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Abstract

Given an L–space knot we show that its ϒ function is the Legendre transform of a count-
ing function equivalent to the d–invariants of its large surgeries. The unknotting obstruction
obtained for the ϒ function is, in the case of L–space knots, contained in the d–invariants
of large surgeries. Generalisations apply for connected sums of L–space knots, which im-
ply that the slice obstruction provided by ϒ on the subgroup of concordance generated by
L–space knots is no finer than that provided by the d–invariants.

1. Introduction

In this paper we compare two useful invariants of the smooth concordance group coming
from Heegaard Floer homology. The first is the ϒ(t) function recently defined by Ozsváth–
Stipsicz–Szabó [25], and the other is the set of d–invariants of 3-manifolds obtained by large
surgery on a knot. The latter can be encoded in a function, denoted J (x), determined by the
knot Floer homology invariants. For L–space knots both invariants are determined by the
Alexander polynomial, and this link leads to the following precise relationship:

THEOREM 1·1. For L–space knots ϒ(t) is the Legendre transform of the function
2J (−x).

Here and throughout, an L–space knot is a knot on which positive framed surgery yields
an L–space. The result extends to connected sums of L–space knots, yielding the following
corollary:

COROLLARY 1·2. Let L denote the subgroup of the smooth concordance group generated
by L–space knots. Suppose ϒα(t) � 0 for some α ∈ L. Then the d–invariants of surgeries
can be used to show α � 0.
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402 MACIEJ BORODZIK AND MATTHEW HEDDEN

To make sense of the corollary and see how it follows from a version of Theorem 1·1 for
connected sums of L–space knots, assume that a class α ∈ L has non-zero ϒ . By definition,
there exist knots K1 and K2, each a sum of L–space knots, such that [K1# − K2] = α. As
ϒα � 0, we have ϒK1 �ϒK2 , so by Theorem 1·1 the J–functions for K1 and K2 must differ.
Therefore, in L, the sliceness obstruction from the ϒ function is always subsumed by the
criterion for d–invariants of large surgeries.

The subgroup L itself is quite interesting. In particular, it contains the subgroup A gen-
erated by algebraic knots, i.e. connected links of complex singularities, which lies at the
crossroads of many interesting areas of mathematics [7, 14, 18, 20, 21, 33]. In this context,
the J function arises naturally as a counting function associated to the semigroup of the sin-
gularity defining an algebraic knot. It is conjectured that A, and L more generally, is freely
generated [4, 14, 33] and it would be interesting to know whether the d–invariants provide
strictly more information about this conjecture than ϒ . It is known that neither can solve it;
for example, the knots T (2, 13)#T (2, 3; 2, 15) and T (2, 15)#T (2, 3; 2, 13) have the same J
functions and the same ϒ functions, but in [14] it is shown that they are not concordant.

In a related direction, one can compare criteria derived from ϒ and J for estimating
the Gordian distance between knots. For Gordian distance between L–space knots, the d–
invariants do indeed contain more information.

THEOREM 1·3. Suppose K0 and K1 are connected sums of L–space knots related by
a sequence of crossing changes. Then the crossing change inequality satisfied by their ϒ

functions is determined (under the Legendre transform) by a crossing change inequality for
their J functions, but not conversely.

See (6·1) and (6·2) below for the precise statement of the crossing change inequalities. We
highlight our interest in the above theorem by noting again that algebraic knots, and torus
knots in particular, are L–space knots. The minimal unknotting sequences of torus knots
have recently attracted a lot of interest; see for example [1, 2, 9, 23, 35]. The Gordian dis-
tance between algebraic knots is closely related to studying adjacency of singularities; see
[6, 8].

It is important to note that Theorem 1·1 does not extend to all knots. Indeed, the Legendre
transform of a real-valued function is always convex, whereas ϒ(t) is typically not. For
instance, the mirror image of an L–space knot will have concave ϒ(t) function, since taking
mirror images changes the sign of ϒ(t). On the other hand, its J–function will be exactly
the same as that of the unknot, with Legendre transform identically zero. It is then natural to
ask in what capacity Theorem 1·1 and its corollaries extend.

Question 1·4. For which knots is ϒ(t) a convex function? For which such knots is ϒ(t)
the Legendre transform of 2J (−x)?

