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Irreducible 3-manifolds that cannot be obtained by
0O-surgery on a knot

Matthew Hedden, Min Hoon Kim, Thomas E. Mark, and Kyungbae Park

Abstract. We give two infinite families of examples of closed, orientable, irreducible 3-manifolds
M such that b1 (M) = 1 and 71 (M) has weight 1, but M is not the result of Dehn surgery along a
knot in the 3-sphere. This answers a question of Aschenbrenner, Friedl and Wilton, and provides
the first examples of irreducible manifolds with b1 = 1 that are known not to be surgery on a
knot in the 3-sphere. One family consists of Seifert fibered 3-manifolds, while each member of
the other family is not even homology cobordant to any Seifert fibered 3-manifold. None of our
examples are homology cobordant to any manifold obtained by Dehn surgery along a knot in
the 3-sphere.

1. Introduction

It is a well-known theorem of Lickorish [Lic62] and Wallace [Wal60] that every closed,
oriented 3-manifold is obtained by Dehn surgery on a link in the three-sphere. This leads
one to wonder how the complexity of a 3-manifold is reflected in the links which yield it
through surgery, and conversely. A natural yet difficult goal in this vein is to determine
the minimum number of components of a link on which one can perform surgery to
produce a given 3-manifold. In particular, one can ask which 3-manifolds are obtained
by Dehn surgery on a knot in S3. If, following [Auc97], we define the surgery number
DS(Y) of a closed 3-manifold Y to be the smallest number of components of a link in
S3 yielding Y by (Dehn) surgery, we ask for conditions under which DS(Y) > 1.

The fundamental group provides some information on this problem. Indeed, if a closed,
oriented 3-manifold Y has DS(Y") = 1, then the van Kampen theorem implies that 71 (Y")
is normally generated by a single element (which is represented by a meridian of K). In
particular, 71 (Y") has weight one and H;(Y;Z) is cyclic. (Recall that the weight of a
group G is the minimum number of normal generators of G.)

A more sophisticated topological obstruction to being surgery on a knot comes from
essential 2-spheres in 3-manifolds. While Dehn surgery on a knot can produce a non-
prime 3-manifold, the cabling conjecture [GAnS86l, Conjecture A] asserts that this is quite
rare and occurs only in the case of pg-surgery on a (p, g)-cable knot. It would imply, in
particular, that a non-prime 3-manifold obtained by surgery on a knot in S® has only
two prime summands, one of which is a lens space. Deep work of Gordon-Luecke [GLS9,
Corollary 3.1] and Gabai [Gab87, Theorem 8.3] verify this in the case of homology spheres
and homology S' x S2’s, respectively, showing more generally that if such a manifold is
obtained by surgery on a non-trivial knot, then Y is irreducible.

It is natural to ask whether these conditions are sufficient to conclude that Y is ob-
tained from S3 by Dehn surgery on a knot. In the case of homology 3-spheres, Auckly
[Auc97] used Taubes’ end-periodic diagonalization theorem [Tau87, Theorem 1.4] to give
examples of hyperbolic, hence irreducible, homology 3-spheres with DS(Y) > 1. Tt
remains unknown, however, if any of Auckly’s examples have weight-one fundamental
group. More recently, Hom, Karakurt and Lidman [HKL16b] used Heegaard Floer ho-
mology to obstruct infinitely many irreducible Seifert fibered homology 3-spheres with
weight-one fundamental groups from being obtained by Dehn surgery on a knot. In
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[HL18], Hom and Lidman gave infinitely many such hyperbolic examples, as well as in-
finitely many examples with arbitrary JSJ decompositions. Currently, we do not know
whether the examples of [HLI8] have weight-one fundamental groups or not.

It is interesting to note, however, that a longstanding open problem of Wiegold
(IMK14, Problem 5.52] and [Ger87, Problem 15]) asks whether every finitely presented
perfect group has weight one. The question would be answered negatively if there is a
homology 3-sphere whose fundamental group has weight > 2.

Using Q/Z-valued linking form and their surgery formulae for Casson invariant, Boyer
and Lines [BL90, Theorem 5.6] gave infinitely many irreducible homology lens spaces
which have weight-one fundamental group, but are not obtained by Dehn surgery on a
knot. In [HWI5], Hoffman and Walsh gave infinitely many hyperbolic examples of this
sort.

For the case that Y is a homology S' x S2, significantly less is known. Aschenbrenner,
Friedl and Wilton [AFW15] asked the following question.

Question 1 (JAFWI5, Question 7.1.5]). Let M be a closed, orientable, irreducible 3-
manifold such that b (M) = 1 and 71 (M) has weight 1. Is M the result of Dehn surgery
along a knot in $3?

Note that if M as in the question does arise from surgery on a knot in S% then
necessarily the surgery coefficient is zero.

The purpose of this paper is to give two families of examples that show the answer to
Question |1} is negative. The first family shows that there exist homology S* x $?’s not
smoothly homology cobordant to any Seifert manifold or to zero surgery on a knot; we
recall that two closed, oriented 3-manifolds M and N are homology cobordant if there is a
smooth oriented cobordism W between them for which the inclusion maps M «— W < N
induce isomorphisms on integral homology.

Theorem A. The family of closed, oriented 3-manifolds {My}r>1 described by the
surgery diagram in Figure[l] satisfies the following.

(1) My is irreducible with first homology Z and 71 (My) of weight 1.
(2) My is not the result of Dehn surgery along a knot in S3.

(3) My is not homology cobordant to Dehn surgery along a knot in S3.
(4) My, is not homology cobordant to any Seifert fibered 3-manifold.
(5) My is not homology cobordant to M if k # 1.

(4k — 1) positive crossings

FIGURE 1. A surgery diagram of My (k > 1).

