 32 4 core 2
2

4
2

core
2( ) · · · ( )

where

d =
-

J
J J

J
, 42

2,calc 2,obs

2,obs
( )

d =
-

J
J J

J
, 54

4,calc 4,obs

4,obs
( )

d =
-

m
m m

m
. 6core

core,calc core,conf

core,conf
( )

J2,obs and J4,obs are the observed gravitational coefficients,
mcore,conf the core mass of the specific core configuration, and
J2,calc, J4,calc, and mcore,calc the calculated model values.
Changing the weights, A, B, and C, lets us nudge the
optimization algorithm when it gets stuck in an unsuitable
local minimum.
The search for model parameters is carried out by the simplex

optimization algorithm (Lagarias et al. 1998).3 If, for a certain
core configuration, the algorithm fails to find values producing
a model that fits J2, J4, and mcore within their uncertainties or
tolerance, respectively, we conclude that the desired core
configuration is invalid. We also invalidate some configura-
tions based on central pressure and density. We exclude density
profiles that result in central pressure greater than 100Mbar
(Miguel et al. 2016; Wahl et al. 2017; Debras & Chabrier 2019)
or a central density greater than 30,000 kg m−3, which is well
above the expected density of rock at this pressure (Thompson
& Lauson 1974; Barnes & Lyon 1987; Musella et al. 2019).
Note that the optimization algorithm returns a single local

minimum. Therefore, our models are clearly not the only
possible three-polytrope representations of Jupiter, but are valid
solutions. In future work we hope to use complementary
algorithms to arrive at a more complete description of the
solution space. We also note that it is important to investigate
in detail the impact of the model resolution (number of
equipotential levels) on the inferred J-values and the MoI, as
this can strongly affect the results. A preliminary analysis is
presented in Appendix E and we hope to address this more
thoroughly in future research.

3. Results—Empirical Jupiter Models

Density profiles of Jupiter created with the procedure outlined
above are presented in Figure 2. Shown is a representative subset

3 Implemented in MATLAB’s fminsearch.
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of all investigated density profiles that fit Jupiter’s measured
gravity field (also called “good results”). The full solution space is
shown in Appendix B. The colors indicate the calculated MoI
value. For comparison, three previously published composition-
based models are overlaid. The solid black line is a model of
Debras & Chabrier (2019) and the black dashed and dotted lines
are solutions from Wahl et al. (2017) and Miguel et al. (2016),
respectively.

Our piecewise-polytrope solution space includes solutions
with lower central densities, potentially corresponding to a
diluted core scenario, as well as solutions with sharp transitions
to a central region of high density, implying compact and
presumably rocky cores. Independent of the various core
properties, the density profile variation at a radial distance of
0.6� r� 0.7 is rather small. However, variations in the core
region mostly affect the outermost region (r 0.75).

Diluted cores with low core densities tend to have a larger
density discontinuity at rtrans, which in turn results in a lower
MoI value. This feature, together with an accurately measured
MoI, can potentially be used to further constrain Jupiter’s
interior.

Interestingly, although we put no limits on the value of rtrans,
we find that in most of the models where a large density jump
occurs in the envelope, the transition radius is≈0.75–0.9. At
these radii, densities around ρtrans∼ 250–1500 kg m−3 and
pressures around Ptrans∼0.5–3Mbar occur.

A detailed analysis of the constraining power of the MoI
with respect to J2 and J4 is presented in Sections 3.1 and 3.2,
while the connection between the MoI and the transition
pressure (or radius) is presented in Section 3.3. A comparison
to polynomial-based density profiles is shown in Section 3.5.