From a geometric perspective, a natural extension of the set of L–space knots are the
so-called strongly quasipositive knots, distinguished by the fact that they possess a minimal
genus Seifert surface properly isotopic to a piece of an algebraic curve in the 4–ball. Fibered
strongly quasipositive knots are detected by their knot Floer homology [13], and it would be
very interesting to know if ϒ provides further information about this feature. For instance:

Question 1·5. Suppose K is a strongly quasipositive knot or, more generally, a quasipos-
itive knot. Is ϒK (t) convex?
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The ϒ function of L–space knots 403

Remark 1·6. Peter Feller and David Krcatovich, and independently Jen Hom, informed
us of examples which indicate that the answer to the above question is no. Feller and Kr-
catovich’s examples come from closures of the family of 3–braids (σ1σ

2
2 σ1)

nσ1σ2, for n � 3,
and Hom’s example is the (2, 1) cable of the right-handed trefoil (see [10] for an explanation
of the former examples and [12, 16, 29] for calculations of the knot Floer homology of the
latter, from which ϒ can be readily extracted).

Finally, it would be interesting to know if there is some generalisation of Theorem 1·1
which holds for all knots. Such a generalisation would likely incorporate the d–invariant
counting function for negative-framed surgeries.

2. Review of the Legendre transform

We give some necessary background on Legendre transform of functions in one variable.
We refer to [32, section 12] for more details.

Definition 2·1. Let f : R → R be a continuous function. The Legendre transform of f is
a function f ∗ : R → R � {∞} defined as

f ∗(t) = sup
x∈R

t x − f (x).

The domain of f ∗ is the set D( f ∗) = {t : f ∗(t) < ∞}.

Remark 2·2.

(a) Although in many articles the Legendre transform is defined only for convex functions,
Definition 2·1 does not require f to be convex.

(b) The Legendre transform is also known as the Fenchel–Legendre transform or the convex
conjugate.

(c) One can consider the concave conjugate by replacing the supremum in Definition 2·1
with infimum. This would likely be relevant to any generalisation of the results of this
note to arbitrary knots.

LEMMA 2·3. The function f ∗ is a convex function.

Proof. For fixed x , the function t �→ t x − f (x) is a convex function. A supremum of a
family of convex functions is convex.

Notice that this implies that f ∗ is a continuous function on D( f ∗).

Remark 2·4. If f is a strictly convex function, then ( f ∗)∗ = f ; see [32, theorem 12·2].
This is not always true, for example, if f is not convex, then ( f ∗)∗ is a convex function, so
cannot be equal to f .

For any function h : R → R and a number y we define the shifted function Tyh : R → R

by the formula

Tyh(x) = h(x + y). (2·1)

We have:

(Tyh)∗(t) = h∗ − yt. (2·2)
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404 MACIEJ BORODZIK AND MATTHEW HEDDEN

To prove this, write

(Tyh)∗(t) = sup
x∈R

t x − h(x + y)
z=x+y= sup

z∈R

(z − y)t − h(z) = h∗(t) − yt.

We will also need the following easy result.

LEMMA 2·5. Suppose f and h are two continuous functions satisfying f (x) � h(x) for
all x ∈ R. Then f ∗(t) � h∗(t) for all t ∈ R.

Suppose now that f and g are two functions bounded from below. Define the infimum
convolution as

f � g(m) = inf
i+ j=m

f (i) + g( j). (2·3)

The above definition works for functions on any group G. We will use it over R or Z. The
following fact relates the convolution to the Legendre transform.

LEMMA 2·6. For two functions f and g we have

( f � g)∗(t) = f ∗(t) + g∗(t),

for all t such that both sides are defined.

Proof. We have

( f � g)∗(t) = sup
x

t x − ( f � g)(x) = sup
x

t x − (inf
u+v=x

f (u) + g(v))

= sup
x

sup
u+v=x

t x − f (u) − g(v)

= sup
u

sup
v

tu + tv − f (u) − g(v) = f ∗(t) + g∗(t).