The first property of Mj is relatively elementary; in particular it follows from some
general topological results about spliced manifolds. As we show in the next section, any
splice of non-trivial knot complements in the 3-sphere is irreducible and has weight one
fundamental group, from which our claims about M} will follow.
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To show that M), is not the result of Dehn surgery along a knot in S3, we use a
Heegaard Floer theoretic obstruction developed by Ozsvéth and Szabd in [OS03]. They
showed that certain numerical “correction terms” d; /o and d_ /o satisfy

(1.1) dijp(M) <3 and  d_y (M) > -3

whenever M is obtained from O-surgery on a knot in S® (see Theorem 3.1). We will
show that d_y/5(My) = f%, and hence My, is not the result of Dehn surgery on a knot
in S3. The correction terms are actually invariants of homology cobordism, from which it
follows that none of the Mj, are even homology cobordant to surgery on a knot in S®. This
feature of our examples distinguishes it from the analogous gauge and Floer theoretic
results for homology spheres mentioned above. Indeed, the techniques of Auckly or Hom,
Lidman, Karakurt are not invariant under homology cobordism; in the former, this is
due to a condition on m; in Taubes’ result on end periodic manifolds, and in the latter
because the reduced Floer homology is not invariant under homology cobordism (though
see [HHL1S] for some results in that direction).

To show that our examples M} are not homology cobordant to any Seifert fibered
3-manifold, we prove a general result, Theorem about the correction terms of Seifert
fibered 3-manifold M with first homology Z: we show that any Seifert manifold with
the homology of S' x S2 satisfies the same constraints as the result of O-surgery
does. Part (6) of our theorem immediately follows. We remark that it was only re-
cently shown by Stoffregen (preceded by unpublished work of Frgyshov) that there exist
homology 3-spheres that are not homology cobordant to Seifert manifolds, or equiva-
lently that not every element of the integral homology cobordism group is represented
by a Seifert manifold. To be precise, Stoffregen showed in [Stol5, Corollary 1.11] that
3(2,3,11)#3%(2,3,11) is not homology cobordant to any Seifert fibered homology 3-
sphere by using homology cobordism invariants from Pin(2)-equivariant Seiberg-Witten
Floer homology.

Hyperbolic examples. For any closed, orientable 3-manifold M with a chosen Heegaard
splitting, Myers gives an explicit homology cobordism from M to a hyperbolic, orientable
3-manifold [Mye83]. By using these homology cobordisms, we can obtain hyperbolic,
orientable 3-manifolds Z; with first homology Z which are homology cobordant to Mj.
Since d_1 5 is a homology cobordism invariant, Zy is also not the result of Dehn surgery
along a knot in S3 by Theorem [3.1

Corollary B. There is a family of closed, orientable irreducible 3-manifolds {Zy}r>1
satisfying the following.

(1) Zy is hyperbolic with first homology Z.

(2) Zy is not the result of Dehn surgery along a knot in S3.

(3) Zi is not homology cobordant to any Seifert fibered 3-manifold.

(4) Zi is not homology cobordant to Z; if k # .

Myers’ cobordisms may not preserve the weight of the fundamental groups at hand.
If m1(Z)) has weight one, then Z; would provide a negative answer to the following
question.

Question 2. Let M be a closed, orientable, hyperbolic 3-manifold with b; (M) =1 and
71 (M) of weight 1. Is M the result of Dehn surgery along a knot in S3?

We remark that the question is also open for integral homology 3-spheres.

Seifert ezamples. From the previous remarks, it follows that the correction terms d. /o
cannot show that a Seifert manifold with the homology of S' x S? has DS > 1. Using
an obstruction based on the classical Rohlin invariant instead, we prove the following.
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Theorem C. Let {Ny}i>1 be the family of 3-manifolds described by the surgery diagram
in Figure[3d Then

(1) Ny is irreducible with first homology Z and w1 (Ny) of weight 1.

(2) Ny is a Seifert manifold over S? with three exceptional fibers.

(3) If k is odd, Ny, is not obtained by Dehn surgery on a knot in S°.

(4) If k is odd, Ny, is not homology cobordant to Dehn surgery along a knot in S3.

(4k — 1) positive crossings

&S

FIGURE 2. A surgery diagram of Ny (k > 1).

Independent of questions involving weight or homology cobordism, our results provide
the first known examples of irreducible homology S! x $2’s which are not homeomorphic
to surgery on a knot in S2. To clarify the literature, it is worth mentioning here that in
[OS03], Section 10.2] Ozsvéath and Szabé argued based on the correction term obstruction
that the manifold N; shown in Figure[2is not the result of Dehn surgery on a knot in S3.
Unfortunately, as we mentioned above, since Ny is Seifert fibered the correction terms
do not actually provide obstructions to DS = 1. We point out in Section [7] where their
calculation goes astray.

Organization of the paper. In the next section, we establish some topological results
on spliced manifolds which we will apply to our examples Mj. In Section [3] we briefly
recall the relevant background on Heegaard Floer correction terms and the zero surgery
obstruction of Ozsvath and Szabé. Section[dis devoted to computation of the correction
terms of My, whose values imply they are not zero surgery on knots in S3 and have
the stated homology cobordism properties. In Section [5| we prove the estimates on the
correction terms of Seifert manifolds and finish the proof of Theorem [A] Section [6] shows
how the Rohlin invariant gives a different obstruction to DS = 1, and in Section [7] we
prove Theorem [C]
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2. Some topological preliminaries

In this section we verify the topological features—irreducibility and weight one funda-
mental group—of the manifolds M}, in Theorem [A] These features are consequences of
the fact that the manifolds are obtained by a splicing operation. Thus we establish some
general results for manifolds obtained through this construction.