3.1. Relation between the Gravitational Moments and the MoI

The MoI and the second gravitational moment J2 are closely
correlated, both involving similar integrals over the density
profile. The Radau–Darwin relation (e.g., Helled et al. 2011b)
suggests that the two parameters are linked via the following

relation:

= -
+

-
m

m J
MoI

2

3
1

2

5

5

3
1 , 7rot

rot 2

1 2

( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where mrot is the small parameter used in the ToF (described in
the caption of Table 1). The Radau–Darwin relation is an
approximation and it has been shown by several studies that
there is no one-to-one correspondence between the MoI and J2.
It may be that, at least in principle, knowledge of all gravity
coefficients to high order and high precision would be enough
to fully constrain ρ(r) and therefore the MoI as well. But the
more relevant question in practice is to what extent the MoI is
already constrained by the measurable coefficients with their
known uncertainties, and whether an independent measurement
of the MoI could be used to further constrain the planetary
interior (e.g., Helled et al. 2011b).
Figure 3 shows the relationship between the MoI, core size,

and core mass in our piecewise-polytrope models. For many
core configurations either no good result is found or the
solution is excluded because it exceeds Pmax or rmax (see
Section 2). Note that especially for small and heavy and for
large and light cores no good results are found. This is fairly
intuitive; the former combination gets restricted by rmax and the
latter might produce negative density jumps at the core-
envelope boundary (r r<core envelope). As a result, a large area
of the core property space can be excluded by basic physics,
before being constrained further by J2 and J4. However, the
boundaries of the “no solution”-area have to be treated with
caution; it is possible that some solutions are missed by the
optimization algorithm getting stuck in a local minimum. Of
the core configurations that support valid solutions, light and
small cores (lower left area of Figure 3) are consistent with the
traditional notion of a compact, pure heavy-element core.
Solutions in the upper right area are consistent with the idea of
a diluted core (e.g., Wahl et al. 2017).
Although our solutions fit the measured values J2 and J4

within their relative uncertainty of 10−5 and 10−4, respectively
(see Table 1), the relative variation in the MoI is of the order
of 10−3. This suggests that the one-to-one correspondence
between J2 and the MoI (Equation (7)) can be broken with

Figure 2. Jupiter’s density vs. normalized radius of a representative selection
of all good results. The color of each solution illustrates its MoI value. For
comparison, the published results of Debras & Chabrier (2019) (black solid
line), Wahl et al. (2017) (black-dashed line), and Miguel et al. (2016) (black-
dotted line) are included. Most density discontinuities in the envelope, while
not forced, tend to occur at 0.75 < rtrans < 0.9. Diluted core solutions with low
core densities tend to have larger density discontinuities at rtrans, resulting in a
relatively low MoI value.

Figure 3. The investigated core properties. Each core property combination of
mcore and rcore is either colored according to the inferred MoI value or black, if
no solution is found.

4

The Astrophysical Journal, 910:38 (11pp), 2021 March 20 Neuenschwander et al.



sufficiently precise measurements. The additional information
stored in the MoI, with respect to J2 and J4, can be used to
further constrain the core properties (see Section 3.2) and/or
the pressure regime of the density discontinuity in the envelope
(see Section 3.3).

3.2. The Relation between the MoI and the Innermost
Region (Core)

We suggest that the MoI can be used to further constrain
Jupiter’s core properties. For example, a measurement indicat-
ing a large MoI value (MoI 0.26355) would allow a large
variety of core properties. But a smaller one rules out solutions
with compact and distinct cores smaller and less massive than

r 0.3core and Åm M20core , respectively. See Appendix C
for a more detailed treatment of the relation between the MoI
and mcore, rcore, and P1,2. To be diagnostic, an independently
measured MoI value must come with a relative uncertainty not
larger than 0.1%. There are different methods to measure and
estimate the MoI, e.g., measuring Jupiter’s pole precession or
the Lense–Thirring acceleration of the Juno spacecraft (e.g.,
Helled et al. 2011b).

3.3. The Relation between the MoI and the Density
Discontinuity in the Envelope

As discussed previously, most density discontinuities occur
between r1,2≈ 0.75 and 0.9 (see Figure 2). Diluted cores tend
to have the discontinuity deeper in the planet’s interior
(r1,2 0.8) and also have smaller MoI values. Solutions with
density discontinuities higher in the envelope (r1,2 0.8) tend
to have large MoI values.