3. The ϒ function for a knot K

To a knot K in the 3-sphere, knot Floer homology associates a Z ⊕ Z– filtered, Z–graded
complex over Z2, denoted CFK∞(K ), well-defined up to Z ⊕ Z–filtered chain homotopy
equivalence [24, 30]. It is a module over Z2[U, U−1], where U is a formal variable whose
action lowers the grading by 2 and the filtration by (1, 1). In [25] (see also [19]), this complex
was used to define a function ϒK : [0, 2] → R associated to K . It is a generalisation of the
τ invariant, in the sense that ϒ ′(0) = −τ . Here we summarise its main properties:

THEOREM 3·1 (see [25, proposition 1·8, proposition 1·10, theorem 1·11]). For
t ∈ [0, 2], ϒ(t) is a continuous, piecewise linear, function with the following properties:
(a) (symmetry) ϒ(t) = ϒ(2 − t);
(b) (additivity) If K1#K2 denotes the connected sum of knots K1 and K2, then

ϒK1#K2 = ϒK1 + ϒK2;
(c) (crossing change inequality) If K− is obtained from K+ by changing a positive crossing,

then

ϒK+(t) � ϒK−(t) � ϒK+(t) + t;
(d) (slice genus bound) If gs denotes the smooth slice genus, then for any t we have

|ϒK (t)| � tgs(K );
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The ϒ function of L–space knots 405

(e) (mirror reversal) If −K denotes the mirror image of K , with string orientation reversed,
then

ϒ−K = −ϒK .

Note that (b) and (d) together imply that ϒ descends to a homomorphism from the smooth
concordance group to the additive group of continuous real valued functions on the interval
[0, 2]. Also note that (e) is implied by (b) and (d), since −K is the concordance inverse
of K .

4. The J -function for an L–space knot

Suppose K is an L–space knot. By [26] the Alexander polynomial of K is of the following
form:

�K (t) =
2n∑

k=0

(−1)k tαk , (4·1)

for some decreasing sequence of integers α0, . . . , α2n , where α0 = −α2n = g is the genus
of K . Moreover, for an L–space knot the Alexander polynomial determines the complex
CFK∞(K ) which, in turn, determines the d–invariants of surgeries on K [22, 24]. This
procedure is described in detail in [5]. Namely, write (4·1) in the following form:

�K (t) = t−g
(
1 + (t − 1)

(
tβ1 + tβ2 + · · · + tβs

))
.

The numbers β1, . . . , βs are positive integers, which can be expressed in terms of the α

coefficients. Consider the set

G = Z<0 � {β1, . . . , βs}
and define

I (m) = #{x ∈ Z : x � m, x ∈ G}.
We call I (m) the gap function for the knot K . If K is an algebraic knot, then Z \ G is
the semigroup of the corresponding singular point; see [34, Chapter 4] for details. This
motivates the terminology: G \ Z<0 is the set of ‘gaps’ in the semigroup of the singularity
i.e. the elements of Z�0 not included in the semigroup. The gap function counts the number
of such elements greater than or equal to a fixed integer.

Example 4·1. The torus knot T (6, 7) is the link of the singularity at the origin of the curve
z6 + w7 = 0, which has semigroup generated by 6 and 7. The corresponding gap set is

G6,7 = Z<0 � {1, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 22, 23, 29}.
Some sample values of the gap function are given below:

m � 30 29 28 23 22 21 17 16 15 1 0 −1 −2 ...
I6,7(m) 0 1 2 3 3 4 4 5 6 15 15 16 17 ...

Similarly, T (4, 9) is the link of a singularity with semigroup generated by 4 and 9, whose
gap set and gap function are as follows

G4,9 = Z<0 � {1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 19, 23}
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406 MACIEJ BORODZIK AND MATTHEW HEDDEN

m � 24 23 19 18 16 15 14 11 10 1 0 −1 −2 ...
I4,9(m) 0 1 2 2 2 3 4 5 6 12 12 13 14 ...

The gap function is quite natural from the point of view of singularity theory. From the
perspective of Heegaard Floer theory, however, it is more natural to consider the shifted gap
function, which for an L–space knot we define as follows:

J (m) = I (m + g).

Motivation for the shift is provided by the the following synthesis of several results of Szabó
and Ozsváth [24, 26].

PROPOSITION 4·2 (see [5, proposition 4·4]). Let K be an L–space knot, and let q �
2g(K ) − 1. Then for a particular enumeration of Spinc structures sm by elements m ∈
[−q/2, q/2) � Z, the d–invariants of q–surgery on K are given by:

d(S3
q(K ), sm) = (q − 2m)2 − q

4q
− 2J (m). (4·2)

While the definition of J above makes sense only for an L–space knot, the proposition
motivates the following extension to arbitrary knots.