Given two oriented 3-manifolds with torus boundary, X, Xo, we will refer to any
manifold obtained from them by identifying their boundaries by an orientation reversing
diffeomorphism as a splice of X; and X5. Of course the homeomorphism type of a splice
depends intimately on the choice of diffeomorphism, but this choice will be irrelevant for
the topological results that follow. Note that with this definition Dehn filling is a splice
with the unknot complement in S3. We begin with the following observation, which
indicates that the manifolds appearing in Theorem [A] are splices.

Proposition 2.1. Let L be the result of connected summing the components of the Hopf
link with knots K1 and Ko, respectively. Then any integral surgery on L is a splice of
the complements of K1 and K.

Proof. The connected sum operation can be viewed as a splicing operation. More pre-
cisely, the connected sum of a link component with a knot K is obtained by removing
a neighborhood of the meridian of the component and gluing the complement of K to
it by the diffeomorphism which interchanges longitudes and meridians. Thus the result
of integral surgery on L is diffeomorphic to integral surgery on the Hopf link, followed
by the operation of gluing the complements of K; and K> to the complements of the
meridians of the Hopf link. But the meridians of the components of the Hopf link, viewed
within the surgered manifold, are isotopic to the cores of the surgery solid tori since the
surgery slopes are integral. Thus, upon removing the meridians, we arrive back at the
complement of the Hopf link, which is homeomorphic to 72 x [0,1]. The manifold at
hand, then, is obtained by gluing the boundary tori of the complements of K7 and K>
to the boundary components of a thickened torus. The result follows immediately. [

We next prove that splices of knot complements in the 3-sphere have fundamental
groups of weight one. This follows from a basic result about pushouts of groups.

Proposition 2.2. Suppose that G1 and G4 are groups which are normally generated by
elements g1 and go, respectively, and that ¢; : H — G; are homomorphisms. If the image
of ¢1 contains g1, then the pushout Gy xg G2 is normally generated by a single element;
namely, the image of go under the defining map Go — G *gy Gs.

Proof. In the pushout, g1 = ¢1(z) = ¢2(x). Now ¢a2(x) € G2, hence can be written as a
product of conjugates of gs. Since g; normally generates GGy, it follows that go normally
generates the pushout. O

It follows at once from van Kampen’s theorem that that any splice of complements of
knots in the 3-sphere has weight one fundamental group. Indeed, the Wirtinger presen-
tation shows that the fundamental group of a knot complement has weight one, normally
generated by a meridian. The homotopy class of the meridian is represented by a curve
on the boundary, thereby verifying the hypothesis of the proposition. Of course this
reasoning shows more generally that the splice of a knot complement in S with any
manifold with torus boundary and weight one fundamental group also has fundamental
group of weight one.

The discussion to this point shows that the manifolds Mj, being splices of knot comple-
ments, have weight one fundamental groups. We turn our attention to their irreducibility.
As above, we will deduce this property from a more general result about splicing.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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Recall that a 3-manifold is irreducible if any smoothly embedded 2-sphere bounds a
3-ball, and a surface T" in a 3-manifold is incompressible if any embedded disk D in the
manifold for which D N'T" = 9D has the property that 0D bounds a disk in T" as well.

Proposition 2.3. Let X1, X5 be irreducible manifolds, each with an incompressible torus
as boundary. Then any splice of X1 and X5 is irreducible.

The proposition applies to the complements of non-trivial knots in the 3-sphere, which
are irreducible by Alexander’s characterization of the 3-sphere [Ale24] (namely, that
any smooth 2-sphere separates into two pieces, each diffeomorphic to a ball), and have
incompressible boundary whenever the knot is non-trivial.

Proof. The proposition follows from a standard “innermost disk” argument. More pre-
cisely, let S be an embedded 2-sphere in a splice of X; and Xs, and let T denote the
image of the boundary tori, identified within the splice. Then S intersects T" in a collec-
tion of embedded circles. We claim that we can remove these circles by an isotopy of S.
This claim would prove the proposition since, after the isotopy, the sphere lies entirely
in X or Xo, where it bounds a ball by hypothesis.

To remove the components of SNT', consider a disk D C S which intersects T precisely
in 0D (a so-called “innermost disk”, which must exist by compactness of S NT and the
Jordan-Schonflies theorem). Since D N'T = 9D, the interior of D must lay entirely in
one of X7 or X5. Incompressibility of the boundary of these manifolds therefore implies
0D bounds a disk embedded in T. The union of this latter disk with D is an embedded
sphere in either X; or X5, which bounds a ball by its irreducibility. The ball can be
used to isotope S and remove the circle of intersection. Inducting on the number of such
circles implies our claim. O

3. Heegaard Floer theory and Ozsvath-Szabd’s 0-surgery obstruc-
tion

In this section we briefly recall the Heegaard Floer correction terms and an obstruction
they yield, due to Ozsvath and Szabd, to a 3-manifold being obtained by 0-surgery on a
knot in $3. For more detailed exposition, we refer the reader to [OS03].

Let FF be the field with two elements, and F[U] be the polynomial ring over F. Let Y be
a closed oriented 3-manifold endowed with a spin® structure s. Heegaard Floer homology
associates to the pair (Y, s) several relatively graded modules over F[U], HF°(Y,s), where
o € {—,+,00}. These Heegaard Floer modules are related by a long exact sequence:

<o HE(Y,s) = HE>(Y,s) = HF"(Y,s) — - - - .
The reduced Floer homology, denoted HF ,(Y,s), can be defined either as the cokernel

of 7 or the kernel of + with grading shiftedr etfp by one.

In the case that the spin®-structure s has torsion first Chern class, the relative grading
of the corresponding Floer homology modules can be lifted to an absolute Q-grading. In
particular, HF°(Y,s) is an absolutely Q-graded F[U]-module for any o € {—, +, c0}.