Figure 4 shows the transition density depending on the
transition pressure. The color represents the inferred MoI value.
Many density discontinuities occur at transition pressures of
Ptrans=P1,2∼ 0.5–3Mbar. This pressure range includes the
expected pressure where hydrogen metallizes at Jupiter’s
conditions (e.g., Mazzola et al. 2018) and the pressure at which
helium is expected to separate from hydrogen (e.g., Morales et al.
2013; Schöttler & Redmer 2018). Also there is a clear color trend:
diluted cores have lower MoI values (0.2636) and transition
pressures around 1.5P1,2 3Mbar. Lower values of the
transition pressure P1,2 1.3Mbar are coupled to higher MoI

values (0.2638), allowing for more compact cores (see
Appendix C for further details).
Since a density discontinuity in Jupiter’s envelope is

typically associated with helium separation from hydrogen,
identifying the location of this transition can be linked to the
behavior of hydrogen and hydrogen–helium mixtures in
planetary conditions (e.g., Helled et al. 2020). Therefore, an
accurate measurement of Jupiter’s MoI could also be linked to
the hydrogen–helium phase diagram.
It is interesting to note that our models with ~P 1 Mbartrans , as

expected from the hydrogen–helium phase diagram (e.g., Morales
et al. 2013; Schöttler & Redmer 2018), have diluted cores. If one
interprets the models with a density discontinuity around 1 Mbar as
being “more physical,” then this could be support for a fuzzy core
in Jupiter. Figure 5 shows the subset of models with a discontinuity
in the envelope between 0.8 and 1.2 Mbar (corresponding to a
transition radius of rtrans∼ 0.83–0.86). The upper (lower) panel
shows the density against the pressure (normalized radius). The
color indicates the “core” mass of the solution. The density profiles
indicate relatively low internal densities of r = -4 6.5 kg mcore

3–
and corresponding core pressures of =P 36 48 Mbarcore – , respec-
tively. The core sizes are found to range from =r 0.3 0.5core – with
core masses ranging from = Åm M35 100core – , which is rather
consistent with an extended diluted core for Jupiter. The large
magnitude of the density discontinuity could indicate a barrier to
convection in this region (Stevenson & Salpeter 1977), leading to a
metal enrichment (depletion) in the inner (outer) layer that
contributes to the change in density.

3.4. The MoI of a Discretized Density Profile

This work focuses on trends in the MoI value and how they
relate to other features of the interior. The numerical values
themselves, shown in Figure 3, shows that the inferred MoI range
of (0.2634<MoI< 0.2639) does not overlap with the suggested
MoI values of Wahl et al. (2017) (0.2640<MoI< 0.2644). This
might be surprising given that our empirical models are supposed
to cover a large range of possible interior profiles, including
approximations of those published models. We believe that, in fact,
they do. The apparent discrepancy in MoI value is not due to a
material difference between the interior models (i.e., the actual
density profiles) but to small differences in calculations involving
the discretized versions of the density. Since structural models
have finite resolution, one may expect any quantity that involves
an integral of density in the radial direction to propagate a
discretization error òr=O(1/N), where N is the number of
specified density values along the radius of the planet. This is
especially true in the presence of sharp discontinuities in ρ(r). We
verified by comparison with other EoS-based models (T. Guillot
2021, private communication) that small differences in the way
that these discontinuities are handled, as well as models with lower
resolution than used in this study, indeed change the MoI value
enough to explain the apparent discrepancy.
We therefore suggest that the higher MoI values reported

previously might be affected by the numerical calculations.
This should be explored further and resolved, either by
agreeing on a consistent method of representing discretized
density profiles or by using high enough resolution such that òr
becomes unimportant. Such an analysis is particularly
important if accurate measurements of Jupiter’s MoI become
available and we plan to address this topic in a follow-up study.
But regardless of what digit the average MoI ends up showing

Figure 4. Jupiter’s density vs. pressure in the region of r1,2 of a representative
selection of good results. The color indicates the MoI value. Diluted cores with
low core densities have larger values of 1.5  p1,2  3 Mbar; lower transition
pressures are coupled to higher MoI values and more compact cores.
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in the fourth decimal place, the trends shown in Figure 3 would
persist.

3.5. Polytropes versus Polynomials

The empirical density profiles we presented above are based
on polytropes. However, it is clear that there are many
alternatives. One of which are polynomial-based density
structures that are broadly used in the literature as, e.g., in
Helled et al. (2011a, 2011b), Anderson & Schubert (2007),
Movshovitz et al. (2020).