Definition 4·3. For a general knot K , define JK (m) to be the unique integer making (4·2)
true.

Remark 4·4. With the above definition, J (m) is easily identified with the function Vm

from [22, section 2·2].

Turning back to L–space knots, the following describes their ϒ functions.

PROPOSITION 4·5 ([25, theorem 1·15]). Let K be an L–space knot, and αi as in (4·1).
Define the sequence mk inductively by

m0 = 0

m2 j = m2 j−1 − 1

m2 j+1 = m2 j − 2(α2 j − α2 j+1) + 1.

Then

ϒK (t) = max
0�i�n

m2i − tα2i .

Proposition 4·5 can be reformulated in the following way.

PROPOSITION 4·6. For an L–space knot K , the ϒ function is given by

ϒK (t) = − min
0�i�n

tα2i + 2J (α2i). (4·3)

Proof. It is enough to show that m2i = −2J (α2i). To see this we write

m2i = 2(α1 − α0) + 2(α3 − α2) + · · · + 2(α2i−1 − α2i−2).

On the other hand, by the definition of J , the difference J (k + 1) − J (k) is equal to 0 if
k ∈ [α2 j , α2 j−1) for some j ; and is equal −1 if k ∈ [α2 j+1, α2 j ) for some j . In particular
J (α2 j−1) − J (α2 j ) = 0 and J (α2 j ) − J (α2 j+1) = α2 j+1 − α2 j . Moreover J (α0) = 0 by the
definition. Therefore an easy induction yields:

−J (α2 j ) = (α1 − α0) + (α3 − α2) + · · · + (α2 j−1 − α2 j−2).
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The ϒ function of L–space knots 407

We can rephrase Proposition 4·6 in yet another manner. Extend J to a piecewise linear
function over R. That is, if for k ∈ Z we have J (k) = J (k + 1), then set J |[k,k+1] ≡ J (k). If
J (k + 1) = J (k)− 1, set for x ∈ [0, 1] J (k + x) = J (k)− x . With this definition, we arrive
at Theorem 1·1 from the introduction.

THEOREM 4·7. For an L–space knot, the ϒ function is given by

ϒ(t) = max
x∈R

t x − 2J (−x). (4·4)

Thus ϒ(t) is the Legendre transform of the function x �→ 2J (−x).

Proof. Notice that

− min
x∈R

t x + 2J (x) = max
−x∈R

t x − 2J (−x).

Therefore to prove the theorem it suffices to show that, for a fixed t , the minimum of the
expression

J̃ (x) := t x + 2J (x)

is attained at x = α2 j , for some j . We do this in the following steps. In (a)-(d) we assume
that x is an integer.

(a) Suppose x ∈ [α2 j+1, α2 j ]. Then J (x) = J (α2 j )+(α2 j −x); see proof of Proposition 4·6.
Thus J̃ (x) − J̃ (α2 j ) = (2 − t)(α2 j − x) � 0.

(b) If x ∈ [α2 j , α2 j−1], then J (x) = J (α2 j ). It follows that J̃ (x)− J̃ (α2 j ) = t (x−α2 j ) � 0.
(c) If x � g = α0, then J (x) = 0, hence J̃ (x) = t x � tg = J̃ (g).
(d) If x � −g = α2n , then J (x) = J (−g) + (−g − x), so J̃ (x) � J̃ (−g).
(e) On any interval [y, y + 1] where y ∈ Z, the function J̃ is linear, so it cannot attain

its minimum in the interior. It follows that the minimum of J̃ is attained at an integer
point.

Remark 4·8. We notice that the assumption that t ∈ [0, 2] is effectively used in steps (a)
and (b) of the above proof.

As mentioned in the introduction, it is natural to wonder whether Theorem 4·7 holds for
other classes of knots, where we define the J function by (4·2). We again stress that it cannot
hold for every knot since the Legendre transform is a convex function; see Lemma 2·3.

5. Connected sums of L–space knots

In this section we extend Theorem 1·1 to connected sums of L–space knots. The following
result determines the J–function in this context.