For a rational homology 3-sphere Y, every spin® structure will have torsion Chern
class, and we define the correction term d(Y,s) € Q to be the minimal Q-grading of any
element in HF*(Y,s) in the image of w. A structure theorem [OS04b, Theorem 10.1] for
the Floer modules states that HF>(Y,s) = F[U,U '], from which it follows that

HF*(Y,8) 2T}, & HEL,(Y,9),

where 7, denotes the Q-graded F[U]-module isomorphic to F[U, U~!]/UF[U] in which
the non-trivial element with lowest grading occurs in grading d € Q. Multiplication by
U decreases the Q-grading by 2.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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A 3-manifold Y with H;(Y;Z) = Z has a unique spin® structure with torsion (zero)
Chern class; we denote this spin® structure by sg. In this setting, the structure theorem
states that HF>(Y,s) = F[U,U~!] @ F[U,U~!], with the two summands supported in
grading +3 modulo 2, respectively. We define d;5(Y) and d_;,5(Y) to be the minimal
grading of any element in the image of m in HF (Y, () supported in the grading 5 and
f% modulo 2, respectively. It follows that

HF'(Y,50) = T,5 o @ T o) ® HES (Y, 50).

The key features of the correction terms are certain constraints they place on negative
semi-definite 4-manifolds bounded by a given 3-manifold, [OS03, Theorem 9.11]. Apply-
ing these constraints to the 4-manifold obtained from a homology cobordism by drilling
out a neighborhood of an arc connecting the boundaries yields the following (compare
[ILR14l Proposition 4.5]):

Homology Cobordism Invariance. If Y and Y’ are integral homology cobordant ho-
mology manifolds with first homology Z, then diy/2(Y) = dyq/2(Y").

The relevance to the surgery question at hand also becomes apparent: if a 3-manifold
Y is obtained by O-surgery on a knot K in S2, then Y bounds a homology S? x D2, gotten
by attaching a O-framed 2-handle to the 4-ball along K, and so does —Y after reversing the
orientation of the 4-manifold. Coupling this observation with the constraints mentioned
above, and using the fact that d_;/5(Y) = —d;/2(—Y") [OS03 Proposition 4.10], we get
the following obstruction:

Zero Surgery Obstruction ([OS03, Corollary 9.13]). If Y bounds a homology S? x D?
then dy (V) < 3 and d_ys(V) > —1.

The obstruction applies, for instance, if Y is homology cobordant to zero surgery on a
knot in a 3-manifold that bounds a smooth contractible 4-manifold.

Drawing on information from the surgery exact triangle, Ozsvath and Szabé [OS03,
Proposition 4.12] gave a refined statement of the obstruction, which determines the values
of the correction terms. We rephrase their result in terms of the non-negative knot
invariant V(K) introduced by Rasmussen (under the name ho(K)) in [Ras03], and used
by Ni-Wu [NWT5]. To see that the following agrees with the stated reference, we recall
that d(S7(K)) = —2Vy(K), and that the d-invariant of 1-surgery changes sign under
orientation reversal (implying d(S2,(K)) = 2V,(K)).

Theorem 3.1 (JOS03| Proposition 4.12]). Suppose that Y is obtained by 0-surgery on a
knot K in S®. Then dy5(Y) = 5 — 2Vo(K) and d_12(Y) = —5 + 2Vo(K) where K is
the mirror of K.

4. Computation of d/,(Mj)

Consider the 3-manifold M} obtained by (1,1) surgery on the link obtained from the
Hopf link by connected summing one component with the right-handed trefoil 75 3 and
the other component with the (2,4k — 1) torus knot 75 451 as depicted in Figure[l} In
this section, we compute d/2(My) for any k > 1. We assume that the reader is familiar
with knot Floer homology [0S04al [Ras03].

Theorem 4.1. For any k > 1, dyjo(My) = =2k + 5 and d_1 /2(M},) = —3.

We briefly discuss the strategy of our computation. Consider the knot Jj in S3 (T 3)
depicted in Figure[3| Since Hy(My) = Z, My, is the result of surgery on S5 (7% 3) along

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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(4k — 1) positive crossings

FIGURE 3. A knot Jj in S3(Ts3).

the knot Ji using its Seifert framing. Note that the Seifert framing of Ji is the 1-
framing with respect to the blackboard framing of Figure Then dy4/2(My) can be
determined by the knot Floer homology CFK®(S{(T3), Jx) using a surgery formula
[OS08| Section 4.8].

In order to determine the aforementioned knot Floer homology complex, we first
consider the meridian of T3 3, viewed as a knot p C Sf’ (T2,3). Then the relevant knot
(S§(T23), Jx) is simply the connected sum of two knots, (S3(Ts3), ) and (S3, T2 4—1)-
A Kiinneth formula for the knot Floer homology of connected sums then implies

(41) CFKOO(S%(ng), Jk) = CFKOO(S%(TQ;;),/J/) ® CFKOO(T274]€,1).

We can deduce the structure of CFK*(S3(Ts,3), 1) using a surgery formula which,
together with the Kiinneth formula and the well-known structure of the Floer homology
of torus knots, will determine the filtered chain homotopy type of CFK>(S3(T%,3), Ji).
Precisely, we prove the following:

Proposition 4.2. We have the following filtered chain homotopy equivalences.

(1) CFK>(S3(Ty), i) = CPK> (T3, _g)[~2).

(2) CFK>(S}(Ta3),Jk) @ Ao 2 CFK>® (T 45—3)[—2] ® A;.
Here [—2] means that the Maslov grading is shifted by —2, and Ay and A; are acyclic
chain complexes over F[U, U~1].

Remark 4.3. For N > 2g(K), it is known that CFK®(S3 \(K),u) is determined
by CFK*(S3, K) in [HKL16a, Theorem 4.2] (compare [Hed07, Theorem 4.1]). Since
1 < 2g(T»3), we cannot apply [HKL16a, Theorem 4.2] to determine CF K> (S (T2 3), ).
Work in progress of Hedden and Levine on a general surgery formula for the knot Floer
homology of 1 would easily yield the formula. In the case at hand, however, a surgery
formula applied for p allows for an ad hoc argument.