To test and detect potential biases of polytrope-based density
profiles, we compare our results (calculated MoI range and
density profiles) to a broad range of polynomial-based
solutions. For the latter we build on the work of Movshovitz
et al. (2020) and represent the density profile using an 8th-
degree polynomial, with up to two density discontinuities
superimposed, with the range of interior solutions guided by a
Markov Chain Monte Carlo method. Further details on the
precise parameterization are described in N. Movshovitz et al.
(2021, in preparation). To ensure that differences in the results
emerge solely from the different density structure representa-
tions, the same planet properties (Table 1) and gravity field

calculation method are used for the polynomial-based
calculation.
Figure 6 shows the resulting distribution of density profiles

versus Jupiter’s normalized mean radius for both polynomial-based
profiles (left panel) and polytrope-based profiles (right panel). The
solid black line is the ensemble median and the dashed line marks
the 1σ width of all density profiles. The color helps visualize the
width of the distribution. The solution space of polynomial-based
structural profiles is almost a complete subset of the solution space
of polynomial-based density profiles.
Figure 7 shows the MoI range and its distribution of the

polytrope-based (blue colored) and polynomial-based (red colored)
density profiles. The range and distribution of the MoI values are
almost identical. The similarities in the MoI range and distribution
and in the density profile solution space increase our confidence in
the choice of polytropes to represent the interior pressure-density
structure and in the above inferences.
Both representations of the density profiles have limitations.

For example, polytropes typically overestimate Jupiter’s
density in the atmosphere as measured by the Galileo entry
probe. Admittedly, this effect is supposed to be small, as it only
concerns Jupiter’s outermost 0.5 M⊕, and its surface density is
barely captured by J2 and J4, but mostly effects higher-order
J-values. Further, polynomial-based interior models that fully
account for Jupiter’s measured surface density yield similar
results with respect to the MoI range and density profiles.
Finally, the Galileo entry probe could only resolve one small
spot at Jupiter’s dynamical atmosphere, hence, an extrapolation
to its entire atmosphere has to be treated with caution. In
addition, the atmospheric density structure is thought to change
over time, and this puts additional uncertainties regarding
Jupiter’s surface structure.
Polynomials on the other hand are very general but can

produce density profiles that seem nonphysical. Therefore, in
both cases, a comparison to physical models would be useful
and could be used to exclude some of the solutions.

4. Summary and Conclusions

We present new empirical density profiles of Jupiter. Each
density profile is represented by up to three polytropes, and is set to
fit Jupiter’s mass, equatorial radius, rotation rate, and the recently
measured J2 and J4. Clearly, more accurate model evaluations,
including higher-order gravitational harmonics, are highly valuable
and the subject of current research. Nevertheless, since higher-
order harmonics are more affected by the dynamics, the results
presented here are expected to remain unchanged.
First, we infer the connection between the properties of the

innermost region of Jupiter, the density discontinuity in the
envelope, and the inferred MoI value. We then investigate the
sensitivity of J2 and J4 and the MoI to various core properties.
Next we explore under what condition the MoI further
constrains Jupiter’s internal structure. We also compared our
polytrope-based structural models to polynomial-based models.
While it is possible that Jupiter’s density profile could be

tightly, or perhaps fully, constrained by using many gravita-
tional moments to high precision (leaving no additional
information to be found in the MoI), in practice an accurate
independent determination of the MoI is more feasible.
Especially since the measured values of high-order gravity
coefficients are increasingly “contaminated” by dynamic
effects. It is possible that the Juno extended mission will be
able to provide this measurement. Even if this measurement

Figure 5. Density profiles of solutions with transition pressures of
=P 0.8 1.2 Mbartrans – . The upper panel shows the density–pressure relation.

The lower panel shows the density profile depending on the normalized radius.
In both cases the color indicates the core mass of the solution.
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comes with relatively large uncertainty, it would still be very
valuable to compare the measured value to the one inferred by
structural models.