PROPOSITION 5·1 (see [5, proposition 5·6]). Let K be a connected sum of L–space
knots, K1, . . . , Kn, and let Ji be the J–function of Ki . Then the J–function of K (see Defin-
ition 4·3) is given by:

J = J1 � J2 � . . . � Jn,

where � is the infimum convolution defined in (2·3).

We have the following generalisation of Theorem 4·7.

THEOREM 5·2. If K is a connected sum of L–space knots, then the ϒ function for K is
the Legendre transform of x �→ 2J (−x).
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408 MACIEJ BORODZIK AND MATTHEW HEDDEN

Proof. According to Lemma 2·6, the Legendre transform maps infimum convolutions to
sums. This, together with additivity of ϒ under connected sums implies the result.

Corollary 1·2 follows readily.

Proof of Corollary 1·2. Let α be a smooth concordance class in the subgroup L generated
by L–space knots, so that α can be represented as

α =
n∑

i=1

[Ki ] −
m∑

l=1

[Pl]

where each of the Ki and Pl are L–space knots. Suppose that the J functions for K =
K1#...#Kn and P = P1#...#Pm agree. By Theorem 5·2 we obtain

ϒK = ϒP ,

which implies ϒα = ϒK − ϒP = 0. Thus, if ϒα � 0, then the J functions for K and P are
not equal, which shows that K and P are not concordant. Hence α � 0 ∈ L.

6. Crossing changes

In this section we establish an inequality for the J functions of knots related by a crossing
change. When both knots are L–space knots, we recover the crossing change inequality sat-
isfied by their ϒ functions (Theorem 3·1(c) ) by taking the Legendre transform and applying
Theorem 1·1. This implies that the information about Gordian distance between L–space
knots contained in J is at least as strong as that coming from ϒ . We then show, by way of
an example, that the obstruction from J is strictly better.

THEOREM 6·1. Suppose K+ and K− are arbitrary knots such that K− can be obtained
from K+ by changing a positive crossing. Then for any m ∈ Z

JK+(m + 1) � JK−(m) � JK+(m).

Proof. We focus primarily on the second inequality

JK−(m) � JK+(m).

Let S3
q(K+) be the manifold obtained by q–framed surgery on K+ with q large and

odd. Let W denote the 4–manifold obtained by attaching a (−1)–framed 2-handle to
S3

q(K+) × [0, 1] along an unknotted curve in S3
q(K+) × {1} which links the crossing strands

geometrically two, but algebraically zero, times (here, when we say “unknotted”, we mean
when viewed as a curve in S3). The oriented boundary of W is −S3

q(K+) � S3
q(K−). One

easily calculates H 2(W ) � H2(W, ∂) � Z/q〈Z〉 ⊕ Z〈E〉, where Z = [μ × [0, 1]] is an
oriented meridian of K+ crossed with the interval and E is the cocore of the two-handle.

For any m ∈ (−q/2, q/2) � Z we let tm be the unique Spinc structure on W whose
first Chern class is 2m Z + E (uniqueness is a consequence of q being odd). We claim it
restricts to the Spinc structures on S3

q(K+) and S3
q(K−) denoted sm in the convention of [24,

section 4]. Indeed, the Spinc structure sm is defined by the property that it extends over the
2–handle cobordism from S3 to S3

q(K ) to a Spinc structure whose Chern class is 2m − q
times the Lefschetz dual of the cocore of the 2–handle. Since the boundary of the cocore is
μK , it follows that the Chern class of sm is Poincaré dual to 2m[μ] ∈ H1(S3

q(Ki); Z), where
i ∈ {+, −}. Our claim about tm ∈Spinc(W ) follows at once.
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The ϒ function of L–space knots 409

We now observe that the rational self–intersection of 2m Z + E is −1 and does not depend
on m. Since W is negative definite, results of Ozsváth and Szabó (see [27, proofs of theorem
9·1 and proposition 9·9]) yield the inequality

d(S3
q(K−), sm) − d(S3

q(K+), sm) � c2
1(tm) − 3σ(W ) − 2χ(W )

4
= −1 + 3 − 2

4
.