Proof. The key observation is that the complement of i C S3(T,3) is homeomorphic
to the complement of 75 3 C S3. Indeed, this can be seen by observing that y is isotopic to
the core of the surgery solid torus. It follows that u is a genus one fibered knot. Moreover,
S%(T273) is homeomorphic to the Poincaré sphere equipped with the opposite orientation
it inherits as the boundary of the resolution of the surface singularity 22 +w? + 7% = 0,
which is well known and easily seen to be an L-space homology sphere with d-invariant
equal to —2.

As p is a genus one fibered knot in an L-space homology sphere, it follows readily
that its knot Floer homology must have rank 5 or 3, and in the latter case must be
isomorphic to that of one of the trefoil knots, with an overall shift in the Maslov grading
by the d-invariant. To see this, observe that being genus one implies, by the adjunction
inequality for knot Floer homology [0S04al, Theorem 5.1], that HFK (S§(Ta3),p,7) =0

for |i| > 1. As p is fibered, LTF?{(S%(TQ,;;),MJ) = F for ¢ = +1 [OS08, Theorem 5.1].

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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Moreover, the Maslov grading of the generator of W(S?(Tgyg),ﬂ, 1) is two higher
than that of HFK (S3(T%,3), 4, —1), by a symmetry of the knot Floer homology groups

[OS04al, Proposition 3.10]. Now there is a differential 0 acting on .FTF?((—Sf’(Tg’g),/J),
the homology of which is isomorphic to the Floer homology of the ambient 3-manifold.
(The existence of such a “cancelling differential” follows from the homological method
of reduction of a filtered chain complex; see [HW18, Section 2.1] for details on this
perspective.) This differential strictly lowers the Alexander grading, which implies that
the “middle” group .H/-.Z??{(S%(Tg’g), 1, 0) is either F3 or F. We discuss the cases separately
(compare [Bal08| Proposition 3.1]).

If fTF?{(Sf’(TQ,;;), u,0) = F3, two of the summands are supported in the same grading,
which is one less than that of the top group; moreover, one of these summands is the
image of Ijﬁ((Sf(Tlg),u,l) under 9, and J maps the other summand surjectively

onto HFK (S$(T23), 1, —1). This follows immediately from existence of the cancelling
differential. The remaining summand of F? lies in Maslov grading —2, the d-invariant of
the underlying manifold. If this happens to be the grading of the other two summands,
then the resulting knot Floer homology is thin, and CFK® is determined by the hat
groups. It follows in this case that CF K is isomorphic to that of the figure-eight knot,
with an overall shift in the Maslov grading down by 2.

The case that ITF?((S?(TM),M,O) = F divides into two sub-cases, depending on
whether 9 maps the middle group surjectively onto the bottom, or the top group surjec-
tively onto the middle. In both sub-cases the resulting knot Floer homology is thin, and
hence CFK® is determined by the hat groups. In the former sub-case the hat groups
are isomorphic to those of the right-handed trefoil, and to those of the left-handed trefoil
in the latter; in both sub-cases, their Maslov grading has an overall shift down by 2.

To determine which of the three possibilities above arise, we recall the surgery formula
for knot Floer homology. In its simplest guise, which will be sufficient for our purposes, it
expresses the Floer homology of the manifold obtained by n-surgery, n < —(2¢g(K) — 1)
on a null-homologous knot (Y, K) as the homology of a particular sub-quotient com-
plex of CFK*(Y, K) [0S04al, Theorem 4.1]. Its relevance to us is that —I1-surgery on
(S3(Th.3), 41) is homeomorphic to S, a manifold with HF(S%) of rank 1. Since y is a
genus one knot, we can apply the surgery formula to (re)-calculate the Floer homology
of S3, viewed as —1-surgery on p. The surgery formula says that the homology is given
as the homology of the subquotient complex of CFK>°(S3(Ts3), 1) generated by chains
whose Z @ Z-filtration values satisfy the constraint min(é, j) = 0. Of the three possibil-
ities for @(S%(TZ:}), 1), all but the case of the left-handed trefoil (shifted down in
grading by 2) have the property that the relevant subquotient complex has homology of
rank 3. Indeed, —1-surgery on the right-handed trefoil or figure-eight knots have Floer
homology of rank 3. In the case that the middle group of knot Floer homology has rank 3
but is not supported in a single grading, the fact that 9> = 0 on CF K> implies the two
arrows in the subquotient complex must have the same head. This, in turn, forces the
homology of the subquotient to have rank 3. The stated structure of CF K> (S3(Ts3), i)
now follows.

By (1)), the Kiinneth formula (£.1)) becomes
(4.2) CFK>®(S}(Ty3), i) =2 CFK™(Ty,_3)[-2] ® CFK* (Ts45-1).

For brevity, we say two chain complexes Cy and C; are stably filtered chain homotopy
equivalent (denoted by Cy ~ Cq) if Cy @ Ay is filtered chain homotopy equivalent to
Cy @ A; for some acyclic chain complexes Ay and A;. By [HKLI16al, Theorem B.1],

CFKOO(TQA;C,l) ~ CFKOO(TQ’;),) 4 CFKOO(TQA}C,;;).