Our main conclusions can be summarized as follows:

1. We confirm that the MoI contains additional information
in comparison to the gravitational coefficients J2 and J4.

2. Jupiter’s MoI value ranges from 0.263408–0.263874
giving relative (absolute) changes in the order of 10−3

(10−4). Therefore, we suggest that if Jupiter’s MoI is
accurately measured (with an uncertainty smaller than
0.1%) it can further constrain Jupiter’s internal structure.

3. Models with a transition pressure of ∼1Mbar, as
expected from the hydrogen–helium phase diagram,

indicate a fuzzy core for Jupiter with sizes between
30% and 50% of the planet’s radius, consisting up to 30%
of its total mass.

4. Our results are independent on the used density profile
representation of polytropes and are the same when using
8th-degree polynomials.

We suggest that empirical structural models can be used to
further understand Jupiter’s interior. In the future, the inferred
density profiles, which provide the density–pressure relation in
Jupiter should be interpreted in terms of composition and its
depth dependence using physical equations of state and we
hope to address this topic in future research.
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NSF AST grant 1908615, and University of California grant
A17-0633-001 to the Center for Frontiers in High Energy Density
Science. We acknowledge use of the lux supercomputer at UC
Santa Cruz, funded by NSF MRI grant AST 1828315.

Appendix A
Code Validation

Here we show that our calculation method can reproduce
well-known solutions. First, we evaluate the MoI of a
nonrotating planet represented by only one polytrope and
compare it to the published results of Lattimer & Prakash
(2001). Table 2 lists the MoI values for various index values (n
values in Equation (2)), evaluated by the ToF, and compares it
to the solution by Lattimer & Prakash (2001). The third column
shows the relative difference between the solutions. The
relative error agrees with the method’s precision.
Second, the density profile of a nonrotating index-1 polytrope is

evaluated by the ToF and compared to its analytical solution.
Figure 8 shows the normalized density versus the normalized

Figure 6. Distribution of density profiles for Jupiter based on 8th-degree polynomials (left panel) and polyropes (right panel). The black line marks the sample median
and the dashed lines the width of the 1σ deviation. The color helps visualize the sample distribution and comprises ∼96% of all solutions. Jupiter’s mass, equatorial
radius, rotation period, small parameter m, and used J-values are listed in Table 1. The polynomial-based profiles allow for up to two density jumps and have the same
precision as the polytropic-based density structures.

Figure 7. MoI range and distribution of polytrope-based density structures (blue
colored) and polynomial-based density structures (red colored). For both modeling
methods, the ranges and distribution of the MoI almost perfectly overlap.
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planetary radius. The black line marks the density distribution of
the analytic solution, while the green-dashed line represents the
density profile as evaluated by the ToF. The shape function of
4096 equipotential levels are explicitly calculated. Normalization
factors are given in the figure, where G is the gravitational
constant, K the polytropic constant, and M the total mass of the
planet. Note that both solutions are almost identical.

Finally, J2 and J4 of an index-1 polytrope, evaluated by different
methods, are compared. Table 3 lists J2 and J4 values as evaluated
by the ToF (4096 equipotential layers), concentric Maclaurin
spheroids (CMS) (512 layers) by Hubbard (2013), the exact Bessel
solution (eBe), and the consistent level curve (CLC), both by
Wisdom & Hubbard (2016). Relative differences in J2 and J4
between the ToF and the other methods are within the method’s
relative precision of 10−4.

Appendix B
All Inferred Density Profiles

Figure 9 shows density profiles of all good results of Jupiter.
The color of each solution illustrates its MoI value. The
black solid, dotted, and dashed lines represent the solutions of
Debras & Chabrier (2019), Wahl et al. (2017), and Miguel
et al. (2016), respectively. Figure 10 shows the pressure
versus density of all good results of Jupiter. The black solid and
dotted curve mark the solutions of Debras & Chabrier (2019)
and Miguel et al. (2016), respectively. The gray-dashed curve
shows the solution of an index-1 polytrope. Obviously the
external profiles are in agreement with our solution space,
although the result of Debras & Chabrier (2019) clearly marks
an upper (lower) pressure bound at a density of ∼1500 kg m−3

(∼2800 kg m−3).