This inequality, in view of Definition 4·3 translates into JK+(m) � JK−(m).
An analogous argument establishes the first inequality. For this consider the 4–manifold

obtained by attaching a (−1)–framed 2–handle to S3
q(K−) × [0, 1] along an unknot which

links the crossing strands geometrically and algebraically twice. This is a negative definite
4–manifold with boundary −S3

q(K−) � S3
q+4(K+), and we can apply the above inequality.

However, the analysis of the restriction of Spinc structures to the boundary is more subtle,
and since an alternative proof of the first inequality can be deduced from the proof of [6,
theorem 2·14], we omit the details here.

For connected sums of L–space knots, it follows that the crossing change obstruction
coming from J is at least as strong as that for ϒ . The following corollary is a restatement of
Theorem 1·3 from the introduction.

COROLLARY 6·2. Suppose K1 can be obtained from K0 by changing p positive crossings
and n negative crossings. Then we have the following inequalities:

JK0(m + p) � JK1(m) � JK0(m − n) (6·1)

ϒK0(t) − nt � ϒK1(t) � ϒK0(t) + pt. (6·2)

If K0 and K1 are connected sums of L–space knots, then the second inequalities are determ-
ined by the first.

Proof. Both sets of inequalities follow immediately from iterating the relevant inequalit-
ies for a single crossing change, Theorems 6·1 and 3·1(c), respectively.

Suppose now that K0 and K1 are connected sums of L–space knots. The inequalities for
J imply that for any m ∈ Z we have

JK0(−m + p) � JK1(−m) � JK0(−m − n).

Multiply both sides by 2 and apply the Legendre transform. By Theorem 5·2, the Legendre
transform of 2JKi (−m) is ϒKi (t). Recalling that the Legendre transform reverses inequalit-
ies (Lemma 2·5), together with its behavior under shifts (2·2), the corollary follows imme-
diately.

The following example (see [6]) indicates that when analyzing crossing changes between
L–space knots, the J–function is strictly stronger. Theorem 1·3 follows at once.

Example 6·3. Let K0 = T (4, 9) and K1 = T (6, 7), the (4, 9) and (6, 7) torus knots,
respectively. We ask whether three crossing changes can transform K0 into K1. We have

δ(t) := ϒT (4,9)(t) − ϒT (6,7)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3t t ∈ [0, 1
3 ]

−3t + 2 t ∈ [ 1
3 ,

1
2 ]

5t − 2 t ∈ [ 1
2 ,

2
3 ]

−t + 2 t ∈ [ 2
3 , 1].
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It is straightforward to compute that 0 � δ(t) � 3t . In particular,

ϒT (6,7)(t) � ϒT (4,9)(t) � ϒT (6,7)(t) + 3t.

Thus ϒ (by way of (6·2)) does not obstruct the possibility that changing three positive cross-
ings of T (6, 7) will result in T (4, 9).

On the other hand, we can compare J functions. Referring to the tables in Example 4·1
and noting that the Seifert genera of T (6, 7) and T (4, 9) are 15 and 12, respectively, we see:

JT (6,7)(7) := I6,7(7 + 15) = 3

JT (4,9)(4) := I4,9(4 + 12) = 2,

so that the inequality JT (6,7)(m + 3) � JT (4,9)(m) is violated. It follows that one cannot
change three positive crossings in T (6, 7) to obtain T (4, 9), and their Gordian distance is
therefore at least four.

7. Concluding remarks

The results from this paper indicate that the information about L–space knots contained
in their d–invariants is stronger, though perhaps more unwieldy, than that derived from ϒ .
Of course this might be expected, since the d–invariants a priori determine the knot Floer
homology invariants in this context. Despite this, there is still room to wonder just how
tightly the Legendre transform grips the information about L–space knots contained in ϒ .
For instance, Theorem 3·1 implies that if K0 and K1 are two knots in S3 admitting a genus g
concordance, then for any t ∈ [0, 1] we have |ϒK0(t)−ϒK1(t)| � gt . It would be interesting
to know whether this result can be obtained using J -functions in the case K0 and K1 are
L–space knots. In this vein, a Frøshov-type inequality for the d–invariants established by
Rasmussen seems particularly relevant [11, 31].

Viewing the ϒ function of L–space knots through the lens of the Legendre transform
points to potential geometric significance of convexity properties of ϒ . Understanding
whether such connections exist seems quite important, and we hope to pursue this in the
future.
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