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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By [Homl17, Proposition 3.11],
CFK™(T5_3) @ CFK*® (T 3) = CFK*™(Ty _3#T53) ~ CFK>(U)

since Ty _3#T5 3 is slice. Hence CFK*® (T3 _3) @ CFK*® (T3 4p—1) ~ CFK> (T3 45,_3).
It follows that the right hand side of (4.2)) is stably filtered chain homotopy equivalent
to CFK® (T3 4—3)[—2], and we obtain the desired conclusion. O

Now we prove Theorem which states that dy 2(My) = —2k + § and d_; o(My) =
—Sifk>1.
2 i

Proof of Theorem[{.1] Recall that M}, is obtained from S} (75 3) by surgery on Jj along
its Seifert framing. In Section 6.2 of [HKL16a] it is shown that the d-invariants of large
surgery on knots with stably filtered homotopy equivalent complexes agree. Indeed,
[HKLI6al Proposition 6.5] shows that direct summing an acyclic complex to a given one
has no effect on the d-invariants one derives from it. The d-invariants of large surgery
on a knot are equivalent to the V; invariants, hence we obtain

dijo(My) = di/2(S5(Toan-3)) — 2 = —2 — 2Vy(To,an—3),
d_1/2(My) = d_19(S5(Toan-3)) — 2 = —2 + 2Vo (T, —a43).
by Proposition 4.2|(2) and Theorem u Strictly speaking, Theorem pertains only to
surgery on knots in S2, but the proof easily yields a corresponding formula for surgery on
knots in an integral homology sphere L-space; in these cases, the correction terms inherit
an overall shift by the d-invariant of the ambient manifold (here, —2). Since k > 1,
Vo(Tzar-3) =k — 1,
Vo(Ta,—ar43) =0

(for example, see [BN13| Theorem 1.6]). This completes the proof. O

5. Correction terms of Seifert manifolds

In this section we provide some general constraints on the correction terms of a Seifert
fibered homology S' x S2. More precisely, we show d_1/2(M) > f% and dy o(M) < %
for any Seifert fibered homology S x S2. It follows at once that none of our manifolds
are homology cobordant to a Seifert fibered space. We also see that the zero surgery
obstruction can say nothing about Seifert manifolds.

Our estimates hinge on the following proposition, which was pointed out to us by
Marco Golla. (Compare [NR78, Theorem 5.2].)

Proposition 5.1. Suppose M is a Seifert fibered homology S* x S?. Then both M and
—M bound negative semi-definite, plumbed 4-manifolds.

Proof. Choose an orientation and a Seifert fibered structure of M. As an oriented man-
ifold, M is homeomorphic to M(e;ry,...,r,) in Figure [4f where e is an integer, and each
r; 18 a non-zero rational number. We change the Seifert invariant (e;ry,...,r,) via the
following two steps.

(1) If r; is an integer, remove r; from the tuple (e;r1,...,7r,) and add r; to e.

(2) For each i, replace r; and e by r; — |r;| and e + |r;|, respectively.
Note that the above procedures are realized by slam-dunk moves, so the homeomorphism
type remains unchanged. For brevity, we still denote the resulting Seifert invariant of M
by (e;r1,...,7n), so that each rational number r; satisfies 0 < r; < 1. Since 0 < r; < 1,
we can write —T%_ as a negative continued fraction [a;1, ..., a;;,] where a;; < —2 for all
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i and j. Then M bounds a star-shaped plumbed 4-manifold Xt whose corresponding
plumbing graph is I' depicted in Figure

Since a;; < —2 for all 7 and j, it is easy to check that Q) x. is negative semi-definite.
(Since Xt = M is a homology S* x §? and T is a tree, Qx, has determinant 0.) O

Remark 5.2. The plumbed 4-manifold X constructed in the proof of Proposition [5.1
is called the normal form of M. (Note that Xt depends only on the choice of orientation
of M.) What we have shown in Proposition is that the normal forms of M and —M
are negative semi-definite plumbings. (Compare [NRT8, Theorem 5.2] where it is shown
that one normal form of a Seifert fibered rational homology sphere is a negative-definite
plumbing.)

We recall a special case of [LR14] Corollary 4.8]. (Note that if M is a closed, oriented
3-manifold with H;(M) = Z, then M has standard HF*, and d_;/5(M) is equal to
d(M,sg, Hi(M)) with the notation of [LR14, Corollary 4.8].) We remark that this special
case essentially follows from [OS03, Theorem 9.11] and Elkies’ theorem [EIk95].

Proposition 5.3 ([LRI14, Corollary 4.8]). Let M be a closed, oriented 3-manifold with
first homology 7Z. Suppose that M bounds a negative semi-definite, simply connected

4-manifold X. Then d_q/5(M) > —1.

Theorem 5.4. Suppose M is homology cobordant to a Seifert fibered homology S* x S2.
Then d_l/Q(M) > —% and dl/Q(M) < %

Proof. Since d_; /5 and d; /5 are homology cobordism invariants, we can assume that M is
a Seifert fibered homology S! x S2. By Proposition both M and —M bound negative
semi-definite, plumbed 4-manifolds. Since plumbed 4-manifolds are simply connected,
we can apply Proposition?to conclude that d_; /o(M) > —%, and d_y/o(—M) > —%.
Since d_y/2(=M) = —dy/2(M), the desired conclusion follows. O

Proof of Theorem[4] From the surgery diagram of M, in Figure[T] it is easy to compute
that Hy (M) = Z. By Proposition My, is a splice of non-trivial knot complements
which, by Propositions and implies that Mj, is irreducible and has weight 1
fundamental group. Ozsvath and Szabd’s obstruction, Theorem [3.1} combined with our
calculation of the correction terms, Theorem [£.1] shows that M}, is not the result of Dehn
surgery on a knot in S2. Since d; /2 is a homology cobordism invariant, M}, and M; are
not homology cobordant if k # [ by Theorem [{.1] Finally, Theorems [4.1] and [5.4] show
that Mj is not homology cobordant to any Seifert fibered 3-manifold. This completes
the proof. O

O—o—9

T1 T2 Tk

FIGURE 4. A Seifert fibered 3-manifold M (e;r, ..., 7).
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a12 an2
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5T ./ \. ank,

A2k, l

FIGURE 5. A plumbing graph T'.