Appendix C
Constraining Power of the MoI

Table 4 shows the constraining power of the MoI on rcore,
mcore, and Ptrans for very distinct ranges of MoIs. The upper two

Table 2
The MoI of a Nonrotating Polytrope, Evaluated by either ToF or Proposed by

Lattimer & Prakash (2001) for Various Polytropic Indices

n ToF Lattimer & Prakash (2001) Rel. Difference

0.5 0.32587 0.32593 1.72 × 10−4

1.0 0.26139 0.26138 3.83 × 10−5

2.0 0.15497 0.15485 7.58 × 10−4

Note. Relative differences in the MoI values are shown in the fourth column. It
is found that the relative precision of our ToF method does not exceed 10−4.

Figure 8. Normalized density profiles of a nonrotating index-1 polytrope. The
green-dashed curve marks the density distribution evaluated by the ToF. The
solid black line marks the density profile of the corresponding analytical
solution. The lines are almost perfectly overlapping and only deviate within the
order of 10−4.

Table 3
J2 and J4 of an Index-1 Polytrope Evaluated by either the ToF, the CMS (by
Hubbard 2013), the eBe, or the CLC both by Wisdom & Hubbard (2016)

ToF
CMS-
512 eBe CLC

J2 × 102 1.39955 1.39892 1.39885 1.39885
−J4 × 104 5.32240 5.31880 5.31828 5.31828

Note. Relative differences between our ToF method and the other methods that
are not larger than 10−4.

Figure 9. Jupiter’s density vs. normalized radius of all good results. The color
of each solution illustrates its MoI value. For comparison, the published results
of Debras & Chabrier (2019) (black solid line), Wahl et al. (2017) (black-
dashed line), and Miguel et al. (2016) (black-dotted line) are included.

Figure 10. Pressure vs. density of all good results. The color of each solution
illustrates its MoI value. The black solid and dotted curve shows the solutions
of Debras & Chabrier (2019) and Miguel et al. (2016), respectively. The gray-
dashed curve marks the solution of an index-1 polytrope.
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parts of Table 4 tabulate the results of Figure 3 and list MoI
ranges for different core properties. The lower part describes
the relation between the transition pressure P1,2 and the MoI. It
emphasizes the importance of having an independent measure-
ment of Jupiter’s MoI. Note that this table is supposed to be a
lookup table for a future measured MoI. However, it also
allows us to compare our results to comparative studies.

Appendix D
Constant Density Core versus Compressed Core

Structural models often assume a constant density core
(CDC) rather than a compressed (polytropic) core (hereafter
PC) (e.g., Helled et al. 2011b; Hubbard & Militzer 2016; Ni
2018; Debras & Chabrier 2019). This assumption may be
inappropriate for compressible materials. Here we investigate
the change in the J2n and the MoI values when using a CDC
versus PC—represented by a polytrope—in a Jupiter-like
planet. This planet is not exactly Jupiter, as its gravity field is
different, but still has the same mass, radius, and rotation
period. To diminish potential effects on J2n and the MoI that
are not related to the different core types, we only consider a
two-layered density profile (consisting of a core and an
envelope) for each core type. For both core models, the core
mass, core radius, and polytropic envelope are the same.
Hence, the inferred error on J2n and MoI represents the
differences between the two core types.

Note that we can only fix either the core mass or the core
mean density rcore¯ for both core types, as M and rcore¯ are related
via r = M V¯ . A system with fixed rcore¯ and mcore and total
mass M (fixed as a requirement) is over-constrained: a different
density distribution changes the planetary shape and therefore
its volume. As a consequence, we only present the results for a
fixed mcore. Fixing the core average density leads to similar
conclusions.

To investigate possible effects of the core properties on the
inferred J-values and the MoI, we consider five different core
densities and envelope polytropes. A percentage error is
evaluated for different core sizes by using the following
equation:

= ´ -error 100
value

value
1 . D1cdc

pc
( )

⎛
⎝⎜

⎞
⎠⎟

The top panel of Figure 11 shows the five models, color coded
and plotted for a CDC at core sizes of =r 0.07core (solid lines),

=r 0.25core (dashed lines), and =r 0.45core (dotted lines).
Model 2 represents a massive core that leads to a large density

Table 4
MoI Ranges Depending on the Size of the Core (Top Part), Mass of the Core
(Middle Part), and the Transition Pressure at the Density Discontinuity in the

Envelope (Lower Part)

MoI Range rcore Range

0.26341–0.26347 0.300–0.375
0.26347–0.26354 0.300–0.450
0.26354–0.26369 0.150–0.500
0.26369–0.26382 0.075–0.475
0.26382–0.26387 0.125–0.450
MoI range mcore range in [M⊕]

0.26341–0.26347 21–41
0.26347–0.26355 21–72
0.26355–0.26365 7–98
0.26365–0.26369 1–100
0.26369–0.26377 2–91
0.26377–0.26382 3–96
0.26382–0.26385 4–86
0.26385–0.26387 13–88
MoI range Ptrans range in [Mbar]

0.26341–0.26360 1.5–3
0.26360–0.26376 0.3–4.35
0.26376–0.26387 0.01–1.3

Note. We mark the changes in the digits of interest in bold.

Figure 11. Top: the five tested CDC models. To generalize the study, five
different core properties and envelope polytropes are tested. The colors refer to
the different models (only plotted for a CDC) plotted at different core radii:

=r 0.07 solid lines , 0.25 dashed lines , 0.45 dotted linescore ( ) ( ) ( ). Models 2
and 5 are the most extremes with respect to core mass and density jump
at the core-envelope boundary. Bottom: inferred error in the MoI and the
J2n-values depending on the core size. Behavior of the error (y-axis),
representing the differences in various variables arising by replacing a CDC
by a PC, depending on the core size (x-axis). The colors represent the different
models. The different variables (J2n and MoI) are expressed by various
symbols. The dashed line at =r 0.2core marks the maximum core radius whose
inferred error is within the method’s uncertainty of the ToF.

9

The Astrophysical Journal, 910:38 (11pp), 2021 March 20 Neuenschwander et al.



discontinuity at the core-envelope boundary, while Model 5
represents relatively smooth transitions. The other models
represent intermediate cases.

The bottom panel of Figure 11 shows the percentage
differences (denoted as errors) in J2n and the MoI (y-axis) by
comparing a CDC with a PC depending on the core size (x-
axis). The colors represent the models (shown in Figure 11) and
the symbols the corresponding parameter. Note that for large
core radii J2 is affected the most, mainly followed by the MoI.
This seems to be consistent with the contribution functions
shown in Figure 1 and the Radau–Darwin approximation
(Equation (7)). However, for small cores, i.e., r 0.2core , the
higher-order harmonics are more affected. Our interpretation
for this behavior is as follows. The gravitational moments are
blind to the planet’s innermost region (Figure 1). Therefore, the
inferred errors on the J2n are not generated by the different core
types directly. However, the core densities of the CDC and the

PC are different. This affects the shape and therefore the
volume of the whole planet. In return the density profile in the
envelope changes. These changes are primarily affecting the
higher-order gravitational coefficients, due to their relatively
high maximal contribution. Hence, for small cores, the inferred
errors on the higher-order J2n-values are larger than the inferred
errors on the lower ones.
For core radii larger than a critical core size (rcrit) the direct

affect on J2 by the different core types gets dominant. rcrit
depends on the underlying core model (i.e., its exact mass and
density). In our models the critical core size is around rcrit∼ 0.2
and therefore in agreement with the contribution functions of
Helled et al. (2011a).
We find that the error increases with increasing core size. As

a result, the largest acceptable CDC depends on the demanded
precision. Since in this paper we use a fourth-order ToF that
has a relative precision of∼10−4, the maximal CDC radius
should not exceed rcdc 0.2.
Overall, we find that differences between a CDC and a PC

strongly depend on the actual core properties. For example,
Model 2, which has the highest considered core mass,
produces the largest error, in contrast to the smooth (diluted)
core of Model 5 (blue and purple symbols, respectively, in
Figure 11).
We next investigate how J2 and the MoI are affected by the

core mass and the magnitude of the density discontinuity at the
core-envelope boundary. For this analysis we fix the core
radius arbitrarily at =r 0.3core and show for all five models the
inferred errors in J2 and the MoI. Figure 12 shows the error of
J2 (blue dots) and the MoI (red dots) on the y-axis, depending
on either the core mass (upper panel) or the magnitude of the
density discontinuity at the core-envelope boundary (lower
panel).
First, we observe that J2 and the MoI are not identical.