6. Rohlin invariant and another surgery obstruction

While the Heegaard Floer correction terms provide an obstruction for a 3-manifold to
arise as O-surgery on a knot in S, we see by comparing Theoremwith the zero-surgery
obstruction of Section [3| that they cannot show a Seifert manifold is not 0-surgery on a
knot (one could view the zero-surgery obstruction and the Seifert constraint Theorem 5.4
as arising from the same observation, that in both cases the 3-manifold in question bounds
negative semi-definite with both orientations). In this section we observe that the classical
Rohlin invariant can obstruct a homology S* x S? from having surgery number 1, and
we will see that this obstruction can be effective in the Seifert case.

Recall that if (Y, s) is a spin 3-manifold, the Rohlin invariant (Y, s) € Q/2Z is defined
to equal %a(X ) modulo 2, where X is a compact 4-manifold with 9X =Y that admits
a spin structure extending s. If Y is a homology sphere then Y admits a unique spin
structure, and since a spin 4-manifold with boundary Y has signature divisible by 8, we
have u(Y) € Z/2Z. 1f Y, has the homology of S* x S? then Yj has two spin structures,
and hence two Rohlin invariants (each also with values in Z/2Z).

Lemma 6.1. Let Y be an integral homology sphere and K C'Y a knot; write Yo(K) for
the result of 0-framed surgery along K. Then the Rohlin invariants of Yo(K) are equal
to n(Yo(K),80) = p(Y) and pu(Yo(K),81) = p(Y) + Arf(K).

Proof. Let X be a spin 4-manifold with boundary Y. The obvious 0-framed 2-handle
cobordism W from Y to Yy(K) carries a (unique) spin structure, and if s is the
spin structure on Yp(K) induced by the one on the cobordism, then X Uy W is a
spin 4-manifold with spin boundary (Yy(K),so) and the same signature as X. Hence

It is not hard to see that the other spin structure on Yy (K) is spin cobordant (by a 0-
framed surgery cobordism) to the unique spin structure on Y3 (K), the result of 1-framed
surgery on K (see, for example, Section 5.7 of [GS99]). The same argument as above
implies p(Yo(K),51) = pu(Y1(K)). On the other hand, the surgery formula for the Rohlin
invariant (as in [Sav02, Theorem 2.10]) implies (Y1 (K)) = u(Y) + Arf(K). O

One could also phrase the lemma as the statement that the Rohlin invariants of Y, (K)
are equal to u(Y) and p(Y;(K)). Since p(S?) = 0, we infer:

Corollary 6.2. IfY} is a 3-manifold obtained by 0-framed surgery on a knot in S3, then
at least one of the Rohlin invariants of Yy vanishes. The other Rohlin invariant is equal
to the Arf invariant of any knot K C S® such that Yo = S3(K).

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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Corollary 6.3. If an integral homology S' x S? has two nontrivial Rohlin invariants,
then it is not obtained by surgery on a knot in S3.

7. Properties of the manifolds N,

In this section, we discuss the manifolds Ny given by the surgery diagrams of Figure

Proposition 7.1. For any positive integer k, Ny is an irreducible Seifert fibered 3-
manifold.

Proof. We can see a Seifert fibered structure of Nj from the sequence of Kirby moves
depicted in Figure []] We remark that a similar sequence of Kirby moves is given in
Lemma 2.1 of [LS07]. By Figure@, N}, admits a Seifert fibering N}, — S2. Note that the
slopes r; of the exceptional fibers are %, ﬁ and %, respectively. It is known that
any orientable, reducible Seifert fibered 3-manifold is homeomorphic to either S x S2
or RP3#RP? (for example, see [Jac80, Lemma VI.7]). Since H;(N.) = Z, N}, is not
homeomorphic to RP3#RP3. By the homeomorphism classification of Seifert fibered 3-
manifolds [Sei33], we can conclude that Ny, is not homeomorphic to S! x S2, and hence
N}, is irreducible. O

Proposition 7.2. The weight of w1(Ny) is one for any positive integer k.

Proof. We observed above that Nj is a Seifert fibered 3-manifold with 3 exceptional
fibers whose slopes are %, s~ and 3. Therefore we have a presentation of 71 (Ny)
as follows (compare [Jac80, page 91)):

m1(Ng) 22 (@1, 22,23, h | x}ﬁk*Q = h8k737x§k71 = h,x§ = h,z12923 = h, [h,2;] = 1)

1
> (zq, 29, h | xiﬁk_Z = hgk*g,xgk_l = h,h = z122m122, [h, 21] = [h,22) = 1)

16k—2 _  (8k—1)(8k—3) 8k—1 8k—1
1 = Ty » Lo

2
= (z12,)%, [25" 2] = 1).

In the second equality, we cancel the generator x3 with the relation z, = x5 1m1_1h. Note
that the relation 2 = h is equivalent to the relation x5 2] hay 'z h = h, and hence
to the relation h = zi1zox122. In the last equality, we cancel the generator h and the
relation h = 5" 1.

Let ((z3*7227")) be the normal subgroup of 71(Ny) generated by z3° 227!, Then

2 _ ~ — 8k—1)(8k—3 — -
w1 (N /(a2 h)) = (2, @y | 210072 = 2PV 81 = (g 00)2 0y = 2BF72)

<x2 ‘ xé8k_1)(8k_4) _ IéSk—l)(Sk—3),ng_1 _ scgk_2>

= <$1,SC2 ‘ T

1%

1%

(s | xé8k—1)(8k—4) _ IéSk—l)(Sk—3),z2 T

Hence, the weight of w1 (Ng) is 1. O

Since Ny is Seifert, the correction terms do not provide information on the surgery
number of Ny; instead we apply the obstruction of Corollary of the previous section.
To do so we must calculate the Rohlin invariants of the two spin structures on Ni. One
way to make this calculation, along the lines of the previous section, is to observe that
N} can be realized as the result of nullhomologous surgery on the singular Seifert fiber
of order 4k — 1 in the Brieskorn homology sphere (2, 4k — 1,8k — 1), which has Rohlin
invariant equal to & modulo 2. Performing surgery on that fiber with framing +1 gives
another plumbed 3-manifold whose Rohlin invariant is also k& modulo 2, and these two
calculations give the desired invariants for Ny by the remark after Lemma [6.1]

Alternatively, one can proceed directly from the final diagram in Figure [6] using the
algorithm in [NRTS8| Section 6] (see also [Neu80, Section 4] for the case with nonzero

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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(4k — 1) positive crossings

@@mfﬂw

74

slam dunk
' 21{: -1

XR2k-1
C 2
handle slide
l —8k+3 —8k+3
—4

A)y

2k -1 2k -1
k_)
blow-ups 1 \/
—8k+3 0 —4 -8k +1 -

Ae slide
—8k + IQ -2 —4
-2

FIGURE 6. A Seifert fibered structure of Ny.

first homology), as follows. If P; denotes the plumbed 4-manifold described by the last
diagram of Figure @, we can find exactly two homology classes v1,vs € Ho(Py;Z/2), rep-
resented by embedded spheres or a disjoint union thereof, satisfying v;.2 = x.z (mod 2)
for each homology class z. (Here the dot indicates the intersection product.) These
“spherical Wu classes” give the Rohlin invariants of the two spin structures on Nj by
the formula pu(Ny,s;) = §(0(Px) — v5.v;) (mod 2), where o(P) is the signature of the
intersection form on Py.

The two Wu classes on Py are given by letting v; be the sum of the spheres represented
by the circles with framings —8k + 1 and —4, and taking v5 as the sum of the —8k + 1
sphere with the two —2 spheres. It is straightforward to check that Py has b™(Py) = 1
and hence o(P;) = —3, while v;.1y = 5.9 = —8k — 3. Hence the Rohlin invariants
(N, s;) are both equal to k (mod 2), and we conclude:
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Theorem 7.3. For any odd integer k > 1, the manifold Ny is a Seifert fibered integral
homology S* x S? that cannot be obtained by surgery on a knot in S3.

Moreover, since the Rohlin invariant is unchanged under integral homology cobordism,
we have that when k is odd, no Ny, is homology cobordant to a 3-manifold with DS(Y) =
1. This concludes the proof of Theorem [C]

(4k — 1) positive crossings

. DJ
)@

@)N

—8k+5

—8k+5

QC-Q

2k —1 —8k+5

2k—1 =2 -1 )

SASSA1
QJCJ) CJ)Q

-2 -2

FIGURE 7. A plumbing diagram of Mj.
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Remark 7.4. It is interesting to see if the obstruction from Corollary[6.3] can be applied
to the manifolds My (k > 1) in Figure [l} One can compute Rohlin invariants of M} by
using a plumbing description of the manifold given in Figure[7} (Since the computation
is similar to the above, we leave this to the reader.) When k is odd, the Rohlin invariants
of Mj, are both non-trivial, and hence this also obstruct M}, from being Dehn surgery on
a knot in S3. On the other hand, when k is even, one Rohlin invariant of Mj, is trivial,
so the obstruction from Corollary is ineffective in this case.

As noted in the introduction, the manifold N; is the example from Ozsvath and
Szabé [OS03, Section 10.2], where the case k = 1 of Theorem [7.3| was claimed based on
an argument using the Heegaard Floer correction terms. As we have seen, the correction
terms do not provide an obstruction to DS = 1 in the case of Seifert manifolds. Here
we revisit the calculation of diq,5(N1) from [OS03], which relies on the surgery exact
triangle and some understanding of the maps therein. In particular, they fit the Floer
homology of N in an exact triangle between two lens spaces, L(49, 40) and L(49, 44), and
identify a spin structure on the 2-handle cobordism between L(49,40) and N;. The map
on Floer homology associated to this spin structure, which is summed along with those
associated to the other spin® structures, induces an isomorphism between submodules
of HF*> isomorphic to F[U,U~1]. Tt follows that that the “tower” in HF™T of the spin
structure on L(49, 40) surjects onto the tower of HFT(Ny) relevant to d_; 5. From this,
and the grading shift by —% for the map induced by the spin structure, one concludes
an inequality

d_1/2(N1) > d(L(49,40),50) — 5 = —3.

Here d(L(49,40),s) is the correction term for the spin structure, which is easily seen to
be —2. This inequality is opposite to the one inferred by Ozsvath and Szabd. A rather
detailed examination of the exact triangle shows that the bottommost element of the
tower associated to the spin structure lies in the kernel of the sum of the cobordism maps
involved in the exact triangle (which is, of course, the only way for d_j (N1) > —3).

We conclude with an alternate proof that d_;/5(Ny) > —3 and dy/2(Ni) < 3. First
recall a result of Ozsvath and Szabé.

Proposition 7.5 ([OS03, Corollary 9.14]). Suppose that K is a knot in a homology
3-sphere Y. Let Yy be the result of Dehn surgery along K wvia its Seifert framing. Then

dija(Yo) = § S d(Y) < d_1/2(Yo) + 3.

(4k — 1) positive crossings

ED)

FIGURE 8. A knot K in Sil(T2,4k—1)~

Proposition 7.6. For any positive integer k, d_1/2(Nig) > —3 and dy5(Ny,) < 3.
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Proof. Consider the knot K C S%, (T 4x—1) which is depicted in Figure[S| By a surgery
formula given in [NWTH], d(S3 (T2 4x—1)) = 2Vo(Ts,—ak+1) = 0 since k > 1. Then Ny is
the result of Dehn surgery along the knot K C S3,(Ts 4x—1) via its Seifert framing. By
Theorem [7.5] we have

dij2(Nk) — 3 <0< d_1/2(Ng) + 3
for any positive integer k. This completes the proof. O
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