Neither points overlap nor do the slopes agree. This is expected
since the MoI, unlike J2, also contains the information of the
perturbed higher-order J-values. Second, the inferred error of a
low-mass core (or a core with a smooth core-envelope
transition) is small. However, this error increases for heavy
core masses and distinct density jumps at the core boundary.
This leads us to the expected conclusion that especially the
most massive CDC and/or the ones with a very distinct density
jump at their core–envelope boundary have to be replaced by a
PC. Further investigations of this topic are desirable and we
hope to address them in future research.

Appendix E
Resolution Dependent Solutions

The computed planetary shape depends on the resolution
used (i.e., number of equipotential levels) and the layer’s radial
distribution throughout the planet. As a result, the resolution
and distribution used affects the inferred gravitational moments
and the MoI. Here we test the resolution dependence of the
calculated J2, J4, and the MoI by evaluating density profiles of
good results for various numbers of levels. To diminish
potential effects of the spline interpolation (described in
Section 2) on the results, the shape function is evaluated on
each equipotential level. Table 5 summarizes the results using
an example. The upper (lower) part shows the calculated
gravitational coefficients J2 and J4 and the MoI, depending on
the number of levels evaluated by the ToF (CMS).

Figure 12. Inferred error in the MoI and J2, depending on either the core mass
(upper panel) or the density jump at the core-envelope boundary (lower panel)
at a fixed core radius of =r 0.3core . We note that in both panels the inferred
errors in J2 and the MoI as well as the slopes of the curves are different. This is
because the MoI value contains additional information on the density profile
that is stored in the higher-order Jn beyond J2. The inferred errors in J2 and the
MoI are smaller for low-mass cores and for (diluted) cores with rather smooth
core-envelope transitions. Therefore, especially massive and distinct CDC have
to be replaced by a PC.
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Independent of the calculation method, the values of J2, J4, and
the MoI change significantly for the various numbers of evaluated
levels. Nevertheless, a convergence is observable for high
precision models that use increasing numbers of layers. Therefore,
it depends on the resolution whether a given density profile
represents a planet’s gravity field or not. Accordingly, a low-
resolution model converges to a different density profile with a
different MoI value than a high-resolution solution. This finding is
of some importance, as it first limits the ability to compare
seemingly similar published results if they are based on different
resolutions. Second, a consensus about a minimal resolution has
to be reached. For the fourth-order ToF, we suggest that future
studies evaluate a minimal level number of 2048. For higher
resolutions, relative changes in J2, J4, and the MoI are in the order
of 10−4 (with respect to the 8192-level result). For CMS, no
convergence to the method’s precision of 10−5 is found within the
tested resolutions. However, to achieve a precision in the order of
10−4, 4096 levels are necessary. These recommendations will set
studies on the same basis and allows comparing nominal results
between them. It is true that more sophisticated schemes can be
used to distribute a fixed number of levels along the planet’s
radius, rather than making them equally spaced. Such schemes
can sometimes accelerate convergence to a desired precision level,
but at the cost of making it difficult to compare different models
to each other. It is also true that different density distributions need
a different number of evaluated layers to converge. Therefore,
it is urgently necessary for each study to test and validate the
convergence of their solutions.
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ToF 512 1024 2048 4096 8192

J2 0.0147501 0.0147132 0.0146991 0.0146965 0.0146950
− J4 0.0005892 0.0005871 0.0005868 0.0005868 0.0005868
MoI 0.2638440 0.2638130 0.2638255 0.2638653 0.2638841
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− J4 0.0005787 0.0005847 0.0005856 0.0005860 0.0005863
MoI 0.2630828 0.2637095 0.2637627 0.2637846 0.2638103

Note. The evaluated internal structure is fixed for this study and based on a
good result. The evaluation of the J values and the MoI is done with both the
ToF (upper part) and CMS (lower part).
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